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ABSTRACT Cervical cancer is a malignancy that significantly impacts women’s health. Liquid-based
thin-layer cytology examination is presently the predominant method for cervical cancer cell detection.
Traditional identification of pathological images of cervical cells mainly relies on professional physicians,
which is time-consuming, labor-intensive, and has considerable limitations. The integration of deep learning
with imaging showcases remarkable performance in medical-assisted diagnosis. Nevertheless, conventional
fully supervised detection techniques face challenges in acquiring comprehensive annotated data samples.
Moreover, the intricate cell categories within cervical cells present complexities, especially in small object
detection. To address the aforementioned issues, we propose a weakly supervised model for cervical cell
detection, named LD-WSCCD, based on a local distillation mechanism. First, our model extracts image
features using single shot multibox detector (SSD). Then, leveraging the concept of knowledge distillation,
a local distillation mechanism is designed to segregate foreground and complex background regions,
directing the student network to concentrate on crucial pixels and channels. Finally, the detection of cervical
cells is performed utilizing a multi-instance detector. Experimental results on a publicly accessible cervical
cell dataset validate the effectiveness of our approach, boasting a mean average precision (mAP) value of
73.6%, surpassing other similar detection models. In future research, we aim to establish a comprehensive
dataset of cervical pathological cells. Our focus is on enhancing the model’s detection accuracy at the target
boundary to effectively address the challenge of overlapping adhesive cells in cervical samples. Our goal is
to achieve a well-balanced trade-off between the model’s accuracy and speed.

INDEX TERMS Object detection, knowledge distillation, cervical cancer, weak supervision.

I. INTRODUCTION
Cervical cancer, also known as cervical cancer, represents
a substantial threat to women’s health globally, ranking
as the second most commonly diagnosed cancer among
females worldwide [1]. The diagnostic process for cervical
cancer entails the meticulous analysis of pathological images
containing myriad cells to accurately identify abnormalities
and diseased cells. However, the inherent subjectivity and
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potential for errors in judgment stemming from factors
such as physician experience and expertise underscore the
pressing need for more precise and standardized diagnostic
methodologies. The increasing production of pathological
images, fueled by the implementation of national cancer
screening initiatives, presents a formidable challenge that
traditional manual assessment alone cannot effectively sur-
mount. In recent years, the advent of artificial intelligence,
harnessing advanced neural networks and visual algorithms,
has emerged as a promising asset in the realm of medical
image analysis. These cutting-edge technologies empower
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the thorough examination and scrutiny of cervical patho-
logical cells, playing a pivotal role in ensuring effective
cancer screenings for women. By augmenting diagnostic
accuracy and efficiency, these technological advancements
significantly contribute to the prevention, early detection,
and treatment of malignant tumors, especially in the context
of cervical cancer. The deployment of artificial intelligence
tools not only enhances the capabilities of healthcare
professionals in analyzing complex pathological images but
also holds the promise of revolutionizing the landscape of
cancer diagnosis and treatment.

Traditional approaches to cervical cancer detection focus
on segmenting and classifying cells within pathological
images to facilitate diagnosis. Current studies, such as [2],
[3], and [4], explore various feature selection techniques
and utilize machine learning algorithms like support vec-
tor machines (SVM) and Adaboost [5] to enhance the
identification and classification of cell targets in cervical
pathology images. However, acknowledging the constraints
of traditional methodologies and the intricacies involved
in detecting cervical pathological cells, recent research has
shifted towards leveraging deep learning techniques for
increased detection accuracy. Cutting-edge methods, such as
the optimized YOLOv3 model [6], have been tailored to
detect abnormal cell targets, showcasing notable enhance-
ments in detection precision. Moreover, advancements in
multi-instance learning networks, exemplified in the research
by Pal et al. [7], have further elevated the detection accuracy
of cervical pathological cell images. These developments
underscore the ongoing evolution in diagnostic technologies,
paving the way for more efficient and effective detection
and classification of cervical cancer markers through the
integration of sophisticated deep learning methodologies.

Current challenges in cervical cancer detection arise
from the labor-intensive and error-prone manual annota-
tion processes essential for model training. In response
to these challenges, researchers are actively exploring
weakly supervised learning methods as a more efficient
and resource-saving alternative for training models in
medical image analysis. By decreasing the reliance on
precisely annotated data, weak supervision strategies exhibit
promise in alleviating the adverse effects of noisy labels
on detection performance. This study aims to advance
the field of cervical cancer detection by investigating
the application of weakly supervised learning methods to
enhance the accuracy and efficiency of identifying cervical
pathological cells. Through the utilization of cutting-edge
artificial intelligence techniques, this research endeavors to
amplify current diagnostic capabilities and elevate the overall
effectiveness of cancer screenings in combating cervical
cancer. The primary contributions of our method are as
follows:

• Leveraging a local distillation mechanism, we propose a
novel weakly supervised cervical cell detection model
named LD-WSCCD, designed to detect cervical cell
categories and their respective positions.

• Our local distillation mechanism effectively segregates
foreground and intricate background regions, directing
student networks to concentrate on crucial pixels and
channels, thus maximizing the utilization of detailed
information from local features.

• Experimental results on the publicly accessible cervical
cell dataset validate the efficacy of our approach,
showcasing a model mAP value of 73.6%, surpassing
the performance of comparable detection networks.

TABLE 1. Related work.

Our research primarily focuses on analyzing cervical cell
images by leveraging deep neural networks to develop object
detection models that classify and localize different types
of cells in these images. This work is structured into five
chapters to address this task comprehensively. The first
section serves as the introduction, elaborating on the research
background and significance. section II discusses related
work, introducing the current research status of cervical
cell detection. section III details the methodology, providing
a comprehensive description of our proposed LD-WSCCD
model. section IV conducts experiments, showcasing a series
of comparative and ablation experiments. Lastly, in sectionV,
the conclusion provides a summary of our work and prospects
for future research endeavors.

II. RELATED WORK
In the domain of computer vision, object detection continues
to be a topic of paramount interest. The aim of object
detection is to accurately determine the positional coordinates
of each target within a complex image, distinguishing them
from the background, and categorizing the target accordingly.
In recent years, the advancement of deep convolutional neural
networks (CNN) has significantly improved the effectiveness
of object detection. Utilizing deep learning object detection
algorithms allows for superior feature extraction and the
transformation of original image data into abstract semantic
information through network models. This semantic infor-
mation performs exceptionally well in complex real-world
scenarios, notably enhancing the accuracy of object detection.
Currently, deep learning-based object detection algorithms
are primarily classified into two categories: two-stage object
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detection models and single-stage object detection models.
The related research is presented in Table 1.

The two-stage detection algorithm treated object detection
as a classification problem. The R-CNN model proposed by
Girshick et al. [27] made a significant breakthrough in object
detection, and subsequent work in object detection drew
substantial inspiration from this approach. The fundamental
process of R-CNN involved initially identifying 2000 candi-
date boxes through selective search (SS) [8]; these candidate
boxes were then standardized in size and subjected to
feature extraction usingAlexNet. Subsequently, SVM [9]was
employed for classification, and non-maximum suppression
was applied during filtration to obtain candidate boxes.
Following fine-tuning, the ultimate target box was derived.
While R-CNN exhibited notable performance improvements
over previous algorithms, it incurred substantial computa-
tional overhead in obtaining candidate regions via SS, leading
to redundant feature computations and slower model training
speeds. The SPP-Net target pricing model introduced by
He et al. [10] eliminated the need for selecting candidate
regions, opting instead to feed images directly into the
convolutional network to mitigate computational complexity.
Through the utilization of spatial pyramid pooling layers,
the model achieved image size normalization, addressing
discrepancies in input sizes and reducing computational
overhead, consequently greatly enhancing detection speed.
In response to the spatial complexity of SPP-Net, Girshick
[11] proposed the Fast R-CNN object detection algorithm,
amalgamating the strengths of SPP-Net with enhancements
to R-CNN. Notably, VGG-16 [12] replaced AlexNet as
the backbone network, the SVM classifier was substituted
with a softmax classifier, and a multitasking mode was
integrated, collectively enhancing network performance and
detection speed. Following the introduction of Fast R-CNN,
Ren et al. [13] formulated the Faster R-CNN object
detection framework to address the challenges associated
with generating candidate regions. This algorithm introduced
the region proposal network (RPN) to supplant the SS for
candidate box generation. By applying a sliding window
operation at each point, CNN was directly employed for
network feature extraction, resulting in substantial perfor-
mance enhancements. Nonetheless, Faster R-CNN exhibited
limitations in detecting small targets.

In comparison to two-stage detection algorithms, single-
stage detection algorithms processed multiple tasks on a sin-
gle network and provided detection results directly, achieving
an end-to-end solution mode. The detection speed of the
models was significantly enhanced. Single-stage detection
algorithms, also referred to as regression-based detection
algorithms, could sacrifice some accuracy to improve speed.
The YOLO series comprised a collection of object detection
networks rooted in single-stage detection, includingYOLOv1
[14], YOLOv2 [15], YOLOv3 [16], and YOLOv4 [17]. These
networks divided the image into multiple grids, each predict-
ing target boxes and category probability scores. The primary
advantage of the YOLO series was its rapid speed, making

it suitable for real-time applications. YOLOv1 introduced
by Joseph Redmon et al. in 2015 merged classification and
regression tasks into a single CNN, enhancing the algorithm’s
speed by eliminating the step of generating candidate
boxes. However, the grid-based approach led to insufficient
accuracy in detecting small targets. YOLOv2 introduced a
normalization layer, DarkNet19 as the backbone network,
multi-scale training, fine-grained features, and an anchor
boxmechanism to enhance performance. YOLOv3 employed
DarkNet53 as the backbone network, multi-scale prediction,
and 9 anchor boxes to improve accuracy while maintaining
real-time performance. YOLOv4 integrated various research
techniques, enhanced the backbone network, and introduced
CutMix, Mosaic, DropBlock regularization, Mish activation
function, and other strategies for a balanced trade-off between
accuracy and speed. Moreover, single shot multibox detector
(SSD) [18] also excelled in single-stage object detection
tasks, addressing speed and accuracy issues. Various mod-
ifications such as RSSD [19], DSSD [20], FSSD [21],
DSOD [22], RetinaNet [23], CornerNet [24], CenterNet [25],
EfficientDet [26], and others further improved single-stage
detection performance in the field.

Distillation was a concept commonly used in the field of
chemistry. Since Hinton et al. [28] introduced this concept
to deep learning in 2015, knowledge distillation had been
successfully applied in image classification tasks. Faced with
increasingly large network structures, the aim of knowledge
distillation was to transfer knowledge from large-scale
teacher networkmodels to shallow student models to enhance
the performance of the shallow networks. Serving as an effec-
tive solution for model compression, knowledge distillation
could harness rich information from large teacher networks
to direct new small-scale student models, thereby conserving
resources. Knowledge distillation based on transfer learning
had facilitated mutual learning between cross-domain data
and the disentanglement of models and knowledge. During
the training process, a large teacher network could be
perceived as a ‘‘black box’’ and could also safeguard
sensitive data. As a potent technology for compressing
and expediting deep neural networks, knowledge distillation
had found widespread application across various artificial
intelligence domains, encompassing visual recognition [29],
speech recognition [30], natural language processing (NLP)
[31], and recommendation systems. Additionally, knowledge
distillation had utility in other contexts such as data
privacy [32] and defense against adversarial attacks [33].
In weakly supervised object detection tasks, Zeng et al. [34]
had advanced a novel framework, WSOD2, incorporating
object distillation. This framework integrated adaptive linear
combinations to jointly evaluate the objectivity and CNN
confidence from bottom-up (BU) and top-down (TD) sources,
derived from low-level measurements, to ascertain multiple
regression targets. Zeni and Jung [35] had proposed an
additional refinement step known as refinement knowledge
distillation, designed to enhance the accuracy of the
detector.
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In the task of cervical pathological cell detection, as each
pathological image may contain thousands of cells, the
labeling of cancerous and diseased cells is often incomplete.
The dataset comprises numerous noisy labels, and the
labeled bounding boxes may enclose single or multiple
cells that require identification. Leveraging this dataset and
integrating insights from prior studies, we introduce a weakly
supervised cervical cell detectionmodel named LD-WSCCD,
based on a local distillation mechanism. This mechanism
separates foreground from complex background regions and
directs student networks to concentrate on critical pixels and
channels, effectively leveraging detailed information from
local features. Treating the cervical cell detection task as a
weakly supervised object detection challenge, inspired by the
OICR approach [36], we devise a multi-instance detector,
namely the MIL detector, to accomplish the detection of
cervical cell categories and positions.

III. METHOD
A. DATASETS
We use the cervical cell dataset [37], which contains a total
of 7086 images, including 6667 images in the training set
and 419 images in the testing set. These object examples
are labeled by experienced pathologists and divided into
11 cell categories, namely: ASC-US (ascus), ASC-H (asch),
low-grade squamous intraepithelial lesions (lsil), high-grade
squamous intraepithelial lesions (hsil), squamous cell carci-
noma (scc), atypical glandular cells (agc), trichomonas (tric),
candida (cand), bacterial flora (flora), herpes (herps), and
actinomycetes (actin).

B. IMPLEMENTATION DETAILS
We have completed the development on the Ubuntu
16.04 system, using Python 3.6 language to build the
environment and Nvidia RTX 3080 GPU to accelerate model
training. We use Pytorch to build a deep network model in
our experiment, and the input cervical cell image size was
512 × 512 × 3, the epoch was set to 120, the batch size was
set to 10, the optimizer weight attenuation coefficient was set
to 0.0005, and the initial learning rate was set to 0.0001.

C. EVALUATING INDICATOR
For the detection task of cervical pathological cells, the
precursor task is the classification task, which aims to
determine whether a pathological image contains target cells.
For such binary classification tasks, four basic scenarios are
defined in machine learning: true positive (TP), false positive
(FP), true negative (TN), and false negative (FN). In theory,
the sum of these four scenarios should be equal to the total
number of samples in the test case.

1) PRECISION
In the predicted positive cervical pathological images, the
proportion of actual labels also being positive can be

expressed mathematically as follows:

P =
TP

TP+ FP
(1)

2) RECALL
Allow the model to have a small number of false positives,
which are actually negative but mistakenly judged as positive
by the model. However, for positive samples, which are
samples from positive patients, the model should strive to
ensure that these samples are correctly classified and avoid
incorrect predictions that could lead patients to miss the
optimal treatment window. The mathematical expressions for
this scenario are as follows:

R =
TP

TP+ FN
(2)

3) PR CURVE
The precision-recall (PR) curve illustrates the trade-off
between precision and recall. The precision-recall rela-
tionship is contradictory, as higher precision typically
corresponds to lower recall, and vice versa. In the task of
cervical cell detection, a higher precision rate is prioritized
over the recall rate due to the direct impact of detection
results on the treatment timeline for positive patients. Early
detection and treatment are recommended to ensure timely
intervention.

4) AP AND MAP
Furthermore, we utilize the average precision (AP) and mean
average precision (mAP) metrics to assess the detection
capabilities of the model concerning cervical cells. AP serves
as a holistic metric that considers the accuracy across
varying recall rates, enabling the evaluation of the model’s
detection performance across different target categories. The
computation of AP involves calculating the area under
the PR curve. The mean average precision, denoted as
mAP, is determined by averaging the AP values across all
categories, expressed as mAP =

1
K 6AP(K ). Typically, mAP

serves as the primary metric for evaluating the detection
performance.

5) IOU
intersection over union (IoU) represents the similarity
between the predicted box and the true box of the detection
model, which is the ratio of the overlapping area of these
two regions to the total area of the two. The mathematical
expression is as follows:

IoU =
Area(PreBox) ∩ Area(GTBox)
Area(PreBox) ∪ Area(GTBox)

(3)

If the predicted box completely overlaps with the true box,
then IoU=1; On the contrary, IoU=0. Therefore, the value
of IoU is within the range of [0,1]. In object detection tasks,
if the IoU between the predicted box and the true box of
the model is greater than a certain threshold, it can indicate
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that the task model has successfully detected. Generally, this
threshold is 0.5.

D. LD-WSCCD MODEL
We introduce a novel weakly supervised object detection
model aimed at tackling the task of cervical cell detection.
The LD-WSCCD model’s overall architectural design is
depicted in Figure 1. The data is inputted into the base
network SSD, where multi-scale features are fused through
SSD convolutions, and rich feature information within
cervical cell images is extracted through local distillation
feature loss and additional processes. Subsequently, feature
vectors for detection and classification flows are generated
via two fully connected layers, and then processed using
MIL detectors to derive the classification and localization
outcomes of cervical cells.

1) SSD FEATURE EXTRACTION NETWORK
SSD detects targets in images by utilizing multiple feature
maps of different scales as inputs, merging prior boxes
and confidence predictions. SSD exhibits the following
advantages:

FIGURE 1. LD-WSCCD model structure.

1⃝ Fast performance: In comparison to algorithms like
Faster R-CNN, SSD demonstrates quicker detection speeds.
SSD can conduct image detection in a single pass, whereas
other algorithms necessitate multiple scans of the image,
significantly reducing detection time. Consequently, SSDs
are well-suited for applications demanding high real-time
performance.

2⃝ High accuracy: SSD achieves enhanced accuracy
relative to other models. This is attributed to SSD’s utilization
of multi-scale feature maps and prior boxes for target
detection. These features facilitate a more precise capture of
detailed target information in the image, enhancing detection
accuracy.

3⃝ Strong flexibility: SSD can accommodate targets of
diverse sizes by employing amulti-scale feature map strategy.

This approach enables the network to better adjust to various
target sizes and shapes.

4⃝ No requirement for candidate region extraction: SSD
eliminates the need for extracting candidate regions from
images, leading to a notable reduction in computational costs
and enhanced detection speed.Moreover, SSDs canminimize
missed detections as they encompass the entire image for
detection.

The SSD utilizes VGG16 as the base feature extraction
layer, with a notable feature of VGG being the use of several
consecutive small convolution kernels in place of larger ones.
For instance, by substituting a 5 × 5 convolution kernel
with two 3 × 3 small convolution kernels, an activation
function is applied after each convolution operation. This
approach not only reduces the model’s parameters but also
facilitates more effective extraction and enlargement of the
model’s receptive field, enabling the extraction of more
robust features. VGG16 comprises 5 convolutional layers and
3 fully connected (FC) layers, with the FC layers primarily
utilized for classification. Given that the base network is
responsible for feature map extraction, the SSD replaces the
FC6 and FC7 layers withinVGG16with convolutional layers.
Consequently, all dropout and FC8 layers are omitted, while
new convolutional layers 6, 7, 8, and 9 are introduced. The
parameters for this modification and the convolutional layer
parameters of VCG16 are acquired through transfer learning.

a: EXTRA FEATURE LAYERS
In comparison to the prior Faster R-CNN and YOLO
series networks, we propose a multi-scale feature fusion
structure for feature extraction. Feature extraction occurs at
various scales, leveraging feature maps of varying sizes for
detection purposes. Simultaneously, softmax classification
and position regression are executed across multiple feature
maps to capture global information and enhance detection
accuracy. Semantic information characteristic of each layer is
embedded in the feature map obtained post each convolution
operation. Semantic richness increases with higher feature
layers. Diverse feature maps denote information utilization at
different hierarchical levels, and the integration of multi-scale
features inherently boosts detection outcomes. Moreover,
as convolution transitions from shallow to deep layers, the
receptive field expands from small to large, advocating for
the advantages of multi-scale features for multi-scale object
detection.

b: ANCHOR
In contrast to two-stage networks like Faster R-CNN, which
predetermine candidate boxes and conduct classification
tasks prior to detection tasks, SSD operates as a one-stage
network and does not predefine candidate boxes. Hence,
we introduced the concept of Anchors. Before training, a set
of prior boxes/default boxes is established for each grid,
serving as reference points for iteratively adjusting to the
actual target location through variations in displacement
and aspect ratio. Subsequently, the true target location is
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determined through softmax classification and bounding box
regression. The rules for defining the prior boxes include:

Given the objective of predicting m feature maps, the
formula for determining the scale of the prior box for each
feature map is as follows:

Sk = Smin +
Smax−Smin
m− 1

(k − 1), k ∈ (1,m) (4)

where Smin is 0.2 and Smax is 0.9, indicating that the scale
ranges from 0.2 at the lower level to 0.9 at the higher level,
with intermediate scales spaced according to specified rules.
Computing thewidth (wak = sk

√
ar ) and height (hak = sk

√
ar )

of a particular layer’s prior box involves setting different
ratios. For a ratio of 1, a specific prior box is added with a
scale of s

′

k =
√
sksk+1. The center position for each prior

box is set to ( i+0.5
|fk |

,
j+0.5
|fk |

), where fk denotes the size of the
k-th feature map.

c: MULTIBOXLOSS
To locatemultiple object categories, xpij = 1 is used to indicate
that the i-th prior box matches the j-th ground truth box
of category p; otherwise, xpij = 0. Based on this matching
strategy, we obtain

∑
i x

p
ij ≥ 1 , indicating multiple prior

boxes match the j-th ground truth box. The overall objective
loss function is the weighted sum of localization loss (loc)
and confidence loss (conf ).

L(x, c, l, g) =
1
N

(
Lconf (x, c) + αLloc(x, l, g)

)
(5)

where N represents the number of matched prior boxes.
When the matched prior box value is 0, the loss value is
set to 0. The localization loss (loc) is the smooth L1 loss
between the predicted box (l) and the ground truth box (g).
The regression offset between the center (cx, cy) of a default
bounding box d and its width (w) and height (h) is calculated.
The mathematical expressions are as follows:

Lloc(x, l, g) =

N∑
i∈Pos

∑
m∈(cx,c y,w,h}

xkij smoothL1
(
lmi −gmj

)

gcxj =
gcxj −dcxi
dwi g

cy
j

=
gcyj −dcyi
dhi

gwj = log

(
gwj
dwi

)
ghj = log

(
ghj
dhi

)
(6)

Confidence loss ((conf ) is a softmax loss based on
multi-class confidence. The mathematical expressions are as
follows:

Lconf (x, c) = −

N∑
i∈Pos

xpij −
∑
i∈Neg

log
(
ĉ0i
)

,ĉpi =
exp

(
cpi
)∑

p exp
(
cpi
)
(7)

2) LOCAL DISTILLATION MECHANISM
Knowledge distillation is a model compression method that
preserves the network model structure. By amplifying the

dark knowledge, the student network learns to replicate
the dark knowledge of the teacher network, facilitating
transfer learning. Common detectors predominantly leverage
FPN [38] for integrating multi-scale semantic information.
FPN combines features extracted from various levels of
the backbone network, enhancing the student network’s
utilization of multi-scale information and boosting its perfor-
mance significantly. In a standard SSD, multi-scale feature
fusion is employed to derive feature maps from multiple
network layers. Although these feature maps are used for
softmax classification and position regression to capture
global information simultaneously, the shallow layers may
lack adequate feature extraction due to a limited number
of convolutional layers. Transfer of feature knowledge
from teacher networks can substantially improve student
performance, with the feature distillation formula being
expressed as follows:

Lfea =
1

CHW

C∑
k=1

H∑
i=1

W∑
J=1

(
FTk,i,j−f

(
FSk,i,j

))2
(8)

where FT represents the teacher’s features, FS represents the
student’s features, and f reshapes the teacher feature FT into
an adaptation layer of the student feature FS in the same
dimension. Here, H and W denote the height and width of
the feature map, while C denotes the number of channels.
Conventional feature distillation tends to overlook the inter-
pixel correlations. To address this issue, we introduce a
local distillation mechanism that emphasizes the distinction
between foreground and background images. This mecha-
nism guides the student networks to concentrate on crucial
pixels and channels by leveraging insights from the teacher
networks.

The research conducted on SENet [39] and CMAM [40]
demonstrated that emphasizing key pixel regions and employ-
ing special channel attention mechanisms during the network
learning process benefited the network in learning features
effectively. This approach also contributed to the enhanced
performance of CNN models. In their work, Zagoruyko
and Komodakis [41] improved the efficacy of knowledge
distillation by incorporating a spatial attention mask mech-
anism. Building upon the aforementioned research findings,
we apply similar methods to give special attention to
local pixels and channels, extracting corresponding attention
masks.

In cervical pathological cell images, the difference in
appearance between the detected cells and normal cells is not
significant, and there are no prominent distinctions between
the foreground and background areas of target detection.
Additionally, the collected images lack clarity, resulting in
a more complex image background. To tackle this issue,
a binary mask M is used to separate the foreground and
background regions. If the horizontal and vertical coordinates
(i, j) of the feature map lie within the ground truth box,
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Mi,j=1; otherwise, it is set to 0.

Mi,j =

{
1, i f (i, j) ∈ r
0,O therwise

(9)

Then, we calculate the absolute average of pixels and
channels:

GS (F) =
1
C

·

C∑
c=1

|Fc|

GC (F) =
1
HW

·

H∑
i=1

W∑
j=1

|Fi,j| (10)

where H , W , and C represent the height, width, and number
of channels of the feature map, respectively. GS and GC

represent spatial and channel attention maps, respectively.
By introducing the temperature hyperparameter T to regulate
the distribution, the spatial attention mask AS and channel
attention mask AC are calculated:

AS (F) = H ·W · softmax(GS (F)/T )

AC (F) = C · softmax(GC (F)/T ) (11)

During the training process, there exists a disparity
between the student’s mask and the teacher’s mask, neces-
sitating the utilization of the teacher’s mask for guiding the
student’s mask. Utilizing the spatial attention mask AS and
channel attention mask AC of the teacher detector, the feature
loss calculation formula is as follows:

Lfea = α

C∑
k

H∑
i

W∑
j

Mi,jASi,jA
C
k

(
FTk,i,j−f

(
FSk,i,j

))2
+ β

C∑
k

H∑
i

W∑
j

(
1−Mi,j

)
ASi,jA

C
k

(
FTk,i,j−f

(
FSk,i,j

))2
(12)

where FT and FS represent the feature maps of the teacher
detector and the student detector, respectively, we introduce
hyperparameters α and β to balance the loss between
foreground and background. To facilitate the successful
learning of the spatial and channel attention masks in the
teacher detector by the student detector, an attention loss
function Latt is incorporated:

Latt = γ · (l
(
ASt ,A

S
S
)
+ l
(
ACt ,ACS

))
(13)

where l denotes the average absolute error function, and
γ is employed to balance the two losses. Utilizing the
aforementioned calculation results, the final loss function Ldis
is derived as follows:

Ldis = Lfea + Latt (14)

Train the student detector using the loss functionLdis, guide
the student detector in learning from the teacher’s network,
and implement a local distillation mechanism.

3) MIL DETECTOR
In the task of cervical pathological cell detection, as there
may be thousands of cells in each pathological image, the
labeling of cancerous and diseased cells is often incomplete.
The dataset contains numerous noisy labels, and the labeled
bounding boxes may encompass single or multiple cells that
require detection. Treating the cervical cell detection task
as a weakly supervised object detection problem, a multi-
instance detector, i.e., MIL detector, is designed based on the
concept of OICR. This MIL detector is utilized to perform
the detection of cervical cell categories and their respective
positions.

The features extracted from the convolutional layer are sep-
arated into a detection flow and a classification flow through
two fully connected layers. These flows are processed by
softmax layers to produce two corresponding matrix scores,
denoted as σ (xdet ) and σ (xcls). By multiplying these two
matrices, the predicted score xr = σ (xdet ) · σ (xcls) for the
r-th region in the proposal box is generated. The predicted
score µc =

∑r
r=1 xcr for the entire image is determined by

aggregating the predicted scores across all regions. During
the training phase, the fundamental multi-instance detector is
supervised by the predicted scoreµc and the ground truth yc of
the class annotations. This supervision guides the calculation
of the cross-entropy loss Lcls.

Lcls = −

C∑
C=1

{yc logµc + (1−yc)(1 − logµc)} (15)

Due to the varying sizes of cells in cervical images,
basic multi-instance detectors might exhibit a bias towards
larger cells, potentially leading to the localization of entire
image content by multiple detectors. Building upon the
concept of OICR, we have developed a staged optimization
multi-instance classifier to enhance the performance of detec-
tors. Each optimization stage comprises a fully connected
layer and a softmax layer. The recommendation scores from
the i-th stage optimizer serve as the supervision signal for
the subsequent i + 1 layer, encompassing C + 1 categories
including a background class. The aggregated output from
k optimization stages is utilized as the supervised infor-
mation for the feature distillation process. The supervision
information ykcr guides the optimization output at the k −

1 stage for the r-th region and category c, yielding the
recommendation score xkcr . Furthermore, to mitigate noise
stemming from previous predictions, a weighted term wkj =

χk−1
Cjc is introduced to refine the loss function throughout

the iterative optimization stages. The network is trained to
minimize theweighted cumulative optimization loss Lref over
the stepwise optimization iterations.

Lref = −
1

|R|

|R|∑
j=1

C+1∑
c=1

wkr y
k
cr log x

k
cr (16)

The complete model undergoes training while being
guided by the distillation loss Ldis, the basic multi-instance
detector loss Lcls, and the optimization loss Lref .
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FIGURE 2. Detection visualization.

TABLE 2. Experimental results of LD-WSCCD on different cells.

IV. EXPERIMENTS
A. COMPARATIVE EXPERIMENT
As depicted in Table 2, cells exhibiting low-grade squamous
intraepithelial lesions (lsil) showcase larger nuclei compared
to those without lesions, achieving a commendable AP
value of 78.4%. High-grade squamous intraepithelial lesions
(hsil) present more pronounced abnormalities, characterized
by a higher nuclear to cytoplasmic ratio than typical cell
structures, yielding an AP value of 74.6%. Squamous cell
carcinoma (scc) displays multiple cell adhesions, resulting
in a relatively lower detection performance with an AP of
57.9%. Atypical glandular cells (agc), primarily comprising
small targets, exhibit inferior model performance compared
to larger cells, with an AP of 54.4%. ASC-US (ascus) and
ASC-H (asch) cells boast clear cell image boundaries and
are sizeable targets that are easily distinguishable. The model
demonstrates good detection accuracy for these cells, with
AP values of 73.2% and 70.9%, respectively. For other cell
types not necessitating special attention in cervical cancer
detection, notable distinctions exist among the cells. The
model excels in detecting these cell types, with AP values
of 76.5% for trichomonas (tric), 80.1% for candida (cand),
83.3% for bacterial flora (flora), 78.7% for herpes (herps),
and 81.6% for actinomycetes (actin). The overall model’s
mAP for detection performance stands at 73.6%, with the
detection efficacy illustrated in Figure 2.

FIGURE 3. Precision and recall relation curve.

TABLE 3. Comparison of the results of different models for five types of
key cells.

Our LD-WSCCD model is trained and utilized for
predictions on the cervical cell dataset. To visually represent
the outcomes of the model training, Precision-Recall (PR)
curves for each cell category are plotted, as depicted in
Figure 3. The x-axis of the PR curves represents recall, while
the y-axis represents precision.

To compare the performance of the LD-WSCCD model,
we conduct experiments utilizing mainstream object detec-
tion network models on the same dataset partition and within
the same experimental environment. The AP values of five
key cell types are compared across each model, along with
their corresponding mAP values, as illustrated in Table 3.

Based on the analysis of the experimental results
mentioned above, the following conclusions can be drawn:

(1) In comparison to the Faster R-CNN model, our model
exhibits a 10.3% increase in mAP value. When contrasted
with the two-stage detection model, our single-stage detec-
tion model consolidates multiple tasks into a unified process,
adopting an end-to-end solution approach that enhances both
the speed and accuracy of detection.

(2) Our model demonstrates a 7.4% increase in mAP
value over the SSD model. Similarly, when compared to
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the YOLOv4 model, our model achieves a 6.4% uptick
in mAP value. This highlights how our model not only
addresses the speed limitations of SSD models but also
enhances the comparatively lower accuracy of YOLO series
networks. By leveraging VGG16 as the backbone network
and implementing the multi-scale feature fusion strategy, the
modelmatches large targets with large-scale featuremaps and
small targets with small-scale feature maps. This approach
enhances detection accuracy while maintaining model speed.

(3) Our model effectively distinguishes between fore-
ground and background images through the Local distribution
mechanism, and successfully accomplishes the final detec-
tion task of categorizing and locating cervical cells using the
MIL detector, leading to superior performance.

TABLE 4. Ablation results. LDM express Local distillation mechanism.

B. ABLATION EXPERIMENT
To verify the effectiveness of our proposed three components
in improving cervical cell detection performance, ablation
experiments were designed. The mAP results of 11 cells are
shown in Table 4.

The mAP value of a single SSD model is 66.2%. When
only the Local distribution mechanism is added, the mAP
increases by 3.1%, and when only the MIL detector is
added, the mAP increases by 5.3%. When both the Local
distributionmechanism andMIL detector are added, themAP
increases by 7.4%. The experimental results demonstrate
that SSD uses multi-scale feature maps and prior boxes
to detect targets, which can better capture the detailed
information of targets in the image. The added Local
Distillation mechanism pays special attention to local pixels
and channels, extracts corresponding attention masks, and
further improves detection accuracy. Finally, the detection
task of cervical cell category and location is completed
through MIL detector.

V. CONCLUSION
A. SUMMARY
Cervical cell pathology images encompass millions of cell
tissues, making manual annotation a time-consuming and
labor-intensive task that is prone to erroneous or inaccurate
labeling. This leads to a significant presence of noisy labels,
which adversely impacts the model’s detection performance.
Leveraging this dataset and building on prior research,
we introduce a weakly supervised cervical cell detection
model named LD-WSCCD, based on a local distillation
mechanism. The data is fed into the base network SSD, where
convolution andmulti-scale feature fusion extract rich feature
information from the cervical cell images through processes
like local distillation feature loss. Subsequently, two fully

connected layers generate feature vectors for detection and
classification pathways. Following processing with the MIL
detector, we obtain classification and localization results
for cervical cells. Experimental findings on our dataset
demonstrate that LD-WSCCD can accomplish cervical
cell detection tasks under weakly supervised conditions,
exhibiting superior accuracy and performance compared to
existing algorithms. This enables the successful auxiliary
diagnosis of cervical cancer.

B. PROSPECT
In auxiliary medical image diagnosis, there are pressing chal-
lenges in cervical cell detection tasks. Future advancements
can focus on the following aspects:

(1) Establishment of a comprehensive, specialized, and
adequately large dataset for cervical pathological cell
analysis is essential. Despite ongoing efforts to promote
cancer screening, the privacy concerns and dispersed nature
of generated cervical pathology images pose challenges.
Annotating cervical pathology images demands significant
resources, hindering the creation of a professional dataset for
research purposes.

(2) Enhancing the accuracy of detecting overlapping
adherent cells within cervical samples is crucial. The
ambiguous boundaries resulting from the adhesion between
cell nucleus and cytoplasm, along with the stacking of
multiple targets, significantly impact detection precision.
Improving the detection accuracy of these complex targets is
a key research focus for the future.

(3) Striking a balance between accuracy and speed in
model performance remains a critical issue. The growing
complexity of neural network models has resulted in
excessively large networks, hindering their deployment and
practical implementation. While enhancing network perfor-
mance by incorporating various modules can be beneficial,
it often comes at the cost of reduced operational speed.
Developing lightweight network models that are easily
deployable and offer tangible real-world value is paramount
for advancing research in this field.

ACKNOWLEDGMENT
(Juanjuan Yin and Qian Zhang are co-first authors.)

REFERENCES
[1] C. R. Clark, N. Baril, M. Kunicki, N. Johnson, J. Soukup, K. Ferguson,

S. Lipsitz, and J. Bigby, ‘‘Addressing social determinants of health to
improve access to early breast cancer detection: Results of the Boston
REACH 2010 breast and cervical cancer coalition women’s health
demonstration project,’’ J. Women’s Health, vol. 18, no. 5, pp. 677–690,
2010.

[2] B. Ashok and P. Aruna, ‘‘Comparison of feature selection methods for
diagnosis of cervical cancer using SVM classifier,’’ Int. J. Eng. Res. Appl.,
vol. 6, no. 1, pp. 94–99, 2016.

[3] Y. Marinakis, G. Dounias, and J. Jantzen, ‘‘Pap smear diagnosis using
a hybrid intelligent scheme focusing on genetic algorithm based feature
selection and nearest neighbor classification,’’Comput. Biol. Med., vol. 39,
no. 1, pp. 69–78, 2009.

[4] V. Chandran, ‘‘The genetics of psoriasis and psoriatic arthritis,’’ Clin. Rev.
Allergy Immunol., vol. 44, pp. 149–156, Jan. 2013.

77112 VOLUME 12, 2024



J. Yin et al.: Enhancing Cervical Cell Detection Through Weakly Supervised Learning

[5] Y. Freund and R. E. Schapire, ‘‘A decision-theoretic generalization of on-
line learning and an application to boosting,’’ J. Comput. Syst. Sci., vol. 55,
no. 1, pp. 119–139, 1997.

[6] R. H. Kaufman, K. Schreiber, and T. Carter, ‘‘Analysis of atypical
squamous (glandular) cells of undetermined significance smears by
neural network–directed review,’’ Obstetrics Gynecol., vol. 91, no. 4,
pp. 556–560, 1998.

[7] A. Pal, Z. Xue, K. Desai, A. A. F. Banjo, C. A. Adepiti, L. R. Long,
M. Schiffman, and S. Antani, ‘‘Deep multiple-instance learning for
abnormal cell detection in cervical histopathology images,’’ Comput. Biol.
Med., vol. 138, Nov. 2021, Art. no. 104890.

[8] Y. Li and R. L. Stevenson, ‘‘Multimodal image registration with line
segments by selective search,’’ IEEE Trans. Cybern., vol. 47, no. 5,
pp. 1285–1298, May 2017.

[9] J. L. Balcazar, Y. Dai, and O.Watanabe, ‘‘Provably fast training algorithms
for support vector machines,’’ in Proc. IEEE Int. Conf. Data Mining,
Dec. 2001, pp. 43–50.

[10] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Spatial pyramid pooling in deep
convolutional networks for visual recognition,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 37, no. 9, pp. 1904–1916, Sep. 2015.

[11] R. Girshick, ‘‘Fast R-CNN,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 1440–1448.

[12] H. Qassim, A. Verma, and D. Feinzimer, ‘‘Compressed residual-VGG16
CNN model for big data places image recognition,’’ in Proc. IEEE
8th Annu. Comput. Commun. Workshop Conf. (CCWC), Jan. 2018,
pp. 169–175.

[13] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-
time object detection with region proposal networks,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017.

[14] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

[15] J. Redmon and A. Farhadi, ‘‘YOLO9000: Better, faster, stronger,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 6517–6525.

[16] J. Redmon and A. Farhadi, ‘‘YOLOv3: An incremental improvement,’’
2018, arXiv:1804.02767.

[17] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, ‘‘YOLOv4: Optimal
speed and accuracy of object detection,’’ 2020, arXiv:2004.10934.

[18] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, ‘‘SSD: Single shot multibox detector,’’ in Proc. 14th Eur.
Conf. ECCV, Amsterdam, The Netherlands. Switzerland: Springer, 2016,
pp. 21–37.

[19] J. Jeong, H. Park, and N. Kwak, ‘‘Enhancement of SSD by concatenating
feature maps for object detection,’’ 2017, arXiv:1705.09587.

[20] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, ‘‘DSSD:
Deconvolutional single shot detector,’’ 2017, arXiv:1701.06659.

[21] Z. Li, L. Yang, and F. Zhou, ‘‘FSSD: Feature fusion single shot multibox
detector,’’ 2017, arXiv:1712.00960.

[22] Z. Shen, Z. Liu, J. Li, Y.-G. Jiang, Y. Chen, and X. Xue, ‘‘Object detection
from scratch with deep supervision,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 42, no. 2, pp. 398–412, Feb. 2020.

[23] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, ‘‘Focal loss for dense
object detection,’’ inProc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 2999–3007.

[24] H. Law and J. Deng, ‘‘CornerNet: Detecting objects as paired keypoints,’’
in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 734–750.

[25] X. Zhou, D. Wang, and P. Krähenbühl, ‘‘Objects as points,’’ 2019,
arXiv:1904.07850.

[26] M. Tan, R. Pang, and Q. V. Le, ‘‘EfficientDet: Scalable and efficient
object detection,’’ inProc. IEEE/CVFConf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 10778–10787.

[27] R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature hierarchies
for accurate object detection and semantic segmentation,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 580–587.

[28] G. Hinton, O. Vinyals, and J. Dean, ‘‘Distilling the knowledge in a neural
network,’’ 2015, arXiv:1503.02531.

[29] M. Zhang, G. Song, H. Zhou, and Y. Liu, ‘‘Discriminability distillation
in group representation learning,’’ in Proc. 16th Eur. Conf. Comput. Vis.,
Glasgow, U.K. Switzerland: Springer, 2020, pp. 1–19.

[30] P. Shen, X. Lu, S. Li, and H. Kawai, ‘‘Interactive learning of teacher–
student model for short utterance spoken language identification,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2019,
pp. 5981–5985.

[31] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, ‘‘DistilBERT, a
distilled version of BERT: Smaller, faster, cheaper and lighter,’’ 2019,
arXiv:1910.01108.

[32] J. Wang, W. Bao, L. Sun, X. Zhu, B. Cao, and S. Y. Philip, ‘‘Private model
compression via knowledge distillation,’’ in Proc. AAAI Conf. Artif. Intell.,
2019, pp. 1190–1197.

[33] X. Chen, Y. Zhang, H. Xu, Z. Qin, and H. Zha, ‘‘Adversarial distillation
for efficient recommendation with external knowledge,’’ ACM Trans. Inf.
Syst., vol. 37, no. 1, pp. 1–28, 2018.

[34] Z. Zeng, B. Liu, J. Fu, H. Chao, and L. Zhang, ‘‘WSOD2: Learning
bottom-up and top-down objectness distillation for weakly-supervised
object detection,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 8292–8300.

[35] L. F. Zeni and C. R. Jung, ‘‘Distilling knowledge from refinement in
multiple instance detection networks,’’ in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2020, pp. 768–769.

[36] P. Tang, X. Wang, X. Bai, and W. Liu, ‘‘Multiple instance detection
network with online instance classifier refinement,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2843–2851.

[37] Y. Liang, Z. Tang, M. Yan, J. Chen, Q. Liu, and Y. Xiang, ‘‘Comparison-
based convolutional neural networks for cervical cell/clumps detection in
the limited data scenario,’’ 2018, arXiv:1810.05952.

[38] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
‘‘Feature pyramid networks for object detection,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2117–2125.

[39] J. Hu, L. Shen, and G. Sun, ‘‘Squeeze-and-excitation networks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 7132–7141.

[40] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, ‘‘CBAM: Convolutional
block attention module,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 3–19.

[41] S. Zagoruyko and N. Komodakis, ‘‘Paying more attention to attention:
Improving the performance of convolutional neural networks via attention
transfer,’’ 2016, arXiv:1612.03928.

JUANJUAN YIN is currently pursuing the master’s degree with the School
of Information Science and Technology, Northwest University. Her research
interests include computer vision and medical image processing.

QIAN ZHANG is currently pursuing the master’s degree with the School
of Information Science and Technology, Northwest University. Her research
interests include computer vision and medical image processing.

XINYI XI is currently pursuing the master’s degree with the School of
Information Science and Technology, Northwest University. Her research
interests include computer vision and medical image processing.

MENGHAO LIU is currently pursuing the master’s degree with the School
of Information Science and Technology, Northwest University. His research
interests include computer vision and medical image processing.

WENJING LU received the master’s degree from the School of Information
Science and Technology, Northwest University. His research interests
include computer vision and medical image processes.

HUIJUAN TU is currently a Radiologist with Kunshan Hospital of Chinese
Medicine. Her research interest includes medical images.

VOLUME 12, 2024 77113


