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ABSTRACT Advanced Persistent Threats commonly use Domain Generation Algorithms to evade advanced
detection methods to establish communication with their command and control servers. To overcome the
DNS protocol legitimacy breach, several Domain Generation Algorithms detection methods have been
proposed. To solve the problem of DGA malware detection amicably, Deep Learning based detection
schemes attracted researchers’ interest recently. However, Deep Learning has already achieved optimal
results and the gap is identified as fine-tuning of Deep Learning model hyper-parameters. The proposed
solution is focusing on a model specific hyper-parameter known as the gradient optimizer. Gradient
Optimisers are broadly categorised into Stochastic Gradient and Adaptive Moment based Gradient. Moment-
based Gradient optimizer approaches are identified with suffering from weight decay and leading to
poor generalization. Adaptive Moment (Adam) has improved with weight Decay as AdamW. To optimise
moment-based gradient optimizers, Adam and AdamW are analyzed deeply. To optimize the functioning of
AdamW, we present AdamW+, a novel solution for detecting DGA algorithms through re-implementing
and nullifying the weight decay in AdamW. AdamW+ has been successfully implemented and shown
promising results compared to Adam and AdamW optimizers in practice. AdamW+- preserved the properties
of Adaptive Optimizer Adam while simplifying the weight decay implementation of AdamW. Empirical
analysis has proved that AdamW+ has outperformed Adam and AdamW. The experimental result have
substantiated that the proposed algorithm achieves the best accuracy result.

INDEX TERMS Deep learning optimizer, LSTM, Adam, AdamW, AdamW+-.

I. INTRODUCTION

Nowdays, Advanced Persistent Threat (APT) is one of
the most complex and hybrid cyber threats designed to
target adversaries. APT is not a hostile attack in singularity
but rather a successive stealthy cyber operation. Strategic
level APT [1] targets nation-states’ economies and Criti-
cal Information Infrastructures (CIIs) to steal national or
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corporate trade secrets. APT phases of cyber-attacks are
sorted as sequential phases of attacks and are assorted as
Cyber Kill Chain (CKC) [2]. CKC phase of Command
and Control in which malicious actors exploit legitimate
DNS protocol to evade any detection exercising malicious
commands remotely. DNS protocol is an application layer
protocol that uses both TCP and UDP for zone transfer and
for name against associated IP information respectively. DNS
protocol is abused by generating malicious domains in the
garb of non-existent domains (NXDomains) [3]. One of such
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malicious domains are then connecting the infected systems
with pre-configured CC servers. The target system is infected
by an explicitly designed malware to exploit the inherited
trust of DNS protocol called Domain Generating Algorithm
(DGA) [4]. DGA generates the bulk of NXDomain traffic
along with the hidden malicious domains for connectivity
with prefigured CC servers.

The earliest methods of DGA malware detection include
blacklisting of such domains from bulk-generated domains by
DGA communities [5] and detection of non-existent domain
traffic using sequential hypothesis [6]. DGA detection has
been advanced with Machine Learning and Deep Learning
based solutions. More recently, DGA detection has been
elevated using Deep Learning models like Long-short Term
Memory (LSTM) and Convolution Neural Networks (CNN)
models successfully. These Deep Learning models have
brought considerable improvement in detection performance.
As compared to LSTM, CNN and even their hybrid
approaches have been applied and have outperformed all
previous methods. The optimal performance of these DL
models was based on solving the text classification problems
(separating malicious domains from legitimate domains).
Presently, the implementation of Deep Learning models with
LSTM and CNN models has been applied profoundly for
DGA Detection.

The Deep Learning models are dependent on various
model parameters to classify and detect DGA-generated
domains/ NXdomains. One such parameter us gradient
optimizer which is an optimization algorithm and is con-
sidered the primer of the presented research work. This
research is to observe and evaluate the efficient gradient
optimizer algorithms for the LSTM model. Gradient opti-
mizers are divided mainly into Stochastic Gradient (SGD)
and Adaptive Moment-based Optimizers. Adaptive Moment
based optimizers refine the moving averages more smoothly
than SGD. Here, we employ an Adaptive Moment based
gradient optimizer for text classification problems like
malicious domain detection generated by DGA. DL models
are normally set with Adaptive Moment optimizer (Adam)
[7] as the default optimizer. It optimizes the LR and fastens
the convergence of the training model to a point of stability.
Adam is improved further by AdamW (Adam with fixed
weight Decay) [8] which deploys weight decay separately
than L2 regularization.

Deployment of the weight decay coefficient is considered
a meager impact on the overall implementation of the
optimizer itself, this is the gap identified in AdamW. Thus,
we first implement Adam and AdamW optimizer with
respect to focus on weight decay and then pitched our
proposed optimizer AdamW+. In this proposed research
work, the implementation of weight decay is presented
in AdamW [8]. The optimized variation of AdamW with
respect to weight decay is named AdamW+-. Empirical
analysis of text classification with a Deep Learning model
for DGA detection is chosen for comparative analysis
of adaptive moment-based optimization algorithms. Text
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classification-based DGA detection is implemented for
AdamW+ optimizer with a comparison against the default
Adam and AdamW optimizers. AdamW+ has shown
that AdamW implementation become more efficient and has
outperformed both adaptive moment-based optimizers like
Adam and AdamW.

This study is divided into six sections. Section II
covers related work on DGA detection encompassing two
subsections of Deep Learning-based DGA detection and
evolution of Adaptive Gradient Optimization Algorithms
respectively. Section III identified the gap and highlights
the proposed methodology of the subject research work.
Section IV explains proposed methodology and its empirical
implementation. Section V discusses the results and sec-
tion VI discusses conclusive remarks with future directions.

Il. RELATED WORK

A Domain Name may have maximal length of 253 characters
as per RFC 1035 [9]. The length of the domain name varies
with respect to DGA families and APT groups as depicted
in Table 1. Moreover, detected DGA lengths are varying
from 7 to 32 alphanumric characters using different gen-
eration schemes. The DNS request “‘ffqrgedkmxbwbl[.]ru”
from Table 1 is generated by a DGA embedded in Conficker
malware.

TABLE 1. Comparative list of various malicious domains generated by
different DGA families.

Samples/No of Char-  Associated DGA  Type of Generation

acters Family Schemes
gdgdhdddjkdgh.com Cryptolocker [10] Arithmetic
hpbbydetwdgsscqtnvljufaau.com

Gameover [11] / P2P Arithmetic
ffqrgedkmxbwb.ru/13  Conficker Arithmetic
miodndu.ms Necurs [12] Arithmetic
sizyvob.com simda [13] Arithmatic
seekhecsfam.com qakbot [14] Arithmetic
nxnuctb.info shifu [15] Arithmetic
b83ed4877eec1997fcc39b7ae590007a.info

Bamital [16] Hashing

As DGA Detection as it is backed by organised and
professional APT groups, highly sophisticated Cyber crim-
inals and Cyber state actors which is highly challenging.
They collectively produce too much variants to keep evading
advanced Cyber security solutions and products. Conficker
was the most active malware family identified followed by
Necurs [12] and Suppobox [17]. The Conficker malware was
designed to infect and control millions of PCs worldwide
by cyber criminals. It was structured with advanced program
logics, peer-to-peer (P2P) coordination channel and domain
generation algorithm (DGA) [18]. Figure 1 explains how a
malicious Command and control server with an assumed IP
of 111.222.111.222 is associated with one of the generated
domains by DGA and connects the infected machine back
with a listening malicious Command and control server. With
such a spread in domain space manipulation, it became a
significant challenge to detect DGA malware as it exploits
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C2 Domains NXDomains
ffqrgedkmxbwb.ru
resolved to

111.222.111.222

ffqrgedkmxbwb.ru
Fefbyfgnkmxbwb.ru
henuhtskuhhswb.ru

Command and
control server
111.222.111.222

FIGURE 1. Malicious command and control server connecting with victim
machine.

inherit weaknesses and loopholes in the Internet address and
name space governance [19].

First Problem with domain names is its control whose
geographical boundaries are transfrontier. This makes it a
global menace with no centralized control due nonexistence
of uniform regulations across the world and regions for
domain registrations. TLDs reveal information to determine
the identity of web entities the generated domains are
registered. Despite this government are unable to take control
over these domain registrars and have failed in implementing
a coherent regulatory control. US Federal Agency FBI failed
in one of their famous Cyber Operation Tovar to take over
Russian domain registrars. Second problem is detection of
minute ratio of DGA traffic compared to enormous legitimate
DNS traffic. Effective DGA detection is becoming tough
business to identify the prevailing rogue connections to
malicious C&C servers. It asserts to disable security product
as well as stops Windows from security patches and updates.
This disables security update notifications and kills processes
whose names match a list of 23 security products and security
diagnosis tools.

As DGAs are associated with different APT groups to
establish their CC servers covertly and abuse the DNS
protocol legitimacy. Presently, DGA detection has evolved
to be solved by most advanced Deep Learning models or
Deep Neural Networks (DNNs). DGA malware authors are
constantly evolving from random alphanumeric characters to
word-lists or a word dictionary to make it more legitimate
domain name to avoid detection by advance security solu-
tions. Regardless of length or word-lists adopted by malware
authors, DL models detects successfully the repetitions of
specific characters or wordlists and associate its statistics with
a DGA family/ group if it is generated by DGA.

A. DGA DETECTION WITH DEEP LEARNING

DGA malware produces varying alphanumeric patterns and
character frequencies as well as wordlist based [20] domain
names. Both patterns and character frequencies are cleverly
designed by malware engineers to avoid detection and
bypass advanced detection systems. Further, these patterns,
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TABLE 2. Overview of DGA detection with individual deep learning
models.

Advanced DGA Detection DL Techniques | Years Research Work done
LSTM 2016 J. Woodbridge et al. [23]

2018 R Vinayakumar et al. [24]

2023 Hu, Xiaoyan et al. [25]

2024 Tapsoba et al. [26]
2018 Duc tran et al. [27]
CNN 2017 Joshua et al. [28]
2018 W. Bush et al. [29]
2019 Shaofanf Zhao et al. [30]
LSTM with Attention / Hybrid approach 2019 Y. Qiao et al. [31]
2021 J. Namgung et al. [21]
2024 BR Setal. [32]

frequencies, and word list-based domain names associate
themselves with respective DGA families. The bulk volumes
of malicious domain names generated by DGA malware
confirm it as a potential candidate for Deep Learning models.
Deep Learning models achieved better performance in DGA
classification and detection due to having an inherent auto
features extraction and better results over DGA detection.
These DNN models generally consist of LSTM, CNN, and
thier hybrid approaches [21]. The recent addition of Attention
models with LSTM has further improved the detection
performance [22]. A brief overview of research work based
on these Deep Learning models is depicted in Table 2.

Further, it is pertinent to mention that the Transformer
model [22] undoubtedly are used in processing all input
data at once to achieve long-range dependencies while
LSTM model process input data sequentially and achieves
both long-range (not upto scale of Transformer) and short-
range dependencies. Further Transformers are used ideally
in dealing with large corpus of data sets more likely for
text translation and text summaries. As DGA Detection uses
only domain names per sample with maximal length upto
100 characters as DGA malware authors want to mix their
malicious traffic into legitimate network traffic and avoid
overwhelming lengthy domain names. It is considered that
domain name samples are much smaller comparatively to
larger corpus datasets. Therefore, it is ideal to adopt LSTM
models for malicious domain detection. However, a layer of
Attention has been added in proposed LSTM model which
has drawn connections between all input data and achieve
same performance results as of Transformer used in larger
corpus.

Deep Learning models learn to differentiate between
legitimate and malicious domains using training dataset
of both legitimate and malicious domain samples. Deep
Learning models are fed with labeled samples of both
legitimate domains and malicious domains for training and
learning. In Deep Learning, LSTM models are considered
ideal for text classification problems due to the inherent
ability of memory correlations for past inputs. LSTM models
are further augmented with Attention [31] have further
improved the performance of DGA detection. Narrowing the
spectrum of this research, LSTM with Attention models are
selected to assess and optimize the performance of these
models. In model parameters, the gradient optimizers are
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FIGURE 2. Models underfit, fit and overfit presentation [33].

selected as the core model parameter to be focused on and
evaluated in light of available best-performing optimizer
functions.

B. EVOLUTION OF ADAPTIVE GRADIENT OPTIMIZATION
ALGORITHMS

Deep Learning models are ascertained as either the model
is fit, under-fit, or over-fit during its training. Model
generalization is observed with the convergence of Learning
Rate (LR) culminating towards a point of stability. Deep
Learning Model parameters with higher dimensions lead
to higher non-linearity which supports a faster Learning
Rate during the training. However, with higher parameter
dimensions, a higher bias may also lead the model to
become an under-fit model and a higher variance may lead
to over-fitting of the model. To keep the bias and variance
within limits and to obtain a fit Deep Learning model, the
gradient is moved in direction of desired global minima (a
minimal loss point) smoothly. Moving down the error slope
or gradient of the Deep Learning model called Gradient
Descent (GD), the learning rate determines the size of the step
to reach the desired global minima. Learning Rate follows
along the direction of the slope by a function descending
down to reach the global minima. The role of the GD is to
smooth the step-size of movement towards global minima.
Framing this Deep Learning representational function as a
stochastic function f and its parameters as 6, function f(6)
is optimized with the simplest approach as the Stochastic
Gradient Descent (SGD) [34] is mapped as,

Or+1 =06 —n-Vf(0) ey

where 7 is the LR which defines the required step size to reach
the local minima and V{(6)is the rate of change of parameters
6 with respect to objective function f. Stochastic Gradient
Descent (SGD) with moment (SGDM) added a fraction 8 to
update the parameters’ first moment as m. Upgrading SGD
equation 1 to SGD with the first moment as m; at time step ¢,

Orp1 =6, —my 2)
where,

m; = By 41 - Vf(0) 3

SGD with momentum is upgraded by the unveiling of
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Adagrad (adaptive gradient method) [35] which makes the
gradient flexible to adapt the lower or higher Learning Rate
(step sizes) instead of fixed step size with SGD. Adagrad has
two main advantages, first, it is well suited for the sparsity
of data and second, it adjusts the tuning of Learning Rate
(step sizes) faster and eliminates manual tuning. Adagrad
has perceived the concept of adaptive Learning Rate from
the concept of moving averages. Adagrad is presented
mathematically in equation 4 as,

n
- .9t
VGii+e 8

G;,; is the sum of squares of gradients g; at time t
and 1 wrt parameters ;. The equation has clearly depicted
how the Learning Rate (step size) is now controlled by
the square root of gradients in action and € is a very
small number to avoid division by zero. AdaDelta [36] and
RMSprop [37] (which are almost identical) have introduced
fixed weight size accumulation, further improving with a sum
of squared gradients which is the decaying average of all
past squared gradients, it actually introduced second order
moment estimation as v, after first order m; as,

n
Orv1 =0 — ——=——=" 38t (&)

vE[gZ]t +€

Adaptive Moment Estimation (Adam) [7] algorithm has
further clarified and improved the adaptive Learning Rate by
computing the decaying averages of past gradients and past
squared gradients as m; and v; respectively as,

“

Ory1,i =6 —

m;y = Brmi—1 + (1 = Bon - Vf(©0) (6)
vi = Pavi—1 + (1 — B2)n - Vf(0) N

and essentially the bias correction as v; and m;, to avoid the
output being influenced by zero initialization.

9t+1 = 91 - ”Alt (8)

—n .
\/VT; +€

However, both SGD with momentum and Adam Learning
Rate are observed to be generalizing poorly over a diverse
set of deep learning models due to some inherent problems
of adaptive gradient methods. In the presented case, weight
decay is identified as the propelling factor of these problems
and its implementation is considered undermined. The same
is fixed in Adam from equation 8 as AdamW in [8] and
represented as,

n
m+e

The prime motive of equation 9 has been identified as
the research gap where weight decays w; needs decoupling
from L2 regularization [8] and re-implementation as a stand-
alone parameter in Adam. The Learning Rate is an adaptive
parameter while weight decays w; works as a coefficient
(a small numerical value).

0y =61 — -1y + w1 ©)]
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Ill. PROPOSED METHODOLOGY - WEIGHT DECAY
SIMPLIFICATION

Weight decay is used to regularize the DL models and
is multiplied with model weights with a small numerical
fraction during updating new weights. Weight decay was
considered an integral part of L2 regularization which was
justified in [8] by decoupling it from L2 regularization
and specifically implementing equation 9. Analyzing the
decoupling of weight decay w; deeper, it is learned that
equation 9 may be further simplified as;

O = -1 (1 = wp) — ——— -1y (10)
\/VT + €

As weight decay parameter in equation 10 is just a
numerical figure and is applied in fractions of logarithmic
values such as 0.1, 0.01, 0.001, and so on. These values for
instance if added in equation 11, will be added as coefficients
0f0.9,0.99, and 0.999, and so on. This will result in parameter
f; in a meagre correction as the case of weight decay
wy is generally started implementing from 0.001, 0.0001,
and so on. Continuing on equation 10, if we apply w; as
0 equating the meagre value to null, theoretically we regain
Adam as a result of neutralizing the parameter w; to zero.
However, rather than using Adam again, we implemented
AdamW with w; equal to 0 in equation 10. This led us to
discover that w, = 0 is a more potent implementation of
AdamW and the same reimplementation is named AdamW+-.
After identifying the novel optimization approach, the
three optimizers Adam, AdamW, and AdamW+ are tested
in solving the text-based classification problem of DGA
Detection. The three optimizers have been implemented on
LSTM with Attention to DGA detection and subsequently
comparing and evaluating the outcomes of the 3 optimizers.

DGA DATASET

500000
450000,
400000
350000
300000
250000
200000
150000
100000

50000

FIGURE 3. Dataset visual breakdown.

A. ADAMW+ PSEUDO CODE

Algorithm 1 explains the simplified implementation as
keeping the implementation of AdamW with nullifying
the weight decay coefficient. Steps 1 and 2 define the
optimizer parameters and step 3 defines time variables.
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Step 4 highlights the AdamW optimizer with the first and
second moment including weight decay implementation.
Step 5 factorized the weight decay from AdamW and nullified
its coefficient. The same is implemented in the code at [38].

Algorithm 1 Weight Decay Plus AdamW+, off Shooting of
AdamW

1: StochasticFunction = f, parametersd < f(0)

: LearningRate = n < step — size

: Rateofchangeoff (6) = Vf(6)

: InitializingTimeStep,i =0 < i =t

: First — Order — Moment = my

: Second — Order — Moment = v,

: Weight — Decay = w;

: AdamW:

0O L kAW

n

ﬁ-l—e

0r =61 —

-1y + Wb (11)

9: AdamW factorized wy:

Or = 6 1(1 —wy) — ’ﬁt (12)

—n .
Vi +e

10: Nullifying w; in above equation <— AdamW+:
n

Vi +e

6 =61 — -1y 13)

IV. EMPIRICAL SETUP

LSTM with Attention model is considered one of the
advanced approaches in solving text classification problems
and the same is adopted for DGA detection problems. The
experimental setup started with legitimate domain samples
from Alexa [39] and 20 x DGA families samples from Bama-
banek [40]. All models are implemented with a dataset split of
75% training and 25% testing samples. All the datasets, code
repositories, and results are available at [38] for reference and
future work. Training and testing datasets are composed of
one Legitimate domain dataset against 20 classes of varying
DGA families. The total dataset samples are 1.435 million
samples which consist of 0.6 million from Alexa’s top
million domain names as legitimate domain names and the
rest 0.83 million malicious domain samples composed of
twenty DGA families. A visual breakdown of the dataset is
projected in Figure 3. Implementation details are available
and accessible at [41] for future referencing and research
work ups. Implementation details include code details, used
legitimate and malicious DGA datasets and obtained results.
As LSTM is a state and context-aware neural network, it is
proficient in the detection of temporal associations between
texts. LSTM obtains contextual vectors of input sequences.
The attention mechanism with the LSTM model further
improves the longer dependencies. DGA samples are passed
through the Seq2Seq encoder which compresses input to a
fixed length of a context vector. Each model as depicted
accumulates the score of given input samples to classify it
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Comparison of Performance Metrics of the Optimsers in LSTM Attention Model
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20 epochs 10 epochs

Adam

® Accuracy @ Precision

AdamW

0.5686
0.9679
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20 epochs 10 epochs 20 epochs
AdamW+

= Recall @OF1

FIGURE 4. LSTM attention model performance metrics comparison for 3 optimisers.

either as a legitimate or malicious domain. As LSTM retains
the stateful property, however still faces information loss in
case of longer sequences or dependencies. This information
loss is addressed with the addition of the Attention layer.
LSTM output is further fine-tuned with the Attention layer.
At the last layer, this binary classification of legitimate and
DGA domains is further classified using the Softmax function
to a specific DGA family. For multi-class datasets, we use
a multi-classification model at the final output layer. All
the output of the LSTM model is processed at the Fully
Connected layer with Softmax giving the output score of each
class. Softmax output gives the alignment score of various
outputs and classifies them into different classes based on the
closeness of these defined alignment scores.

V. RESULTS AND DISCUSSION

A. RESULTS

Performance metrics of these Deep Learning models are
measured for DGA Detection with the adoption and imple-
mentation of Adam, AdamW, and AdamW+- optimizers. Two
iterations of 10 epochs and 20 epochs are being run to obtain
and compare the achieved results respectively.

Table 3 and Table 4 are showing an overall picture
of performance metrics and computational proficiency of
each model with deeper performance visibility. Generally,
proposed optimizer AdamW+- has shown optimal perfor-
mance in the detection of all 20 DGA families against
Alexa domain names. A broader overview of all performance
metrics outcomes of each model which are depicted in
Table 3 and 4, their graphical presentations are projected in
Figure-4 respectively and collectively. A closer observation
graphical projection of performance metrics in Figure-5
shows that proposed adaptive optimiser AdamW+ has
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TABLE 3. LSTM attention model performance comparison of 3 optimiser
with 10 epochs.

LSTM Adam AdamW AdamW+
Attention (10Epochs) (10Epochs) (10Epochs)
Model

Accuracy 0.9627 0.9635 0.9645
Precision 0.9610 0.9616 0.9631
Recall 0.9627 0.9635 0.9645

F1 Score 0.9602 0.9614 0.9625

TABLE 4. LSTM attention model performance comparison of 3 optimiser
with 20 epochs.

LSTM Adam AdamW AdamW+
Attention (20Epochs) (20Epochs) (20Epochs)
Model

Accuracy 0.9664 0.9679 0.9686
Precision 0.9654 0.9671 0.9674
Recall 0.9664 0.9679 0.9686

F1 Score 0.9652 0.9665 0.9673

outperformed than legacy optimisers Adam and AdamW.
The same can be further validated from a convergence of
performance metrics in Figure-5 (c) which is substantiating
the performance, by achieving 97% which is more smooth
and more stable than Figure-5 (a & b).

Training and validation accuracy as well as train-
ing and validation loss of each model are projected in
Figure 6 (a, b & c) to identify how well the model is fit. It is
evident that the accuracy and loss curves of all the depicted
models have converged at an optimum value.

As two iterations of the 3 models have been run,
Figure 7 (a, b & c) has shown performance metrics of
Precision, Recall, and F1 score for 10 and 20 epochs
respectively for the three selected optimizers.
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Performance metrics

Performance metrics

Performance metrics
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FIGURE 5. Performance metrics comparison.

The correlation matrix of the LSTM attention B. DISCUSSION
model for proposed AdamW+ optimizers executed on  Analyzing all results in presented tables and figures reveal
10 and 20 epochs are shown in Fig.8, and Fig.9, that DGA detection using LSTM with Attention model
respectively. have achieved optimal performance. Further, Optimizers
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FIGURE 6. Training and validation accuracy vs Training and validation accuracy loss comparison of 3 optimizers.

iteratively decrease the loss function to modify the weights
of given gradients. Efficient optimizers force a model to
generalize faster and the choice of optimizer influences
the performance of the model. Comparing Adam, AdamW
and AdamW+ optimizers have achieved significant results
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and shown to be close competitors. However, the default
optimizers are outperformed by the proposed AdamW-+
with optimal performance. Overall, LSTM with Attention
model deployed with AdamW+- results has shown significant
progress in all performance metrics in DGA detection. It has
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Momentum based Optimizers Comparison - Precision
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FIGURE 7. Performance comparison of (a) Precision (b) Recall (c) F1 score for 10 and 20 epochs.

been proved that weight decay or regularization term does
not end up in the moving averages and is thus only a meagre
proportion to the weight itself. Therefore, an improved
version of Adam called AdamW+- is simulated where the
weight decay is negated in the parameter-wise step size of
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AdamW. Fine-tuned adaptive AdamW+ optimizer is faster
as compared to Adam and AdamW in terms of generalization
performance. Moreover, it is also assessed that Adam and
AdamW being good competitors have not underperformed
but have been identified with a gap of improvement in
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AdamW+ Correlation Heatmap DGA Groups
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fine-tuning the AdamW optimizer. The proposed AdamW+
has preserved the base properties of adaptive optimizer Adam
by simplifying AdamW back to Adam step size for updating
weight vectors, resulting in an improved generalization of the
model.

C. FUTURE WORK

The subject research broadly covers cyber security paradigm
and is manifold. It focuses on DGA detection from traditional
methods to advanced deep learning algorithms. In deep
learning algorthms LSTM has been selected to focus on a
deep learning parameter like gradient optimizer. Adaptive
Moment Estimator (Adam) optimizer has been introduced
against Stochastic Gradient Descent (SGD) in 2014. Adam
has been upgraded with Adam with Wieght Decay in 2018.
The concept of wieght decay is accepted, however core of
research is that weight decay is too small and did not make
any difference. AdamW+ is discarding the weight decay
in AdamW optimizers. It is completely a new dimension
and lacks cross researcher’s data. It is therefore considered
prudent that future work of applying AdamW+- in other deep
learning models like CNN etc may be substantiated with this
presented research work as both of its cross-research data and
presented results.

VI. CONCLUSION

This paper presented regulation techniques to improve model
performance in the areas of DGA detection. The proposed
approach was compared and analyzed with the core perfor-
mance metrics. Through implementation and experimental
result, we can demonstrate that a new dimension/approach
in optimizer has been gained as well as these optimizers
have shown optimal performance under both prototype
datasets and real-world problems. Future works may include
switching the proposed optimizer AdamW+ in larger text
classification problems as well as other DL models like CNN
and GANs. The same approach may also be compared with
Stochastic Gradient Descent (SGD) as SGD has shown better
performance in some approaches.
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