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ABSTRACT Precise localization is essential for reliable autonomous driving. Traditionally, many systems
have turned to lane level map matching techniques utilizing High Definition Maps (HD-Maps). However,
it is necessary to have considerate efforts tied to the continuous availability and timeliness of these HD-
Maps. Taking this into account, this paper explores an alternative approach, focusing on landmark-based
odometry and a filtering-based technique. The proposed localization algorithm is integrated with the GPS
and the odometry in a loosely coupled approach. Because it is important to obtain an initial pose in order to
utilize the odometry, the initial odometry rotation is estimated from the filtering method, as an alternative
to optimization methods, to improve the global consistency in localization. In addition, because specific
landmark-based odometry, like lidar odometry, can become vulnerable in geometrically repetitive scenarios
such as in tunnels, this study considers the change in vehicle speed and updates the landmark-based odometry,
aiming to address the limitations. Through experimental tests in normal scenarios and challenging scenarios
like tunnels, it is demonstrated that our method offers certain benefits over the existing techniques.

INDEX TERMS Localization, pose estimation, landmark-based odometry, Kalman filter, initialization.

I. INTRODUCTION
Precise vehicle localization plays a significant role in
path planning and control for autonomous vehicles. Most
self-driving cars utilize lane level map matching algorithms
for accurate localization. Lane level map matching compares
the vehicle’s sensor data with a pre-existing High Definition
Map (HD-Map) to determine its precise position. These
algorithms allow for accurate estimation of the vehicle’s
location. However, creating detailed maps for all regions is a
challenging task, and even if achievable, the dynamic nature
of roads due to construction and other factors can make the
maps less reliable.

Instead, landmark-based odometry is commonly imple-
mented using SLAM (Simultaneous Localization and
Mapping) algorithms, which simultaneously estimate the
vehicle’s pose and build the map. Recent state-of-the-art
studies [1], [2], [3], [4], [5] show that filtering-based SLAM
achieves high accuracy in real-time positioning.

The associate editor coordinating the review of this manuscript and
approving it for publication was Shunfeng Cheng.

However, to effectively utilize odometry algorithms in
vehicles, it is crucial to ensure global consistency and
reliability with the actual vehicle sensors. Many research
had focused on achieving global consistency using the GPS
(Global Positioning System) [6], [7], [8]. The combination
of the GPS with other methods can significantly affect the
overall performance. For instance, loosely coupled approach
integrates the positional data computed by the GPS receiver,
whereas the tightly coupled approach utilizes raw satellite
data, including wavelengths.

Regarding sensor integration for reliable odometry per-
formance in vehicles, the most common strategy involves
utilizing the vehicle’s speed sensor [9], [10], [11], [12]. The
loosely coupled approach uses vehicle speed or odometry
pose, whereas the tightly coupled approach directly uses
raw wheel encoder signals [9]. The choice of initial values
can impact the performance in loosely coupled integration.
While the tightly coupled approach can improve localization
accuracy, it can be also sensitive to the vehicle’s behavior. For
instance, tire longitudinal slip on icy roads or side slip angle
during high-speed turns may cause inconsistent localization
performance.
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In this paper, to overcome the limitations of the lane
level map matching problem, a localization method is
proposed by utilizing the landmark-based odometry. Instead
of the resource-intensive optimization-based approach for
odometry algorithms, a filtering-based odometry technique
is adopted. In addition, a loosely coupled integration of
odometry and the GPS is conducted based on vehicle speed.
The translation and rotation reference frames are established
based on the GPS, and the localization performance is
enhanced by estimating the initial rotation. The proposed
method is validated through experimental data of the
autonomous driving. The main contribution of this study can
be summarized as follows:

• Enhancement of the performance of landmark-based
odometry by incorporating vehicle speed with a simpler
approach.

• Demonstration of the performance difference depending
on whether vehicle speed or wheel speed is used.

• Estimation of the initial rotation of odometry to achieve
global consistency.

• Assessment of the feasibility by collecting and utilizing
experimental autonomous vehicle data.

II. RELATED WORKS
Various filtering techniques, such as EKF (Extended Kalman
Filter), UKF (Unscented Kalman Filter) and PF (Particle Fil-
ter), have been utilized for localization in a two-dimensional
plane (3 DOF) [13], [14], [15], [16], and for 6 DOF
localization based on the euler angle [17], [18], [19], [20].
However, localization based on euler angle can cause gimbal
lock, and thus, more advanced filtering techniques are needed
for rotation conversion.

Recently, the representative filtering methods used in
localization are MSCKF (Multi State Constrained Kalman
filter) and ESKF (Error State Kalman Filter) which can
avoid the gimbal lock by using mathematical techniques,
such as quaternion or lie group. The pioneering work
introducing MSCKF was presented in [21], which utilized
camera image features for updates. The evolved forms of
MSCKF can be found in [22] and [23]. In [22], a scale
factor to camera image data was added for estimation and
was validated using simulations and real-world data. Sun et.
al. [23] compared an optimization-based camera odometry
with the MSCKF-based odometry, demonstrating accuracy
and real-time performance advantages of the latter. MSCKF
research mostly focused on camera-based implementations,
and they showed superior real-time performance compared
to optimization-based odometry.

ESKF (Error State Kalman Filter) has a similar structure
to EKF, where the error state is estimated and added to
the nominal state. A comprehensive explanation of ESKF
can be found in [24], and most ESKF-based odometry
studies adopted the algorithm described in [24]. Moreover,
an iterative form of ESKF called IESKF (Iterative ESKF)
was used in many lidar-based odometry approaches, achiev-
ing state-of-the-art performance [5]. Qin et al. [3] used

filtering-based pose estimation and stored the map in a pose-
graph format. In [4] and [5], the algorithm in [3] wasmodified
to estimate themap in a tree structure, enhancing computation
speed. Additionally, Bai et al. [25] demonstrated that the
map structure can further improve computation speed. The
IESKF-based lidar odometry not only improved the accuracy,
but also was experimentally validated for real-time operation.
They aimed to leverage the improved odometry performance
in a loosely coupledmanner. Similar approaches can be found
in [26], where ESKF was used for global localization, and
lidar odometry’s position and rotation were incorporated.

Regarding the integration of odometry and the GPS,
two approaches exist: one involves finding the initial pose
globally and integrating it, while the other estimates poses
relatively without an initial position. In [6], the GPS
and odometry trajectories were matched using optimization
techniques to achieve odometry consistency. Lee et al. [7]
tightly coupled GPS’s raw values with odometry for global
consistency. These studies [6], [7] involved a trade-off
between odometry’s global consistency and GPS trajectory’s
length. Lynen et al. [8] combined odometry using relative
poses without using the cumulative pose values. This
approach allows updating global poses without knowing
the initial values. However, this method requires careful
consideration of time delays and synchronization between the
GPS and odometry, especially in scenarios where the GPS
reception is intermittent, like in tunnels.

Several studies have incorporated wheel speed into
landmark-based odometry. In [9], wheel speed was combined
with a 2D kinematic model to estimate the difference between
IMU (Inertial Measurement Unit) pose and wheel pose
in real-time. Filip et. al. [10] demonstrated the improved
performance in feature-less tunnel scenarios when combining
wheel encoders. In [11], errors occurring in wheel encoders
and IMU were learned and estimated, resulting in enhanced
localization performance. Dang et al. [12] incorporated wheel
speed not only for position estimation, but also for wheel slip
estimation.

On the other hand, in this study, by estimating the rotation
matrix instead of the Euler angle, the 3D rotation of the
vehicle is obtained, thereby preventing gimbal lock. The
pose state is estimated using the ESKF algorithm. When
the GPS data is available for reception, the GPS data is
utilized to estimate the pose data alongside odometry data in a
loosely coupled method. During this process, initial rotation
of the odometry is estimated only upon receiving the GPS
data. Conversely, in areas where the GPS reception is not
available, only the odometry data is utilized. The estimated
initial rotation remains fixed from when the GPS signal is
not received. Additionally, lidar odometry, integrated with
vehicle speed, is employed for application on highways.

III. PRELIMINARY
A. BOX PLUS, BOX MINUS OPERATOR IN MANIFOLD
LetM is a manifold of dimension. If the manifold is locally
smooth, then bijectivemapping can be performed between the
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local neighborhood onM and the tangent space at that point.
The operators that can perform bijective mapping are ⊞ and
⊟ operators, and the operation is expressed as follows [5]:

⊞ :M× Rn
→M;

a⊞ b = a+ b; R1 ⊞ r = R1 exp [r]×,

⊞ : Rn
×M→M;

b⊞ a = b+ a; r ⊞ R1 = exp [r]×R1,

⊟ :M×M→ Rn
;

a⊟ b = a− b; R2 ⊟ R1 = [log(RT2R1)]∨

where {a, b} ∈ Rn
⊂M, r ∈ R3, andRn ∈ SO(3) ⊂M. [·]×

and [·]∨ are skew symmetric matrix operator of vectors and
the inverse of skew symmetric matrix operator, respectively.
For a compound manifoldM = SO(3) × Rn, the following
relations are established:[

R
a

]
⊞

[
r
b

]
=

[
R⊞ r
a+ b

]
;

[
R2
a

]
⊟

[
R1
b

]
=

[
R2 ⊟ R1
a− b

]
IV. MODIFICATION OF THE FAST-LIO ALGORITHM
The overall architecture of the algorithm proposed in this
paper is illustrated in Figure 1. While the conventional
odometry (Fast-LIO) leveraged the synergy between Lidar
and IMU, our study incorporates vehicle speed into the
residual computation segment to facilitate state updates.
Next, in the ESKF-based pose estimation phase, the output
pose value from the odometry is utilized for correction and
the GPS pose is employed for estimating the states defined in
the ESKF localization.

A. SUMMARY OF THE FAST LIO ALGORITHM
The Fast LIO [5] is a tightly coupled, direct feature
based Lidar-Inertial Odometry algorithm. Unlike other
optimization-based algorithms, Fast LIO is formulated as
a filtering-based approach. The Fast LIO formulated the
equations mathematically to reduce the computational load
associated with the number of features. This formulation
can handle a large number of features efficiently. Moreover,
the algorithm improved the accuracy by utilizing direct
features instead of line or plane features, enabling it to handle
numerous features.

Furthermore, while other optimization-based approaches
utilize graph-based maps, incremental kd-tree data structure
was adopted to construct the map, contributing to faster
computations [4], [5].

B. VEHICLE SPEED AIDED FAST-LIO ALGORITHM
The weakness of the Fast-LIO is its difficulty in handling
repetitive features. For instance, when passing through
tunnels, Lidar’s nature of measuring distances can lead to the
repeated appearance of static features. If the vehicle’s speed
remains constant, the IMU value will also be constant, result-
ing in serious errors and problems with SLAM algorithm
performance. To address this issue, this study introduces the

FIGURE 1. Architecture of the proposed algorithm.

addition of a vehicle speed error to handle the repetitive
features.

Because the vehicle speed value is available by the vehicle
CAN signal, it can be directly utilized to model the data. The
residuals between vehicle speed from the CAN signal and the
estimated vehicle speed are defined as follows:

zκs = ||vκI ||2 − sveh (1)

where vκI is the estimated velocity of the IMU in the odometry
algorithm with the iterated update (κ). sveh is the speed of
the vehicle from the CAN signal. ||vκI ||2 is the norm of the
velocity from the IMU and the residual in equation (1) can be
extracted invariantly regardless of the vehicle speed direction.
Considering the noise of vehicle speed, the measurement
model, hs, can be expressed as follows:

hs(xk , ns) = ||vI ||2 − (sveh − ns) (2)

where ns accounts for the noise in the vehicle speed
measurement and xk is the IMU state defined in the odometry
algorithm. Approximating the above equation by its first
order differential leads to

hs(xk , ns) ≃ hs(x̄κ
k , 0) + Hκ

s x̃
κ
k + ns

= zκs + Hκ
s x̃

κ
k + ns (3)

where x̄κ
k and x̃

κ
k are the predicted nominal state and state error

of the IMU in the odometry algorithmwith the iterated update
(κ), respectively. Also, Hκ

s represents the Jacobian matrix of
hs(xk , 0).

In the original Fast-LIO, feature updates are performed
using the Iterated Error State Kalman Filter (IESKF), and the
MAP (Maximum A-Posteriori) was defined as follows [5]

min
x̃κ
k

(||xk ⊟ x̄k ||2P̄−1
k

+ 6m
j=1||z

κ
j + Hκ

j x̃
κ
k ||

2
σ−1
j
) (4)

where ||x||2M = xTMx. P̄k , σj, and m are the predicted
state covariance of IMU, standard deviation of noise in the
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single lidar point, and the number of lidar points, respectively.
The first term in equation (4) is the quadratic cost of prior
distribution of xk , and the second term is the quadratic cost
of lidar point residual. To incorporate the vehicle speed, the
above equation is modified in this study.

min
x̃κ
k

(||xk ⊟ x̄k ||2P̄−1
k

+ 6M
j=1||z

κ
j + Hκ

j x̃
κ
k ||

2
σ−1
j

+ ||zκs + Hκ
s x̃

κ
k ||

2
σ−1
s
) (5)

where σs is standard deviation of noise in the vehicle speed.
The first and second terms are the same as the original Fast-
LIO algorithm, but the third term is newly added including
the vehicle speed residual. To apply this equation, the IESKF
method is utilized, and Jacobian in equation (5) includes
the concatenation of Hj and Hs from the original IESKF
equations.

V. LOCALIZATION ALGORITHM FOR GLOBAL
CONSISTENCY
A. IMU KINEMATIC MODEL [24]
The Error State Kalman Filter (ESKF) is utilized as the
backend algorithm for the pose estimation. The main
objective of the ESKF is to minimize the error term in the
state. Aiming for the states associated with 3D rotation to
converge to zero makes it particularly advantageous over
the conventional Kalman Filter (KF) or Extended Kalman
Filter (EKF). Consequently, this method separates the error
state from the nominal state and applies them accordingly.
The discrete Inertial Measurement Unit (IMU) model for the
nominal state can be expressed based on accelerometer data,
am, and gyroscope data, wm, [24].

R̄t+1 = Rt exp([(wm − bw,t )1t]×)

p̄t+1 = pt + vt1t + 0.5(Rt (am − ba,t ))1t2

v̄t+1 = vt + (Rt (am − ba,t ))1t

b̄a,t+1 = ba,t
b̄w,t+1 = bw,t (6)

where Rt is the rotation matrix, pt is the position, vt is the
velocity. ba,t , bw,t and1t are the biases for the accelerometer,
gyroscope at timestep t and difference of timestep, respec-
tively. The terms with ·̄ (bar) means the predicted variables
from the nominal IMU model. The discrete error state model
is shown below from the continuous-time model [24]:

δθt+1 = (exp[(wm − bw,t )1t]×)T δθt − δbw,t1t + nθ

δpt+1 = δpt + δvt1t

δvt+1 = δvt + (−Rt [am − ba,t ]×δθ − Rtδba,t )1t + nv
δba,t+1 = nb,a
δbw,t+1 = nb,w (7)

where nθ , nv, nb,a, and nb,w are noise terms for rotation, veloc-
ity, accelerometer bias, and gyroscope bias, respectively. The
terms with δ indicate the error values for the corresponding
variables, and θt is the rotation vector of Rt .

B. ESKF LOCALIZATION
The ESKF equations consist of the prediction and correction
steps as the conventional Kalman filter. The prediction step
is expressed as follows [24]:

x̄t+1 = fx (̂xt , um). (8)

P̄t+1 = Fx P̂tFTx + FiQiFTi (9)

where x̄t is the predicted state by the nominal prediction
model, fx (̂xt , um). P̂t is the covariance of error state and Fx is
the linear error state model. x̂t and um are the estimated state
vector at time step t and input data, respectively. Fi and Qi
are noise matrix and covariance matrix of the noise impulses,
respectively. It is essential to note that the predicted error state
is always converging to zero and needs not to be predicted by
the model. However, the covariance of error state is important
and needs to be predicted by the linear error state model. The
correction step of the ESKF can be expressed as follows:

x̃t+1 = K (z− h(x̄t+1)) (10)

K = P̄t+1HT (HP̄t+1HT
+ V )−1 (11)

P̂k+1 = (I − KH )P̄t+1(I − KH )T + KVKT . (12)

x̂k+1 = x̄t+1 ⊞ x̃t+1. (13)

where z, h(x̄t ) and V are the measurement vector, the
measurementmodel, and the noisematrix of themeasurement
vector, respectively. K is the Kalman gain and H is the
Jacobian matrix of the error state from the measurement
model. x̃t+1 is the corrected error of the estimated state. This
formulation is almost same as the conventional Kalman filter
except equation (13), which indicates that the estimated state
is obtained by combining the error state with the predicted
state. The operator, ⊞, is explained in section III.

C. ESTIMATION OF ODOMETRY INITIAL ROTATION
For actual implementation of odometry to maintain global
consistency, the initial rotation and translation must be
aligned. Even if it is assumed that odometry outputs an
accurate position, a difference in values can occur depending
on the initial position. If the translation position changes
slightly, the difference from the actual value might not have
a large impact as it is only as much as the difference in
translation. However, if the initial rotation deviates by even
0.1 degrees, it can cause a significant impact as the distance
increases. In this study, the initial rotation of odometry is
estimated to reduce such impacts. A model for the initial
rotation is first defined as follows with the subscript i
representing the initial state:

Ṙi = I , ˙δθi = 0, (14)

or, in discrete form,

R̄i,t+1 = Ri,t , δθi,t+1 = δθi,t (15)

The model implies that there should be no change in the
initial rotationmodel and the error state should approach zero.
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Then, the states are combined with the initial rotation model
and IMU model.

x̂t =


pt
vt
Rt
ba,t
bw,t
Ri,t

 , x̄t =



p̄t
v̄t
R̄t
b̄a,t
b̄w,t
R̄i,t

 , x̃t =


δpt
δvt
δθt

δba,t
δbw,t
δθi,t

 ≜

[
x̃t,l
x̃t,g

]
(16)

In equation (16), x̄t and x̂t belong to the Manifold (M),
and x̃t belongs to the vector space (R18). Furthermore, x̃t is
divided into x̃t,l and x̃t,g, which are terms related to the local
coordinate (δpt , δvt , δθt , δba,t , δbw,t ), and global coordinate
(δθi,t ), respectively. The local coordinate is displayed based
on the location of the IMU. If the state is established as in
equation (16), formulas (8)-(12) can be still applied. In the
prediction step (equations (8) and (9)), Fx , Fi and Qi can be
expressed by combining equation (7) with the initial rotation.

Fx =


I I1t 0 0 0 0
0 I A −Rt1t 0 0
0 0 B 0 −I1t 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

 ,

Fi =


0 0 0 0
I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I
0 0 0 0

 ,

Qi =


nvI 0 0 0
0 nθ I 0 0
0 0 nb,aI 0
0 0 0 nb,wI


where A = −Rt [am − ba,t ]×1t,

B = (exp[(wm − bw,t )1t]×)T (17)

Meanwhile, in the correction step, a loosely coupled fusion
is conducted using GPS pose and odometry pose data. To fuse
each data, the coordinates of each sensor and the world
coordinates must be accurately defined and represented. The
relationships of each coordinate are illustrated in Figure 2.
The notation Ap

B and AR
B represent the relative position and

rotation of B frame in A frame, respectively. For example, I p
G

and I R
G denote the relative position and rotation of the GPS

frame in the IMU frame. In this figure, the entities represented
in dark blue, Wp

I , WR
I , and OR

W correspond to pt ,Rt , and
Rt,i in equation (16), respectively. Also, it is assumed that the
relative position between odometry frame and world frame is
zero. In this study, Op

I and OR
I are utilized as the odometry

measurement data, and are defined as pIz and R
I
z, respectively.

Also, Wp
G and WR

G are utilized as the GPS measurement
data, and are defined as pGz and RGz , respectively. The GPS
measurement model from the World frame to the GPS frame,

FIGURE 2. Transformation relations with GPS frame, Odometry frame,
IMU frame, and world frame.

hG(xt ), can be established as follows.

hG(xt ) =

[
Rt I p

G
+ pt

[log(Rt I R
G)]∨

]
(18)

where I p
G and I R

G are the calibration data of position and
rotation from IMU to GPS coordinate systems. The residual
vector of the GPS measurement can be expressed as follow:

rG = zG − hG(xt ) =

[
pGz − (Rt I p

G
+ pt )

θGz − [log(Rt I R
G)]∨

]
(19)

where zG = [pGz , θGz ]
T . θGz is the rotation vector of RGz . It is

necessary to obtain the Jacobian of the measurement model to
utilize in the correction step from equations (11) to (12). The
Jacobian of the GPS measurement model can be expressed as
follows:

HG =
∂hG(x)
∂δx

∣∣∣
x=x̄t

=

[
I3 03,3 −Rt [Ip

G]× 03,3 03,3 03,3
03,3 03,3 C 03,3 03,3 03,3

]
where C =

[
03,1 I3

]
[qt ]L[Iq

G]R

[
01,3
I3

]
(20)

where qt and I q
G are quaternion vectors of Rt and I R

G,
respectively. Also, [·]L and [·]R are the left- and right-
quaternion-product matrix operators, respectively [24]. The
Kalman gain in equation (11) is obtained by replacing H
with HG, and the correction step from the GPS measurement
is performed as in equations (10)-(13). The odometry
measurement model from the odometry frame to the IMU
frame, ho(xt ), can be represented as position and orientation.

ho(xt ) =

[
hp(xt )
hθ (xt )

]
=

[
Ri,tpt

[log(Ri,tRt )]∨

]
(21)

where the hp(xt ) and hθ (xt ) are position measurement model
and rotation measurement model from the odometry frame
to the IMU frame. Then, the residual vector of the odometry
measurement, ro, can be defined as follows:

ro = zo − ho(xt ) =

[
pIz − Ri,tpt

θ Iz − [log(Ri,tRt )]∨

]
(22)
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where zo = [pIz, θ
I
z ]
T . θ Iz is the rotation vector of RIz .

The Jacobian of the odometry measurement model can be
expressed considering the initial rotation:

Ho =
∂ho(x)
∂δx

∣∣∣
x=x̄t

=


∂hp(x)
∂δpt

03,3 03,3 03,3 03,3
∂hp(x)
∂δθi,t

03,3 03,3
∂hθ (x)
∂δθt

03,3 03,3
∂hθ (x)
∂δθi,t

 (23)

The 10 blocks on the left inside of Ho are Jacobian terms
that are often used in a loosely coupled manner. Besides, the
2 vertical blocks on the right side are terms added to estimate
the initial rotation. Through this method, the estimated initial
rotation allows correction to continue as the odometry value
is received. In the same manner as in GPS measurement
correction, the Kalman gain in equation (11) is obtained by
replacing H with Ho, and the correction step from odometry
measurement is performed as in equations (10)-(13). Each
Jacobian term inside Ho can be expressed as follows:

∂hp(x)
∂δpt

= Ri,t (24)

∂hp(x)
∂δθi,t

= −[Ri,tpt ]× (25)

∂hθ (x)
∂δθt

=
[
03,1 I3

]
[qi,t ⊗ qt ]L

[
01,3
I3

]
(26)

∂hθ (x)
∂δθi,t

=
[
03,1 I3

]
[qi,t ⊗ qt ]R

[
01,3
I3

]
(27)

where qi,t is quaternion vector of Ri,t , and ⊗ is quaternion
product operator [24]. If equation (13) is directly applied,
it may not be possible to estimate the odometry rotation
initialization. This is because the remaining states excluding
the odometry initial rotationmust correct the error state on the
IMU frame, but the odometry initial rotation must correct
the error state on the world frame. For this reason, after
equation (13) is modified and applied, the estimated state is
decribed as follows:

x̂t+1 =

[
015
x̃t,g

]
⊞ x̄t+1 ⊞

[̃
xt,l
03

]
(28)

The states in the local frame are added to the back of
equation (13), while the odometry initial rotation in the global
frame is added to the front.

VI. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
In this study, experimental data is utilized to validate the
proposed algorithm. The test vehicle is depicted in Figure 3,
and its setup incorporates the GPS and the IMU units.
These two units are synergistically integrated to generate
a GPS-IMU SPAN (Synchronous Position, Attitude and
Navigation) solution [27]. To enhance the positional accuracy
of the GPS, Network RTK is employed. For the LiDAR setup,
a 32-channel lidar is mounted at the center, complemented by
16-channel LiDAR modules on both sides. The chassis CAN

FIGURE 3. Sensor setup in test vehicle.

data was also collected to measure wheel speed and vehicle
speed signals.

B. QUALITATIVE ODOMETRY PERFORMANCE EVALUATION
FROM DRIVING MANEUVER
In this experiment, tests are executed on both low-friction
straight roads and curved roads. The primary objective is
to evaluate the difference between the conventional and
modified Fast-LIO algorithms when longitudinal slip occurs
in the roads. Straight road tests are carried out in regions
with sparse features extracted in lidar odometry, with braking
applied on the low-friction surface. The performance among
the conventional Fast-LIO, GPS-IMU and the modified
algorithms are presented. In Figure 4, red line represents
the conventional Fast LIO, green line denotes the GPS-IMU,
blue line indicates the wheel-speed-based modification of the
Fast-LIO, and yellow line reflects the vehicle-speed-based
modification of the Fast-LIO. The conventional Fast-LIO
encounters errors in localization performance, mainly due to
the challenge of accurately estimating the position through
lidar odometry, especially when the sparse features are
detected. In the case of the modified Fast-LIO utilizing the
wheel speed, a notable error in the displacement was observed
during braking on low-friction surfaces, exceeding that of the
GPS-IMU measurements. This results underscore potential
inadequacies in the algorithm when it relies on the wheel
speed signal. On the contrary, integrating the vehicle speed
with the Fast-LIO, rather than the wheel speed, produced
results that closely matched with the GPS-IMU solution.
This result demonstrate a significant improvement in the
performance of the Fast-LIO due to its dependence on Lidar,
IMU, and particularly on vehicle speed signals.

Figure 5 presents the experimental results conducted on
curved, low-friction roadways involving consistent cornering
and braking maneuvers. In this case, the conventional
Fast-LIO achieved satisfactory results, similar to those of the
vehicle-speed-based modification of the Fast-LIO. However,
the wheel-speed-based Fast-LIO exhibited large errors in
position estimation. Despite feature detection from the lidar,
speed errors caused by wheel slip can affect the Fast-LIO
algorithm to estimate the position data inaccurately.
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FIGURE 4. Odometry performance evaluation in straight open road.

FIGURE 5. Odometry performance evaluation in circular open road.

C. RESULTS OF ODOMETRY INITIAL ROTATION
This section focuses on validating the functionality of initial
rotation estimation in the proposed algorithm. Scenario setup
involves the test vehicle driving on a motorway, performing
straight-line, turning, and lane-changing maneuvers. During
these tests, the GPS-IMU signals and Fast-LIO pose values
are provided correctly. Figure 6 illustrates the odometry
initial rotation estimation results when the initialized value
is sourced from GPS-IMU SPAN solution data. Contrary
to the case (dotted line) without estimation of the initial
rotation, the roll, pitch, and yaw errors converge almost
to zero without significant fluctuations, indicating accurate
estimation of odometry initial rotation.

In the same experimental context, Figure 7 illustrates the
results when the yaw value of the odometry initial rotation
is initialized with 75 degrees biased. In this case, because
the GPS-IMU SPAN solution provides INS high variance
status flag about the rotation angle, GPS rotation angle values
are not used in the estimation. Therefore, this result also
explores the accuracy of the estimation by relying solely on

FIGURE 6. Odometry initial rotation estimation results initialized from
GPS rotation.

FIGURE 7. Odometry initial rotation estimation results initialized from
biased GPS rotation.

GPS position data. Despite the bias in the initial odometry
rotation values and the exclusion of GPS rotation signals from
the measurement data, the results of yaw error is observed
to converge around zero. This convergence suggests that the
proposedmethod for estimation of odometry initial rotation is
effective, utilizing filtering techniques based on GPS position
measurement.

D. LOCALIZATION PERFORMANCE EVALUATION IN
HIGHWAY SCENARIO INCLUDING TUNNEL
Additional experiments are performed on highways with
tunnels to evaluate the efficacy of the proposed algorithm.
The test route spans approximately 10.9 kilometers and
passes through the tunnel in several sections. As a result, the
GPS-RTK signal is less reliable and its positioning accuracy
becomes challenging. Therefore, using GPS-IMU signals as
a reference is impractical. Instead, to obtain the ground truth
in this experiment, an optimization process is utilized that
integrates wheel speed, GPS, IMU, and preexistingmaps. The
optimization process is developed from the GTSAM Library
[28]; when GPS signals are available, both the GPS pose
prior factor and the IMU preintegration factor are employed.
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TABLE 1. Localization performance in highway scenario including tunnel.

FIGURE 8. Performance results in curved tunnel scenario, including reference position data.

FIGURE 9. Performance results in straight tunnel scenario, including reference position data.

On the contrary, in areas with poor GPS signal, wheel
odometry-based factors and positional prior factors based on
map waypoints are applied.

To evaluate algorithm performance in this experiment,
deviations are represented in terms of longitudinal and lateral
errors, as well as roll, pitch, and yaw errors. Additionally,
to verify the performance inside tunnels, localization results
with semantic map and reference path are presented. Three
algorithms are compared; GPS-IMU, Sola [24], and the
proposed algorithm. The algorithm based on Sola [24] utilizes
the measurements from the GPS and the pose data from
odometry algorithm. The algorithm strictly fixes the initial
position and rotation of the GPS while running the odometry
for position estimation. On the contrary, the proposed
algorithm with initial rotation estimation incorporates the

proposed initial rotation estimation to operate the odometry
for position estimation. Pose data comparisons are conducted
at one-second intervals.

Table 1 presents the performance results for GPS-IMU,
Sola [24], and proposed algorithm. Both longitudinal and
lateral deviations indicate that the proposed algorithm
demonstrates the best performance among comparison meth-
ods. This highlights the importance of integrating odometry
with initial rotation estimation. Meanwhile, the performances
in terms of roll, pitch, and yaw are comparable between the
GPS-IMU and the proposed algorithm.

Figures 8 and 9 highlight the results observed when
exiting tunnels. Figure 8 presents results when driving out of
curved tunnels, while Figure 9 depicts outcomes when exiting
straight tunnel roads. In both scenarios, the incorporation
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of odometry improves the performance compared to relying
solely on GPS-IMU. In particular, the longitudinal and
lateral deviation demonstrates the enhanced accuracy in
comparison to GPS-IMU. Besides, the effect of the initial
rotation estimation is evident both inside and after exiting
the tunnel area. This suggests that our algorithm provides
crucial insights for addressing the challenges associated with
localization deviation inside and after tunnels.

VII. CONCLUSION
For autonomous vehicle localization, this study suggests
alternatives beyond the conventional lane-level mapmatching
techniques that rely on High Definition Maps (HD-Maps).
Recognizing the challenges and unreliability associated with
HD-Maps, this research introduces a modified approach
using landmark-based odometry. A modification on the
Fast-LIO algorithms with utilizing vehicle speed, as opposed
to wheel speed, provides better results. This method can
solve the problem of repetitive geometry, such as in tunnels,
by adjusting the landmark-based odometry relative to vehicle
speed. Besides, in tunnel regions on highways, the integration
of the GPS with odometry, particularly with including initial
rotation estimation, proves to enhance global consistency.
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