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ABSTRACT Detecting anomalous executions in business process data is crucial for safeguarding the
efficiency and success of an organization. Unsupervised approaches are commonly used for business
process anomaly detection because of the scarcity of labeled anomaly data. However, these approaches
often encounter a notable decline in performance because they lack prior knowledge about the anomalies.
Additionally, most of them do not perform root cause analysis on the detected anomalies. This study
proposes a variational autoencoder-based approach to overcome the performance limitations of existing
unsupervised methods and determine the root causes of the detected anomalies. The learning of the
variational autoencoder from unlabeled business process data is enhanced in the proposed approach by
leveraging different architectural components, namely, the entity embedding technique, the bidirectional long
short-term memory network, and the self-attention mechanism. Combining these architectural components
in the variational autoencoder architecture leads to learning high-level representations from the business
process data and thus improving the reconstruction capability of the variational autoencoder. Furthermore,
this study suggests feeding the reconstruction error provided by the variational autoencoder into the logistic
regression classifier to improve the accuracy of anomaly detection. The performance of the proposed model
was evaluated on real-life and synthetic datasets. The experimental findings indicate that the proposed model
outperforms six existing anomaly detection models in terms of precision, recall, and F1-score metrics.

INDEX TERMS Anomaly detection, bidirectional long short-term memory, business process, root cause
analysis, entity embedding, logistic regression, process-aware information systems, self-attention, varia-
tional autoencoder.

I. INTRODUCTION
Process-aware information systems (PAISs) have emerged as
a highly relevant subject in the information system domain.
Currently, several companies depend on PAISs to enhance
their business operations [1]. The increasing adoption of
PAISs has sparked significant attention to the data generated
by them. The log files stored by the PAISs can be utilized to
extract the executed events and generate event log files.

An event log can be described as the primary data structure
for business process data, providing details about the activ-
ities performed, the individuals involved, the timestamps,
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etc. [2]. Each event log is further divided into traces, with each
trace representing a single process execution. Essentially, the
event log captures the activities that occurred in each process
execution, enabling process analysts to explore and analyze
the underlying processes [1].

A business process can be defined as a series of activities
initiated by an event aimed at accomplishing specific orga-
nizational objectives. The complexity of a business process
varies according to the number of unique activities involved.
It can be relatively short or lengthy. Longer processes often
exhibit more interdependencies between activities [1], [2],
[3]. Within the realm of business process analysis, anomalies
can manifest as atypical process executions or noise present
in event logs. These anomalies can arise from various sources,
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including system errors, data entry mistakes, or fraudulent
activities [4].

The presence of anomalous business process executions
can result in substantial financial losses. According to a
report by the Association of Certified Fraud Examiners in
2022, there were more than 2,110 fraudulent business pro-
cess executions across 133 countries, leading to a cumulative
loss of more than $3.6 billion. Organizations experienced a
5% reduction on average in their gross profit annually due
to fraud [5]. However, manually identifying anomalies in
business process event logs is a time-consuming and labor-
intensive task that is susceptible to human errors given the
large amount of data involved. Consequently, there is a press-
ing need for an automated approach capable of detecting
anomalies within extensive business process logs.

The interpretability of an automated anomaly detection
model is crucial for users to understand and trust its predic-
tions. This is particularly important in the field of business
process analytics, where there is a demand for an interpretable
model that can conduct a root cause analysis on detected
anomalies. By providing direct insights into why a specific
trace is flagged as anomalous, such a model can help prevent
major future problems. Additionally, the availability of such
models can significantly reduce the manual effort needed by
process analysts for verification [6].

A. OVERVIEW
Because of the absence of labeled anomalous data in the
business process domain, most anomaly detection methods
used are unsupervised. However, these methods often strug-
gle to perform effectively because they lack prior knowledge
of the anomalies. As a result, there is a need for a new
method that can effectively operate within the constraints
of available data and achieve higher accuracy than existing
methods.

Additionally, most of the current methods for detecting
anomalies in business process data do not determine the
cause of the anomalous behaviors that occurred in the data.
Instead, they either display to the user the executions that
are identified as anomalous or provide an anomaly score
that indicates the extent of deviation from the anticipated
behavior. However, this approach may not be adequate for
determining the exact cause of anomalous execution to the
end user. Therefore, it is crucial to interpret the detected
anomalies to analyze them in terms of the specific event
during a process execution that is responsible for the anomaly.

The aim of this study is to propose an innovative approach
to overcome the accuracy limitations of the current methods
and enable it to determine the root causes of the detected
anomalies. To achieve that aim, we must address several
challenges in the business process anomaly detection and root
cause analysis areas. These challenges are as follows:
• Efficiently processing business process data is chal-

lenging due to the complex sequential nature of such
data and the numerous direct short-term dependencies
between activities within each trace [1], [2], [3], [4].

• Reasoning about anomalies is further complicated by
the long-term spans of dependencies in many cases.

• Anomalies in business processes are difficult to detect
even for human experts because activities are per-
formed in the context of potential errors, which are
considered a normal part of the process [6].

• Acquiring labeled anomalous data in the business
process domain is challenging because the available
business process datasets are typically unlabeled.

• Many real-life datasets either do not have a predefined
process model that includes information about their
process logic or, if they do, are often outdated and not
regularly updated.

• Obtaining comprehensive data that encompasses all
possible classes of anomalies is challenging. Therefore,
the ability to generalize to unseen anomalies in training
data is crucial, as anomalies are unpredictable and can
be costly to overlook.

• Identifying meaningful features to represent an event is
difficult because a single event in a sequence lacks suf-
ficient information to support anomaly detection and
root cause analysis tasks. Additionally, an anomalous
event can result from a breakdown in the correlation
between events, necessitating the consideration of the
entire sequence to identify anomalous events within
their context.

B. CONTRIBUTIONS
We introduce a novel approach based on a variational autoen-
coder (VAE) to overcome the limitations of the current
approaches and the challenges of the research area. We chose
VAEs for building our approach because they can be used as
generative models [7], [8]. They have an important feature,
which is that they can be trained without using class labels
and can learn from unlabeled data, thus, overcoming the
unavailability of labeled data challenge in the business pro-
cess domain. Moreover, training the VAE in an unsupervised
way enables it to generalize to anomalies not seen in the
training data and detect various anomalies, as it is not limited
to specific anomaly classes.
Additionally, The VAE is trained in our study to derive the

process logic from the event log itself and leverages the pat-
terns found in the event log to distinguish normal traces from
anomalous traces and identify root causes of the anomalous
traces, thereby overcoming the lack of a predefined process
model.
We employ a bidirectional long short-term memory

(BLSTM) network in the VAE architecture because of its
ability to model the sequential nature of business process data
effectively and learn the long-term dependencies between the
activities. We further enhance the learning of the long-term
dependencies and improve our model’s focus on the exact
event that caused the anomaly by combining the self-attention
mechanism with the BLSTM. The self-attention mechanism
enables deep neural networks to capture global dependencies
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between sequences of events and corresponding outputs for
powerful general-purpose representation learning [9].
Furthermore, we apply the entity embedding technique to

represent the events in the business process data by mapping
them to highly informative vectors to enable the proposed
approach to capture the relations between the activities and
their respective process behaviors. Moreover, we suggest
feeding the output provided by the VAE into the logistic
regression (LR) classifier to separate anomalous events from
normal events and anomalous traces from normal traces effec-
tively and reduce the false positives.

In summary, this paper has the following four major
contributions:

1) A novel framework that combines the VAEwith the LR
classifier for anomaly detection and root cause analysis
in the business process domain.

2) An enhanced VAE architecture that incorporates dif-
ferent architectural components, such as entity embed-
ding, BLSTM, and self-attention, is proposed for
learning high-level representations from the business
process data.

3) We suggested utilizing the LR classifier to find the best
threshold automatically and maximize the accuracy of
anomaly detection.

4) The proposed framework is instantiated into an auto-
mated model. The model is evaluated on real-life and
synthetic datasets, and the results demonstrated that the
proposed model outperformed all the other methods in
terms of performance.

II. RELATED WORK
This section reviews the studies conducted on both business
process anomaly detection and root cause analysis of the
detected anomalies.

A. BUSINESS PROCESS ANOMALY DETECTION RELATED
WORK
The anomaly detection methods utilized in the business
process domain can be categorized into three main cat-
egories: process mining, statistical, and machine learning
methods.

Process mining, as described in [10], often involves uti-
lizing discovery techniques to extract process models from
business process data. Subsequently, conformance checking
is performed to detect anomalies by comparing the process
model with the actual executions [11], [12], [13], [14], [15],
[16]. However, this approach has certain drawbacks. First,
this approach can be excessively stringent, resulting in a high
rate of false positives. Second, its effectiveness relies on the
availability of clean datasets, meaning that no anomalies are
present during the discovery phase. Unfortunately, this is
rarely the case because business process datasets frequently
have anomalies.

Subsequently, the approaches evolved into statistical meth-
ods, assuming that the data originated from a theoretical
statistical distribution [17]. However, this assumption does

not always hold for business process data. Additionally,
statistical methods are often inadequate for handling mul-
tidimensional data. The statistical methods for anomaly
identification provide a stochastic model that represents the
behavior being analyzed. If a previously unpredictable behav-
ior falls into the low-probability region of the stochastic
model, it is considered an anomaly. To train the statistical
model, normal data were utilized. Solti and Kasneci [17]
employ this approach to detect temporal anomalies.

Numerous research studies have employed machine learn-
ing techniques, including rule mining and clustering, to detect
abnormal executions in business process data. Approaches
based on rule mining generate rules that extract the behavior
of normal process executions. Consequently, if the tested
trace does not conform to these rules, it is classified as an
anomaly [4], [18], [19]. Sarno et al. [18] utilized associa-
tion rule mining to identify anomalies in business processes.
However, this research has certain limitations, such as the
reliance on manually constructed rules (such as user-defined
maximum expected duration of activity) and the absence of
verification of dependencies between activities. Additionally,
Sarno and Sinaga [19] proposed the use of an ontology to pro-
vide an understanding of the typical behavior of the business
process.

Additionally, several researchers have combined process
mining and association rule learning to develop a combined
model. One such study was proposed by Sarno et al. [4]. They
presented combining process mining, multiattribute fuzzy
decisionmaking, and fuzzy association rule learning for iden-
tifying anomalies in business process data. The researchers
employed the conformance-checking technique, a process
mining method, to evaluate the consistency between the pro-
cess model and the event log. Subsequently, they utilized
multiattribute fuzzy decision-making to compute the anomaly
rate. Then, fuzzy association rule learning was applied to
determine the association rules that could be utilized for
anomaly detection.

Rule mining methods offer the advantage of generating
a concise set of rules that can be employed for anomaly
detection. However, these methods have a disadvantage in the
context of flexible business processes, as the generated rules
may enforce strictness, resulting in inaccurate outcomes.
Moreover, most association rule learning approaches depend
on expert intervention. To achieve accurate anomaly detec-
tion, experts should assess whether each trace is normal or
anomalous and analyze the generated rules.

Due to the unavailability of labeled anomaly data, most
machine learning studies focused on detecting anomalies in
business processes have employed unsupervised techniques.
Among these techniques, clustering algorithms have been
commonly utilized. These studies aimed to detect normal and
anomalous trace clusters by calculating the distance between
multiple traces. Furthermore, Zhu et al. [20] mapped resource
behaviors into vectors to calculate the distance between them.
They assumed that resources assigned to the same roleswould
exhibit similar behavior.
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Likewise, Hsu et al. [21] employed a similar approach,
but they clustered traces based on the temporal perspective,
assuming that the same activities exhibit consistent behavior
across all traces in terms of their execution time. Additionally,
Folino et al. [22] utilized a clustering technique that extracts
patterns for trace clustering, such as control flow patterns.
Additionally, Böhmer and Rinderle-Ma [23] introduced a
clustering likelihood graph-based method. This method pro-
duces a reference model that calculates the likelihood of a
trace. If the tested trace is not the same as the others, it is
identified as an anomaly. The downside of this method is that
it needs a clean business process dataset (i.e., no anomalous
traces in the dataset).

B. BUSINESS PROCESS ANOMALY DETECTION AND ROOT
CAUSE ANALYSIS RELATED WORK
The methods proposed for detecting anomalies and con-
ducting root cause analysis in the business process field
can be classified into process mining and machine learning
approaches. Only a few studies have utilized process min-
ing techniques to address both anomaly detection and root
cause analysis tasks. for instance, Calderón-Ruiz et al. [24]
presented an approach that involves comparing behavioral
patterns extracted from two event logs: one containing suc-
cessful traces and the other containing failed traces. This
comparison is performed from both control flow and time per-
spectives through the sequence diagram analysis algorithm.
Any differences identified in these patterns can indicate
potential causes of business process failures.

Machine learning approaches can be categorized into clas-
sification approaches, rule mining approaches, and unsuper-
vised deep learning approaches. Many classification-based
methods employ decision trees to identify anomalies and
their causes in business process data. One such study was
proposed by Suriadi et al. [25] to enhance event logs for root
cause analysis using a classification algorithm. They utilized
decision trees specifically to detect the causes of overtime
errors.

Vasiliev et al. [26] presented an approach to detect the
underlying cause of delays in business process datasets.
This method utilizes a logical representation of the dataset
and applies decision tree induction to classify traces based
on their duration. Similarly, Ferreira et al. [27] focused on
uncovering the causes of process delays using logical deci-
sion trees. Gupta et al. [28] also proposed a method to
identify the cause of anomalies in business process datasets.
They initially employed a window-based technique to detect
anomalous traces and subsequently applied a decision tree
classifier to generate rules that describe these traces and can
be utilized to explain the causes of the anomalies. However,
the classification methods have a limitation which is that
they are based on correlation rather than causal relationships,
resulting in suboptimal performance.

Rule mining techniques have been utilized in various
studies to detect anomalies and their causes in business

processes. Böhmer and Rinderle-Ma [29], [30] proposed
utilizing association rule mining to discover interesting rela-
tionships between activities. Initially, a group of association
rules is extracted from the business process dataset, ensuring
that each trace in the dataset satisfies these rules. To detect
anomalous traces, a new trace is compared to all traces in the
dataset, and the most similar trace in terms of control flow is
identified. The rules associated with themost similar trace are
then applied to the new trace. If the support of the new trace is
less than the support of the most similar trace, it is considered
an anomaly. One advantage of rule mining techniques is that
they explain why a particular trace is classified as an anomaly.
However, manual analysis by an expert is still needed to
identify the point of divergence.

Deep unsupervised approaches for detecting anomalous
business process executions have recently been used because
of the unavailability of labeled data and their ability to
learn from unlabeled data [31], [32], [33]. Nolle et al. [31]
introduced an unsupervised approach based on deep neural
networks. The authors divided the datasets from both control
flow and data perspectives. Both perspectives are utilized
as inputs to the architecture, which aims to predict the next
event from both perspectives. Anomalous traces are identified
when there is a difference between the encountered next event
and the predicted next event. This approach has a limitation,
which is that it cannot address many attributes because the
learning cannot handle unseen values from both the control
flow and data perspectives.

Nguyen et al. [32] employed three distinct autoencoder
architectures to reconstruct missing events in the dataset
and eliminate anomalies. The first architecture is a standard
autoencoder (AE). The second architecture is a variational
autoencoder (VAE). In the third architecture, recognizing
that business process data are temporal data, the authors
incorporated an LSTMnetwork into the standard autoencoder
structure, which they named the LSTM autoencoder (LAE).

Furthermore, Nolle et al. [33] introduced an approach for
detecting anomalous traces in business process executions
using a denoising autoencoder (DAE). This approach also
aimed to determine which event in the trace was anoma-
lous relative to the entire trace. The authors trained the
autoencoder on an unlabeled dataset and subsequently used
it to reconstruct traces in the test set. To detect anoma-
lies, they computed the reconstruction error, which was the
mean squared error between the input trace and the recon-
structed trace. The assumption behind this approach was
that the autoencoder would reconstruct normal traces with
lower reconstruction errors than would reconstruct anoma-
lous traces, as the distributions of the normal and anoma-
lous traces in the dataset differed. By setting a threshold,
traces with a reconstruction error exceeding this threshold
were considered anomalies. The authors further improved
the approach by modifying the computation of the recon-
struction error from trace-based to event-based, enabling
the determination of which event in the trace caused the
anomaly.
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Both the approach presented by Nolle et al. [33] and
our approach detect anomalies on the trace level and the
event level in terms of reconstruction errors. However, there
are essential distinctions between their approach and our
approach. First, we used a different autoencoder model
from theirs. Second, in our autoencoder‘s architecture,
we employed various architectural components that they did
not use such as entity embedding, BLSTM, and self-attention.
These design choices have led to an increase in accuracy,
as verified by empirical evaluation. Third, the method of cal-
culating the reconstruction error based on the trace level and
the event level in our study is more reliable than the method
used in [33] since we compute the event reconstruction error
using the cross-entropy loss and the trace reconstruction error
as the means of the event reconstruction errors.

The accuracy of deep unsupervised learning approaches
in detecting anomalies and performing root cause analysis
is a common limitation. Another limitation is the reliance
on manual threshold setting to differentiate normal events
from anomalous events and normal traces from anomalous
traces as well, which can be unreliable when applied to
diverse datasets. As a reference, we provide a taxonomy of
the approaches adopted for the business process anomaly
detection and root cause analysis tasks and their limitations
in Table 1.

TABLE 1. A summary of related work.

III. DATASETS
In the business process modeling principle, the fundamental
data structure is the event log, which is composed of traces

TABLE 2. A part of a P2P process event log.

containing events that occur in a business process. Each event
is assigned an activity name, and a sample of an event log is
displayed in Table 2, representing a purchase-to-pay (P2P)
business process. The event log should contain a minimum
of three columns: a trace ID for unique activity assignments,
a timestamp for sorting activities, and an activity name for
differentiation purposes.

To assess our model, we utilized two real-life event logs
sourced from the business process intelligence challenge:
BPIC12 [34] and BPIC17 [35]. Alongside the real-life event
logs, we generated two synthetic event logs using Processes
and Logs Generator 2 (PLG2) [36]. These synthetic logs were
based on process models of varying complexity. The first
event log was derived from a P2P process model, shown
in Fig. 1 as a BPMN model. The second event log was
generated from a random process model, with the complexity
determined by the number of activities within each model.

Information regarding the datasets (i.e., the event logs) is
shown in Table 3.

TABLE 3. Datasets information.

Adding artificial anomalies to real-life and synthetic event
logs is a common practice [14], [23], [31], [33]. This is done
under the assumption that real-life event logs often contain a
few anomalous traces. Hence, we utilized real-life event logs
to evaluate the feasibility of the proposedmodel and synthetic
event logs to evaluate its accuracy.

By introducing artificial anomalies, we were able to estab-
lish the ground truth of the dataset, which served as the
basis for testing our model. In our study, we incorporated
commonly used artificial anomalies in business processes,
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FIGURE 1. BPMN model of a P2P process.

as identified in previous studies [14], [23], [31], [33]. These
artificial anomalies are:
• Rework: An activity is executed twice.
• Skip: An activity is not executed.
• Switch: Two activities are swapped during execution.

IV. PROPOSED APPROACH
In this section, we introduce a VAE approach to solve
the low-performance problem of the current unsupervised
techniques and determine the root causes of the detected
anomalies.

A. PREPROCESSING
We converted the datasets into a numerical format suitable for
the neural network. We accomplish this by employing label
encoding, which assigns a positive integer to each unique
activity. In cases where the trace length is shorter than the
maximum trace length in the dataset, we pad the trace with
zeros to match the maximum trace length. This approach is
necessary to ensure the proper functioning of the model. Sub-
sequently, we partitioned the real-life and synthetic datasets
into training and testing sets. A certain percentage of the
traces in the test set were randomly selected and intro-
duced with artificial anomalies while retaining their original
labels. This allowed us to assess the performance of our
model.

B. PROPOSED FRAMEWORK
We chose the VAE to be the base of our framework because
several previous studies have demonstrated the effectiveness
of autoencoders as deep unsupervised anomaly detection
methods [37], [38], [39], [40], [41]. An autoencoder is a kind
of neural network that learns to encode data from a dataset.
It comprises an encoder and a decoder [37]. The encoder
network receives the input and provides a compressed rep-
resentation Z with a lower dimensionality than the original
input. This latent representation Z is subsequently fed into
the network of the decoder, which is trained to reconstruct
the input.

The VAE is a type of autoencoder that incorporates addi-
tional constraints on the latent representation Z [7], [8]. These
constraints force the learned features of Z to roughly follow a
specific probability distribution. This property is particularly
useful when using VAE as a generative model, as it allows for
the generation of novel outputs that are similar to the original
input by sampling values from the distribution and feeding
them into the decoder.

It is a common practice for autoencoders-based anomaly
detection methods to train the autoencoders using only
normal samples [32], [33], [42]. The advantage of using
autoencoders for anomaly detection is that they can learn in
unsupervised settings.

This implies that they do not need labeled data that specifi-
cally points out anomalies during the training phase. Instead,
they learn from the distribution of the normal data, enabling
them to identify anomalies that may not have been encoun-
tered during training.

This fundamental idea underlies the utilization of autoen-
coders for anomaly detection. Throughout the training phase,
the autoencoder is provided with a set of normal data, then
it learns to represent the normal patterns of this data in the
latent space. It becomes adept at accurately encoding and
decoding normal data. In essence, the autoencoder learns
the underlying patterns and structure of the normal data to
generate a reliable reconstruction.

During the testing phase, if the autoencoder encounters
anomalous data, it will be unable to reconstruct it as precisely
as the normal data. Consequently, the reconstruction error,
which quantifies the difference between the original input
and the reconstructed output, can serve as the anomaly score.
It typically exhibits a notable increase for anomalous data in
comparison to normal data. As a result, data samples with
high reconstruction errors are considered to be anomalous
samples.

In the same way, we train the VAE solely on normal traces
from the event log to learn the normal behavior of the process.
Once trained, the VAE can be used to detect anomalies. When
an input trace deviates from a normal trace, the VAE fails to
reconstruct the input trace of the same quality as the normal
trace.

Therefore, the anomaly score or reconstruction error can
be computed as the difference between the input trace and
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FIGURE 2. The VAE framework.

the reconstructed trace. In this way, the VAE can indicate that
something is amiss without needing to be specifically trained
on anomalous traces.

Fig. 2 [8] illustrates the structure of the VAE, which con-
sists of two main components:

• Probabilistic Encoder: The encoder receives a data point
X and generates a hidden representation Z using weights
and biases θ . The goal of the encoder is to learn an
effective compression of the data into a compressed
representation Z . The encoder is denoted as qθ (z|x).
It outputs parameters for a Gaussian probability distri-
bution, capturing the mean µ and the variance σ of the
distribution. The representation Z is then sampled from
this distribution.

• Probabilistic Decoder: The decoder receives Z and gen-
erates the parameters for the data probability distribution
using weights and biases ϕ. We denote the decoder
as pϕ(x|z).

The encoder of the VAE produces two vectors that depict
the mean and variance of the latent distribution from which
the representation Z is randomly sampled. Nevertheless, there
is a problem with the random sampling of the Z represen-
tation during training, as backpropagation gradients do not
function effectively over random processes [43].

To address this issue, the sampling process can be pushed
out as the input by employing a novel technique known as the
reparameterization trick. Initially, a random vector ε is sam-
pled from a Gaussian distribution with dimensions equivalent
to Z . This vector is then multiplied by the variance vector σ

of the latent distribution and then the mean vector µ is added
to it, as shown in Fig. 3 [43].

FIGURE 3. The VAE reparameterization trick.

This adjustment removes the random generator from the
backward pass, ensuring that the sampled data maintains the
properties of the original distribution. The improved sampling
process can now be denoted as follows:

z = µ+ σ ⊙ ε (1)

The VAE loss function consists of two main components:
the reconstruction loss and the Kullback–Leibler (KL) diver-
gence term.
• The reconstruction loss quantifies the VAE’s ability to
reconstruct the input from Z . This approach encourages
the VAE to learn a meaningful representation of the data
that can be used to accurately reconstruct the original
input.
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FIGURE 4. Illustration of the proposed framework.

• The KL divergence term calculates the discrepancy
between the assumed prior distribution and the learned
latent distribution. It is a regularization term that pro-
motes the VAE to align the learned latent space with the
desired distribution.

These components are combined to form the overall loss
function that the VAE aims to minimize during the training
phase. The equation for the loss function of the VAE can be
defined as follows:

Loss = Reconstruction loss+ KL(qθ (xi) ||p(z)) (2)

The proposed framework as shown in Fig. 4 is composed of
twomain components: a VAE and a LR classifier. As clarified
in the figure, the VAE receives the integer-encoded trace
or sequence of events (e1, e2, e3, . . . , en), where n repre-
sents the length of the trace. This trace is fed into the first
part of the VAE, which is the encoder. Then, the encoder
outputs parameters for a Gaussian probability distribution,
capturing the mean µ and the variance σ of the distribution.
The latent representations (z1, z2, z3, . . . , zn) are then ran-
domly sampled from this distribution. After that, the latent
representations are fed into the decoder. Next, the decoder
outputs a probability distribution Pae over all possible values
of the activity attribute a of event e to identify anomalous
events.

The assumption is that an anomalous activity attribute
will be assigned a lower probability than a normal activity
attribute of the event. That is, if the dataset has 10 different
activity values, then Pae will be a first-order tensor with a
size of 10. Each dimension of Pae contains the probability
that is assigned to one of the 10 possible activity values.
To measure the reconstruction error RE of an input event, the
cross-entropy loss function is used. This function takes the
negative logarithm of the probability of the actual activity aact
encountered in that event or the probability that the z repre-
sentation of that event can be reconstructed to the input event
pϕ(eventn|z), as in (3). The logarithm is applied to magnify
the reconstruction error for low-probability activities.

RE (event) = − logPaactevent = − log pϕ (event | z) (3)

It is important to note that the reconstruction error of the
padding events will always be zero. The reconstruction
error of the whole trace is computed by taking the mean
of the reconstruction errors of all events within that trace.
Algorithm 1 describes the VAE training process.
Once the trace reconstruction error is obtained, it needs to

be mapped to a binary label y∈ {0, 1}, where 0 represents a
normal trace and 1 represents an anomaly. We propose using
a classifier to find the best threshold value for all tested event
logs to distinguish between anomalous and normal traces
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Algorithm 1 VAE training
Input: Unlabelled normal trace set U
Output: Encoder parameters θ , Decoder parameters ϕ
e = event
t = trace
l = trace length
b = batch size
Randomly initialize θ , ϕ

for i = 1 to n_epochsdo
for j = 1 to n_batchesdo
{tk }bk=1 ← Randomly sample b traces from U

for k =1 to bdo
for n =1 to l do
µ, σ ← Encoder (θ, en)
ε← N (0,1)
z = µ+ σ ⊙ ε
pϕ(en|z)← Decoder (ϕ, z)
RE (en) = − log pϕ(en|z)+ KL(qθ (z|en) ||p(z))
end for

RE(tk ) = 1
l
∑l

n=1 RE (en)
end for

Loss =
∑b

k=1 RE(tk )
Update the parameters using gradients of loss
end for

end for
return θ , ϕ

automatically. The reconstruction error of the trace is fed into
the classifier, which is trained to map the reconstruction error
to the label.

In the same way, we detect anomalous events by feeding
the event reconstruction error into the classifier to determine
the cause of the detected anomalous traces. Additionally,
it is essential to utilize a classifier capable of handling
non-linearly separable classes, as the normal and anomaly
classes in real-life business process event logs are often not
linearly separable.

Fig. 5 shows the reconstruction error values of the normal,
and anomalous traces produced by the VAE trained on the
PBIC12 event log. It can be observed that they cannot be
separated by a straight line. For this reason, we opted for
the utilization of LR classifier due to its ability to effectively
separate non-linearly separable classes [44].

LR classifier is a statistical method that estimates the prob-
ability that an observation belongs to a specific class [44].
It employs a logistic function, commonly referred to as the
sigmoid function which is a non-linear function to map the
model’s output to the probability space.

The sigmoid function transforms the output into probabil-
ities, which are then converted into binary outcomes using
a decision threshold, typically set at 0.5. If the probabil-
ity exceeds the threshold, the observation is classified as
belonging to the positive class; otherwise, it is classified as
belonging to the negative class.

The sigmoid function is defined in (4). x represents
the input value, and e denotes the natural logarithm base
(or Euler’s number). It outputs an S-shaped curve, which
can transform any real-valued number into a value ranging

FIGURE 5. The reconstruction error distributions of the normal and
anomalous traces produced by the VAE trained on PBIC12 dataset.

Algorithm 2 LR training
Input: Labeled set S = {(r1, y1),. . . , (rn, yn)}
Output: Parameters w and b
r = reconstruction error
y = {1, 0}
c = batch size
Randomly initialize w and b
for i = 1 to n_epochsdo
for k = 1 to n_batchesdo
{rj, yj}cj=1 ← Randomly sample mini-batch from S
for j = 1 to c do
Compute the linear combination of r and parameters w and b.
xj = w ∗rj + b
Apply sigmoid function to get predicted probabilities.
y_pred j = Sigmoid (xj)
end for

Compute the loss function (Binary cross-entropy loss).
Loss = −1c

∑c
j=1 (yj ∗ log(y_pred j)+ (1−yj) ∗ log(1− y_pred j)

Update w and b using gradients of loss.
end for

end for
return w and b

from 0 to 1 [45].

Sigmoid (x) =
1

1+ e−x
(4)

The sigmoid function’s characteristic S-shaped curve enables
it to handle data points effectively, being steeper around
the decision threshold and gradually flattening towards the
extremes (0 and 1). This property ensures a smooth transition
of probabilities around the decision boundary.

The training and classification procedures of LR classifier
are described in algorithm 1 and algorithm 2 respectively.

In our study, we present a novel architecture for VAEs
that improves the ability of VAEs to accurately reconstruct
business process data and effectively detect anomalies. This
enhanced capability allows us to analyze and identify the
specific event within a business process execution that is
causing the anomaly.
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FIGURE 6. The proposed SA-BLSTM-VAE architecture.

Algorithm 3 LR classification label decision
Input: reconstruction error r
Output: y = {1, 0}
x = w ∗r + b
y_pred = Sigmoid (x)

if y_pred >= 0.5
y = 1 (Anomaly)

else
y = 0 (Normal)

return y

The learning of VAEs from unlabeled data is improved
by leveraging different architectural components, namely,
the entity embedding technique, BLSTM, and self-attention
mechanism, and combining them in the VAE architecture.

We call our model the self-attention and bidirectional
long short-term memory-based variational autoencoder
(SA-BLSTM-VAE).

The proposed SA-BLSTM-VAE architecture is shown
in Fig. 6. As clarified in the figure, the encoder of the
SA-BLSTM-VAE receives the integer-encoded sequence of
events or trace t = (e1, e2, e3, . . . , en). The encoder consists
of the following architectural components:

1) ENTITY EMBEDDING LAYER
To represent the events, their relations, and the corresponding
business process behaviors, we utilized entity embedding.
This technique allows us to capture the essential information
while constraining the size of the feature vectors. The entity
embedding technique mainly comes from natural language

processing (NLP) and information retrieval fields to generate
highly informative but low-dimensional vectors [46].

The entity embedding technique, similar to word embed-
ding in NLP, converts words to vectors in a multidimensional
space, where similar entities are placed close to each other.
In our work, we apply this technique to the input trace or
sequence of events. The encoder utilizes an embedding layer
that generates fixed-size vectors with random numbers for
each activity.

During VAE training, these random values are adjusted
through backpropagation, the embedding layer is optimized
to learn the intrinsic properties of the activities, and the loss
function is minimized. This means that the embedding vec-
tors are computed within the same architecture in our model,
and the embedding layer weights are learned in the training
phase.

Fig. 7 provides an example of how the embedding layer
maps each integer-encoded activity to a five-dimensional
embedding vector.

Initially, the integer-encoded activity is transformed into
a one-hot encoding vector. The adjustable weights of the
embedding matrix are updated in the training phase of the
VAE. Subsequently, the embedding layer maps each activity
to a five-dimensional vector corresponding to a row in the
embedding matrix.

2) BLSTM
Considering the temporal nature of the business process data,
we opted to utilize recurrent neural networks (RNNs) for
modeling. RNNs excel at capturing sequential temporal data
due to their ability to retain temporal information through
recurrent connections. These connections allow the output
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FIGURE 7. An example of how the embedding vectors of the activities are
computed.

of a recurrent layer to be fed back as input, creating a
causal temporal chain and preserving an internal state or
‘‘memory’’ [47], [48]. Among the various RNN architec-
tures, long short-term memory (LSTM) is the most robust
option [48], [49].

To further enhance themodeling capabilities, we employed
a BLSTM architecture for both the encoder and decoder of
our VAE. A BLSTM trains two LSTMs simultaneously: one
on the original input sequence and the other on a reversed
copy of the sequence. This approach provides additional
context and facilitates more comprehensive learning of the
sequences [50].

The BLSTM in the encoder, as shown in Fig. 6, receives
the embedding vectors generated from the embedding layer
and produces hidden state sequences forward and backward
for these embeddings. The output sequence h⃗ of the forward
LSTM layer is iteratively calculated using the input embed-
dings in the forward sequence, and the output sequence

←−
h of

the backward LSTM layer is computed based on the reversed
input embeddings.

These hidden states enable the network to maintain past
information and thus be able to remember complex long-term
dependencies between activities.

In this way, the input trace can be viewed from two direc-
tions, thus the extrastructural properties of this trace can
be learned. The hidden states produced by the BLSTM are
subsequently combined into a hidden state vector sequence
(h1, h2, h3, . . . , hn) and fed into the variational layer for addi-
tional processing.

Then, the statistical variables µ (mean) and σ (variance)
are generated in the variational layer based on the hidden
state vectors of the BLSTM, representing the normal distri-
bution. From such a defined normal distribution, the latent
representations of this normal distribution (z1, z2, z3, . . . , zn)
are sampled.

3) SELF-ATTENTION LAYER
We incorporated an attention mechanism with BLSTM in the
encoder network to achieve optimal modeling of the busi-
ness process data and to enhance the learning of long-range
dependencies between activities. The mechanism of neural
attention was first presented in [48] for NLP. It can imitate the
visual attention mechanism of humans [51]. The human eye
focuses on certain objects or areas with a higher resolution
than their surroundings.

In the same way, the attention mechanism enables the neu-
ral network to attend to out-of-order elements of a sequence,
emphasizing the significance of one element or another in
the sequence; thus, it generates a better representation of that
sequence [9], [51].

The attention mechanism utilized in our model is self-
attention, which is chosen for its ability to capture dependen-
cies between elements in a sequence and maintain coherence
across long-term sequences [9]. Self-attention has been
applied successfully in various tasks, including sentence rep-
resentation learning and textual entailment [52], [53].

In the self-attention layer, each input element interacts with
the others to determine the attention it should give to different
elements. The output is a weighted sum of these interactions,
represented by attention scores.

As shown in Fig. 6, the self-attention layer receives
the hidden state vectors (h1, h2, h3, . . . , hn) produced
by the BLSTM as input and generates context vectors
(c1, c2, c3, . . . , cn), where each context vector is a weighted
sum of the input hidden state vectors.

To compute the context vectors, the self-attention mech-
anism first generates three vectors for each input vector:
query q, key k , and value v; all of the dimension d . These
vectors are obtained by multiplying each input vector with
weight matrices specific to keys, queries, and values.

The self-attention function maps each query to a group
of key-value pairs and computes a weighted sum of the
values, resulting in the context attention vectorC .We applied
the scaled dot-product attention from [9], to calculate C as
follows:

Attention (Q,K ,V ) = C = Softmax(
QK t
√
dk

)V (5)

The q, k , and v vectors are packed into the Q, K , and V
matrices, respectively. The attention weights are calculated
by taking the dot product of the query Q with all the keys
K t , scaled by dividing by

√
dk , i.e., the dimension of k . This

scaling ensures stable gradient computation [9].
The resulting weights are then normalized using the soft-

max function to obtain the importance of each input vector.
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Finally, the attention weights are multiplied by the V matrix
to obtain the attention vector C .
In Fig. 8, we provide a more detailed explanation of the

self-attention mechanism using an example from the P2P
process. The self-attention layer takes the hidden state vectors
of a trace containing six events as input. For each hidden state
vector, q, k, andv vectors are generated.

To calculate the attention vector C (j) for the PO Created
event, we want to determine its relation with the other events
in the trace. To do this, we compute the scaled dot-product of
the query vector for the POCreated event with the key vectors
of all the input hidden state vectors.

This operation produces an attention scores vector or
weights a (j) for each input hidden state vector. Next,
we obtain the attention vector C (j) by taking the weighted
sum of the attention scores vector a (j)with the corresponding
value vectors. This step combines the information from the
other events in the trace to create the attention vector for the
PO Created event.

FIGURE 8. An example of how the self-attention mechanism learns the
attention representation vector of the PO Created event.

Then, the context vectors generated from the self-attention
layer are sent to the decoder for additional processing. In this
way, the decoder is notified of the contextual information
provided by the context vectors; hidden states information is
important and should be considered. In other words, we pass
contextual information from the hidden states of the encoder
to the decoder.

Together with the context vectors, the latent representa-
tions from the variational layer are fed into the decoder. The
decoder is composed of a BLSTM network and two fully
connected (FC) layers. Like in the encoder case, the BLSTM
produces hidden states. Then, these hidden states are passed
to the first fully connected layer.

Autoencoders are intended to reconstruct the output vector
from the input vector. They may learn the identity function
between all the input and output vectors in the training set,

leading to overfitting. To solve this problem in our VAE archi-
tecture, we utilized batch normalization [54] and dropout [55]
in the first FC layer in the decoder network. After that, the
second FC layer gives a probability distribution Pae over all
possible activity values a of event e using a softmax activation
function.

V. EXPERIMENTAL EVALUATION
We empirically assess the performance of the proposed
SA-BLSTM-VAE model using real-life and synthetic
datasets. To conduct this evaluation, we divided the datasets
into three sets: 70% for training, 20% for testing, and 10% for
validation. Since anomalous traces are uncommon in business
processes, we add artificial anomalies to only 10% of the
testing set.

A. COMPARED METHODS
To prove the effectiveness of the SA-BLSTM-VAE model,
we compared it with six other anomaly detection models
applied to business process data. These models include sam-
pling [13], DAE [33], BINet [31], AE [32], VAE [32], and
LAE [32]. The sampling method is based on process mining
and relies on process discovery and conformance-checking
techniques, whereas DAE, BINet, AE, VAE, and LAE are
deep unsupervised anomaly detection methods.

B. IMPLEMENTATION SETUP
All implementations were carried out in Python utilizing
the available source codes of DAE, BINet, AE, VAE, and
LAE provided by their respective authors. The sampling
method was implemented according to the original paper’s
description using the Process Mining for Python (PM4Py)
library [56].
The SA-BLSTM-VAE model was trained for 100 epochs.

A mini-batch size of 256 was used during training. The
Adam optimizer was used with a learning rate of 0.1. The
architecture and hyperparameters of the SA-BLSTM-VAE
model are presented in Table 4.
The LR classifier consists of an input layer, an output layer,

and two hidden layers. The number of neurons in the input
and output layers is set to 1 and the number of neurons in the
two hidden layers is set to 4. The activation function usedwith
the output layer is sigmoid. All used hyperparameters were
selected based on empirical experimentation with various
values, and it was determined that the chosen values yielded
satisfactory results.

C. RESULTS AND ANALYSIS
To assure a fair comparison, the precision, recall, and F1-
score metrics were utilized. We begin by outlining a set of
relevant terms that will be utilized in these metrics [57]:
• True positive (TP): represents the count of anomalous
traces correctly identified as anomalies.

• True negative (TN): denotes the count of normal traces
correctly identified as normal.
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TABLE 4. The hyperparameter settings of the SA-BLSTM-VAE model.

• False positive (FP): refers to the count of normal traces
incorrectly classified as anomalies.

• False negative (FN): specifies the count of anomalous
traces incorrectly identified as normal.

Precision is a metric that evaluates the proportion of ele-
ments classified as anomalies that are indeed true anomalies.
It is defined as:

Precision =
TP

TP+ FP
(6)

Recall is a metric that measures the percentage of true anoma-
lies correctly detected by the model. It is defined as:

Recall =
TP

TP+ FN
(7)

F1-score is the harmonic mean of precision and recall, so it
is well-suited for assessing the model’s effectiveness in accu-
rately detecting anomalies.

F1− score = 2x
RecallxPrecision
Recall + Precision

(8)

Precision assesses the accuracy of results, while recall evalu-
ates the completeness of results. The F1-score aims to strike
a balance between precision and recall.

Table 5 displays the accuracy of the anomaly detection,
in terms of the precision, recall, and F1-score, of the proposed
SA-BLSTM-VAEmodel and othermodels across all datasets,
considering both the trace-level and the event-level. The best
results are highlighted in bold.

Based on the results of the synthetic event logs (Dataset1
and Dataset2) and real-life event logs (BPIC12 and PBIC17)
for both trace-level and event-level shown in Table 5, we can
categorize the proposed model and the compared models into
three groups based on the comparison between precision and
recall:

1. Methods with higher precision (AE, LAE, and VAE):
These methods demonstrate precision> recall, indicat-
ing that they are good at identifying normal traces but
may struggle to detect anomalous traces effectively.

2. Methods with higher recall (sampling, DAE, and
BINET): These methods demonstrate precision <

recall, showing that they are good at identifying anoma-
lous traces but may misclassify normal traces as
anomalies, leading to false positives.

3. Balanced method (SA-BLSTM-VAE): Our model
exhibits a more balanced performance concerning
recall and precision.

According to the precision and recall results reported in
Table 5, the average of the differences between precision and
recall for all the compared methods on all the datasets is
around 0.23. whereas, the average of the differences on all
the datasets in the case of our model is 0.03.

From our perspective, one of the reasons behind the imbal-
ance between precision and recall in the other deep learning
models (AE, LAE, VAE, DAE, and BINET) is that they have
an issue with setting the anomaly threshold. When a small
threshold value is set, the detection becomes more sensitive,
potentially resulting in false alarms or false positives (lower
precision and higher recall), as occurred in DAE and BINET.
Conversely, a larger threshold value reduces false positives
but may lead to missed anomaly detections (higher precision
and lower recall), as occurred in AE, LAE, and VAE.

In contrast, our SA-BLSTM-VAE model achieves a bal-
ance between precision and recall because we feed the
reconstruction errors obtained from the VAE into LR classi-
fier to find the best threshold, rather than setting it manually.

For the sampling method, the main reason behind the
lower precision and higher recall is the fact that it depends
on mining a process model from the event log to identify
anomalous traces by comparing the difference between the
tested traces and the mined process model. Consequently,
the sampling method may be overly strict towards the mined
process model, which leads to increasing the false positive.

Moreover, our model demonstrates remarkably higher
F1-scores compared to other models, whether for trace-level
anomaly detection or event-level anomaly detection. The
F1-scores of our model consistently hover around 0.9. This
implies that for both synthetic and real-life event logs, our
model outperforms the other models. Our model is closely
followed by LAE and BINet models, whereas the remaining
models exhibit significantly lower performance.

Notably, the sampling method performs the worst because
the sampling method like any other process mining method
utilizes signatures of known anomalies that may occur in
the business process, which limits its ability to detect new
types of anomalies. In contrast, our SA-BLSTM-VAE model
is capable of detecting new anomalies because it is an unsu-
pervised model and is not limited to specific classes of
anomalies.

As expected, LAE and BINET outperform AE, VAE, and
DAE because they are RNN-models and utilize the temporal
dimension in the business process data, whereas DAE and
VAE are not RNN-models. LAE employs LSTM to capture
the temporal information of the events, whereas BINET uses
a Gated Recurrent Unit (GRU), both being RNN variants.

The main advantage of our SA-BLSTM-VAE model over
LAE, BINET, and the other models lies in our use of BLSTM,
a superior network compared to LSTM and GRU, for captur-
ing the temporal information and the dependency within the
event sequences [50].
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TABLE 5. The precision, recall, and F1-score for all datasets according to detection level and method.

The self-attention mechanism serves as a bridge between
the encoder and the decoder in our model. When the encoder
receives an input trace, the BLSTM in the encoder produces
a hidden state vector for each event in that trace.

Then, the self-attention layer takes these hidden state vec-
tors and generates a context vector for each event. These
context vectors encapsulate information regarding the rela-
tion and the dependency between the events in the trace.
Subsequently, the context vectors are sent to the decoder i.e.
the self-attention mechanism passes the contextual informa-
tion from the hidden state vectors representing the trace in the
encoder to the decoder.

In this way, the decoder is notified of the importance of
each event during reconstruction thus the decoder’s learn-
ing is enhanced. Consequently, the ability of our model
to reconstruct normal traces is improved. In other words,
the self-attention mechanism empowers our model to rea-
son about long-term dependencies and establish generic
representations between input and output traces, thereby
enhancing detection performance on both the trace and event
levels.

Additionally, AE, LAE, VAE, DAE, and BINET which are
deep learning models utilize one-hot encoding to convert the
categorical event sequences or traces into numerical represen-
tations. These integer representations do not take into account

the inherent relations between the events. In contrast, we opt
for the entity embedding technique over one-hot encoding to
enhance the event representation.

Entity embedding transforms the events into highly infor-
mative vectors, allowing our model to effectively capture the
relations between the events and their corresponding pro-
cess behavior. Integrating the architectural components of
entity embedding, BLSTM, and self-attention in our model
enables the learning of high-level representations from busi-
ness process data, thereby improving the anomaly detection
performance of the model.

It can be noted from Table 5 that the performance of all
models on real-life event logs is relatively lower compared
to their performance on synthetic event logs. This implies
that training the models on real-life event logs results in a
decrease in performance. It is worth noting that the perfor-
mance decline in our model is minimal in comparison to the
other models.

Interestingly, the decrease in performance is because
real-life event logs are more likely to contain anomalies.
Consequently, the models are not able to effectively learn the
complex behaviors present in the real-life event logs. Addi-
tionally, the samplingmethod exhibits theworst performance,
because the performance of the sampling method heavily
relies on the availability of clean event logs.
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FIGURE 9. The learning curves of the proposed model on the p2p dataset:
(a) the F1-score learning curve (b) the loss learning curve.

Moreover, real-life event logs are often produced by less
structured and more flexible business processes, making it
hard for the sampling method to mine the process models
from these event logs. In addition, the normal behavior of
these business processes is difficult for the deep learning
models to learn. Another contributing factor to the decrease
in performance is the presence of numerous long-term depen-
dencies in real-life event logs.

Despite these challenges, our model maintains good over-
all performance, as evidenced by its F1-score on real-life
event logs, indicating its effectiveness in detecting anomalies
in real-life settings. It can be trained on noisy event logs that
contain anomalies without requiring a clean dataset, which is
rare in real-life.

Additionally, the incorporation of BLSTM and the
self-attention mechanism enables our model to better capture
the long-term dependencies in real-life event logs.

The F1-scores and loss learning curves of the SA-BLSTM-
VAE model on the p2p dataset at the trace level are shown in
Fig. 9.

As shown in the figure, the learning curves are similar for
the training and validation sets, which means that our model

performs well on both the training and validation data; i.e., it
can learn the patterns from the training set and generalize well
on unseen new data. In other words, our model does not suffer
from underfitting or overfitting, which is the ideal situation
for a machine learning model.

VI. CONCLUSION
This paper presents a VAE-based model for anomaly detec-
tion and root cause analysis in business processes. The
presented model addresses the limitations of the existing
unsupervised methods and provides insights into the causes
of the detected anomalous executions. The proposed model
incorporates various architectural components, including
entity embedding, BLSTM, and self-attention, to handle the
sequential nature and long-term dependencies of the business
process data effectively, enabling the learning of high-level
representations from these data. Furthermore, the output of
the VAE is fed into the LR classifier to improve the dis-
crimination between normal and anomalous traces, thereby
enhancing the detection accuracy. We evaluated our model‘s
performance using real-life and synthetic datasets. The results
demonstrate that our model outperforms six competing mod-
els and exhibits good accuracy in identifying the exact cause
of anomalies compared to other approaches.

In future work, we plan to extend the proposed model
to incorporate multiple perspectives of the business pro-
cess, such as the data perspective by further inspecting other
attributes of the events not just the order in which the events
are executed. i.e. identifying which characteristic of the event
(e.g., the executing user) is anomalous. Moreover, event logs
now encompass multimedia elements like videos and images,
that capture scenes upon completion of an event. These
heterogeneous information sources can potentially lead to
anomalous process executions. So, in the future, our upcom-
ing investigations will explore the integration of these diverse
data types to develop cross-media anomaly detection tailored
for business processes.
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