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ABSTRACT In industrial production, three-dimensional scanning and inspection technology is widely
applied, with spraying developer playing a critical role in this process. During the application of spraying
developer, the spraying defects generated on the surface of workpieces can greatly affect the accuracy and
integrity of the three-dimensional scanning data construction for the products. Currently, the detection of
these spraying defects heavily relies on manual visual observation, a process that is both time-consuming
and labor-intensive. Moreover, there is no standardized approach, leading to uncertainty in the subsequent
construction of three-dimensional scanning data. To address this issue, this study proposes a deep learning
algorithm based on YOLO v7 target detection. The research focuses on commonly used inspection parts
in the field of three-dimensional optical scanning measurement, constructing a dataset specifically for
spraying defects. Real-time target detection is then conducted on the workpieces within an actual production
environment. Through model evaluation, it was found that the neural network in this study achieved a
remarkable accuracy of 0.996 on the test set, with the highest confidence level of 0.96 during real-time
inspection of the workpieces. These results demonstrate the superior accuracy of the proposed method in
detecting defect targets, thereby offering valuable insights for evaluating spraying defects and enhancing the
quality of three-dimensional optical scanning data construction.

INDEX TERMS Three-dimensional scanning, spraying developer defects, deep learning, computer vision,
image detection.

I. INTRODUCTION
Three-dimensional (3D) optical scanning has emerged as a
prominent measurement technique in various fields, experi-
encing rapid development over the past decade [1], [2], [3],
[4], [5], [6]. Compared to touch probe CMM systems, 3D
optical scanning systems offer advantages of high efficiency
and quality, particularly in accurately measuring complex
shapes [7], [8], [9]. These systems find applications in
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diverse industries such as automotive, medical, architecture,
and historic preservation. In the automotive industry, for
instance, 3D optical scanners are employed to capture the
intricate shape of objects, facilitating the modeling process.
They generate high-resolution models by capturing millions
of points within seconds, resulting in point cloud data.
This data can then be transferred to a CAD system for
tasks such as 3D surface or solid modeling, finite element
analysis, tool design, and tool path generation [10], [11], [12].
Furthermore, the triangulation-based principle underlying 3D
optical scanning measurements offers excellent scalability.

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 77235

https://orcid.org/0009-0004-9991-2452
https://orcid.org/0000-0002-0982-5282


Z. Wang et al.: Method and Application of Spraying Developer Defect Detection

This allows these systems to be utilized across a wide range
of scales, making them a valuable complement to traditional
contact measurement equipment [13].

In industrial production, three-dimensional optical scan-
ning and measurement systems are widely employed to
acquire point cloud data by projecting lasers onto objects and
processing the reflected light. These systems have matured
significantly in terms of optical control technology, offering
advantages over contact-based systems. They exhibit reduced
sensitivity to operator influence [12], [14], [15]. However,
several factors can still impact the quality of point cloud data,
and the presence of defects in the data can adversely affect
subsequent data processing [7], [16], [17], [18].

These factors can be attributed to both internal and external
influences on the scanning process. Internal factors include
scanner resolution, accuracy, and other equipment-related
parameters. External factors encompass parameters like the
selection of appropriate scanning settings, environmental
lighting conditions, surface characteristics of the scanned
objects (such as color, glossiness, roughness, and shape),
and the relative positioning of the sensor in relation to
the surface [9], [19], [20]. Investigating these factors and
accurately configuring them is of significant importance in
industrial applications.

Among the external factors, controlling the surface
characteristics of the scanned objects presents a particular
challenge. The surface properties determine the reflection
behavior after laser illumination, which has a substantial
impact on the quality of the acquired data [7], [9], [20].
To achieve high-quality reflected light, researchers have
explored methods such as utilizing diffuse reflection from the
surface or employing specific filters on CCD sensors [20],
[21]. However, for practical purposes and ease of imple-
mentation, obtaining good diffuse reflection characteristics
on the surface is preferable within a given scanning setup.
For smooth surfaces, especially metal surfaces, applying
spraying developer before measurement creates a white matte
layer, facilitating diffuse reflection [12]. The thickness of the
developer typically ranges from 5 to 18 µm, with an average
value of 11 µm [22]. In such cases, the optical system is
calibrated based on factors such as laser power and exposure
time to acquire accurate point cloud data. However, it is
crucial to note that defects generated on the surface during the
spray developer application process can significantly affect
the accuracy and integrity of the three-dimensional scanning
data construction for the product [6], [7], [9]. Section II-A2
of this paper will provide a detailed explanation of the impact
mechanism of spray defects on data construction.

Currently, the detection of spray developer defects relies
mainly on manual visual observation, and the quality of the
point cloud data obtained from three-dimensional optical
scanning is dependent on the skills and expertise of the spray
application operator [7], [12], [19]. The process of detecting
spray developer defects is time-consuming, labor-intensive,
and lacks a standardized approach, leading to uncertainties

in the subsequent three-dimensional scanning measurement
results.

Deep learning [23] is an exciting field within machine
learning (ML) that encompasses artificial neural networks
with multiple hidden layers. It has found extensive appli-
cations in target detection [24]. In recent years, the com-
putational power of computers has significantly increased,
thanks to the era of big data and the rapid development of
computer graphics cards. This has accelerated the progress
of artificial intelligence research, with computer vision being
widely adopted in various industrial inspection scenarios. For
instance, R-CNN, initially introduced by Girshick et al. [25],
pioneered the two-stage detection approach. Jiang et al. [26]
achieved impressive results by applying Faster R-CNN [27]
to facial detection. However, the inclusion of a large number
of predefined anchor points in Faster R-CNN resulted in
increased computational complexity. Moreover, while the
use of deep convolutional networks contributed to superior
detection accuracy, the accompanying redundant operations
significantly escalated space and time costs, making it
challenging to deploy this method in real-world industrial
scenarios. Law et al. [28] proposed a one-stage object
detection method called CornerNet, along with a novel pool-
ing technique called Corner Pooling. Nonetheless, methods
based on keypoints often encounter a considerable number
of incorrect bounding boxes, limiting their performance
and failing to meet the high-performance requirements of
defect detection models utilizing spray developer. Building
upon CornerNet, Duan et al. [29] developed the CenterNet
framework to enhance accuracy and recall. They designed
two custom modules that exhibit stronger robustness to
feature-level noise. However, Anchor-Free methods involve
a process of combining the first two keypoints, and their
simplicity in network structure, time-consuming operations,
low speed, and unstable measurement results hinder their
ability to meet the high-performance and high-accuracy
requirements of real-time object detection in manufacturing.

Popular single-stage object detection algorithms, such as
the YOLO series and SSD, outperform multi-stage meth-
ods [30], [31], [32]. These algorithms only require feature
extraction once to accomplish object detection. Qiu and
Lau [33] compared multiple algorithms and discovered that
YOLO v2 and YOLO v4-tiny, based on ResNet50, achieved
exceptional accuracy in detecting small cracks. Li et al. [34]
improved the feature fusion module of the YOLOX object
detection algorithm, exhibiting significant advantages over
other detection algorithms in identifying four types of defects
in rubber wood. Carrasco et al. [35] proposed a lightweight
deep object detection model, based on YOLO-v5, for vehicle
detection in parking lots, including large, small, and mini
cars, resulting in a 33% performance improvement compared
to other algorithms. Wang et al. [36] found that YOLO
v7 achieved an average precision of 95.5% and an FPS of
54 in weld defect detection research. Zheng [37] achieved an
average precision of 93.8% in insulation detection using an
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improved version of YOLO v7. Dehaerne et al. [38] found
that YOLO v7 struck a good balance between accuracy and
inference time in semiconductor defect detection research.

In conclusion, spraying developer is a necessary compo-
nent in the process of three-dimensional optical scanning.
The defects generated during the spraying process affect the
surface characteristics of objects, which in turn impact
the effectiveness of collecting three-dimensional optical
scan data. Manual detection is predominantly used for
identifying spray defects, but it suffers from issues such
as low efficiency, lack of standardized evaluation criteria,
and unstable detection accuracy. Therefore, accurately and
rapidly identifying and repairing spraying developer defects
before data acquisition is crucial for obtaining high-quality
three-dimensional scan data. Single-stage object detection
algorithms exhibit high performance and accuracy in object
detection. In this study, considering the process of spraying
defects generation and the impact of spray defects on
the construction of three-dimensional optical scan data,
we propose an improved inference mechanism-based YOLO
v7 algorithm [39]. We create a dataset of spraying developer
defects and perform real-time object detection on workpieces
in actual production. Through model evaluation, we obtain
a technical solution for accurately identifying spraying
defects, thereby enhancing the accuracy and integrity of
three-dimensional optical scan data. This has significant
value in practical engineering applications.

II. EXPERIMENTAL METHODS
A. CONSTRUCTION OF 3D OPTICAL SCAN DATA
According to the introduction provided in this paper, previous
studies have extensively discussed the use of spray developers
to enhance the reflective properties and surface texture
of target objects, thereby improving the accuracy of 3D
optical scanning measurements. However, there is a lack of
research addressing the impact of spray developer defects on
the construction of 3D optical scanning measurement data.
Therefore, it is crucial to elucidate the steps involved in the
spray developer process and the mechanism by which spray
developer defects influence the construction of accurate 3D
optical scanning measurement data in this paper.

1) DEVELOPER SPRAYING PROCEDURE AND POSSIBLE
DEFECTS
The process of spraying developer in the 3D optical scanning
measurement system involves applying a layer of developer
onto the surface of the object being measured prior to
the actual measurement. The developer used is typically a
white powder which is sprayed onto the surface of the test
object. This helps to achieve a uniform and diffuse reflection
on the surface, enhancing the quality of the scanning
data by minimizing color variations, reflections, and other
imperfections that may occur. As a result, it becomes easier
to scan objects with black, reflective, or transparent surfaces,
allowing for the acquisition of high-quality point cloud data.

This ultimately improves the precision of measurement by
enhancing the scanning system’s ability to accurately identify
surface features on the workpieces [22]. The parts of the
object after the developer has been sprayed are illustrated in
Fig. 1.

FIGURE 1. Part after spraying developer.

The process of spraying developer typically involves the
following steps:

Preparation: Begin by thoroughly cleaning the surface of
the workpiece to ensure it is free from any oil or dust particles.
This step is crucial to ensure proper adhesion of the developer.

Setting up the developer spraying equipment: Load the
white powder into the powder spraying equipment. Alter-
natively, you may opt to purchase spraying equipment that
already has pressure in the bottle. Adjust the angle and
pressure of the spraying equipment according to the shape
and size of the workpiece.

Performing the developer spraying operation: Align the
developer spraying equipment with the surface of the work-
piece and commence the spraying process. It is important
to maintain a uniform thickness of developer throughout the
spraying operation, ensuring that the entire surface of the
workpiece is adequately covered.

Post-treatment of the sprayed developer: Once the devel-
oper spraying is complete, carefully inspect the quality of the
sprayed developer. Any areas that require correctivemeasures
or additional powder coverage should be addressed promptly
to achieve a uniform coating across the entire surface of the
workpiece.

During the process of spraying developer, several defects
may occur, including the following:

Uneven developer spraying: This can result in areas where
the powder layer is too thick or too thin.

Missed areas in developer coverage: Some regions of the
workpiecemay be left uncovered during the spraying process.

Rough powder particles: The powder material may clump
together, forming rough patches with small particles, result-
ing in a rough and speckled appearance.
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Powder shedding: Insufficient curing or poor bonding can
cause the powder to detach from the surface, leading to
powder shedding.

Surface abrasions and scratches: The sprayed developer
parts may exhibit scratches, abrasions, or other forms of
surface damage.

Among the mentioned defects, powder shedding, surface
abrasions, and scratches have amore significant impact on the
accuracy of the test results and will be thoroughly discussed
in section II-A2 of this paper.

To prevent defects during the process of spraying devel-
oper, it is crucial for the operator to possess a certain level of
skill and experience in handling the spraying equipment and
adhere strictly to the operating specifications. Additionally,
a meticulous manual inspection of the parts is required after
the developer has been sprayed, demanding a high level of
technical expertise. In this experiment, a device equipped
with high-pressure gas inside the bottle is employed to
achieve the developer spraying on the parts, as depicted in
Fig. 2.

FIGURE 2. Developer spraying operation on parts using a device with its
own high-pressure gas in a bottle.

2) MECHANISMS OF THE INFLUENCE OF SPRAY DEVELOPER
DEFECTS ON THE CONSTRUCTION OF 3D OPTICAL SCAN
DATA
Three-dimensional optical scanning measurement systems
provide a contactless, rapid, and highly precise means of
obtaining measurement results, thereby enhancing prod-
uct quality and production efficiency. When utilizing a
three-dimensional optical scanning measurement system for
product measurement, the system can be positioned in an
appropriate location to capture images and data of the object
using a scanner or camera, as depicted in Fig. 3. The specific
process unfolds as follows:

Preparation: Identify the spray developer parts to be
measured and ensure the measurement system is properly
prepared.

System installation: Position the three-dimensional optical
scanning measurement system in the desired location,

FIGURE 3. 3D optical scanning measurement system.

considering stability and complete coverage of the object to
be measured.

Parameter setup: ConFig. the scanner or camera parame-
ters according to the measurement requirements, including
resolution, scanning strategy, and other relevant settings.

Scanning measurement: Activate the three-dimensional
optical scanning measurement system and initiate the scan-
ning process for the spray developer parts. The system
employs lasers or light to scan the object’s surface, capturing
three-dimensional coordinate data. Data processing: Import
the acquired three-dimensional coordinate data into dedicated
software for processing. Manipulate the point cloud data and
perform shape reconstruction or other necessary operations
as required.

Analysis and evaluation: Utilize the processed data to
conduct comprehensive analysis and evaluation of the
spray developer parts, focusing on dimensions, shapes, and
other pertinent aspects. Comparisons can be made against
design specifications or established standards to assess any
deviations during the manufacturing process.

In this paper, Section II-A1 provides an insightful exposi-
tion on the process of spraying developer and the potential
defects that may arise from it. Among the various defects,
powder detachment, wear, and scratch defects are particularly
noteworthy due to their significant impact on the scanning
results. These two types of defects can be categorized as
instances of missing developer on the surface of the part.
The repercussions on the scanning data can be summarized
as follows:

Data incompleteness: The scanner fails to capture the
point cloud data in the areas where the developer is missing.
Consequently, this leads to incomplete point cloud data,
resulting in a lack of surface information and potential
omission of the object’s geometric shape and distinctive
features.

Localized anomalies: The presence of missing areas can
give rise to anomalies in the surrounding point cloud data.
For instance, the point cloud data around the missing
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regionsmay exhibit fractures, deformations, or other irregular
patterns.

Impaired surface accuracy: The existence of missing
regions can compromise the accuracy of the surface data.
With a lack of surface information in these regions, the point
cloud data surrounding them may incur substantial measure-
ment errors, thereby diminishing the overall precision and
accuracy of the point cloud data.

Visualization and post-processing challenges: The miss-
ing regions can present difficulties in visualizing and
post-processing the point cloud data. In terms of visualiza-
tion, the absence of data in these regions can result in visual
voids and discontinuities when rendering or displaying the
point cloud data. Moreover, the presence of missing regions
can impede tasks such as segmentation, alignment, or surface
reconstruction when performing post-processing on the point
cloud data.

Therefore, in 3D optical scanning measurement systems,
the absence of part developers can give rise to various
challenges, including incomplete point cloud data, localized
anomalies, compromised surface accuracy, and issues with
visualization and post-processing. In practical applications,
it is essential to employ suitable processing methods to
address the missing regions. These methods may involve
compensatory acquisition using other sensors, interpolation
techniques to fill in the gaps based on available data, or the
utilization of advanced data processing algorithms. Imple-
menting such approaches will enhance the completeness and
accuracy of the point cloud data, thereby improving the
overall reliability of the scanning results.

The experiment utilized the GOM ATOS Core 200 equip-
ment, with GOM Scan 2018 serving as the data acquisition
software and GOM Inspect 2018 as the data processing soft-
ware. The scanning results depicting the missing developer
can be observed in Fig. 4. Additionally, Fig. 5 showcases the
complete repair process of the scanned missing data using the
cross-complementary hole function of GOM Inspect 2018,
depicted from steps a to c. For amore detailed view, the partial
repair process for the missing data scan is demonstrated in
Fig. 6.

FIGURE 4. 3D scanning results of developer deficiency.

FIGURE 5. Full repair process of scanning missing data using the
cross-complementary hole function of GOM Inspect 2018 software (from
a to c): (a) Prototype state with missing data (b) Change status of missing
data (c) Repair status of missing data.

From Fig.s 5 and 6, it is evident that the intersecting
patch hole function proves effective in filling the missing
regions within the 3D point cloud or surface data, thereby
providing a comprehensive model. However, it is important
to acknowledge that the hole-filling process may introduce
certain data errors, including:
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FIGURE 6. Full repair process of scanning missing data using the cross-complementary hole function of GOM Inspect 2018 software (from a to d):
(a) Prototypical shape of missing data (b) Draw the data fill hole demarcation line and select the right side as the filling direction (c) Change status of
missing data (d) Status of repair of missing data.

Shape distortion: During the hole-filling process, the
algorithm estimates the shape of the missing region based
on the surrounding data. As a result, there may be slight
deviations in the shape of the patched region compared to the
actual situation, leading to shape distortion.

Data smoothing: Patch hole algorithms commonly employ
interpolation methods like nearest neighbor interpolation
or surface fitting to fill in the missing regions. This can
result in the data within the patched area being smoothed,
potentially causing discrepancies in smoothness compared
to the surrounding data and introducing errors due to data
smoothing.

Data consistency: Since the missing area cannot be directly
scanned for actual measurements, the patched data may
exhibit some variation from the true situation. Consequently,
the consistency between the data in the patched area and the
surrounding data may decrease.

Numerical errors: The computation and interpolation
processes involved in hole-patching algorithms can introduce

numerical errors. These errors may stem from the algorithm’s
implementation details, such as calculation accuracy and
choice of interpolationmethod, potentially impacting the data
after hole patching.

Indeed, various scanning and data processing software,
similar to the GOM software, offer their own hole-filling
functions. The effectiveness and potential errors associated
with these functions depend on the software’s algorithms,
parameter settings, and the characteristics of the processed
data. Therefore, when utilizing the hole-filling function, it is
advisable to carefully evaluate and adjust it according to the
specific application requirements and data quality standards.
For applications demanding high precision and accuracy,
alternative data processing methods or the collection of more
comprehensive raw data may be necessary to minimize the
impact of errors. Currently, one approach to acquiring more
comprehensive raw data involves reducing the occurrence
of sprayed developer defects. However, relying solely on
manual observation for defect detection may be suboptimal.

77240 VOLUME 12, 2024



Z. Wang et al.: Method and Application of Spraying Developer Defect Detection

Therefore, the development of a reliable defect detection
method is essential to improve the process.

B. SET ENHANCING THE ACQUISITION OF SPRAY
DEVELOPER DEFECT DATA SETS THROUGH INTELLIGENT
ALGORITHMS
1) OPTIMIZING THE COLLECTION OF DEFECT DATA SETS
To cater to the unique requirements of spray developer
defect detection, a novel image acquisition system named
EasyGit (as shown in Fig. 7) has been developed. This system
incorporates a flexible camera (enclosed within the red box
in Fig. 7) that offers exceptional adaptability. During the
dataset collection process, a 5000-lumen 60W white LED
light was positioned 2meters above the workpiece as the light
source. The image capture system, EasyGit, was placed at a
distance of 20 to 50 cm from the workpiece and adjusted to
capture images from various angles and directions. A total of
2000 images of spray developer defects were collected, and
all images were saved in the JPEG format.

FIGURE 7. Image acquisition system EasyGit.

2) DEFECT DATA PREPROCESSING
Data augmentation is a widely employed data preprocessing
method in the realm of deep learning. Its primary objective
is to address the challenge of limited data by expanding the
dataset. By doing so, the aim is to reduce the risk of model
overfitting and enhance the overall robustness of the model.
This approach helps to mitigate the overfitting problem that
arises due to insufficient datasets. In the context of this paper,
the experimental database is further expanded through the
utilization of techniques such as Gridmask, ShearX(Y), and
other augmentationmethods. The database expansion process
is visually illustrated in Fig. 8.

a: INTRODUCTION TO THE GRIDMASK METHOD
GridMask is a technique employed to create a mask that
matches the resolution of the original image. This mask
is then multiplied with the original image, resulting in a
GridMask-enhanced image [40]. In Fig. 9, the gray area

FIGURE 8. Database expansion process.

represents a value of 1, while the black area represents a value
of 0. Multiplying the mask with the original image effectively
achieves information dropping in a specific area.

FIGURE 9. Gridmask enhancement of image process [40].

A GridMask is defined by four parameters: x, y, r, and d,
which collectively determine a specific set of masks. During
practical application, the mask is also subjected to rotation.
The x and y values introduce a degree of randomness, while
r represents the proportion of the original image that is
retained. The parameter d determines the size of the dropped
square. The definition of parameter r can be converted using
the k value.

k =
Sum(M )
Hw

(1)

k = 1 − (1 − r)2 (2)

δx(δy) = random(0, d − 1) (3)

To begin, let us define the parameter k, which represents
the retention ratio of image information. This retention ratio
is calculated based on the height (H) and width (W) of
the original image, as well as the number of pixels (M)
that are retained. The retention ratio k is determined by
these variables, and it should be noted that this parameter
is not directly linked to the four aforementioned parameters.
However, these four parameters indirectly define the value of
r, which influences the retention ratio k.

b: INTRODUCTION TO THE SHEARX(Y) METHOD
ShearX(Y) is a fundamental process involving affine trans-
formation along the x/y axis while keeping the other axis
constant. This transformation is visually depicted in Fig. 10.

In ShearX, the input parameter θ represents the angle
used for the affine transformation. It should be noted that
θ is confined within the range of (-π /2, π /2). For a given
coordinate point (x, y) relative to the center point (xc, yc),
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FIGURE 10. The process of ShearX(Y) affine transformation.

the final position of the point after the ShearX transformation
can be determined as follows:

x ′
− xc = (x − xc) − tan(q)(y− yc) (4)

y′ − yc = y− yc (5)

In the ShearY transformation, the input parameter θ also
lies within the range of (-π /2, π /2). However, in this case,
it affects the transformation along the y-axis. Consequently,
for a given coordinate point (x, y), the final position of the
point after the ShearY transformation can be determined as
follows:

x ′
− xc = x − xc (6)

y′ − yc = (y− yc) − tan(q)(x − xc) (7)

The outcomes of applying the Shear transformation to the
database are visually presented in Fig. 11.

FIGURE 11. Shear transformation results for the database.

C. DEVELOPING AN INTELLIGENT ALGORITHM FOR
SPRAY DEVELOPER DEFECT RECOGNITION
1) YOLO V7 ALGORITHM
The YOLO (You Only Look Once) v7 algorithm is a
remarkable single-stage approach for target detection. Fig. 12
showcases the network structure of YOLO v7 [39], providing
a visual representation of its architecture. To enhance the

detection of small targets, a fusion of the YOLO v7 model
preprocessing method with YOLO v5, utilizing mosaic data
augmentation, is employed. The architecture introduces a
novel extension known as Extended ELAN (E-ELAN) [39],
which builds upon the ELAN concept. E-ELAN incorporates
extension, shuffle, and merge bases to continuously enhance
the network’s learning capabilities while preserving the
integrity of the original gradient paths. The computational
block architecture employs group convolution to expand
the channels and bases of computational blocks, allowing
different groups of computational blocks to learn a broader
range of features. Additionally, there are optimization
modules and methods known as trainable ‘‘bag-of-freebies’’
[39], which include the following:

The re-parameterized convolutional architecture was
designed using Identity-free RepConv. This decision was
made because the presence of identity in RepConv may
interfere with the residual structure in ResNet and the
cross-layer connectivity in DenseNet. By eliminating the
identity, we can preserve gradient diversity for various feature
maps, leading to enhanced performance [41].

Auxiliary Detection Head: Deep supervision is a
widely-employed technique for training deep neural net-
works. Its core idea is to integrate supplementary auxiliary
heads into the intermediate layers of the network, along
with shallow network weights guided by auxiliary losses.
In YOLO v7, we introduce the Auxiliary Detection Heads,
which leverage soft labels generated during the optimization
process for both the Lead Head and Auxiliary Head learning.
Consequently, these soft labels are anticipated to better
capture the distribution and correlation between the source
data and the target, thereby enhancing the accuracy of the
obtained results.

Exponential Moving Average (EMA) is a technique
utilized during the inference stage to incorporate the batch
normalization mean and variance into the biases and weights
of convolutional layers. This integration guarantees that
the batch normalization mean and variance, which are
averaged over batches, are effectively merged into the biases
and weights of convolutional layers during the inference
phase [42].
In YOLOR, the fusion of implicit knowledge with convo-

lutional feature maps is achieved through a multiplication-
based approach. This method simplifies the computation
values into a vector during the inference stage, which
can then be combined with the biases and weights
of either the preceding or succeeding convolutional
layers [43].

2) IMPROVED INFERENCE MECHANISM OF THE YOLO V7
ALGORITHM
Based on the low density of the inspected parts (specifically,
sheet metal parts) in the experiment and the requirement
for real-time defect statistics, the YOLO v7 model is
selected in this paper. The slice-assisted hyper-inference [44]
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FIGURE 12. Network structure diagram of YOLO v7.

offers a comprehensive pipeline for small target detection,
addressing the limitations faced by traditional detectors
in detecting a small number of pixel representations and
images lacking sufficient detail. To address the challenge
of detecting smaller defects that are difficult to identify
in real production settings without retraining the model
specifically for small targets, this paper introduces a module
into the YOLO v7 inference section based on the following
principle:

In the inference step, a slicing approach is employed (as
shown in Fig. 13). Initially, the original query image, I,
is divided into L M × N overlapping patches: PI1,P

I
2, . . .P

I
t .

Each patch is then resized while maintaining the aspect

ratio. Subsequently, object detection forward passes are
independently applied to each overlapping patch, and for
detecting larger objects, optional full inference (FI) using the
original image can be conducted. Finally, the overlapping
prediction results and the FI results are combined back to
their original size using Non-Maximum Suppression (NMS).
During NMS, boxes with intersection over merge (IoU) ratios
above a predetermined matching threshold, Tm, are matched.
For each match, detections with detection probabilities below
Td are eliminated.

This paper employs the algorithm to achieve real-time
detection of defects and their types in inspected sheet metal
parts. The detected defects are used to guide the repair of
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FIGURE 13. Reasoning process based on improved inference mechanism YOLO v7 algorithm.

the defects in the sprayed developer of the parts, ensuring
the acquisition of complete and accurate data for subsequent
3D optical scanning. Additionally, this approach provides
technical support for the automated management of the
3D optical scanning process for the inspected sheet metal
parts.

D. TRAINING PARAMETERS FOR INTELLIGENT
ALGORITHM
In order to demonstrate the effectiveness of the algorithm
proposed in this paper, the Beijing Super Cloud Computing
platform was utilized. The algorithm was developed using
the Anaconda environment, with the PyTorch 1.13.1 deep
learning framework running on a compute GPU, specifically
the NVIDIA GeForce RTX 3090. The images were resized
to a dimension of 640 pixels × 640 pixels as the input. The
hyper parameters for the training of the detection algorithm
are specified in Table 1.

TABLE 1. Hyper parameter settings.

The choice of the SGD optimizer was based on previous
experiments, which showed that it achieved higher accuracy
compared to the ADAM optimizer. The ADAM optimizer
has the advantage of effectively utilizing adaptive learning
rates and momentum adjustments, making it more efficient
for large-scale datasets. However, its adaptive mechanisms

may lead to performance degradation on smaller datasets.
In contrast, SGD demonstrates better generalization and
overfitting resistance [45]. Since our dataset is relatively
small, the SGD optimizer is more suitable.

The dataset was generated in COCO format [46] and
labeled using the Labeling tool. Data augmentation tech-
niques were applied to expand the dataset, as mentioned
earlier. After manual selection and data augmentation, the
original set of 2000 images was reduced to a dataset of
1500 images. The dataset was randomly divided into a
training set and a validation set in a 4:1 ratio.

Furthermore, K-means clustering [47] was initially used
on the COCO dataset to obtain predefined bounding box
sizes for YOLO v7. However, considering the significant
differences between the COCO dataset and our spray
developer defect dataset, an improved K-means clustering
method was employed to cluster our spray developer defect
dataset. This allowed us to obtain anchor box sizes that are
suitable for our research. The results are presented in Table 2
and were used as the predefined anchor box sizes for all
algorithms used in this study.

TABLE 2. Defaulted sizes of anchor boxes.

In order to evaluate the performance of the algorithm, the
evaluation metric used in this study is the mean Average
Precision (mAP) at different thresholds. The Average Preci-
sion (AP) is the average of the highest precision at different
recall levels (usually calculated separately for each class), as
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in (8).

AP =
1
11

∑
0,0.1...1.0

Psmooth (i) (8)

The total loss function of YOLO v7 consists of three
components: classification loss, localization loss, and con-
fidence loss. When the IoU threshold is set to 0.5 [48],
if multiple detections occur for an object, the object with
the highest confidence is considered as a positive sample,
while the other object is considered as a negative sample.
On the smoothed PR curve, precision values are obtained
at 10 equidistant points (including 11 breakpoints) on the
horizontal axis from 0 to 1, and the average value is computed
as the final AP value.

The mean Average Precision (mAP) is the average of the
Average Precision (AP) values for each class, representing the
average precision across all classes. It is computed by taking
the average of the AP values, as in (9).

mAP =

∑S
j=1 AP (j)

S
(9)

Here, S denotes the total number of classes, and the
numerator corresponds to the summation of AP values across
all classes. Since this study focuses solely on the detection of
a specific type of powder coating defect, AP is equivalent to
mAP.

III. RESULTS AND DISCUSSION
A. COMPARATIVE ANALYSIS OF DETECTION
PERFORMANCE OF DIFFERENT ALGORITHMS
According to the results presented in Table 3, the YOLO v7
algorithm outperforms the other tested detection algorithms
in terms of overall performance. For instance, the mean
Precision-averaged Score (mAPS) of the YOLO v7 algorithm
is 6.74% higher than that of YOLO v5 [49], and the remaining
metrics were either superior to or comparable with other
object detection algorithms. Therefore, it can be concluded
that YOLO v7 is a suitable choice as the target detection
algorithm for the experiment.

TABLE 3. Comparison of results from each algorithm.

B. COMPARATIVE ANALYSIS OF DETECTION RESULTS
BETWEEN TRADITIONAL ALGORITHM AND YOLO V7
ALGORITHM WITH IMPROVED INFERENCE MECHANISM
In practice, the detection of certain points becomes chal-
lenging due to external environmental interference and the

random sizes of defects generated during the spraying
process, as depicted in Fig. 14. In the industry, small
targets are typically detected by re-capturing the image
and retraining the model. However, this approach is time-
consuming, labor-intensive, and does not align with actual
production requirements. It also increases the operational
costs for enterprises and fails to meet the demands of
sustainable development. To address these issues, this paper
proposes an improved inference mechanism based on the
YOLO v7 algorithm for target detection. The target detection
results, as shown in Fig. 15, demonstrate that the inclusion
of slice-assisted inference in the inference process of YOLO
v7 effectively resolves the aforementioned problems. This
approach significantly reduces the influence of external
factors on the processing, thereby enhancing the overall
detection performance.

FIGURE 14. Target detection results of the traditional algorithm: (a)The
actual detection results (b)Some small targets are lost as marked by
yellow boxes.
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FIGURE 15. Target detection results based on the improved inference
mechanism YOLO v7 algorithm: (a) The detection results (b) An example
of slices put together after displaying the slices.

C. COMPARATIVE ANALYSIS OF SCANNED POINT CLOUD
DATA: SHEET METAL PARTS WITH DEFECTIVE SPRAYED
DEVELOPER VERSUS REPAIRED SHEET METAL PARTS
The sheet metal parts, one with defects caused by sprayed
developer and the other after defect repair, were scanned
using a GOM ATOS Core 200 3D optical scanning system.
The 3D scanning results of the sheet metal part with spray
developer defects detected by the method proposed in this
paper are presented in Fig. 16. Similarly, Fig. 17 displays
the 3D scanning results of the sheet metal part after the
defects have been repaired. Additionally, Table 4 compares
the scanned point cloud data of the sheet metal part with
spray developer defects to that of the sheet metal part
after defect repair. Upon analyzing Fig. 16, Fig. 17, and
Table 4, it becomes evident that scanning the defective

sheet metal parts with sprayed developer leads to the
presence of holes, which adversely affects the accuracy of
product detection. However, by applying the defect detection
technique proposed in this paper, the number of holes in the
sheet metal parts after defect repair has decreased by 77.2%,
while the number of points has increased by 1.2% compared
to the defective sheet metal parts with sprayed developer.
These findings demonstrate that the method described in
this paper effectively detects defects, reduces the number of
holes, and increases the amount of point cloud data for the
workpiece. As a result, it provides high-quality raw data for
subsequent product inspection.

FIGURE 16. 3D scanning results of sheet metal part with defective
sprayed developer.

FIGURE 17. 3D scanning result of sheet metal part after defect repairing.

TABLE 4. Comparison of scanned point cloud data of sheet metal parts
with defective sprayed developer and sheet metal parts with defective
repairs.
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FIGURE 18. Scan data of sheet metal parts with defective sprayed
developer1.

FIGURE 19. Scan data of sheet metal parts with defective sprayed
developer2.

FIGURE 20. Surface inspection cloud of sprayed developer defective
sheet metal part after performing. cross-complementary holes1.

D. COMPARATIVE ANALYSIS OF DIMENSIONAL
INSPECTION RESULTS: SHEET METAL PARTS WITH
DEFECTIVE SPRAYED DEVELOPER VERSUS REPAIRED
SHEET METAL PARTS
Using the method described in section II-A2, the scan data
of the sheet metal parts with spraying developer defects,
as shown in Fig. 18 and Fig. 19, were intersected to patch
the holes. The resulting surface detection cloud images of the
sheet metal parts with spraying developer defects after hole
intersection and patching can be seen in Fig. 20 and Fig. 21,
while Fig. 22 and Fig. 23 display the surface detection cloud

FIGURE 21. Surface inspection cloud image of sprayed developer
defective sheet metal part after performing cross-complementary holes2.

FIGURE 22. Surface inspection cloud of sheet metal parts without spray
developer defects1.

FIGURE 23. Surface inspection cloud for sheet metal parts without spray
developer defects2.

images of the sheet metal parts without spraying developer
defects. Upon comparing the cloud diagrams in Fig. 20 and
Fig. 22, it becomes evident that although the software can
perform hole patching operations on the sprayed defects,
the non-smooth transition of the point cloud data at the
holes may result in a convex packet in the point cloud
data after hole patching. This, in turn, leads to a significant
reduction in detection accuracy, with errors of up to 70%
observed in this case. However, as depicted in Fig. 21 and
Fig. 23, if the transition of the point cloud data at the hole
is smooth, the detection inaccuracy after hole filling can be
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greatly reduced. Nevertheless, there is still a slight reduction
in accuracy, with an error of approximately 8% observed
in this case. By employing the spraying defect recognition
technique proposed in this paper, the point cloud data of the
sheet metal parts after defect repair becomes complete with
smooth transitions. Consequently, the detection accuracy is
significantly improved, providing more reliable results.

IV. CONCLUSION
This paper focuses on the three-dimensional scanning
inspection process in the industry, specifically studying spray
developer defect identification, spray developer defect target
detection, and spray developer defect rejection. The aim is to
provide an experimental foundation for the detection of spray
developer defects.

In 3D optical scanning measurement systems, the absence
of sprayed developer can result in incomplete point cloud
data, local anomalies, reduced surface accuracy, and dif-
ficulties in visualization and post-processing. In practical
applications, the integrity and accuracy of point cloud data
can be enhanced by employing suitable processing methods
for the missing regions. However, it is worth noting that
existing data processing methods are prone to errors and
can be time-consuming. Experimental findings have revealed
that achieving complete surface coverage with developer is a
direct and effective approach to improving the accuracy of
point cloud data.

In this paper, we address the challenges encountered
in real production scenarios by proposing an innovative
inspection system. We explore different algorithms to
determine the most suitable approach for detecting spray
developer target uncertainty under various environmental
conditions. Furthermore, we deploy the network model onto
hardware devices. After careful consideration, we decide
to improve the original YOLO v7 model by incorporating
enhancements specifically tailored for intelligent detection
of spray developer defects. This approach significantly
enhances the model’s target detection capabilities, improves
its robustness, and ensures better adaptation to real-world
scenarios. The ultimate goal is to enhance detection efficiency
while minimizing manual labor costs. Through thorough
evaluation, the neural network model presented in this paper
achieves an impressive accuracy of up to 0.996 on the test
set, and exhibits a confidence level of up to 0.96 in detecting
artifacts in real-time scenarios.

In this paper, we propose the utilization of the enhanced
inference mechanism of YOLO v7, which eliminates the
requirement for retrainingmodels for smaller spray developer
defect targets and reduces the dependency on high-end
GPUs. This advancement enables the intelligentization of
spray developer defect detection, offering a viable alternative
to manual detection. This approach provides an effective
solution for detecting spray developer defect targets and
accurate construction of 3D scanning data. It aligns with
the practical demands of production and holds significant
practical significance.
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