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ABSTRACT Computer numerical control (CNC) machine tools play a crucial role in the manufacturing
industry, and cutting tools, as key functional components, directly impact the quality of the machining
process. An improved autoEncoder with multi-head attention for tool wear prediction is proposed.
MultiCNN-Attention-GRU (MCAG) consists of an encoder and decoder. The encoder contains multiple
sets of Convolutional Neural Networks (CNNs) and CNNs adaptively extract signal features. The decoder
includes Multi-Head Attention (MHA) and Gated Recurrent Unit (GRU), which can adaptively enhance the
relevant feature weights and extract long-term, deep different features. For the model training, a monotonicity
loss function is defined. The proposed method is validated on the 2010 PHM Data Challenge (PHM2010)
public dataset. The original dataset is dimensionally reduced and then resampled. The experimental results
demonstrate the effectiveness of the proposed algorithm, achieving an Mean Absolute Error (MAE) of
6.15 and Mean Square Error (MSE) of 79.6, which is approximately 1.6 and 13 lower than the second-
place algorithm. The result validates the superior performance of the proposed model compared to other

deep learning algorithms in predicting tool wear.

INDEX TERMS Deep learning, multi-head attention, milling machine tool, remaining life prediction.

I. INTRODUCTION

With the progress of science and computer technology, the
advanced manufacturing industry is developing rapidly in
the direction of intelligence and information technology
[11, [2], [3]. In the contemporary world, all industrialized
developed countries carry out strategic layouts. Germany
has proposed the national development plan of “Industry
4.0”, and China has put forward the national strategic plan
of “Made in China 2025 [4], [5]. CNC machine tools,
serving as the “industrial mothership” of manufacturing, not
only represent the degree of industrial development of the
country but also represent the core competitiveness of the
country [6]. Within the machining process of CNC machine
tools, milling cutters play a vital role as machining tools
[7]. The quality and wear status of tools directly influence
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the machining accuracy, efficiency, and remaining useful life
[5], [8]. Therefore, it is of great significance for national
development and social development to accurately realize
the monitoring of milling machine tool wear condition and
wear life prediction, improve the processing efficiency of
CNC machine tools, reduce production costs, and improve
manufacturing quality.

After long-term research and analysis, the tool monitoring
techniques classified into direct and indirect methods [9],
[10]. The direct method uses contact sensors or precision
optical measuring instruments to directly obtain the tool
wear shape for further analyze, with computer vision being a
commen approach [11], [12]. This method provides accurate
and intuitive wear information but requires stopping the
machining process, which cannot be monitored in real-time
[13]. Indirect measurement is a method to infer the tool state
by measuring the sensor signal data, like vibration, force
[14], secondary electron signals [15], [16]. By measuring
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their changes, the tool wear condition of the tool can
be inferred [17]. This real-time method can be monitored
without stopping the machine and improve production
efficiency [18]. With the development of signal monitoring
technology, monitoring accuracy and reliability are also
improving, which will further promote the development and
application of indirect measurement methods.

The indirect method uses the monitoring signal collected
by the sensors to establish the feature map relationship
between the sensor data and the different tool wear
stages [19]. Feature extraction is to transform the original
monitoring signal into feature variables, and there are
usually traditional methods and modern methods. Traditional
feature extraction methods extract statistical features based
on time domain and frequency domain signals, such as
mean, variance, peak, etc, [20]. Modern methods use deep
learning algorithms, such as Convolutional Neural Network
(CNN) [21] and Recurrent Neural Network (RNN) [22], [23],
to adaptively extract feature information of original signal
data and automatically learn the feature map relationship
between tool wear state and monitoring signals.

In recent years, the adaptive feature extraction ability of
deep learning has attracted much attention, so it has also
been widely used in the field of tool life prediction. An et al.
[24] proposed a hybrid model CNN-SBULSTM, which
superimposed CNN with bidirectional and unidirectional
LSTM (SBULSTM) networks, for sequence data in tool
remaining useful life prediction tasks. Xu [25] proposed
a multi-scale convolutional GRU network (MCGRU) to
process raw sensory data, designed six parallel independent
branches of different kernel sizes to form a multi-scale
convolutional neural network, and then input these features
of different scales extracted from the raw data into the
depth-GRU network for tool wear prediction. Wang and
Zhang [26] propose an end-to-end deep learning model that
uses attention mechanisms and RNN to monitor and predict
tool wear. Hu and Tang [27] designed a feature encoder based
on bidirectional LSTM network, combined residual GRU
network with self-attention, and proposed a ResGRUA model
to realize intelligent prediction of tool wear. The combination
of typical machine learning algorithm and neural network
algorithm can also achieve better results. Yao et al. [28]
based on K-means clustering, recurrent fuzzy neural network
(RFNN) and genetic algorithm (GA), proposed a recurrent
fuzzy neural network (CFRFNN) based on clustering features
for prediction of tool wear. Marei and Li [29] proposed a
CNN-LSTM hybrid model for predicting cutting tool RUL
based on embedded transfer learning mechanism.

To sum up, traditional methods can leverage specific prior
knowledge to describe tool wear characteristics, thereby
achieving higher accuracy. Recent research on modern
approaches indicates that they are more effective. In par-
ticular, deep learning offers a promising way for tool wear
prediction without the need for manual feature extraction.
However, there is currently a lack of methods that integrate
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prior knowledge with deep neural networks. Moreover,
compared with the existing fixed-weight methods, none of
them can adaptively adjust the weights between different
features to better capture the key information. In this paper,
we propose a novel MultiCNN-Attention-GRUMCAG) for
tool wear life prediction. MCAG is trained and tested on
the 2010 PHM Data Challenge dataset after downsam-
pled. The main contributions of this paper include the
following:

1) MCAG consists of an encoder and decoder. The
encoder contains multiple CNNs and CNNs adaptively
extract signal features. The decoder includes MHA
and GRU, which can adaptively enhance the relevant
feature weights and extract long-term, deep different
features.

2) A new monotonicity loss function. To optimize the
model training process, a monotonicity loss function is
defined. The final loss function MNTLoss is composed
of MSELoss loss function and MNT monotone loss
function.

3) Three different evaluation experiments are performed
on the PHM2010 reconstructed dataset to prove the
validity of the proposed model.

The rest of the paper is organized as follows: the
basic structure of AutoEncoder, the MHA, and GRU are
introduced and described in Section II; Section III presents a
novel MultiCNN-Attention-GRUMCAG) for tool wear life
predication. In more detail, MCAG consists of an encoder and
decoder, where the encoder contains CNNs and the decoder
includes MHA and GRU. Section IV presents the details of
the dataset, evaluation experiments, results, and a discussion.
Finally, Section V presents the conclusion and future work.

Il. REVIEW OF RELATED WORK

A. AUTOENCODER

Autoencoder(AE) [30] is an unsupervised learning model
based on neural network, as shown in Figure 1. Feature repre-
sentations are extracted from the input data and these features
are used to reconstruct the input data. The Autoencoder is
composed of an encoder and a decoder. The encoder extracts
features from input data while simultaneously compressing
the data’s dimensions. The decoder maps the vectors in
the latent space back to the original data’s dimensionality,
thereby reconstructing the original data.

y=f(Wx+b) e)
X =f(Wy+b) 2

where x represents the input data, W is the weight matrix of
the encoder, b is the bias coefficient, f(.) Is the activation
function, y is the output of the encoder, which can also be
seen as a representation in the potential space, x’ represents
the output of the decoder, that is, the data reconstructed by
the decoder, W’ is the weight matrix of the decoder, and b’
is the decoder bias coefficient.
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FIGURE 2. Schematic diagram of MHA.

B. MULTI-HEAD ATTENTION
The Multi-Head Attention(MHA) [31] mechanism is a model
structure based on attention mechanisms. The main purpose
of MHA is to increase the expressiveness and learning ability
of the model, especially for the processing of long-series
data, as shown in Figure 2. The core idea of MHA is to
map the input sequence into different spaces, and then by
weighted summation of these mapped spaces, obtain the
final output vector. The equation for calculating the attention
weight is shown as 3. Specifically, the multi-head attention
mechanism consists of multiple heads, each of which is
an independent linear mapping that transforms the input
sequence into a new vector space. Then, each head calculates
the correlation between the input sequence and its query
vector and normalizes it to get the attention distribution
of each head. Finally, the output vectors of all the heads
are concatenated or weighted to get the final output vector.
Each head can learn different aspects of the input sequence
information, and weigh the different information to improve
the expression ability of the model.

Attention (Q, K, V) = softmax (QKT) \% 3)

o Vi

where Q, K, V are the Query vector, Key vector, and Value
vector matrices, respectively, +/d; represents the scaling
factor, softmax indicates the normalization process, and T
denotes the transpose operation.

C. GATED RECURRENT UNIT
The Gated Recurrent Unit (GRU) [32] is a variant of
the Recurrent Neural Network (RNN) model that avoids
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the shortcomings of the standard RNN. Compared with
traditional RNN models, GRUs have fewer parameters and
better memory, and can effectively process long time series
data. At the core of GRU is a gating mechanism that flexibly
controls the flow and update of information to achieve better
results in sequence data modeling tasks. GRU mainly consists
of two Gate control units (Reset Gate and Update Gate),
as shown in Figure 3. In addition, compared with LSTM
neural network [33], GRU has better performance and fewer
parameters, which can inhibit overfitting.

At each time step, the GRU receives input x; and the hidden
state h(t — 1) of the previous time step, and outputs the hidden
state h; of the current time step.

The update gate is used to control whether the status
information of the last time and the current input information
should be updated. The sigmoid activation function in the
update gate weights and compresses the input to a value
between O and 1, indicating how open the update gate is.
When the output of the update gate is close to 1, it means
that the status information of the current moment needs to
be updated. When the output of the update gate is close to 0,
it means that the status information of the previous time is
retained.

The reset gate is used to control how the status information
of the previous moment is combined with the current input
information. The sigmoid activation function in the reset gate
similarly weights and compresses the input to a value between
0 and 1, indicating how open the reset gate is. When the
output of the reset gate is close to 1, it means that the status
information of the previous moment is ignored, and only the
input information of the current moment is used. When the
output of the reset door is close to 0, it indicates that the status
information of the previous moment is retained and historical
information is paid more attention.

it = Og (Wex; + Uzhi—1 + by) “4)
't = Og Wyx; + Uphi—1 + by) ®)
he = tanh (Wyx, + U, (r © hi—1)) (6)
he = (1 —Zt)Ghz—l‘f‘Zt@ilt @)
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FIGURE 4. Framework of the proposed method.

where W,, U, and b, represent the weight, parameter vector,
and bias vector of the reset gate r;, respectively; W,, U,,
and b, correspond to the weight, parameter vector, and bias
vector of the update gate z;; h; and h; denote the output
state and candidate state at time ¢, respectively; z; and r;
represent the update gate and reset gate, respectively; tanh
refers to the hyperbolic tangent activation function, and oy
represents the sigmoid activation function.

lll. THE PROPOSED METHOD

A. OVERALL FRAMEWORK

Deep learning(DL) technology plays an increasingly impor-
tant role in the field of time series data prediction. Based
on the existing DL technology, a new algorithm network
of MCAG(MHA and GRU-based AutoEncoder) is proposed
for tool life prediction. The overall framework of MCAG is
shown in 4. The network architecture based on the AE is
mainly designed as follows:

1) Signal data collection. The signal data of multiple
sensors in milling machine cutting work are collected,
the corresponding tool wear values are measured, and
the values are used to train the model.
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2) Encoder based on CNN. The collected signal data is
input to CNN, and the features are extracted from the
signals collected by different sensors using CNNSs.

3) Decoder based on MHA and GRU. In the input
features, the key feature information is selected by
MHA to achieve comprehensive feature extraction.
GRU is used to better capture long dependencies
in sequences and avoid gradient disappearing or
exploding. The residual connection effectively extracts
the latent features.

4) Monotonicity Loss Function. To optimize the model
training process, a monotonicity loss function based
on sequential output is proposed. This loss function is
combined with the MSELoss loss function to form the
final loss function.

B. ENCODER BASED ON CNN

Signal data from different sensors reflect different aspects
of tool wear and have different capabilities in predicting
future tool life. As shown in Figure 5, CNNs are used to
encode the signal from M sensors into M vectors. CNN
adaptively extracts features without the need for additional
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FIGURE 5. Encoder based on CNNs network.

expert knowledge. The convolution operation can be written
as:

= > x ) + b )
keM;

where x} represents the j* feature map; x,iil is the k™ output
feature map; a),lq. means the convolution operation; M; is the
input feature size, and b]l. is the bias; [ represents the layer.

The CNN encoder model consists of 5 hidden layers
and 1 linear layer. Each hidden layer contains convolutional
layer, activation function, max pooling layer. Maxpool2d and
LeakyReLU activation functions are used. In the first hidden
layer, the conv2d layer input is 7 because the signal data has
7 different channels. After several convolution operations of
kernel size 3*3, the feature map is finally flattened to 256 by
a linear layer. Normalization speeds up the training process
and enhances the accuracy of the model.

C. DECODER BASED ON MHA AND GRU

A decoder architecture based on GRU and MHA is designed.
This structure can not only predict the current tool wear value,
but also predict the tool wear value of the next K steps.
As shown in Figure 6, the dashed arrow indicates the forward
calculation flow of MHA. Different sensor data reflect
different characteristics of tool wear. The characteristics of
some signals may not contribute much to predicting the
current value or the predicted value of the sustained K steps,
so MHA is introduced in the decoder structure. MHA fuses
different features generated by different attention heads to
form the input vector of the GRU. GRU solve the problem
of common RNN gradients disappearing or exploding, and
better capture long-term feature in sequences. The residual
connection effectively extracts the latent features. The input
size of GRU is 512 and 256 is the output size.

As shown in Figure 4, the deep feature extracted from
CNNs in the encoder is used as the input feature of the
decoder, and MHA is employed here. The primary feature is
obtained through the calculation of the original signal data,
and the calculation formula is shown as Formula 9, and the
feature is taken as the Q (query) and K (key) of MHA.
This reduces the complexity and computational cost of the
model, and can better preserve the local dependence of the
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FIGURE 6. Decoder based on GRU-MHA network.

input sequence. The feature input by the encoder is taken as
V(Value) of MHA, and Q, K, and V are weighted according
to Formula 3. For specific weighting details, see Section II-B.

xmztanh(W,chm—i—bgl),mz L2,....M (9

where X, represents the one-dimensional feature of the raw
data x,, from the m™ sensor; W¢ and b¢, are the weight and
bias coefficients of the layer, respectively.

The decoder produces a series of sequential outputs that
can simultaneously obtain the prediction values of the current
tool and the next multi-step (K-Step). Therefore, the first wear
value of the MCAG output can be used to predict the current
tool wear value. The remaining K-Step prediction value can
be used in monotonicity loss function.

D. MONOTONICITY LOSS FUNCTION

In previous model training, the mean square error loss
function (MSELoss) is often used to predict tool wear, and
the equations is as follows:

N K
MSELoss = ZZ(y, ) (10)

i=1 k=0

where ¥ y is the k™ predicted value output by the deep learning
model, and yl is the true value, N represents the number of
samples.

A basic prior knowledge in the tool wear process is that the
tool wear is a monotone function in the best case. The amount
of tool wear accumulates monotonously in the continuous
cutting process of the machine tool. Therefore, monotonicity
is an important feature to describe the trend of tool wear
degradation, and the changing trend of the milling cutter state
can be analyzed through the change of monotonicity of wear
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FIGURE 7. The detail of experimental setup and the data collected system.

amount. In this paper, the monotonic analysis of the tool
wear is completed by using the K-step predicted value of
the sequential output, and then the wear trend of the tool is
analyzed. Therefore, based on the above theory, a monotone
loss function is proposed in this paper, as shown as follows:

Aok 0, )ﬁf —?f-cﬂ‘ < Am an
Vi = Ve sk ck ak
-yt yf-‘—yi“‘ > Am
1 N K-1
~k
MNT = NZZ ‘Ayi (12)
i=1 k=0

where )75‘ is the k™ predictive value, )75.‘“ is the (k + 1)™
predictive value, Am is the boundary value of cutting tool,
N represents the number of samples.

In this paper, monotonicity loss function and the MSE loss
function are used to construct the final loss function, as shown
as follows.

MNTLoss = MSELoss + MNT (13)

IV. EXPERIMENTS AND RESULTS

A. DATASET DESCRIPTION

The experimental dataset is the PHM2010 [34]. When the
wear condition of the CNC milling machine tool changes,
the sensor signals will also change, such as cutting force
signals, vibration signals, acoustic emission signals, etc., will
fluctuate accordingly. In the experiment of wear degradation,
the surface of the stainless steel workpiece is processed
by using a carbide three-blade ball head tool. The cutting
workpiece is an HRC52 square stainless steel plate with a
surface length of 108mm, and the distance of each cutting of
108mm is marked as a complete cutting. After each cutting,
the wear amount of the cutter’s back tool face is measured
and recorded by a professional microscope.
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The CNC milling machine is equipped with a Kistler
8152 three-way dynamometer to capture cutting force signals
in the X, Y, and Z directions. Additionally, a Kistler 8636C
piezoelectric acceleration sensor is integrated to collect
vibration data in the X, Y, and Z axes. Furthermore, an acous-
tic emission sensor from Kistler is employed to gather
acoustic emission signal data. The visual representation of the
experimental setup can be found in Figure 7.

In the wear experiment, a total of 6 carbide three-edge ball
end milling cutters are completed independent life collection
experiment, recorded as C1, C2, C3, C4, C5, C6. In this paper,
only C1, C4, and C6 milling cutters with wear results are
used.

B. DATASET PREPROCESS

The datasets of C1, C4, and C6 are collected, and each dataset
is composed of 315 cutting events, so it is called 315 data
samples. Each data sample has a corresponding tool wear
value. Different data samples have different time steps. Each
data sample is an extremely long time series consisting of
more than 200,000 time steps. Through the analysis of CNC
milling scenarios, the first 224 x224 time steps represent
the normal operation state of milling. Therefore, the first
224x224 time steps of each data sample are retained as
the length of the new sequence. Three experimental data
sets D1, D4, and D6 are constructed from the milling
cutters data of C1, C4, and C6 without outliers or missing
values.

C. TRAINING AND TEST

The experimental evaluation process is shown in Figure 8.
After data downsampling, the raw data is divided into train
dataset and test dataset. The model parameters converged
during the training process, and the test validation was
completed on the test dataset.
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TABLE 1. Performance of different algorithms for three cutters model.

Method MSE(P1+4) MSE(P4+6) MSE(P1+6)
ownsameing LSTM 950.13 96.40 634.77
GRU 1103.45 92.56 1101.97
Bi-GRU 864.365 131.30 994.05
SMAML 1057.83 160.69 339.70
Ml 941.47 135.60 467.53
Initial parameters for MCAG 521.74 79.60 230.62
MCAG
TABLE 2. Performance of different algorithms for three cutters model.
v Method MAE(P1+4) MAE(P4+6) MAE(P1+6)
| Calculate the loss | Test datasets LST™M 22.07 10.43 19.27
Modify parameters GRU 25.83 9.87 25.57
Bi-GRU 24.01 8.27 22.87
SMAML 22.05 10.11 13.40
Convergence Ml 27.20 7.78 15.29
MCAG 20.42 6.15 11.03

)

Out diagnosticresults

FIGURE 8. Flowchart of the steps for the training and test.

Milling cutter wear prediction evaluation experiments are
conducted using the D1, D4, and D6 in PHM2010. Each
milling cutter data is composed of 315 data samples, and
each data sample measures the corresponding wear values.
The average wear values of the three surface wear values of
the milling cutter are calculated as the final wear value.
To achieve the purpose of a full verification experiment,
two groups of D1, D4, and D6 after dimensional-reduction
resampling are divided into three different data sets, and three
groups of verification experiments are carried out. In the
first set of experiments, data from D1 and D4 (a total of
630 data samples) are used as a training set to produce a
model P1 + 4, which is tested using data from D6; In the
second set of experiments, data from D1 and D6 (a total of
630 data samples) are used as a training set to produce a
model P1 + 6, which is tested using data from D4; The third
set of experiments, using the data of D4 and D6 (a total of
630 data samples) is used as a training set to obtain the model
P4 + 6, and the data of D1 is used to test the model; In each
group of experiments, 20% of the data samples of the training
set are used as validation sets to observe the training of the
analysis model.

The model training network is set to 200 epochs using the
Adam optimizer, the batch size is set to 32, the learning rate
is set to 0.001, and the Dropout is set to 0.5 for overfitting
mitigation. The hyperparameters of all models are tuned on
the validation data and the best model is performed on the test
data. The above process is independently repeated 5 times on
each data set using different random seeds to get an average
result.

D. EVALUATION METRICS

To quantitatively evaluate the verification results of the
proposed model, two evaluation indexes are used in this
evaluation experiment, namely mean square error (MSE) and
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mean absolute error (MAE). The calculation formula for
MSE and MAE is as follows:

N
I
MSE = =" (5 - )’ (14)
"
1 »
MAE = > |9 — il (15)

i=1
where J; represents the predicted value and y; represents the
true value, N represents the number of samples.

E. RESULTS AND DISCUSSION

To further evaluate the performance of MCAG, some other
popular algorithms are selected for comparative experiments.
These popular algorithms, including LSTM, GRU, Bi-GRU
[35], and SMAML [26], proved the rationality and validity
of the prediction model. The M1 ablation experiment is
completed to prove the validity of MNT loss function.

The prediction results of the above wear prediction models
are calculated respectively. Table 1 shows the MSE evaluation
experimental results of different algorithms, and Table 2
shows the MAE evaluation experimental results of different
algorithms. According to the result in the table, the MSE and
MAE of the MCAG are the smallest through the evaluation
of three different datasets, which is far smaller than the
results of LSTM, GRU, Bi-GRU, and SMAML, showing
better prediction performance. The main reason may be
that the proposed MCAG takes advantage of the network
architecture of the autoencoder and the superiority of the
new monotonicity loss function to improve the accuracy
of the prediction results. Through ablation experiments, the
performance of MCAG is better than that of M1, which
verifies the validity of the MNT loss function proposed.
Therefore, the MCAG algorithm has a wide application
prospect in the prediction of cutter wear values in milling
machines.

The comparison curves of the predicted wear value and the
real wear value of the three groups of evaluation experiments
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FIGURE 9. C1 prediction wear value.
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FIGURE 10. C4 prediction wear value.

are shown in the figure 9, 10, 11, where the yellow dotted
line is the predicted wear value of the milling cutter, and
the blue solid line is the real wear value. By observing the
comparison curve, the predicted curve of the C1 milling cutter
fluctuates greatly in the early stage, and the overall forecast
curve of the C6 and C4 milling cutter is smooth and close
to the real wear curve. The changing trend of C6 and C4 is
almost consistent with the real curve. Analysis of the wear
prediction curve of the three milling cutters, it is found that
the prediction effect of the early wear value of the milling
cutter is not good, the prediction curve of the middle wear is
most in line with the real value curve, and the late wear of
the milling cutter wear is not good, but can reflect the wear
trend of the tool. The possible reasons for this result are: In the
early wear stage of the milling cutter, the working condition
of the milling machine is unstable, so there is an error in
the collected data signal, and there is a large error between
the predicted value and the real value. In the middle and
late wear stage of the milling cutter, the working condition
of the milling machine is relatively stable, and the collected
signal data is more real, so the predicted curve of the wear
value is more in line with the real curve of the wear value.
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FIGURE 11. C6 prediction wear value.

In summary, it can be concluded that the proposed method
can preliminarily predict the wear trend and wear value of
tool wear.

The statistic P-value was calculated to compare the
statistically significant between the different models. First,
the null hypothesis (HO, there is no significant difference
between the predictions of the two models) and the alternative
hypothesis (H1, there is a significant difference between
the predictions of the two models) are established. For the
statistically significant between MCAG and each algorithm,
the difference value and the corresponding standard deviation
are calculated separately to obtain the t-value. Based on the
t-value and the degrees of freedom (DF), use the t-distribution
table to obtain the corresponding p-value. All calculated
p-values are very close to O (less than 0.0001). This extremely
small p-value indicates a significant difference between the
predicted results of MCAG and each algorithm.

Through the analysis of the above evaluation result data
and the comparison between the predicted curve and the
real curve, it is found that there is still a significant gap
between the wear value predicted by the MCAG model
and the real wear value. The MCAG model needs further
optimization and improvement in future work. For example,
in the encoders, a deep convolutional structure can be used
instead of the ordinary convolutional neural networks. In the
decoder, the model proposed in this paper can be optimized
and improved by learning more about the self-attention mech-
anism in the Transformer. These will continue in the future
work.

V. CONCLUSION AND FUTURE WORK

A new tool wear prediction method named MCAG based
on multi-sensor data is proposed. The original data are
collected by multiple sensors in the machine milling process.
The structural of the proposed method within encoder and
decoder adaptively enhances the weight of relevant features
and suppresses the irrelevant information. By training and
evaluation on the PHM2010 dataset, the proposed method
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achieves 6.15 MAE and 79.6 MSE, indicating that the method
has an improved ability in result. The following conclusions
can be obtained:

1) A novel MCAG network is proposed. MCAG is
composed of an augmented AE with MHA. The
encoder part of MCAG encompasses multiple CNNs,
dynamically extracting signal features. On the other
hand, the decoder segment of MCAG incorporates
MHA and GRU, which enhance the relevant feature
weights and extract diverse, long-term, deep features.
To optimize the model training process, a monotonicity
loss function is defined.

2) The original dataset is resampled and three different
evaluation experiments are performed on the recon-
structed dataset to prove the validity of the proposed
model. The p-value statistical significance tests are
conducted to prove that the methods performance
differences are statistically significant.

This study has the potential for applications in predicting
the remaining useful life of tools in diverse machine milling
scenarios, but there are limitations. As an example, The
metric index and generalization of the algorithm proposed
in this paper can be further improved and validated, and the
results have not been tested in the real-time system. In future
research, efforts will be directed towards enhancing result
accuracy by more advanced model, such as GPT. To prove
the generalization of the proposed algorithm, validation
experiments on other CNC milling datasets (like NASA
milling dataset) are needed, and an extensive exploration of
practical applications in Industry 4.0 will be embarked upon,
aiming to bridge the gap between theoretical advancements
and real-world implementation.

APPENDIX A

RESULTS OF THE PREDICTION WEAR VALUE

The results of the prediction wear value are in google-drive,
please click DRIVE-URL.
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