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ABSTRACT The utilization of unmanned aerial vehicle (UAV) remote sensing allows for fast and effective
soil moisture content (SMC) monitoring. Scale conversion can obtain remote sensing images at multiple
resolutions and offer the possibility of improving the estimation accuracy of SMC, which is crucial for
precision agriculture. To explore the effect of upscaling conversion on SMC monitoring with UAV remote
sensing, multispectral images and SMC data at different soil depths were acquired. The multispectral image
with an original spatial resolution of 0.1 m was continuously upscaled to 6 m (with a step of 0.1 m and a total
of 60 levels). The correlation coefficient method was adopted to determine the optimal scale, and spectral
indices at the original and optimal scales were calculated. SMC inversion models at different depths were
constructed at the original and optimal scales by multiple linear regression (MLR) and back propagation
neural networks (BP), respectively. The results showed that the correlation of UAV multispectral data with
SMCdisplayed a change in first enhancement and then fluctuatingweakness with the increase of the upscaled
levels. The optimal scale of UAV multispectral remote sensing for monitoring SMC at all soil depths was
about 2 m. The BP models were significantly better than the MLR models. For example, in the SMC
estimation at 0-20 cm, the RMSE of the BP model was reduced from 0.0110 to 0.0087 (20.9%). This study
can provide theoretical and technical references for improving the accuracy of UAV multispectral remote
sensing for SMC monitoring.

INDEX TERMS Unmanned aerial vehicle, soil moisture content, multispectral, upscaling conversion,
multiple linear regression, back propagation neural network.

I. INTRODUCTION
The amount of water in the soil is expressed in terms of
soil moisture content (SMC), which is divided into two
types: gravimetric moisture content and volumetric moisture
content. SMC is not only an important control of water,
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carbon, and energy exchange between land and the atmo-
sphere but also a major source of water absorption by crops
and directly affects the recharge of surface and groundwa-
ter [1], [2], [3], [4], [5]. SMC monitoring in a rapid, accurate,
and large area is significant for rational crop layout, crop
growth and yield, precision irrigation, and the development
of agricultural economies in arid and semi-arid areas [6], [7],
[8], [9].
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SMC can be divided into two types: mass moisture content
and volumetric moisture content. Traditional SMC measure-
ment methods, such as the heat pulse method [10], the drying
method [11], and the time domain reflectometer (TDR) [12],
allow for accurate measurements of soil samples. How-
ever, these methods can only work at the point scale and
have obvious limitations in the measurement of large areas.
In addition, most of these measurements are time-consuming
and labor-intensive [13], damaging the original soil structure
and making it difficult to ensure the synchronization of the
measurement data.

SMC research based on remote sensing techniques has
achieved the leap from point scale to surface scale and
compensated for the deficiencies of traditional measurement
methods. Since the emergence of remote sensing, SMC
retrieval based on satellite remote sensing data has shown
strong benefits and prospects at the regional scale and even
globally [14], [15]. However, the relatively coarse resolution
and long revisit times of satellite sensors limit their rapid
and accurate acquisition of SMC at the farmland scale [16].
Fortunately, with the further development of remote sensing
technology in recent years, the emergence of low-altitude
unmanned aerial vehicles (UAVs) offers the possibility of
overcoming the limitations of satellite remote sensing for
SMC monitoring at the farmland scale. The UAV remote
sensing technique for SMC monitoring has the advantages
of being fast, non-destructive, and lower cost [17], [18],
[19], [20]. Until now, many studies have demonstrated the
effectiveness of SMC estimation with UAV remote sensing
data [18], [21], [22], [23], [24]. However, in actual production
activities, it is not usual to carry out multiple UAV flight
operations to acquire remote sensing images at various spatial
resolutions due to time and material cost constraints. This
may result in the accuracy of soil moisture monitoring based
on limited remote sensing image data being difficult to meet
the application requirements. Therefore, a reasonable scale
conversion of the acquired remote sensing product data at the
original scale is necessary to meet various application needs,
including but not limited to SMC monitoring.

Scale conversion in remote sensing is the process of
transforming data or information from one scale to another;
upscaling is the conversion from high resolution to low reso-
lution, while downscaling is the reverse. Features typically
exhibit different properties at different spatial geographic
locations, and analyses based on remote sensing data also
often need to consider spatial scale effects. Due to the
differences in spatial heterogeneity at different scales, the
estimation of SMC on the basis of remote sensing data has
a large degree of uncertainty. Therefore, it is necessary to
investigate the effect of scale on the estimation of SMC using
remote sensing data to improve the accuracy of SMC detec-
tion and reduce operational costs in agricultural resource
management. Furthermore, the relationship between SMC
and vegetation or soil reflectance spectra frequently exhibits
a non-linear regression due to the influence of factors such
as vegetation cover, soil texture, and topography. Therefore,

the selection of appropriate regression algorithms is crucial to
improving the estimation accuracy of SMC at different soil
depths. Compared to traditional linear regression methods,
artificial neural network models can capture the nonlinear
relationships between different data sources and map the
input-output relationships for any type of data. In this study,
we combined a nonlinear back-propagation neural network
algorithm on the basis of the upscaling of UAV multispectral
remote sensing data in order to detect SMC information at
different soil depths.

The aim of this study was to explore the effect of UAV
multispectral data upscaled to different levels on SMC mon-
itoring. For this purpose, we adopted the pixel aggregation
method for continuous upscaling conversion of UAV multi-
spectral images and acquired a total of 60 UAV multispectral
images with different spatial resolutions, including the orig-
inal resolution scale. The correlation coefficient method was
used to determine the optimal scale, and spectral indices
at the original and optimal scales were calculated. We ana-
lyzed the linear correlation of band reflectance and spectral
indices at the original and optimal scale of UAVmultispectral
remote sensing data with SMC and screened out the band
reflectance or spectral indices that were strongly correlated
with SMC. Finally, we constructed SMC inversion models
for different soil depths at the original and optimal scales by
multiple linear regression and back-propagation neural net-
works, with the screened band reflectance or spectral index as
the independent variable and SMC as the dependent variable,
respectively. We hope to achieve rapid, high-precision, area-
scale SMC monitoring to provide theoretical and technical
support for managers to determine whether crops are suffer-
ing from water stress and adopt rational irrigation schemes to
achieve water conservation and increase crop yields.

II. DATA AND METHODOLOGY
A. STUDY AREA
The study area was located at Jiefangzha of Hetao Irrigation
Area in Inner Mongolia, China (Figure 1a), which has low
rainfall and high evaporation all year round, and its soil type
is mostly clay loam. The drainage capacity in the study area
is weak due to the flat terrain. To efficiently utilize water
resources and optimize the irrigation regime, it is necessary
to monitor the SMC. Besides, during the test period, the
feature type on the test site was mainly bare soil, and no crops
had been planted yet, with only a few yellowed weeds after
overwintering (Figure 1b).

B. SMC DATA
The collection of soil samples was conducted on 4/17/2019.
Initially, we arranged 30 sampling points evenly on the exper-
imental site (Figure 1b). Then, soil was collected vertically
downward at 0-20 cm, 0-40 cm, and 0-60 cm depths with an
auger. During the sampling process, the five-point sampling
method was used to ensure the representativeness of the
samples. Finally, we used the drying method (drying at a
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FIGURE 1. Study area location.

TABLE 1. The sensor parameters.

constant temperature of 105 ◦C for 24 hours) to calculate the
mass moisture content of the soil. The SMC is calculated by
Equation (1).

SMC = (M1 −M2)
/
M2 × 100% (1)

where M1 and M2 represent the quality of wet and dry soil,
respectively.

C. UAV MULTISPECTRAL IMAGE DATA
The M600 UAV from DJI Innovation Technology Ltd. was
used to obtain multispectral remote sensing images. The UAV
(including batteries) has a weight of 9.6 kg, maximum ascent
and horizontal flight speeds of 5 and 18 m/s, respectively,
and could withstand a maximum wind speed of 8 m/s with
a maximum endurance of about 40 min. The sensor model
is Micro-MCA, and some of the parameters are shown in
Table 1. The operating time of the UAV was almost syn-
chronized with the acquisition time of the soil samples. The
flight altitude of the UAV was set to 120 m, and the spatial
resolution of the acquired images was about 0.1 m. The
acquired multispectral remote sensing images were stitched

and calibrated in the Pix4Dmapper software. After the radio-
metric calibration with a standard whiteboard, the reflectance
of the sampling points was extracted.

D. SPECTRAL INDEX
In addition to the six bands provided by the UAV multi-
spectral remote sensing images, some spectral indices for
detecting soil information are introduced to improve the
interpretation of SMC, and their formulas are shown in
Table 2.

E. UPSCALING CONVERSION METHOD
The upscaling conversion method adopted in this study was
pixel aggregation (PA). In the field of remote sensing, PA is
an effective scale conversion method to compute based on
an aggregation function and take the computed value as the
pixel value of the converted low-resolution remote sensing
image. Commonly used aggregation functions such as sum,
maximum, minimum, and average are calculated as follows:

Let the sequence x = {x1,. . . , xm}, xi ∈(-∞, +∞), m∈

N∗, i = 1, 2,. . . , m. The sum aggregation function can be
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TABLE 2. Summary of spectral indices.

expressed by Equation (2) as:

Sum(x) =

∑m

i
xi (2)

The maximum aggregation function can be expressed by
Equation (3) as:

Max(x) = max {x1, x2, . . . , xm} (3)

Similarly, the minimum aggregation function can be
expressed by Equation (4) as:

Min(x) = min {x1, x2, . . . , xm} (4)

In this study, mean aggregation was adopted for the upscal-
ing conversion of UAV multispectral remote sensing data,
which can maintain the image information relatively well.
Themean aggregation function is represented by Equation (5)
as:

M (x) =
1
m

∑m

i=1
xi (5)

The two-dimensional form of Equation (5) can be further
expressed by Equation (6) as:

M ′(x) =
1
mn

m∑
i=1

(
n∑
j=1

xij) with x =

 x11 . . . x1n
...

. . .
...

xm1 · · · xmn

 (6)

For the digital images of remote sensing, the single band is
represented as a two-dimensional matrix, and then the band

FIGURE 2. The upscaling conversion of a high-resolution image to a
low-resolution image (note that n = m, n ∈ N∗, and when the pixel
coefficient value is set to s, it makes the size of the output pixel s times
larger than the original input pixel).

reflectance that is upscaled to the sth level can be calculated
by Equation (7) as:

bu,s = M ′(b) with b =

 b11 . . . b1n
...

. . .
...

bm1 · · · bmn

 (7)

where bu,s is the u-band of the UAV multispectral image that
is upscaled to the sth level, and u is blue, green, red, red-edge,
NIR1, and NIR2 in this study; b is the pixel value within
the n× m window of the high-resolution UAV multispectral
remote sensing image, and bij ∈[−1, 1].

The upscaling conversion of the UAVmultispectral remote
sensing image is shown in Figure 2, and this work was
conducted using the ‘‘arcpy’’ package in Python 2.7.

F. MODELING AND ASSESSMENT
1) MULTIPLE LINEAR REGRESSION (MLR)
MLR analysis is one of the most commonly used statistical
methods for measuring the relationship between multiple
variables and predicting the behavior of the dependent vari-
able based onmultiple independent variables [29]. In general,
the MLR model is given by Equation (8).

Y = β0 + βkXk (8)

where Y is the dependent variable, which in this study is
SMC at different depths; β0 is the regression constant; βk is
the overall regression parameter; and Xk is the independent
variable, which in this study is the band reflectance or the
spectral index.

2) BACK PROPAGATION NEURAL NETWORK (BP)
BP is a neural network that is trained based on error back
propagation [30]. The BP model generally consists of an
input layer, a hidden layer, and an output layer. Besides, the
model has a relatively strong ability for self-learning and
nonlinear mapping [31], is widely used in various fields, and
has better performance in soil moisture content estimation.
The BP model is constructed as follows:

Let there be n training samples, each with m indicators.
Then the initial information matrix is:

A′
= (a′

ij)n×m (9)
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FIGURE 3. Topology of SMC inversion model based on BP neural network
algorithm.

where i = 1, 2, . . . , n; j = 1, 2, . . . , m; xij represents the value
of the jth indicator of the ith training sample.

The first step is to eliminate the dimension between differ-
ent indicators (band reflectance, spectral index, and SMC) by
Equation (10)

aij =

a′
ij −

n
min a′

ij
i=1

n
max a′

ij
i=1

−

n
min a′

ij
i=1

(10)

Then we can obtain the dimensionless matrixA= (aij)n×m.
The next step is to determine the calculations of the hid-
den and output layers. The hidden layer is calculated by
Equation (11)

Hj = f (
m∑
j=1

ai ·Wij) (11)

The transfer function of the hidden layer in Equation (11)
is calculated by Equation (12)

f (x) =
1

1 + e−αx (12)

where α = 1.
The output layer is calculated by Equation (13)

O = f (
m∑
j=1

Hj ·Wj) (13)

The transfer function of the output layer in Equation (13)
is linear, which is calculated by Equation (14)

f (x) = x (14)

The topology of the BP-based SMC inversion model in this
study is shown in Figure 3.

3) INDICATORS FOR MODEL EVALUATION
The correlation of band reflectance and spectral index with
SMC is measured by Pearson’s correlation coefficient (r).
The absolute value of Pearson’s correlation coefficient is
adopted to determine the optimal scale for SMC monitoring
by UAV multispectral remote sensing and the input variables
for the SMC inversion model. The R2 and RMSE are used to
evaluate the accuracy of the model. The closer R2 is to 1 and
the closer RMSE is to 0, the more accurate the model is. R2,

FIGURE 4. Statistical characteristics of SMC.

RMSE, and r can be calculated from Equations (15), (16),
and (17), respectively.

R2 =

n∑
i=1

(Ŝi − S̄)2
/

n∑
i=1

(Si − S̄)2 (15)

RMSE =

√√√√ n∑
i=1

(Ŝi − Si)2
/

n (16)

r =

n∑
i=1

(Si − S̄)(S ′
− S̄ ′)[

n∑
i=1

(Si − S̄)2
n∑
i=1

(S ′ − S̄ ′)2
]1/2 (17)

where Ŝi represents the estimated SMC value, Si represents
the measured SMC value, S̄ represents the average value of
SMC, S ′ represents the band reflectance or spectral index,
and S̄ ′ represents the average value of the band reflectance
or spectral index.

III. RESULTS
A. STATISTICAL CHARACTERIZATION OF SMC
As can be seen in Figure 4, the SMC of the experimental
site at the depth of 0-20 cm was in the range of 20%-28%
overall; that was in the range of 23%-31% at 0-40 cm; and
that was approximately in the range of 25%-31% at 0-60 cm.
In other words, the moisture in the soil increased as the depth
of the soil increased. The statistical characteristics of SMC
are shown in Figure 4.

B. DETERMINATION OF THE OPTIMAL UPSCALED LEVEL
First, the 6-band reflectance of the UAV multispectral data
with a spatial resolution of 0.1 m × 0.1 m (original scale,
denoted as the 1st level) was upscaled to 6 m × 6 m (denoted
as the 60th level) with a step of 0.1 m. Second, the bands
upscaled to different levels were analyzed for Pearson’s
correlation with the SMC at different depths, respectively.
Last, the optimal upscaled level was determined as the level
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FIGURE 5. Correlation of UAV band reflectance that upscaled conversion to different levels with SMC at different soil depths (| r | is the
absolute value of Pearson’s correlation coefficient, the same as below).
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TABLE 3. Correlations of band reflectance with SMC at different soil depths for original and optimal upscaled UAV multispectral data.

corresponding to the band reflectance that had the highest
correlation with the SMC during the upscaling.

The |r| between band reflectance and SMC showed a
tendency to first increase and then fluctuate downward as
the upscaled level increased. Among the six upscaled bands
correlating with the SMC, NIR2 demonstrated the most pro-
nounced correlation in all depths (Figure 5f). Therefore, the
level corresponding to the highest |r| between the NIR2 and
SMC during the upscaling was taken as the optimal upscaled
level for each band. The |r| of the NIR2 band with the SMC
at 0-20 cm and 0-40 cm reached its highest (0.680 and 0.545)
at the upscaling to the 19th level (i.e., 1.9 m), and its |r| with
the SMC at 0-60 cm depths was highest (0.456) at the 21st
level (i.e., 2.1 m). Therefore, 1.9 m was the optimal scale of
UAV multispectral data for monitoring SMC at 0-20 cm and
0-40 cm soil depths, while 2.1 m was the optimal scale for
monitoring SMC at 0-60 cm. The correlations of the band
reflectance at the original and optimal scales with the SMC
at different depths are shown in Table 3.

C. CORRELATION ANALYSIS OF SPECTRAL
INDEX WITH SMC
The spectral indices calculated based on band reflectance at
the original and optimal scales were subjected to Pearson cor-
relation analysis with the SMC, respectively, and the results
are shown in Figure 6.
Compared with the spectral indices at the original scale,

those at the optimal scale (except NDSI1) exhibited stronger
correlations with the SMC at different depths. In other
words, the upscaling conversion can improve the correla-
tion of UAV multispectral data with SMC. For example,
among the correlations of these indices with the SMC at
0-20 cm depth (Figure 6a and b), SI1, SI2-1, SI2-2, S3,
S4, and S5 showed the most significant enhancement, with
correlation coefficients strengthening from around −0.4 to

−0.6. However, S3 and NDSI2 displayed only a very small
increase, and NDSI1 showed a relatively significant decrease.
In addition, the correlations between spectral indices and
SMC gradually weakened as the depth increased, showing
0-20 cm > 0-40 cm > 0-60 cm.

D. SELECTION OF INPUT VARIABLES FOR THE SMC
INVERSION MODEL
The |r| of the band reflectance and spectral index with SMC
at the original scale were ranked in descending order, and the
band or spectral index in the last one-third of the sequence
would be used as the input variables for the model.

As can be seen from Figure 7, the optimal combinations
of input variables for the SMC inversion model at 0-20 cm,
0-40 cm, and 0-60 cm for the original scale were, respec-
tively, SI2-2, Blue, Red-edge, NIR1, and NIR2; Blue, S5,
Red-edge, NIR1, and NIR2; and Blue, NIR1, NDSI2, S5,
and NIR2. Obviously, the bands or spectral indices that were
sensitive to the SMC at different depths were in general
agreement. The input variables of the model at the optimal
scale remain consistent with the original scale.

E. SMC INVERSION MODELS BASE ON MLR
Multiple linear regression was employed to construct SMC
inversion models at the original and optimal scale with SMC
at different soil depths as the dependent variable, and the
results are presented in Figure 8.

The estimation accuracy of SMC based on UAV multi-
spectral data at the optimal scale significantly outperformed
that using UAV multispectral data at the original scale. For
example, in the estimation of SMC at 0-20 cm, the R2 of the
MLR model improved most significantly from 0.437 at the
original scale to 0.573 at the optimal scale. Besides, the R2

of the MLR models at 0-40 cm and 0-60 cm also showed a
relatively significant enhancement.
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FIGURE 6. Correlation matrix of spectral indices with SMC at different soil depths for original and optimal upscaled UAV multispectral
data.
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FIGURE 7. Correlation matrix of spectral indices with SMC at different
soil depths for original and optimal upscaled UAV multispectral data.

TABLE 4. The expressions of MLR models at different depths.

In the SMC estimations at 0-20 cm, 0-40 cm, and 0-60 cm,
the RMSE of the MLR models were 0.0120, 0.0121, and
0.0105 at the original scale, and 0.0105, 0.0113, and 0.0097 at
the optimal scale, with a decrease of 12.5%, 6.61%, and
7.62%, respectively. Besides, the estimation accuracy of
SMC, whether based on the UAV multispectral data at
the original or optimal upscaled levels, showed a grad-
ual decrease as the depth increased, exhibiting 0-20 cm >

0-40 cm > 0-60 cm. The expressions of the MLR models at
different soil depths are shown in Table 4.

F. SMC INVERSION MODELS BASE ON BP
The BP neural network was adopted to construct the SMC
inversion model at the original and optimal scale, and the
results are shown in Figure 9. The R2 of the BP models
increased from 0.526, 0.439, and 0.402 at the original scale to
0.706, 0.539, and 0.439 at the optimal scale for the three soil
depths, respectively. The RMSE was reduced from 0.0110,
0.0111, and 0.0098 at the original scale to 0.0087, 0.0101, and

FIGURE 8. MLR models at different soil depths constructed using the
original and optimal upscaled UAV multispectral data.

0.0089 at the optimal scale, with a reduction of 20.9%, 9.0%,
and 9.2%, respectively. The nonlinear BP model significantly
outperformed the multiple linear regression model.

G. PREDICTED SOIL MOISTURE CONTENT MAP
Compared with the complex non-linear BP neural network
model, the multiple linear regression model is simple and
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FIGURE 9. BP models at different depths constructed using the original
and optimal upscaled UAV multispectral data.

provides specific model expressions (Table 4). Therefore,
in this study, the SMC distribution map at different soil
depths in the study area was predicted based on multiple lin-
ear regression models developed at the original and optimal
scales, respectively.

As can be seen from Figure 10, compared with the SMC
predicted using the multispectral image data at the original
scale, those predicted with the multispectral image data at
the optimal scale were closer to the measured SMC values.
Therefore, it is of great significance to improve the perfor-
mance of UAV sensors for monitoring SMC by upscaling the
conversion of the original image data.

IV. DISCUSSION
SMC estimation based on optical remote sensing data is
affected by a variety of factors, such as weather conditions,
cloud cover, vegetation cover, soil roughness, and topogra-
phy [32], [33], [34], [35]. Compared with satellite remote
sensing, UAVs are flexible and controllable, and their lower
flight altitude can greatly reduce the influence of cloud cover
during work, which gives them a significant advantage in
SMC estimation at the field scale. However, generally, during
the UAV work, multiple flight altitudes are not set to acquire
a large number of remote sensing images because multiple
operations would increase the cost a lot. To break through this
limitation, we performed a continuous-scale conversion of the
original UAVmultispectral data. The optimal scales for SMC
monitoring at different depths were also determined while
acquiring multiple remote sensing images, and the estimation
accuracy of SMC was significantly improved. In this study,
both the BP model and the MLR model showed consid-
erable estimation accuracy. It is worth mentioning that we
assumed the independence of the variables (band reflectance
and spectral index) in the construction of the MLR model.
However, in fact, there may be a linear correlation between
them. The MLR model between the dependent variable Y
and the independent variables X1 and X2 may also be Y =

β0 + β1X1 + β2X2+β3 X1·X2. More forms of regression
should be considered in the future to improve the accuracy
of regression analyses.

The main upscaling methods for remote sensing images
are the nearest neighbor method, the empirical regression
method, the Bayesian method, and the physical modeling
method. The nearest neighbor method takes the average of the
neighboring four pixels of the original pixel as the upscaled
converted pixel, which loses a large amount of pixel informa-
tion despite having significant computational efficiency. The
Bayesian method is an upscaling method based on the max-
imum entropy method, which requires the incorporation of
certain prior knowledge and makes it more difficult to imple-
ment. The portability of the empirical regression method is
relatively poor because it relies on a large number of historical
observations. Theoretically, the physical modeling method
works best, but such physical model-based scale conversions
are typically difficult to construct due to model assumptions
and parameter uncertainties. In this study, we adopted mean-
aggregation for the upscaling of UAV multispectral images.
The advantage of this approach is that all input pixel infor-
mation at each given scale is considered during the upscaling,
and the soil reflectance information associated with SMC can
be better preserved without additional artificial weighting.
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FIGURE 10. SMC prediction maps for the study area based on multiple linear regression models at the original and optimal scales.
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Among the 60 upscaled levels, the correlation between
the band reflectance of UAV multispectral data and SMC
varied at different scales, and the essence of this result is the
difference in field heterogeneity. In SMC monitoring based
on remote sensing methods, higher spatial heterogeneity typ-
ically leads to lower estimation accuracy. It was interesting to
note that the |r| between band reflectance and SMC showed
a tendency to first increase and then fluctuate downward as
the upscaled level increased. This variation in correlation
was largely because the field heterogeneity corresponding to
the scale exhibited an initial decline and then a fluctuating
increase. It can be predicted that the correlation between
remote sensing data and SMC would not be the strongest at
either infinitely small or large scales of monitoring. Addi-
tionally, when the scale is further inflated, the correlation
of UAV multispectral data with SMC still tends to undu-
latingly decrease but does not approach 0. Because more
feature elements are incorporated (e.g., vegetation, rocks,
etc.), the heterogeneity fluctuates and increases further. The
NIR2 band reflectance, which has the highest correlationwith
SMC, was taken as the standard for the determination of
the optimal upscaled level during the upscaling of the UAV
multispectral data. The optimal scale of UAV multispectral
data for SMC monitoring at various depths in agricultural
areas with no vegetation cover is about 2 m. For the other
bands (e.g., green, red, red-edge, and NIR1), although the
upscaled levels corresponding to the highest correlations with
SMC at different depths were not exactly the same, these
levels were generally around the 20th level. In other words,
there is similarity in the optimal upscaled levels for each band,
which is likely to facilitate the rapid determination of the
optimal scale for other bands. Further research work in this
area could be carried out in the future.

Compared with performing multiple UAV works to obtain
a suitable resolution scale for detecting SMC, this study
achieved better performance in SMC monitoring by only
applying an upscaling conversion to limited UAV multispec-
tral data. In other words, our study can provide theoretical and
technical support for reducing measurement costs in agricul-
tural resource management. However, it is worth mentioning
that this study did not consider the effects of factors such
as vegetation, topography, and soil roughness, which may
make it problematic to generalize the proposedmodel to other
regions with more complex land characteristics, and further
research could be carried out in this direction in the future.

V. CONCLUSION
This study aimed to investigate the effect of the upscaling
conversion of UAV multispectral data on SMC monitoring
at different soil depths. The results demonstrated that the
upscaling conversion of UAV multispectral data can sig-
nificantly improve the estimation accuracy of SMC. The
correlation of UAV multispectral data with SMC displayed a
change in first enhancement and then fluctuating weakness
with the increase of the upscaled levels. Apparently, com-
pared with SMC estimation using UAV multispectral data

at the original scale, there was a more optimal scale that
could significantly improve the estimation accuracy of SMC
at different soil depths. In this study, this scale was about
2 m. This study can provide theoretical and technical support
for improving the estimation accuracy of SMC in agricultural
fields based on UAVmultispectral remote sensing and reduc-
ing measurement costs in agricultural resource management.
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