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ABSTRACT In this study, we primarily address the issue of uneven quality of client embeddings in
existing federated learning frameworks for knowledge graph completion. Although existing frameworks
provide preliminary solutions to the heterogeneity of data in knowledge graphs, there are still deficiencies
in their aggregation strategies. To address this issue, we introduce a new federated learning framework
called FedLTailor that focuses on optimizing the aggregation process. FedLTailor employs a dynamic weight
adjustment strategy to enhance the weight proportion of clients with higher embedding quality during the
aggregation process, thereby optimizing the performance of the global model. Moreover, FedLTailor adopted
a unique personalized fusion strategy to mitigate potential discrepancies between the global model and
local clients. Experimental results on four federated knowledge graph datasets demonstrate FedLTailor’s
significant advantages in addressing aggregation issues in federated knowledge graph completion tasks,
as well as its broad adaptability across various knowledge graph embedding techniques. Additionally, the
design and experimental validation of the FedLTailor framework offers new insights into the field of federated
learning, particularly in handling distributed knowledge graph data, showcasing its potential applicability and
effectiveness.

INDEX TERMS Federated learning, knowledge graph completion, knowledge graph.

I. INTRODUCTION
Knowledge graphs, which are structured representations of
knowledge, have been widely used in numerous applica-
tions, such as search engines, recommendation systems, and
intelligent assistants. In this vast network of relationships,
nodes and edges map entities and their interconnections,
respectively, thereby vividly and efficiently capturing the
complexity of the real world. This provides a solid and rich
knowledge base for intelligent systems. However, given con-
tinuous development and change in knowledge, knowledge
graphs often face the problem of incomplete information.
Knowledge graph completion is crucial for addressing this
challenge. Thus link prediction [1] techniques have become
a research hotspot, aiming to complete knowledge graphs
by predicting missing entities or relationships. This not
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only enhances the coherence of knowledge graphs, but also
supports the advanced understanding and reasoning
capabilities of intelligent systems.

With the widespread application of knowledge graphs, new
challenges have emerged, among which the ‘‘data island’’
problem is particularly critical. This issue primarily stems
from different organizations, institutions, or companies being
unwilling or unable to share their data with the outside
world owing to privacy, security, and commercial considera-
tions, leading to the limitation and dispersion of information
in knowledge graphs. Faced with this limitation, federated
learning offers a potential solution. Under the federated
learning framework, each client uses its own local data
for model training and uploads only the model’s weights
or updates information to a central server rather than the
original data. The central server is responsible for integrat-
ing model updates from various clients, thereby optimizing
and refining the global model. This allows data owners to
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collaboratively build and optimize a more comprehensive
and efficient knowledge graph while protecting personal
privacy and commercial interests [2]. FedEC [2] is a feder-
ated learning framework designed specifically for knowledge
graphs. It aggregates the same entity embeddings from dif-
ferent clients, instead of simply collecting triplet data. In this
process, the model integrates knowledge across clients, sig-
nificantly improving the quality of the entity embeddings.
The framework proposes solutions to the data heterogeneity
problem encountered when predicting the missing links in
knowledge graphs in a federated environment. On the client
side, a contrastive learning strategy was used to optimize
the training process by comparing global and local embed-
dings, aiming to control the distance between global and local
embeddings and effectively address the data heterogeneity
issue. Through this method, the framework demonstrates
better adaptability and efficiency in dealing with data dif-
ferences between different clients, thereby improving the
accuracy of knowledge graph completion. In the server-side
aggregation process, FedEC employs the FedAvg [3] strat-
egy for average aggregation. However, even for the same
entity within different clients, the trained embedding effects
may differ owing to the different relationships involved.
This information can be used to manage diverse teams.
Not every member of a team possesses the same skills or
efficiency. If resources or rewards are distributed equally,
high-performance members may feel underutilized or unmo-
tivated, and the team’s potential may not be fully realized.
Conversely, if high-performance members are given more
resources and responsibilities, a team’s overall efficiency and
outcomes can be significantly enhanced.

To address these issues, we propose a new federated
knowledge graph completion framework, called FedLTailor.
By analyzing the loss values of different clients, it was
found that even under the same training rounds, the quality
of embeddings produced by each client varied, with higher
loss values indicating poorer training outcomes. Therefore,
we adopted a strategy in which the loss values calculated
by clients during training are uploaded to the server side.
Through the application of Temperature-scaled Softmax,
these were converted into new weight values, making the
embedding aggregation process more aligned with the actual
conditions. Embeddings of higher quality are assigned greater
weights, whereas those of lower quality are assigned lower
weights, thereby enhancing the quality and effectiveness of
global model aggregation. Moreover, a personalized aggre-
gation strategy is introduced. Specifically, the aggregated
global entity embeddings are combined with the local entity
embeddings of each client before aggregation, which helps to
control the differences between global and local embeddings
more precisely.

We conducted extensive experiments on four federated
knowledge graph datasets and adopted various representa-
tive knowledge graph embedding methods as embedding
learners within FedLTailor. The completion results of the
federated knowledge graphs indicate that FedLTailor

achieved significant performance compared with various
baselines, demonstrating the effectiveness of our framework.

The contributions of this work are summarized as follows:
• We propose a framework called FedLTailor that aims to

efficiently learn knowledge graph embeddings in a fed-
erated learning environment. This framework possesses
broad adaptability and can be applied to a variety of
current knowledge graph embedding technologies.

• In response to the uneven quality of the embeddings,
a dynamic weight adjustment strategy was proposed to
optimize the performance of the global model.

• To address the potential discrepancies between the
global model and local clients, a personalized fusion
strategy was introduced at the global aggregation stage
to enhance the adaptability of the global model.

II. RELATED WORK
A. KNOWLEDGE GRAPH EMBEDDING
Entities and relationships in knowledge graphs are presented
in the form of triplets, whereas deep learning models are
more adept at handling data in continuous vector formats.
Therefore, converting entities and relationships in knowledge
graphs into vector forms enables more effective utilization
of deep learning models for training. This conversion is
known as ‘knowledge graph embedding,’ which also facili-
tates the execution of various downstream tasks, such as link
prediction [4], [5], [6], [7], question-answering systems [5],
and recommendation systems [6].
Translation Distance Models: These models are based on

the spatial relationships between entities, such as translation
or rotation, to represent relationships. TransE [7]: Maps enti-
ties and relationships in the knowledge graph into the same
vector space, assuming that a relationship is a ‘‘translation’’
between two entity vectors. RotatE [8]: This method views
relationships as a ‘‘rotation’’ between two entity vectors in
the complex space. Similar to TransE, it operates in the same
vector space. However, the relationships are represented by
rotation instead of translation.

Semantic Matching Models: These models focus on the
degree of matching or semantic similarity between entities
and relationship vectors. DistMult [9] evaluated the match
between entities and relationships by using element-wise
multiplication. For a given relationship, it multiplies the
vectors of the corresponding entities element-wise and then
sums them to produce a score indicating the degree of match
between these entities and the relationship. ComplEx [10]:
Similar to DistMult, introduced complex-valued embeddings,
allowing for the capture of richer and more complex relation-
ship patterns, particularly asymmetric relationships.

B. FEDERATED LEARNING
Federated learning, a method that allows models to be trained
across multiple local devices without directly sharing raw
data, is based on the principle that each device holding data
sources retains its original data and sends only the local
model parameters to the central server. This approach not
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only protects data privacy but also reduces the need to transfer
large volumes of data.

Some studies addressed the issue of data heterogeneity.
FedProx [11] introduces a proximal term to constrain the
local update stage. MOON [12] applied model-level con-
trastive learning to deep-learning models in a federated
setting. FedALA [13] incorporates personalized adaptive
local aggregation for client models to capture necessary infor-
mation from the global model, which primarily focuses on
collaborative learning in the field of computer vision rather
than knowledge graphs.

In research on knowledge graph embedding (KGE) within
federated settings, FedE [14] adapted FedAvg for KGE by
aggregating local embedding updates, allowing knowledge
graph embeddings of individual clients to learn from the
embeddings of others. FedEC identifies the data heterogene-
ity issue when learning KGE in federated environments,
and addresses it by incorporating contrastive learning on
the client side, which compares global embeddings with
local embeddings to control the gap between them. These
studies showcase methods for knowledge graph embedding
in federated environments. They uniformly used the FedAvg
method for average aggregation without considering the
critical issue of varying embedding quality across differ-
ent clients. The simple average aggregation strategy treats
high and low-quality embeddings equally, giving them the
same weight, which often leads to outcomes that are far
from ideal. We propose a new method for optimizing the
aggregation process. Specifically, a Temperature-scaled Soft-
max mechanism was employed to normalize the loss values
of different clients, thereby calculating a more reasonable
weight distribution. Based on this new weight, a personalized
strategy was introduced for more effective entity aggregation.
This approach not only optimizes the aggregation results but
also significantly improves the quality of model embeddings
while maintaining the privacy-preserving characteristics of
federated learning.

III. METHODOLOGY
A. INTRODUCTION TO FEDERATED KNOWLEDGE GRAPH
PREDICTION TASK
A knowledge graph is defined as G = {E,R,T , where
E represents a set of entities, R is a set of relations, and
T is a set of triplets. Within T , each triplet is represented as
(h, r, t), where h, t ∈ E , and r ∈ R. The link prediction task
in knowledge graphs involves predicting the missing entity
given an entity and a relation, either as (h, r, ?) or (?, r, t),
essentially predicting e ∈ E so that (h, r, e) or (e, r, t) forms
a new triplet to complete G.

In the process of performing knowledge graph link pre-
diction in a federated environment, each local client has
a unique knowledge graph. These graphs differ across the
clients. However, entities may overlap across multiple clients.
This overlap serves as a prerequisite for knowledge graphs
in a federated environment to learn embedding knowledge

from other knowledge graphs. We assume that information
regarding aligned entities is provided via a private set inter-
section method [15], and that this information is securely
stored on the main server, meaning that the unique set of
entities across all clients is preserved on the server. It is impor-
tant to emphasize that, similar to other federated learning
efforts [11], privacy protection was not the primary focus
of this study. However, standard privacy protection measures
can still be integrated into our framework [15]. This approach
not only enhances the efficiency and accuracy of knowledge
graph link prediction but also ensures the protection of data
security and user privacy.

B. FRAMEWORK OPERATION FLOW
In our framework, data initialization is the first step. Initially,
clients generate a relation embedding matrix R0 from the
relation setRc in their knowledge graph Gc = {Ec,Rc, T c

},
based on predetermined upper and lower bounds. Subse-
quently, the server generates an entity embedding E0 from the
saved entity set according to predetermined upper and lower
bounds. Here, the number of rows in the matrix represents
the index and the number of columns represents the preset
embedding dimensions. The subscript ‘‘0’’ indicates the
embeddings generated during initialization. Next, the server
distributes E0 to all clients, ensuring that they begin training
at the same entity-embedding starting point.

With these preparations, the clients can begin the embed-
ding training process. Using the received entity embedding
matrix E0 and its own initialized relation embedding
matrix R0, the triplet set T c was trained in batches of
predetermined sizes. In this training, the triplet set T c is
matched with the entity and relation embeddings through
indexing. The operational flow of the FedLTailor framework
is illustrated in Figure 1 and the specific training process of
the framework is described below.

A self-adversarial negative-sampling loss function [8] was
used during the training process on the client side. In this
method, the scores of positive and negative samples are
required. The triplet T c held by each client acts as a posi-
tive sample, whereas negative samples are constructed from
known positive samples that do not appear in T c. That is,
based on the known positive sample (head entity, relation,
tail entity), denoted as (h, r, t), we change the tail entity t to
obtain a new triplet

(
h, r, t ′

)
. This newly constructed triplet

did not exist among the positive samples, indicating that it is
a valid negative sample. The designated embedding learner
is then used to score the positive and negative samples. The
loss function was calculated based on the scores obtained for
the positive and negative samples. The formula used was as
follows:

Lkge (h, r, t) = −logσ (s (h, r, t)+ γ )

−

k∑
i=1

p
(
h, r, t ′i

)
logσ

(
−s

(
h, r, t ′i

)
− γ

)
,

(1)
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FIGURE 1. Overall procedure of one round in FedLTailor.

Here, γ represents a margin: the number of negative sam-
ples is determined by parameter k , and p

(
h, r, t ′j

)
are the

specified weights for each negative sample, representing the
relative importance of the negative sample within the entire
set of negative samples. The formula used was as follows:

p
(
h, r, t ′j

)
=

exp
(
βs

(
h, r, t ′j

))
∑

i exp
(
βs

(
h, r, t ′i

)) , (2)

where β is the temperature coefficient. A contrastive learning
strategy [12] was integrated into the loss function. This means
that the loss introduces a comparison between global and
local embeddings using the following formula:

Lcon = −log
exp

(
sim(Ect ,Et)

τ

)
exp

(
sim(Ect ,Et)

τ

)
+ exp

(
sim

(
Ect ,E

c
t−1

)
τ

) , (3)

Here, τ represents the temperature coefficient, and sim is
the cosine similarity. The final loss function is a combination
of the self-adversarial negative sampling loss function and

contrastive loss, using the following formula:

L (T ) =
∑

(h,r,t)∈T
Lkge (h, r, t)+ µLcon, (4)

Here, µ controls the weight of contrastive loss. During the
client training process, our goal was to increase the score for
positive samples and decrease the score for negative samples.
After completing client training, the new entity embeddings,
Ec
t were uploaded to the central server. However, considering

the heterogeneity in the embedding quality from different
clients, directly assigning the same weight for aggregation to
entity embeddings of varying quality may lead to suboptimal
results. To address this issue, we propose a dynamic weight
adjustment strategy as an alternative to the traditional average
weight aggregation method. By applying the losses from
different clients to a Temperature-scaled Softmax function,
a new set of aggregation weights was obtained, where clients
with higher losses received smaller weights and those with
lower losses received larger weights. The calculation formula
is as follows:

Et+1←−

m∑
c=1

Lc ⊗ Ec
t , (5)
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Here, m is the number of selected clients,⊗ represents the
Hadamard product, and the weight vector Lc is determined
based on the losses uploaded by each client by calculating the
corresponding weight for every entity in Ec

t . This is defined
as follows:

Lci =


0, ifvci = 0,

exp
(

α−lossc
δ

)
∑x

c=1 exp
(

α−lossc
δ

) , ifvci = 1,

where vci =

{
1, ifεfedi ∈ εc

0, ifεfedi /∈ εc,
(6)

where δ is a temperature parameter, and α is a predetermined
constant value. By subtracting the corresponding loss from α,
the loss can be intuitively converted into a quality score,

which makes it easier to interpret and understand. x =
m∑
c=1

vci ,

where vc is the entity vector of client c, indicating the entities
owned by that client. If vci = 0, then the client does not
contain the entity. If vci = 1, then the client possesses that
entity.

In studying FedEC, it was observed that by incorporating
contrastive learning to control the distance between global
and local embeddings, it effectively adjusted the differences
between global and local embeddings in handling hetero-
geneity issues. Inspired by this, we chose to introduce a
personalized strategy in the aggregation function by adding
local embeddings to the global embeddings, thus ensuring
that the distance between the global and local embeddings
is effectively controlled. The formula used is as follows:

Ec
t+1←− Et+1 ·

(
1−W c)

+ Ec
t ·W

c, (7)

W c
=
T c + N c

N

2
,T c =

exp
(

α−lossc
δ

)
∑m

c=1 exp
(

α−lossc
δ

) , (8)

Here, T c differs from the previously mentioned Lc;
Lc represents a weight vector, whereas T c is merely a con-
stant derived from the loss uploaded by clients. N c/N is the
ratio of the number of triplets in a certain client to the total
number of triplets across all the clients. By blending global
embeddings with a certain proportion of local embeddings
and distributing them to clients, we aimed to narrow the gap
between the global and local embeddings. This method can
enhance the adaptability of global embeddings and address
data-heterogeneity issues to a certain extent.

C. INTEGRATION PART
In the federated and standalone environments, the obtained
embeddings exhibited different characteristics. Integrating
the embeddings learned in a federated environment with
those learned in a standalone environment yielded superior
results, a finding that was confirmed by FedEC. Inspired by
the integration strategy of FedEC, we conducted a series of
experiments and found that integrating different embedding

learners could produce better embedding effects, making the
integrated embeddings superior to those obtained using a
Single method. We discovered that embeddings learned in a
federated environment by various embedding learners (such
as TransE, DistMult, ComplEx, and RotatE) could be inte-
grated with embeddings learned in a standalone environment
using RotatE to achieve better results. The methods include
adaptive ensemble and direct ensemble. It is important to
emphasize that this integration process is conducted after the
training of embeddings is complete, and not as part of the
training. The uniqueness of this approach lies in optimizing
the overall performance through post-training integration,
without affecting the independent training of eachmodel. Our
research not only confirms the effectiveness of the integration
strategy in enhancing the performance of knowledge graph
completion tasks but also showcases the complementary
advantages of different embedding methods in a federated
environment.

Direct ensemble Method: This method involves directly
merging the triplet prediction scores S(fed) (h, r, t) obtained
in the federated learning environment with the triplet pre-
diction scores S(sig) (h, r, t) obtained in the non-federated
standalone environment.

S(ens) (h, r, t) =
S(fed) (h, r, t)+ S(sig) (h, r, t)

2
. (9)

Adaptive ensemble Method: This approach achieves tar-
geted fusion based on their respective importance by weight
training the triplet prediction scores S(fed) (h, r, t) obtained in
the federated learning environment and the triplet prediction
scores S(sig) (h, r, t) obtained in the non-federated standalone
environment.

S(ens) (h, r, t) = w1S(fed) (h, r, t)+ w2S(sig) (h, r, t) . (10)

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
Subgraphs were extracted from the traditional
FB15k-237 [16] andNELL-995 [17] benchmarks to construct
benchmark datasets for federated knowledge graphs. Triplets
were randomly divided among three different clients based
on various relations in the graph and were named FB15k-
237-Fed3 and NELL-995-Fed3. To further investigate the
effectiveness of FedLTailor in environments with different
numbers of clients, additional subdivisions weremade, gener-
ating two subsets: FB15k-237-Fed5 and FB15k-237-Fed10.
The data for each client were divided into training, validation,
and test sets with ratios of 0.8,0.1, and 0.1, respectively. The
relevant dataset statistics are listed in Table 1. s

TABLE 1. Statistics of datasets.
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#C represents the number of clients, #Rel represents the
average number of relations in the clients, #Ent represents
the average number of entities in the clients, #Tri represents
the average number of triples in the clients.

To evaluate the performance of each client, the Mean
Reciprocal Rank (MRR) and Hits@N metric for link ranking
were selected as evaluation criteria. Our focus on link pre-
diction is primarily aimed at predicting tail entities (h, r, ?).
To ensure the accuracy of the predictions, we filtered out
combinations that had already appeared in the triplet set, thus
concentrating on predicting triplets that had not yet appeared.

To demonstrate the effectiveness of our FedLTailor frame-
work, we conduct comparisons in four settings: federated,
standalone, FedEC, and FedE. In these settings, we com-
pared classic embedding learners such as TransE, RotatE,
DistMult, and ComplEx. The standalone version refers to
each client independently conducting embedding training
based solely on its own knowledge graph, without involving
any global aggregation updates. Conversely, the federated
version involves aggregating triplets from all clients to con-
duct embedding training collectively. However, this approach
violates the privacy protection principles. FedE represents the
first attempt to apply the FedAvg strategy to federated knowl-
edge graph embeddings. FedEC is an improvement observed
after when FedE encounters issues with data heterogeneity.
This approach overcomes the challenge of data heterogeneity
by introducing contrastive learning.

For the experimental parameter settings, we used the
Adam [18] optimizer with a learning rate of 0.001. The
number of training epochs E for the local clients was set
to three, and the batch size B was set to 512. The local
training loss parameter µ was 0.1, the contrastive learning
temperature τ was 0.2, the global aggregation temperature δ

was 0.55, and the constant α was 1. For the FB15k-237-Fed3,
NELL-995-Fed3, and FB15k-237-Fed5 datasets, we set the
client selection ratioF to 1 in each round. For the FB15k-237-
Fed10 dataset, the ratio is set to 0.5. In the experimental setup,
we set the embedding dimension for the TransE and DistMult
embedding learners to 128, and for RotatE and ComplEx, the
embedding dimension was set to 256. In addition, we fixed
margin γ to 10, set negative sampling temperature β to 1, and
set the number of negative samples to 256. During the training
process, we used a validation set to assess the prediction accu-
racy. Specifically, for Single and Collective environments,
we evaluated the validation set every 10 epochs, and in the
training of FedLTailor, the validation set evaluations were
conducted every 5 rounds. If the evaluation result on the
validation set reached amaximum in any round, and this max-
imum remained unchanged in the subsequent 15 evaluations,
we terminated the training.

B. EXPERIMENTAL RESULTS
Table 2 summarizes the prediction results for FB15k-237-
Fed3 and NELL-995-Fed3 datasets. Each client had its own
test set, and we presented a comprehensive summary of the

prediction results from all clients. Notably, FedLTailor and
FedEC provided two different sets of results: direct ensemble
and adaptive ensemble.

According to the prediction results in Table 2, FedLTailor
significantly outperformed the standalone knowledge graph
embedding methods in the link- prediction task.

First, it was observed that for the FB15k-237-Fed3 dataset,
compared with the standalone versions, FedLTailor achieved
relative increases in the MRR scores for TransE, DistMult,
ComplEx, and RotatE of 9.50%, 11.75%, 13.59%, and
5.99%, respectively. For the NELL-995-Fed3 dataset, the
growth rates of the four methods are 20.48%, 34.74%,
35.07%, and 16.67%, respectively.

Second, compared with the collective version, FedLTailor
achieved MRR increases on the FB15k-237-Fed3 dataset of
3.00%, 8.11%, 6.64%, and 2.79% respectively, whereas for
the NELL-995-Fed3 dataset, these increases were 10.12%,
15.39%, 14.07%, and 2.64%, respectively.

Furthermore, compared with the FedE method, FedLTai-
lor achieved MRR growths on the FB15k-237-Fed3 dataset
of 2.50%, 3.01%, 4.19%, and 0.48%, respectively. For the
NELL-995-Fed3 dataset, the increases were 8.58%, 13.69%,
7.66%, and 1.73%.

Finally, compared to the FedEC method, FedLTailor’s
MRR increases for the direct ensemble (DE) method on the
FB15k-237-Fed3 dataset were 1.74%, 0.49%, 2.18%, and
0.20%, respectively, and for the adaptive ensemble (AE)
method, the increaseswere 2.67%, 3.87%, 3.64%, and 0.64%,
respectively. On the NELL-995-Fed3 dataset, DE increases
were 7.67%, 11.81%, 5.42%, and 0.79%, and AE increases
were 3.77%, 13.27%, 7.63%, and 2.19%.

In summary, these data highlight the exceptional perfor-
mance of FedLTailor in the link prediction task, surpassing
not only the standalone and collective versions, but also other
federated learning methods such as FedE and FedEC.

Analyzing the data from Table 2, FedLTailor+ shows a
clear advantage in the link prediction performance. Specif-
ically, for the direct ensemble (DE) method, FedLTailor+
showed an improvement in the predictive performance over
FedEC+. TheMRR increase for FedLTailor+ compared with
FedEC+ was 0.31%. Furthermore, for the NELL-995-Fed3
dataset, the increase is 0.79%.

Similarly, FedLTailor+ demonstrated a superior perfor-
mancewhen considering the adaptive ensemble (AE)method.
Across the entire dataset, the increase relative to that of
FedEC+ was 1.07%. For the NELL-995-Fed3 dataset, the
increase in FedLTailor+ over FedEC+ was more significant
1.47%.

Overall, whether hrough DE or AE integration methods,
FedLTailor+ is superior to FedEC+, especially on the
NELL-995-Fed3 dataset, where its advantages are more
pronounced.

It can be clearly observed from Table 3 that when employ-
ing DistMult as the embedding learner and in environments
with a greater number of clients, FedLTailor demonstrated
outstanding performance in the link prediction task.
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TABLE 2. Results on FB15k-237-Fed3 and NELL-995-Fed3. Numbers highlighted in red denote the best results among different KGE methods.

TABLE 3. Results on FB15k-237-Fed5 and FB15k-237-Fed10 with DistMult as the KGE method. Numbers highlighted in red denote the best results.

First, on the FB15k-237-Fed5 dataset, the FedLTailor’s
MRR score increased by 10.87% compared to the stan-
dalone version. Compared to the collective version, the MRR
increased by 5.25%. Furthermore, compared with FedE,
FedLTailor’s MRR increase for this dataset is 5.73%.

Specifically, comparedwith FedEC’s direct ensemble (DE)
method, FedLTailor showed an MRR increase of 0.57% on
the FB15k-237-Fed5 dataset. When considering the adaptive
ensemble (AE)method, the comparisonwith FedECwas even
more significant, with FedLTailor’s MRR increase reaching
5.64%.

In summary, FedLTailor demonstrated clear advantages
in all comparisons, particularly when compared with

FedEC’s direct ensemble and adaptive ensemble methods,
where its performance improvements are especially
prominent.

C. MODEL ANALYSIS
In this section, we focus on exploring the impact of different
client selection ratios F (i.e., only a subset of clients is
selected for aggregation in each round) on the performance.
For this purpose, we selected TransE as the embedding
learner, and FB15k-237-Fed10 as the experimental dataset.
The experiment considered multiple client selection ratios,
including 0.3, 0.5, 0.8, and 1, and recorded the performance
of Hits@10 on the validation set every 5 rounds.
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FIGURE 2. The Hits@10 results with different client selection ratios F .

Through the visualization of the data in Figure 2,
we observed some interesting phenomena. First, as the client
selection ratio F increases, the convergence speed of the
model accelerates and a higher Hits@10 performance can
be achieved. This suggests that a higher degree of paral-
lelism may speed up the learning process and improve final
performance. However, on the other hand, increasing the
ratio F also means greater computational resources and time
consumption. Therefore, determining the appropriate client
selection ratio F is a balancing act that requires finding a
balance between the performance improvement and resource
consumption.

In summary, the research in this section reminds us that
selecting the appropriate client selection ratio F is crucial
when practically deploying FedLTailor, ensuring high perfor-
mance while also considering the actual resource and time
constraints.

Analyzing the impact of the aggregation weight vector Lc

generated by different temperatures δ on the experimental
results, the experiment employs DistMult as the embedding
model and is conducted on four datasets, using Hits@10 as
the evaluation metric. The role of the temperature coefficient
δ in weight allocation and aggregation strategy and its impact
on the overall performance of the model was thoroughly
understood. Increasing the temperature δ leads to more equal-
ized aggregation weights, while decreasing the temperature
δ results in a sharper distribution of aggregation weights,

FIGURE 3. The results with different temperature δ.

meaning that more weight is given to the better-performing
clients. Therefore, the temperature value δ is intentionally
lowered to achieve a sharper and more discriminative weight
distribution. According to the experimental results shown in
Figure 3, when the temperature parameter δ is set at approx-
imately 0.55, the model demonstrates better performance.
This indicates that by finely tuning the temperature param-
eter, the overall performance of the model can be effectively
optimized.

V. CONCLUSION
This study introduces an innovative federated learning frame-
work, FedLTailor, that effectively addresses the challenges
posed by data heterogeneity and the uneven quality of client
embeddings through a dynamic weight adjustment strategy
and a personalized fusion strategy. Our approach not only
optimizes the performance of the global model but also adapts
better to the differences among various clients, enhanc-
ing the model’s robustness and adaptability in diverse data
environments.

The experimental results demonstrate that FedLTailor
exhibits excellent performance across multiple federated
knowledge graph datasets. By employing different knowl-
edge graph embedding techniques, we confirmed the broad
adaptability and effectiveness of FedLTailor, which offers
a powerful and flexible solution for knowledge graph
completion in federated environments.

Overall, the introduction of FedLTailor represents not only
technical innovation, but also shows strong potential for
practical applications. Its successful implementation provides
new perspectives and tools to address key issues in federated
learning. Future work will focus on further optimizing the
FedLTailor framework to address a wider range of challenges
and to explore its potential applications in other federated
learning scenarios.

Although FedLTailor has achieved promising experimen-
tal results in federated knowledge graph embedding tasks,
new challenges are emerging with the resurgence of knowl-
edge engineering and the rapid expansion of knowledge
graphs. The knowledge graphs used in the experiments are
represented purely symbolically, which has shown limita-
tions in enabling machines to understand complex real-world
scenarios. Combining federated learning with multimodal
knowledge graphs (MMKGs) is a crucial step towards
achieving human-level machine intelligence. However, the
complexity of multimodal data, such as text, images, and
audio, may introduce more severe data heterogeneity issues.
This heterogeneity could result in the aggregated global
model being unable to effectively address the specific needs
of each client, posing a significant challenge.
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