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ABSTRACT The proper functioning of many real-world applications in biometrics and surveillance depends
on the robustness of face recognition systems against pose, and illumination variations. In this work,
we employ ensemble systems in conjunction with local descriptors to address pose-invariant face recognition
(PIFR). Facial landmarks are detected during the first step with a two fold usage. The landmark locations are
employed to perform head pose classification (HPC). HPC allows to select only the visible landmarks for
further processing. Then, local descriptors are extracted from the selected landmarks within a face image.
We are proposing a novel learned descriptor (LS-SIFT) to overcome the robustness limitations of SIFT
against large viewpoint variability during face recognition. Second, the extracted descriptors are used to
train the base learners comprising an ensemble system for each subject in a face database (one ensemble
per subject, one base learner per landmark). A novel GMM-based base learner model, named Mahalanobis
Similarity (MS), is introduced in this work. Finally, face recognition is performed based on the ensemble
systems’ outputs from all the subjects in a face database. During the experimental trials, SIFT and LS-SIFT
are employed individually for local feature extraction, whereas GMM andMS are used to build the ensemble
systems, in an independent manner, for further comparison. The whole PIFR system is tested on CMU-PIE,
Multi-PIE, and FERET databases, outperforming most of the state-of-the-art works regarding images with
pose angles in the range of ±90o.

INDEX TERMS Facial landmarks, local feature extraction, head pose description, ensemble learning, face
recognition.

I. INTRODUCTION
The role of face recognition (FR) in real-world applications,
including biometric authentication, surveillance, entertain-
ment, and human-computer interaction, has expanded signif-
icantly in recent years [1], [2]. Significant progress has been
made in automatic face recognition, with promising results
achieved in both controlled and uncontrolled environments.
However, face recognition still faces challenges due to wide
variations in pose, illumination, and expression commonly
encountered in real-world images [3], [4]. Face recognition
can be approached as either an identification or a verification
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problem. Face identification refers to the 1:N matching
problem involving the comparison of an unknown face with
all the faces in a known identity database and making a
decision based on the comparisons. This task is considered
closed-set if the person is known to be in the database. On the
other hand, face verification is the 1:1 matching problem,
where the identity of a query face is accepted or rejected by
comparing it with the face data of the claimed identity in the
database [1].

In recent years, authors have shifted their attention towards
using a holistic approach (a face image is cropped and
processed as a whole) leveraging the power of deep CNNs
(DCNN) [5], [6], [7]. This approach comprises three well-
defined components. The first one involves the design of

76648

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-7015-7797
https://orcid.org/0000-0001-6856-5786
https://orcid.org/0000-0002-5026-5416


S. D. Lin, P. E. Linares Otoya: LS-SIFT: Enhancing the Robustness of SIFT During PIFR

a DCNN capable of extracting a discriminative (invariant)
face embedding, which can be used later for face verification
or identification. During the training of these DCNNs,
a loss function (e.g. contrastive loss, triplet loss) must be
defined such that the inter-class similarity is minimized while
maximizing the intra-class similarity. FaceNet [5], ResNet-
100, and ResNet-50 are some examples of these DCNNs
with promising results. The second component entails the
design of a loss function specifically tailored to achieve a
high accuracy on face recognition. Some renowned works
on this component include CosFace [6], and ArcFace [7].
The last component involves the manner face embeddings
are employed to perform face recognition (e.g. classification,
feature matching).

In the present work, we propose to address pose-invariant
face recognition (PIFR) by using an ensemble learning
approach and local descriptors. In this approach, the
descriptors are computed from facial landmarks which are
considered as keypoints. A novel local descriptor, named
LS-SIFT, is introduced in this work. The main advantage
of this descriptor over SIFT is its higher robustness against
large viewpoint variations. On the other hand, a novel unsu-
pervised base learner model, named Mahalanobis Similarity,
is developed in this work. Its superior performance over other
clustering base learner models (like GMM) is demonstrated
experimentally.

Face recognition is carried out as follows. First, facial
landmarks are detected in the input face image, and head
pose classification (HPC) is performed from the landmarks’
locations. This technique was introduced in our previous
works and its relevance in achieving a high recognition
performance was demonstrated. Second, local descriptor
extraction is performed over the detected landmarks. During
the training stage of the ensemble systems, several points
surrounding a specific landmark are employed for feature
extraction. The extracted descriptors (SIFT, LS-SIFT), asso-
ciated with a landmark, are used to train the base learner
corresponding with the same landmark (i.e. we are proposing
a linkage between a landmark and a base learner). Thus,
the feature descriptors are used to train the base learners
comprising an ensemble system for each subject in a face
database.

During the testing stage, feature extraction is performed
only on the visible landmarks, and the obtained descriptors
are fed to their corresponding base learners for all the
subjects. Lastly, the ensemble systems’ outputs (representing
the similarity value between the input face image and the
subject the system was trained for) are gathered, and the
identity of the input face is obtained by choosing the ensemble
system whose output value is the highest. For the purpose
of performance assessment, we are employing CMU-PIE,
Multi-PIE and FERET as the benchmarks. The results are
compared with state-of-the-art methods to show a surpassing
performance over most of them, especially for face images
depicting extreme poses (close to ±90o). In summary, the
contributions of this paper are listed as follows:

• The potential of extracting local features from facial
landmarks during face recognition is showcased
in the present work. Indeed, we propose a novel
landmark-centered ensemble learning framework where
a base learner is exclusively trained with features
obtained from the regions surrounding its corresponding
facial landmark.

• We propose an enhanced version of the conventional
Scale Invariant Feature Transform (SIFT), tailored
for face recognition. The improvement of this local
descriptor consists of learning landmark-specific map-
pings (MLPs are employed) which aim to reduce the
variability between features extracted from the same
landmark but at different view-points (pose-robust).

• Two base learner models are proposed to construct the
PIFR ensemble systems. The first model is GMM. The
novelty lies in the way GMM is trained (it is used to
cluster features from the same class) not in the algorithm
itself. The second one is a novel GMM-based model
called Mahalanobis Similarity (MS). Its performance
during PIFR trials showed to be considerably superior
than GMM.

• Experimental trials on both face identification and
verification are conducted on CMU-PIE, Multi-PIE
and FERET. Conversely to adopting only the Rank-1
accuracy (recognition rate), as it is done in previous
works using these datasets, we adopted the TAR@FAR
and Rank-N accuracy metrics (used in the latest works
on FR).

The subsequent sections of this paper are organized as
follows. In Section II, we present the related work on
head pose description using facial landmarks, PIFR from a
holistic approach, and the use of local features to improve
the performance during face recognition. In Section III, the
proposed methodology is detailed. The experimental trials,
results, and comparisons with state-of-the-art methods are
detailed in Section IV. Finally, the paper is concluded in
Section V.

II. RELATED WORK
A. WORK ON HEAD POSE DESCRIPTION USING FACIAL
LANDMARKS
As it was mentioned in the introduction, the proposed
PIFR framework performs Head Pose Classification (HPC),
a simplified version of HPE at a coarse level, to select which
facial landmarks are not occluded in the image due to pose
variations. Furthermore, the proposed HPC model requires
a head pose representation (i.e. a descriptor vector). Thus,
it is worth reviewing some current works employing facial
landmarks to compute a head pose descriptor during HPE.
Abate et al. [8] provides a brief taxonomy on HPE where
HPE works are categorized into those using RGB or RGB-
D images, and whether the technique requires a training
stage or not. According to [8], 2D landmark locations are
processed to compute a quadtree-based pose descriptor, and
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HPE is performed upon this descriptor without a training
stage. The proposed quadtree-based descriptor is a binary
vector representing whether a facial landmark is located
within a box (i.e. a square region withing the image) or
not. Even though the number of boxes generated during
the quadtree computation might differ among different face
images, the binary descriptor has a fixed length. HPE is
performed in two stages. During the first stage, a synthetic
face dataset (entailing face images at different poses with
a precise ground truth annotation) is generated with pose
ranges ±45o yaw, ±30o pitch, and ±20o roll, in steps of 5o

(2223 images in total). Furthermore, one pose descriptor is
computed and stored for each generated image (associated
with a head pose annotation) in the face database. The
outcome of the first stage is a gallery of head pose values and
their corresponding descriptors. In the second stage, an input
face image is processed to obtain its binary pose descriptor,
and HPE is performed by comparing the descriptor with
all the descriptors in the gallery, choosing the pose whose
associated descriptor has the highest similarity. BIWI and
AFLW datasets were employed as benchmarks, achieving a
mean MAE of 5.69o and 7.45o respectively.
Another landmark-based head pose descriptor is proposed

in [9]. The elements of this descriptor consist of the landmark
locations after a two-step normalization against scale and
translation. The first normalization is performed by scaling
the raw landmark locations by the inter-ocular distance, and
regarding the center between the eyes as the origin of the
2D coordinate system. The second normalization step is
performed by subtracting the mean of the descriptor, obtained
after the first normalization, and scaling it by the standard
deviation inverse. HPE is performed by training a Support
Vector Regression (SVR) model with the vectors obtained
after applying the proposed descriptor to a HPE database.
In order to validate the proposed approach, the authors
developed a synthetic HPE dataset (SyLaHP), covering pose
ranges of ±90o yaw, ±70o pitch, ±55o roll. The Area under
the Curve (AUC) of the HPE accuracy curve was employed
for performance assessment instead of pose MAE. The
experimental results of using different landmark detection
models on BIWI and SyLaHP evidenced two facts. First, the
proposed method is suitable for HPE even under extreme
poses. Second, the method is very sensitive to the landmark
detection model’s accuracy.

B. WORK ON PIFR FROM A HOLISTIC APPROACH
Currently, PIFR is being addressed from a holistic insight
with the aid of deep CNNs. Even though the method
presented in the current article adopts a local approach, it is
worth to summarize the latest progress done on PIFR from a
holistic point of view.

As it was mentioned above, applying face normalization
to convert a pose-view face into a near-frontal one is a
well-known pre-processing technique during FR. However,
frontalizing a face image depicting extreme poses usually

generate image artifacts or non-acceptable face images.
To address this issue, An et al. [10] proposed a novel
pose-specific face normalization (Adaptive Pose Alignment
or APA), which works in conjunction with a DCNN-based
face representation (SENet50 and LResNet100-IR were
adopted as the backbones) to improve PIFR performance
under challenging conditions. The authors justified the
suitability of their adaptive face normalization technique by
arguing that a proper face alignment technique may reduce
the intra-class variability during FR, and also accelerate
the training of the DCNN used for face feature extraction.
Previous works on face alignment relied on a single canonical
head template (in 2D or 3D) used to apply an affine
transformation to the input pose-view image. The proposed
APA method belongs to the template-based group, with the
difference that 4 learned pose-specific face templates are
employed instead of using a non-learned one. The whole face
alignment method entailed three steps (head pose estimation,
adaptive templates generation, face alignment). During face
alignment, an input face image is matched to a face template
according to its head pose, and a 2D affine transformation
is applied. The CASIA-WebFace dataset was employed for
learning the 4 face templates, while VGGFace2 and MS1M
were employed to train the face representation DCNN, with
SoftMax and ArcFace as the loss functions. Experimental
trials on face verification and identification were conducted
on 4 datasets (IARPA Janus Benchmarks IJB-A, IJB-C, LFW,
CPLFW). The results, in terms of the TAR@FARandRank-N
accuracy, revealed that the addition of the proposed alignment
method did improve the performance on PIFR, achieving the
best results when utilized with LResNet100-IR + ArcFace.

Another work using a holistic approach, in conjunc-
tion with face frontalization, was conducted in [2]. Pet-
pairote et al. [2] stated that a strict condition for a PIFR
algorithm to be used in real-world scenarios is to require
only one frontal image per subject within the face gallery.
To achieve this, a face frontalization technique is proposed as
a pre-processing step. This technique consists of generating
a face shape (represented by normalized landmark locations)
database. Each entry of this database contains the shape of a
frontal face image (0o) plus 6 pose-view (±45o in steps of
5o) face shapes obtained from a specific subject (one entry
per subject). Once the mentioned database is generated, face
frontalization is conducted in three steps. First, the shape of
an input face image is computed with the aid of face and facial
landmark detection models. Second, the shape is matched
with the pose-view shapes of each entry contained in the face
shape gallery to find the closest one. Third, a piece-wise 2D
warping (PAW) operation (landmark locations are regarded
as vertices of a face mesh) is applied to the input image
by employing the matched pose-view shape and its frontal
counterpart.

A post-processing step was also proposed in [2] to
enhance the results of the PAW by taking into account
the level of self-occlusion due to pose variations. However,
it requires a manual fine tuning of several parameters to
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work properly, making it less practical. After the image
has been frontalized, 3 different traditional global face
representations (Local Gabor Binary Patterns, PCA, LBP)
are applied independently, and their histograms are used
as feature vectors. The whole methodology was tested on
Multi-PIE and CMU-PIE databases, with recognition rates
of 97.18% and 97.65% respectively. Even though the results
outperformed some previous works, the images used for
testing just covered the range of [−45o,+45o]. Besides, the
performance is severely affected when tested with faces at
extreme poses or with slight occlusion (e.g. use of glasses).

C. WORK ON PIFR AIDED BY LOCAL FEATURES
Some recent works on PIFR has demonstrated the potential
of extracting local information from face images, instead
of computing a unique global discriminative face feature.
Indeed, the use of locally extracted data can outperform its
holistic counterpart in scenarios depicting a high level of
occlusion (e.g. masked face recognition) [11].

Lin et al. [11] stated that most of the DCNN-based
face detection or recognition models are trained with non-
occluded images. Thus, their performance is poor during
masked face recognition. To address PIFR under this
scenario, a learned face similarity score is proposed in [11].
This similarity score is obtained after training a DCNN
(ResNet-101) to compute face embeddings at a global and
local level. For the global part, a face angular classification
loss (CosFace, ArcFace) is adopted. On the other hand,
the authors proposed the addition of a patch-based local
consistency loss to the total loss function, to give more
emphasis to the features obtained from non-occluded patches.
The whole FR framework was tested on both non-occluded
datasets (VGG2-FP,AgeDB-30, CALFW, CFP-FF, CFP-FP,
LFW) and a synthetically occluded database (masked LFW).
The MS-Celeb-1M dataset was employed during the training
stage. According to the experimental results, the use of
ArcFace in conjunction with the proposed local consistency
loss yielded the best results in all the regarded datasets. The
authors concluded that the utilization of features extracted in
a local manner leads to a better performance in PIFR under
both masked and non-masked conditions.

One of the main application areas of face recognition is
law enforcement. Indeed, Lai et al. [12] stated that global
DCNN-based FR models cannot achieve a high precision
during face verification when the images to be compared are
taken from similar people (e.g. twins), or when the person
of interest wears a mask. Besides, the authors pointed out
that high-resolution face images can be obtained nowadays
at a low cost. Thus, adopting a fully holistic approach for
FR might lead to a considerable loss of relevant facial
information present in this kind of images. With these
considerations in mind, a local learned descriptor (PoreNet)
is proposed in [12] to extract facial information from patches
centered at face pores (e.g. wrinkles, pores, moles). In order to
train PoreNet, a multi-scale pore detector based on Laplacian

of Gaussian (LoG) is proposed. After localizing the pores,
image patches are obtained from the original images (the
patch size depends upon the pore’s scale). The patches are
concatenated with maps containing the (x, y) pixel positions
within each patch, and then they are resized to a dimension of
5×42×42. During the training stage, the Bosphorus dataset
was utilized, considering patches obtained from 4 pose-view
images/subject and 75 subjects. The experimental trials on FR
were conducted on Bosphorus and Multi-PIE, adopting the
Equal Error Rate (EER) as the performance metric. Again,
the experimental results demonstrated that local descriptors
can attain a better performance in FR under both occluded
and non-occluded scenarios compared to global descriptors.

III. PROPOSED METHODS
A. HEAD POSE DESCRIPTION AND CLASSIFICATION
In our previous works [13], [14] we introduced a head pose
descriptor called Face Angle Vector (FAV). The elements
comprising the FAV are the angles between 12 mouth
landmarks and the eye centers, totaling 24 elements. In order
to compute this vector, 24 out of 68 facial landmarks
(landmarks in the eyes and mouth) are detected within a
face image by using the Facial Alignment Network (FAN)
[15]. This vector is employed later to classify an input face
image according to its pose angle into Npose classes such
that only the visible landmarks, corresponding to an specific
pose class, are processed in the remaining steps of the PIFR
system. In order to perform this classification task, a SVC
model is utilized, and the number of pose classes is set to
Npose = 5. The performance of this classifier achieves an
accuracy of 0.988, while the average of its F-1 scores is 0.986.

B. LEARNED MAPPING FOR ENHANCING THE
ROBUSTNESS OF SIFT AGAINST POSE AND ILLUMINATION
VARIABILITY (LS-SIFT)
SIFT has been widely used for performing PIFR. However,
SIFT is not invariant to all kinds of affine transforma-
tions [16]. Indeed, SIFT it is not invariant to large viewpoint
variations. Additionally, it is robust, yet not invariant,
to illumination changes. These drawbacks lead to getting a
limited accuracy when developing a PIFR system relying
on SIFT. Considering these drawbacks, a non-linear vector
transformation (i.e. mapping) for SIFT vectors extracted
from a specific facial landmark is proposed in this work
to improve the SIFT robustness against head pose and
illumination variations. A more robust local descriptor
obtained from a SIFT vector is proposed in this work, called
Landmark-specific SIFT (LS-SIFT).

The network architecture depicted in Figure 1 is employed
to learn LS-SIFT from SIFT descriptors obtained from a
specific landmark. The working principle of this network
is explained as follows. The network is actually trained to
perform a classification task given SIFT descriptors obtained
from the lth landmark (considering a 24-landmark scheme)
as input. In this classification environment, the universe of
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TABLE 1. Description of the parameters employed in the LS-SIFT network architecture.

FIGURE 1. Network architecture used to compute LS-SIFT.

subjects comprising the training dataset is denoted as SLM ,
where s ∈ SLM represents the collection of sample images
corresponding to a specific subject. Furthermore, the output
of the proposed network is a vector in R|SLM | containing the
classification results (i.e. the probabilities of the input vector
SIFTl to match with a specific subject in SLM ). However, the
main purpose of this network is not to obtain the classification
results, but to learn the non-linear transformation from the
input layer to the second-to-last layer (FC5 in Fig. 1) which
maximizes the accuracy of the classification results (i.e. the
classification accuracy is just the objective function to be
maximized during the network training).

The images employed to train the proposed network
are collected from the CMU-PIE and Multi-PIE databases.
Indeed, 20 subjects from the CMU-PIE are randomly selected
and their images with neutral expression, 9 poses, and
ambient illumination (9 images per subject) are added to
the image training dataset. On the other hand, 80 subjects
from the Multi-PIE are randomly selected, and their images
with neutral expression, 13 poses, and 4 different illumination
conditions (13×4 = 52 images per subject) are adjoined to the
image training dataset. Thus, a total of |SLM | = 100 subjects
are considered for training the proposed network, with a total
of

∑
s∈SLM

⟨s⟩ = 4340 images.1 Once the training dataset
of images has been defined, the next step involves processing

1The operator ⟨.⟩ represents the quantity of images associated with a
specific subject.

the dataset to compute the SIFT descriptors extracted from the
detected facial landmarks, as illustrated in Algorithm 1 (lines
8-19). The face images I of the subject s are obtained with
the function getImages(). Each image I ∈ I is processed
to locate the facial landmarks. If the l facial landmark is
visible (i.e. it is not self-occluded by pose variations), then
its location is regarded, and the SIFT feature description
algorithm is applied to all its surrounding points p′ in the
image I within a radius r (see lines 11-14 in Algorithm 1).
The resulting SIFT vectors f⃗ are added to the training dataX,
and the function toCategorical() is utilized to create
binary vectors required to train the proposed network with
the Categorical Cross-entropy loss function [17]. The model
Ml is trained, and added to the set of landmark-specific
SIFT transformation models M (lines 20-21). The process
is repeated for all the 24 landmarks considered in this work.

As can be seen in Fig. 1, the network proposed to compute
LS-SIFT comprises 6 fully-connected layers (including the
output layer). The parameters of each layer are detailed
in the Table 1. The layers’ output size increases until the
layer FC3 (with an output size of 1024). These initial
layers of the network, with an increased output size, act as
feature extractors, detecting low-level patterns and structures
in the SIFT descriptors obtained under different conditions
of pose and illumination. It is worth mentioning that, the
Swish activation function is employed for biggest layer
(FC3), instead of the ReLu function employed in the other
layers. The decision of using the Swish function is based on
empirical trials, where the classification accuracy was higher
than the one obtained with ReLu. The following layers (FC4,
FC5) aim to perform dimensionality reduction, which helps to
create a more robust and compact representation of the input
data. Kernel regularization is included in some of the hidden
layers to promote sparsity in the layer weights, and thus
improving the generalization of the models. L1 regularization
promotes sparsity in the kernel weights by forcing some
weights to become exactly zero. L2 regularization, on the
other hand, promotes smaller weights, preventing a single
weight from dominating the whole learning process [18],
[19].

In Table 1, the regularization methods are expressed as
L1 or L2 followed by the penalty value in parentheses.
Finally, the network is forced to concentrate all the relevant
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Algorithm 1 LS-SIFT Learned Mappings’ Training
Input: An image dataset DBLM corresponding to the

subject set SLM

Result: A set of trained network models M (one
model per facial landmark).

1: M ← {}
2: for (l = 0; l < 24; l + +) do
3: Ml ← createMLPmodel() /* Create an

instance of the network
depicted in Figure 1 */

4: X← [ ]
5: y← [ ]
6: for s ∈ SLM do
7: id = getID(s) // the id is an

integer between
[
0, |SLM | − 1

]
8: I ← getImages(s,DBLM)
9: for I ∈ I do
10: if isVisible(I, l ) then
11: p =

getLandmarkLocations(I,{l})
12: P ′ = surroundingPoints(p, r)
13: foreach p′ ∈ P ′ do
14: f⃗ = ComputeSIFT(I,p′)
15: X.append(f⃗ )
16: y.append(toCategorical(id,|SLM |)
17: end
18: end
19: end
20: Ml .train(X,y)
21: M ←M ∪ {Ml}
22: end
23: end
24: Return M ;

information involved in the classification accuracy towards
the FC5 layer. This is accomplished by removing the
input bias from the Output layer, and establishing the
MinMaxNorm kernel constraint. This constraint establishes
a lower bound and an upper bound to the norm of the weights
incident to each hidden unit. In practice, it has been observed
that setting a norm boundary of [0.8, 1.5] leads to improved
results when utilizing the suggested SIFTmappings for PIFR.
In order to train the model, the Adam optimizer is selected,
with the Categorical Cross-entropy as the loss function to
be minimized, and the accuracy as the metric to monitor the
model performance (it must be maximized).

C. FACIAL LANDMARK-CENTERED LOCAL FEATURE
EXTRACTION
The procedure carried out for describing the facial infor-
mation surrounding a specific landmark on a face image
is defined as facial landmark-center feature extraction.
This procedure is based on the feature extraction of a
generic point (i.e. a pixel comprising its intensity and

location) within a digital image. In this work, two local
descriptors are considered for feature extraction. The first
local descriptor is SIFT. In this work, we do not employ
the SIFT keypoint detector. But, a generic point is converted
into a SIFT keypoint by specifying the point location and
its diameter [20]. This process is carried out by the function
ComputeSIFT(), defined in Algorithm 2. The second
descriptor is LS-SIFT. As it was previously described, LS-
SIFT is a variant of SIFT, tailored for face recognition,
which aims to perform a non-linear transformation to the
SIFT descriptor obtained from a specific facial landmark
such that the resulting descriptor vector has an enhanced
robustness against viewpoint, and illumination variations.
The computation of LS-SIFT is detailed in the function
ComputeLS-SIFT() of Algorithm 2. Additionally to the
specification of the location of a pixel position (i.e. landmark
location) p in an image I , its landmark index l (according to
the 24-landmark scheme) must be also specified, so that the
landmark specific non-linear transformationMl is applied to
the SIFT descriptor f ∈ N128 to obtain the LS-SIFT descriptor
fl ∈ R200.

D. FACE RECOGNITION USING ENSEMBLE SYSTEMS
A generic ensemble system used for classification has three
essential components. The first component of an ensemble
system is the set of base learners, which are individual weak
classifiers. Base learners receive input data and compute clas-
sification decision values. The output can be either discrete or
continuous, depending on the employed classification model
(e.g. Support Vector Regression, Artificial Neural Networks,
Naive Bayes). The second component focuses on base
learner training methods. The selection of a specific training
method depends on the underlying approach used to obtain
the final classification result from the ensemble system.
Common training methods include Bagging, Boosting, and
AdaBoost [21], [22]. These methods determine how the base
learners are trained individually (or collectively), and how
the output of each base learner contributes to the overall
ensemble’s classification performance. The third and final
component is the combination rule (e.g. mean rule, product
rule), which determines how the outputs from the base learner
set are integrated to obtain the ensemble support value.

The conventional way of using ensemble learning states
that the base learners comprising an ensemble system must
be trained with data obtained from samples corresponding
to different classes (e.g. subjects) under a classification
environment. Furthermore, an ensemble system can be
built at 4 different levels (combination level, classifier
level, feature level, data level) [22]. When the feature
level is chosen, the base learners are trained with different
feature subsets from the feature space. We are proposing to
implement an ensemble system at a feature level (each base
learner is trained exclusively with features extracted from
a specific facial landmark). According to the conventional
ensemble learning approach, the base learners still need to
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Algorithm 2 Facial Landmark-Centered Local Fea-
ture Extraction From a Face Image
Input: A gray scale face image I, set of non-occluded

landmark indexes L
Result: Set of features extracted upon facial

landmarks F .
Data: Descriptor parameters:
• SIFT: σsift, øsift
• LS-SIFT: Facial landmark index l

1: P = getLandmarkLocations(I,L )
// pl ∈ N2;∀pl ∈ P

2: F ← {} // The set of extracted local
descriptors is initialized as an
empty set.

3: for l ∈ L do
4: fl = computeDescriptor(I, pl ∈ P, l)
5: F = F ∪ {fl}
6: end
7: Return F

/* The following functions are
employed for feature extraction.
The function computeDescriptor() is
replaced by any of these ones. */

8: Function ComputeSIFT(I,p,l):
9: kp = getKeypoint(p,øsift) // see [20]

10: f = getSIFTDescriptor(I,kp,σsift)
11: Return f ∈ N128

12: End Function
13:

14: Function ComputeLS-SIFT(I,p,l):
15: f = ComputeSIFT(I,p)
16: fl =Ml (f ) // Apply

landmark-specific feature
mapping

17: Return fl ∈ R200

18: End Function

be trained with features extracted from different classes (i.e.
subjects), and their outputs should be vectors in RC (C is the
number of classes), which are combined later to compute the
final classification result.

A different base leaner training method, called ‘‘Input
Decimation Ensembles’’ is proposed in [23]. This method
generates different subsets of training features for each
classifier within its ensemble. This strategy involves training
each base classifier (one for each class) with a distinct
feature subset, effectively reducing correlations among the
classifiers. Input decimation reduces the classification results
correlation between the classifiers by selectively training
them with features that are highly correlated with a particular
class (i.e. the base learner associated with a class is primarily
trained with data acquired specifically from that particular
class). During classification, the output of each base learner is
not a vector but a value between [0, 1], and the classification

is performed by choosing the class associated with the base
learner with the highest output value.

In our previous work [14] we adopted a similar ensemble
learning insight as in [23] to perform PIFR. Indeed, in the
present work we are employing an ensemble learning
framework (see Fig. 2) similar to the one adopted in our
previous work [14]. In this framework, the input face image
undergoes processing to determine the face bounding box
and facial landmark locations. Subsequently, the input face
image and landmark locations are separately processed
by two distinct blocks. The first block performs Head
Pose Classification (HPC), as discussed earlier. Based on
the computed face pose class from the HPC block, the
Base Learner Selection (BLS) block determines which base
learners will be utilized in the ensemble system. In fact,
the base learners are selected according to the computed
pose class (see Fig. 4) given that some of them might
be occluded due to the head pose. Each base learner in
this study is associated exclusively with a specific facial
landmark, following a 24-landmark scheme (i.e. an ensemble
system comprises 24 base learners). Consequently, once the
selected base learner subset is determined, the BLS block also
specifies the landmarks that should be described in the face
image. The information regarding the selected base learners
and corresponding landmarks is then passed to the block in
charge of performing feature extraction. This block utilizes
the received information and computes the descriptors for
each selected landmark from the input face image.

For the purpose of this work, a base learner βp,l is
a model expert in performing face recognition in a not
very accurate way (i.e. a weak face recognition model).
This base learner processes the feature descriptor vector f⃗l

obtained from the lth facial landmark of the pth subject,
on a face database (i.e. a base learner is linked to a facial
landmark), to compute its decision support dp,l, representing
the ‘‘likelihood’’ that f⃗l corresponds to the subject p. In this
work, two different models are proposed as base learners to be
used independently for further comparisons. The first model
is Gaussian Mixture Models (GMM). GMM is a parametric
probability density function (PDF) represented as a weighted
sum of Gaussian component PDFs as defined in (2). Where
N (x⃗|λi) is the normal PDF (defined in (1)) with a mean
vector µ⃗i ∈ RD, and a covariance matrix Σi ∈ RD×D. The
main goal of GMM is to cluster a collection of training vectors
X (i.e. assign a vector to a specific Gaussian component
PDF), such that the likelihood2 of observing X, given a
specific set of GMM parameter values λ, is maximized.
Given that the likelihood, defined in (3), is a product of F
scalars within the interval [0, 1], its value converges quickly
to zero. Therefore the log-likelihood L(X|λ) ∈ (−∞, 0] is
preferred to be used during the estimation of the parameters
λ. The optimal parameters λ∗ are obtained by using the
Expectation-Maximization algorithm with the log-likelihood
as the objective function to maximize.

2The likelihood measures how well X fits the GMM distribution.
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FIGURE 2. Workflow of the proposed ensemble learning based PIFR framework. Data or objects are
represented as gray blocks while operations are depicted in yellow.

FIGURE 3. Usage of the proposed PIFR framework: (a) During 1:N face identification
(b) During 1:1 face verification.

FIGURE 4. Graphical representation of BLS for different pose classes. The
selected base learners (visible or non-occluded ones) are depicted as
green circles for each pose class.

For the purpose of this work, a GMM model is trained as
detailed in Algorithm 3.3 Once the landmark l is detected
in the training face image (gallery image I ∈ Gp),
feature extraction is performed over the points surrounding
the landmark location within a radius r (lines 6-15). The
extracted features (i.e. descriptors) are arranged in a matrix

3Pseudocode is employed to describe base learner training, instead of
figures, to clarify the mathematical notations used along the paper, avoiding
misconceptions.

X, and the GMM model is fitted with X as the training
data (line 16). Finally, the fitted GMM is stored in the base
learner object corresponding to the landmark l (line 17).
After training a base learner with a GMMmodel, its decision
support δGMM ∈ (−∞, 0], defined in (4), is the log-likelihood
that the landmark descriptor vector f⃗l obtained from the
l th landmark of an input face image corresponds to the
subject the GMM model was trained for. Where λ∗ are
the GMMmodel’s parameters (weights, covariance matrices,
mean vectors) after fitting it to X. In this work, the GMM
model comprises ncomp = 3 Gaussian components, and all
the components share the same covariance matrix4

N (x⃗|µ⃗,Σ) =
1

(2π)D/2∥Σ∥1/2
exp{−1

2
(x⃗− µ⃗)⊺Σ−1(x⃗− µ⃗)}

(1)

p(x⃗|λ) =
ncomp∑
c=1

wcN (x⃗|µ⃗c, Σc);

4According to our experimental trials, using one covariance matrix per
component slightly improves the performance on PIFR than using a shared
covariance matrix. Moreover, the testing time increases by a factor around
4 when using one covariance matrix per component.
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FIGURE 5. Graphical representation of the training process for the
proposed base learners: (a) Descriptor matrix X computation; (b) GMM
model training; (c) MS model training. A circle in blue indicates the
surrounding points of the l landmark within a radius r.

s.t. λ = {wc, µ⃗c, Σc} ∀c ∈ {1, .., ncomp} (2)

p(X|λ) =
F∏

f=1

p(x⃗f |λ); x⃗f ∈ X (3)

δGMM(f⃗l) = ln p(f⃗l|λ∗) (4)

The second proposed base learner is called Mahalanobis
Similarity (MS). It combines the advantages of GMM for data
clustering, with the superiority of the Mahanalobis distance
over other vector similarity metrics. In this case the Bayesian
variant of GMM, called Bayesian GMM, is employed for data
clustering due to the way the parameters λ∗ are obtained.
Under a Bayesian environment, the posterior likelihood,
defined in (5), implies that a prior probability distribution
must be specified for the GMM parameters λ. This prior
introduces constraints or penalties to prevent overfitting and
improve the clustering performance of the GMM model.
In summary, the goal of the MAP5 estimation is to find the
parameter values λ∗ that maximize the posterior probability
p(λ|X) given the observed data X and the prior distribution
p(λ). A full explanation of the Bayesian GMM underlying
mathematical background is well explained in [24]. The
training procedure, detailed in Algorithm 4, is very similar as
for GMM. However, the fitted Bayesian GMM distribution
is not stored in the base learner object as a whole. Instead,
only the computed covariance matrices Σc, and means µ⃗c

are stored (see line 17 of Algorithm 4). Furthermore, the
log-likelihood is not employed as the decision support for
a trained Mahalanobis Similarity base learner. Instead, Σc

and µ⃗c are employed to compute the Mahalanobis distance
of an input descriptor vector f⃗l to the closest component

5Maximum a-posterior estimation.

Algorithm 3 Base Learner Training Algorithm for
GMM
Input: The training face image gallery Gp for the

subject p, a predefined list of landmarks L .
Result: The set of available trained base learners Bp

for the subject p.
Data: Landmark neighborhood radius r

1: Bp ← ∅
2: for (l = 0; l < 24; l + +) do
3: Φ← initGMMmodel()
4: βp,l ← initBLModel(p, l, type: GMM)
5: X← [ ] // initialize an empty

descriptor matrix
6: foreach I ∈ Gp do
7: if isVisible(I,l) then
8: pnt =

getLandmarkLocations(I, {l})
9: P ′ = surroundingPoints(I, pnt, r)
10: foreach pnt′ ∈ P ′ do
11: f⃗ =computeDescriptor(I, pnt′)
12: X.append

(
f⃗
)

13: end
14: end
15: end
16: Φ.fit(X)
17: βp,l.save(Φ)
18: Bp ← Bp ∪ {βp,l}
19: end
20: Return Bp

(i.e. Gaussian distribution). Then, this distance is converted
into a similarity value within (0, 1], as defined in (6), which
becomes the decision support of the Mahalanobis Similarity
base learner.

p(λ|X) =
p(λ)p(X|λ)

p(X)
p(λ|X) ∝ p(λ)p(X|λ) (5)

∆l,c = f⃗l − µ⃗c

δMS(f⃗l) =
[
1 + ln

(
1 + min

c

(
∆⊺

l,cΣ
−1
c ∆l,c

))]−1
(6)

A face recognition ensemble system distributes the com-
puted feature vectors f⃗l to their corresponding base learners
(selected by the BLS block), and combines the outputs dp,l

of the selected base learners βp,l by using the combination
rule to compute the ensemble decision support valueDp. The
value of Dp indicates the degree of support6 that the input
image matches the pth subject (i.e. person) for which the pth

ensemble system was trained. The mean rule is employed to
compute Dp, as defined in (7). It is worth mentioning that,

6In some cases Dp ∈ [0, 1] represents the likelihood value. On the other
hand for GMM Dp ∈ (−∞, 0], represents the log-likelihood. In any case,
a greater value suggests that it is more likely that the input vector correspond
to the subject p.
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other combination rules (e.g. employing gating networks,
an algorithm to assign base learner weights by estimating
the diversity among the learners, assign weights based
on Discriminative Power Analysis) could be employed to
improve the recognition performance as detailed in [21], [22],
and [25]. Nevertheless, these other combination approaches
might require additional processing or training steps each
time a new subject is added to the face database. For the sake
of simplicity, we adopted the mean rule due to the satisfactory
outcomes obtained in our previous work [14].

Dp =
1
|L |

∑
l∈L

dp,l (7)

PE = argmax
p∈P

Dp (8)

The landmark set L , comprises all the landmarks selected
for a given head pose class (a subset L of the total
24 landmarks is selected by the BLS block for each pose class
to ensure that a given landmark is not occluded in the image).
Finally, the predicted identity PE , defined in (8), is obtained
by choosing the ensemble system with the highest ensemble
decision support value.

According to the definition of a base learner for this work,
a model is trained for a specific landmark on a subject from
the database. This process is called base learner training,
depicted in Figure 5. The steps followed during base learner
training depend on the working principle of the model type
used as a base learner. In case of adopting GMM as the base
learner, the steps detailed in Algorithm 3 are followed. For
the case of using MS, Algorithm 4 is followed.

IV. EXPERIMENTAL RESULTS
The proposed method is implemented in Python 3 language
on an Ubuntu 20.04 PC with a Core™ i7-8700H CPU,
16.00 GB of RAM, and a NVIDIA GeForce RTX 4070 Ti
graphics card. For face detection, the Google MediaPipe
model is employed. Whereas the pre-trained Face Align-
ment Network (FAN) [15] is used for facial landmark
detection.

A. EMPLOYED FACE DATABASES
The CMU-PIE database [26] comprises over 40000 images
of 68 subjects. This database has over 600 images from
13 poses (variation in the head yaw and pitch angles),
with 43 different illuminations (the authors used a ‘‘flash
system’’), and with 4 different expressions (neutral, talking,
blinking, and smiling). In order to verify the effectiveness
of the proposed PIFR method, only the images with ambient
illumination, neutral expression and yaw angle variation are
used. Thus, in this work 9 images per subject are employed
with a total of 612 images.

The CMU Multi-PIE face database [27], developed
between October 2004 and March 2005, was designed to
facilitate the development of algorithms for face recognition
across various challenging conditions, including pose, illu-
mination, and expression variations. The database comprises

Algorithm 4 Base Learner Training Algorithm for
Mahalanobis Similarity (MS)
Input: The training face image gallery Gp for the

subject p, a predefined list of landmarks L .
Result: The set of available trained base learners Bp

for the subject p.
Data: Landmark neighborhood radius r

1: Bp ← ∅
2: for (l = 0; l < 24; l + +) do
3: Φ← initBayesianGMMmodel()
4: βp,l ← initBLModel(p, l, type: MS)
5: X← [ ] // initialize an empty

descriptor matrix
6: foreach I ∈ Gp do
7: if isVisible(I,l) then
8: pnt =

getLandmarkLocations(I, {l})
9: P ′ = surroundingPoints(I, pnt, r)
10: foreach pnt′ ∈ P ′ do
11: f⃗ =computeDescriptor(I, pnt′)
12: X.append

(
f⃗
)

13: end
14: end
15: end
16: µ, Σ← Φ.fit(X) // Fit the BGMM

model to X and return the means
and covariance matrices

17: βp,l.save(µ, Σ)
18: Bp ← Bp ∪ {βp,l}
19: end
20: Return Bp

TABLE 2. Description of the databases employed during the face
recognition experiments (only the images with neutral expression,
ambient illumination, and pose variation are taken into account).

a total of 337 subjects, with 129 subjects appearing in
all four sessions, and containing over 750,000 images.
For the purpose of this work, PIFR is performed on
each session independently, by utilizing the images with
neutral expression and ambient illumination (i.e. only pose
variation). In total, 11973 face images (13 images per subject)
from the CMU Multi-PIE are employed in this work.
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FIGURE 6. Gallery images employed during the training stage of the
proposed ensemble systems: (a) CMU-PIE; (b) Multi-PIE; (c) FERET. On the
left: Images used for a gallery size of 1. On the right: Images used for a
gallery size of 2.

TABLE 3. Effect of utilizing different descriptors on the face recognition
performance with different base learner models on the CMU-PIE
Database (|G| = 1).

The Facial Recognition Technology (FERET)Database [28]
was developed from 1993 to 1997 with support from
DARPA, USA. It aimed to create automatic face recognition
capabilities for security, intelligence, and law enforcement
applications. In this study, the Face Recognition Vendor
Test 2000 (FRVT2000) protocol, detailed in the FERET
database reports [28], is followed. This protocol aims to
test the performance of a FR system to deal with different
head orientations. It involves 200 subjects, with 9 testing
images per subject. The gallery image consists of the
frontal pose (yaw angle of 0o), while the testing images
include non-frontal poses with yaw variations of ±15o,
±25o, ±40o, and ±60o. A brief description (number of
subjects, number of images) about the way these three
databases are employed in this work is summarized in
Table 2.

FIGURE 7. Cumulative Matching Characteristic (CMC) curve of the
proposed methods on the CMU-PIE database: (a) CMC for CMU-PIE with
|G| = 1; (b) CMC for CMU-PIE with |G| = 2.

FIGURE 8. Rank-1 accuracy obtained with the proposed methods for
different pose values on the CMU-PIE database: (a) Detailed Rank-1
accuracy with |G| = 1; (b) Detailed Rank-1 accuracy with |G| = 2.

B. EXPERIMENTAL RESULTS ON CMU-PIE, MULTI-PIE,
AND FERET DATABASES
Most of results obtained in works utilizing CMU-PIE,
Multi-PIE, and FERET databases are presented in terms
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TABLE 4. Effect of using different descriptor types on the face
recognition performance with images from the Multi-PIE database ( S
stands for session number, MS is employed as the base learner model).

TABLE 5. Effect of using different descriptor types on the face
recognition performance with images (pose variation only) from the
FERET database (MS is employed as the base learner model).

of the face recognition rate (also called Rank-1 accuracy),
which is an indicator of the face identification performance.
Additional experiments on face verification and identification
are conducted in this study, as it was done in our previous
work [14]. The TAR@FAR metric is used to measure the
performance on face verification, while the Rank-N accuracy
is employed for face identification [29]. All the experimental
trials are conducted for two different gallery image sizes. For
the case of CMU-PIE and Multi-PIE, the frontal image (0o

pose) is employed for training when utilizing a gallery image
size of |G| = 1. Conversely, when the gallery image size is
set to |G| = 2, the images with 0o, and −90o are employed
for training the FR models (see Fig. 6a, Fig. 6b). In order
to improve the robustness of the method under |G| = 2,
the flipped version of the −90o image is also employed for
training, as can be appreciated in Fig. 6.
The recognition performance achieved on CMU-PIE, for

a gallery size of 1, can be better visualized with their
CumulativeMatching Characteristic (CMC) curves, shown in
Fig. 7a. From Fig. 7a it is evidenced that in general, utilizing
LS-SIFT with any base learner yields better results than
SIFT. Besides, the recognition rate is close to 100% at Rank-
5 when utilizing LS-SIFT+MS. Additional experiments are
conducted with a gallery size |G| = 2, and their results are
depicted in Fig. 7b. There is a clear improvement compared
to using |G| = 1. A detailed (per pose) Rank-1 accuracy for

FIGURE 9. Cumulative Matching Curve for different methods tested on
the Multi-PIE database: (a) CMC for Session 1; (b) CMC for Session 2;
(c) CMC for Session 3; (d) CMC for Session 4.

the different combinations of descriptors and base learners
is shown in Fig. 8a. Again, the use of |G| = 2 improves
the overall PIFR performance on images with large poses,
as shown in Fig. 8b. The results of both face verification and
identification on CMU-PIE are summarized in Table 3.
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TABLE 6. Detailed performance comparison of the proposed method with state-of-the-art methods for PIFR on the CMU-PIE database.

TABLE 7. Detailed Rank-1 accuracy comparison of the proposed method with state-of-the-art methods for PIFR on the Multi-PIE database ( Session 1,
pose variation only).

TABLE 8. Detailed performance comparison of the proposed method with state-of-the-art methods for PIFR on the FERET database.

The experimental results on Multi-PIE are summarized
in Table 4. For Session 01, experiments with |G| = 1 and
|G| = 2 are conducted. The performance superiority, in terms
of Rank-1 accuracy, of using LS-SIFT over SIFT is very
noticeable when using |G| = 1. Indeed, there is an accuracy
difference of over 7.0% (around 227 faces images). This
performance gap is reduced when using |G| = 2 images.
However, the superiority of using LS-SIFT remains, with a
difference of 3.6% in terms of the Rank-1 accuracy. The
results on face verification, confirms the higher level of
robustness of LS-SIFT compared to SIFT. The results on the

remaining sessions of Multi-PIE evidence again that the best
results are obtained with LS-SIFT. In order to visualize the
degree of enhancement offered by using LS-SIFT instead of
SIFT, the CMC curves of each session from the Multi-PIE
database are presented in Fig. 9.
The third dataset employed for testing the proposed

PIFR framework is FERET. As was mentioned above, the
FRVT2000 test is employed. This test involves performing
PIFR on 200 subjects with 9 images per subject. In this
work experimental results are obtained with |G| = 1, and
|G| = 2. The frontal image is employed for the trials with
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|G| = 1, while the −60o image and its flipped counterpart
are included when |G| = 2. After performing PIFR with
the proposed methods, the obtained experimental results are
summarized in Table 5. It can be seen that the results LS-SIFT
are slightly better than the ones with SIFT on the FERET
database. Indeed, when |G| = 1 is employed, LS-SIFT shows
an improvement of 2.6% (equivalent to 47 images) over SIFT
on the Rank-1 accuracy. The same situation occurs for face
verification.

C. PERFORMANCE COMPARISON ON FACE RECOGNITION
WITH STATE-OF-THE-ART WORKS
The CMU-PIE database has served as a benchmark for
evaluating various state-of-the-art methods in PIFR. The
obtained experimental results are compared with those prior
works that have utilized this database [2], [32], [37] in
Table 6. Notably, some of these works only considered a
pose angle range of ±45o in their experiments. In contrast,
the proposed approach incorporates pose angles ranging from
±90o, achieving a remarkable recognition rate of 100%
on almost all the pose angles. Moreover, it is evident that
some works that also considered ±90o pose-view images
experienced a significant decline in performance beyond the
±45o range. It should be pointed out that, in our previously
published work [14], an ensemble learning approach was
used with SVM as the base learner model, SIFT descriptors,
and a gallery size of |G| = 3. However, experimental trials
on Multi-PIE showcased that the method in [14] is suitable
to be used in low-scale face databases (around 50 subjects).
In large-scale databases (more than 200 subjects), there is
a significant recognition rate drop due to the way the base
learners are trained.

The results obtained on session 1 of Multi-PIE are
compared with the results of other state-of-the-art methods
assessing the FR performance on images with pose variation
exclusively. This comparison is presented in Table 7. Most of
the results achieved in this work outperform the ones obtained
in the works selected for comparison. It is noticeable that, the
best results are obtained by combiningMSwith LS-SIFT, and
a gallery size of |G| = 2. Moreover, the results obtained with
MS + LS-SIFT and |G| = 1 outperforms [34] for any pose
value.

In Table 8, the results obtained on FERET are compared
with state-of-the-art works. The comparison shows that the
performance of the proposed method with |G| = 1 is inferior
than other works utilizing the FERET database. If |G| = 2 is
employed, the obtained results are close to the best result on
FERET. However, the testing protocol on FERET establishes
that only the frontal face image should be used as the gallery
image.

V. CONCLUSION
The presented work addressed the problem of face recogni-
tion under pose variations (pose-invariant face recognition)
by combining the ability of local feature descriptors in
representing facial information at specific face regions (facial

landmarks), and the power of ensemble systems in combining
several weak classifiers (base learners) to achieve a high
recognition accuracy. In order to perform face recognition,
an input face image is processed to detect its facial landmark
locations. Then, these landmark locations are processed to
classify the input image according to its head pose class.
According to its pose class, facial landarks are selected
and feature extraction is performed over them. The feature
vectors are input to their corresponding base learners, and
the ensemble decision is computed from the base learners’
outputs. Finally, the face identity is computed by choosing
the ensemble system whose ensemble decision support is the
highest.

Most of the works on PIFR focus merely on the face
identification task with the Rank-1 accuracy (recognition
rate) as the main indicator. In this work, the results on
both face verification, and identification were included.
As above mentioned, the proposed PIFR framework includes
a local feature extraction stage. A novel local feature
descriptor, called Landmark-specific SIFT (LS-SIFT) was
proposed in this work. LS-SIFT is obtained by applying
a learned non-linear vector transformation (mapping) to
a SIFT feature obtained from a specific facial landmark,
improving its robustness against pose variations. On the
other hand, two novel base learner models were proposed
(GMM, Mahalanobis similarity). In case of GMM, the
training methodology is the novelty. The PIFR performance
obtained by using these models were compared during
the experimental trials on CMU-PIE, showing that the
Mahalanobis similarity (MS) model performs the best (close
to 100% with a gallery size of 2). Furthermore, experiments
on CMU-PIE showed a significant performance improvement
when LS-SIFT was employed as the feature descriptor,
compared to SIFT.

The FR experiments on Multi-PIE were conducted on
each of its 4 sessions. MS was selected as the base learner
model, and the experiments aimed to show the superiority of
LS-SIFT over SIFT. This superiority for FR were evidenced
on every session. Indeed, the use of LS-SIFT yielded a Rank-
1 accuracy over 94% on any session. On the other hand,
an accuracy around 90% is obtained when using SIFT. This
superiority is also appreciable on the face verification results,
where the TAR@FAR metric was employed, especially for
low FAR values (say 0.001). For the case of FERET, the
obtained results were close to the best results on this database
under the FRVT2000 protocol. In summary, the current
work has evidenced the performance improvement during
FR when LS-SIFT is employed instead of the conventional
SIFT. Furthermore, the Mahalanobis Similarity (MS) base
learner model, introduced in this work, showed to perform
remarkably better than the conventional GMM during PIFR.
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