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ABSTRACT This article aims to address an existing research gap in the study of the most widely used
mathematical procedures in the field of automatic control of energy-sensitive industrial processes. In these
types of processes, as is the case of cold storage in the food sector or the pharmaceutical industry, applying
energy efficiency measures is very risky. This is because the margin of variation in the temperature of the
processes is very small, since the product to be manufactured or preserved is very sensitive. This is where
the developments of the Internet of the Things showcase their usefulness because they allow measurements
to be taken with great accuracy and to verify the effectiveness of energy efficiency proposals. Nevertheless,
there are very few studies and developments on automation measures in energetically sensitive industries.
This is the research gap that the present work aims to shed light on, proposing a method for optimizing the
process of automatic revision in a refrigerated food warehouse. Said method prominently employs control
charts, as they allow for a relatively easy set up and require minimal intervention but can be revised manually
if so desired. The analysis also includes an auxiliary variable that measures the impact of the variations in
the system. Improvements are also provided to the procedures and variables, with which the most commonly
used methods of efficiency control in the industry can maintain good results in energy-sensitive industries.
Finally, the best selection of charts for the chosen variables is then discussed and justified.

INDEX TERMS Control charts, energy efficiency, Industrial Internet of Things, Internet of Things (IoT),
IoT applications, temperature control, warehousing.

I. INTRODUCTION
The European Commission (EC), guided by the European
Green Deal of 2019 and the Recovery Plan for Europe in
2021, has outlined a vision to invest 30% of its budget
towards programs, projects, and initiatives aimed at address-
ing climate-related challenges. This commitment underscores
Europe’s dedication to leading the charge in becoming the
world’s first climate-neutral region by 2050. To accomplish
this ambitious objective, the foundation of the EU’s future
energy strategies must continue to prioritize energy efficiency
and the expansion of renewable energy sources [1]
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The pursuit of energy efficiency plays a vital role through-
out the entire manufacturing process of any product, encom-
passing both the product’s design and the procedures involved
in its creation, storage, and long-term preservation [2]. In cer-
tain instances, these processes can emerge as substantial
contributors to overall energy expenditure, and many of them
are susceptible to variations in energy consumption.

An energy-sensitive process is one in which it is crucial to
maintain an uninterrupted flow of energy during themanufac-
turing of a product or service. A notable example of such a
process is the refrigerated storage of various goods, including
pharmaceuticals, chemicals, and food products. Industrial
refrigeration for preserving food alone encompasses over
550 million cubic meters of cold storage space globally,
according to the International Institute of Refrigeration
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(IIR, 2015). These facilities are responsible for approximately
2.5% of worldwide greenhouse gas emissions and account for
8% of global electricity consumption [3].

The substantial energy consumption in these facilities
is an absolute necessity, since in refrigerated food storage
installations, energy consumption is a key issue for the prof-
itability of companies and weighs about 50% of their total
expenses [4]. Furthermore, between 60% and 90% of the
variations in energy consumption are a consequence of the
variability in the volume of refrigerated product stored [5].

If we add that the deviations from optimal temperature,
which vary for each type of food, can rapidly lead to spoilage
and microbial growth, causing product loss; we have an
energy-sensitive industry [6], [7]. On the one hand, energy
expenditure must be optimized, considering the variety of the
product, its quality and the variability of storage volume, and
on the other hand, product must not be lost due to poor storage
conditions.

It is estimated that roughly 300 million tons of products
are discarded annually worldwide due to inadequate storage
conditions [8]. In the modern world, approximately 40% of
the food we consume requires refrigeration, with the refriger-
ation process consuming between 60% and 70% of electrical
energy in cold storage facilities [9], [10].
As living standards improve, the construction of more

warehouses is becoming commonplace. Therefore, advance-
ments in the sustainability of cold storage, both in terms of
energy efficiency and economic viability, are of paramount
importance in today and tomorrow’s society [11].

This example illustrates the intricate nature of achieving
maximum efficiency in an energy-sensitive process, requiring
a delicate balance between minimizing energy consumption,
and ensuring the safety of the products. In the context of
refrigerated buildings, various parameters must be carefully
considered. Some of these parameters are common to other
types of structures, such as temperature set points and insula-
tion thickness [12]. Others are more specific to refrigerated
facilities, like the unique refrigeration requirements of the
stored products.

Energy efficiency measures can be adopted from various
perspectives. First, there are passive measures in the design
stage, such as improving insulation and optimizing cooling
plants, which can be hard to adapt to the variable nature of the
goods stored in a warehouse, even if they can yield significant
energy savings [11].

And second, there are active measures when the facility
is already in the operational stage, where cold production
is trying to be adapted to the demand. This article focuses
on addressing efficiency measures in this operational stage.
This is a complicated balance for several reasons. Because
refrigerated product warehouses are designed without know-
ing which food products will be stored, the interior setpoint
temperature and insulation have to be estimated. But as stated
previously, the nature of the specific goods stored in a ware-
house can vary, so the reality is different and unique for each

building. Therefore, measures need to be designed so that
they are valid for the different realities these installations face
and that allow customization for each stage of their operation.
This applies both in terms of the variability of the product
to be stored, and in potential changes in their typology, and
therefore their storage conditions.

The multitude of factors at play makes the implementa-
tion of energy-efficient measures increasingly challenging in
refrigerated warehouses, even when utilizing proven strate-
gies such as enhancing insulation,

Various solutions have been proposed to address these
challenges, with some studies dating back almost two decades
at the time of this writing [14], [15]. Nevertheless, recent
advancements in energy management technologies are now
making their way into the realm of cold storage for food and
other energy-sensitive processes. Among these innovations,
the Internet of Things (IoT) stands out as the most notable.

The IoT has already demonstrated its advantages in
non-refrigerated warehouses and many logistical operations,
where numerous studies have shown its effectiveness in
automating management tasks such as pickup, delivery, and
record-keeping, leading to paperless and unmanned opera-
tions [16], [17], [18]. However, it’s essential to acknowledge
that transitioning to a smart warehouse is a time-consuming
process that necessitates support from top management and
substantial effort [19].

Nevertheless, the improvements are considerable, with
some of the most significant benefits stemming from
cloud-based programmable platforms that facilitate real-time
monitoring of numerous variables simultaneously [19], [20].
This capability is invaluable for energy-sensitive processes,
especially in food preservation, where it can provide meticu-
lous control over temperature conditions.

Control charts, introduced in 1924, have remained a
cornerstone of statistical process control due to their effec-
tiveness in monitoring various processes [21]. These charts
have gained popularity for several reasons, primarily their
track record in enhancing productivity, preventing unneces-
sary process adjustments, and providing valuable insights into
process capacity and diagnosis [22].

The type of charts used to deal with continuous data like the
temperature or the energy consumption are known as variable
control charts. These can be classified as memory-less and
memory-type control charts depending on their detection
ability and utilization of previous data. Both types of charts
have their own sub-types and have their different uses [23].

Broadly speaking, memory-less control charts only use
the current value to monitor the process, making them more
accurate and serve as a direct representation, whereas the
memory-type control charts combine the data with previous
information, making them more sensitive to pattern changes
in the analyzed data [24].

In the context of cold storage, the implementation of con-
trol charts allows to respond swiftly to significant deviations
in temperature or energy consumption. While this function
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may seem straightforward, it possesses nuances owing to the
diversity of control chart types. By proactively addressing
anomalies before they lead to damage, control charts serve a
pivotal role in preventing both food spoilage and unnecessary
energy wastage. Notably, their simplicity and ease of setup
distinguish them from more complex methods like neural
networks, contributing to their widespread popularity [25].

A. CONTRIBUTIONS AND RELATED WORK
This article aims to address an existing research gap by ana-
lyzing thesemathematical procedures, specifically in the con-
text of industrial processes with high energy sensitivity. This
is because, despite the utility and user-friendliness of control
charts, and the notable progress in IoT technology, there
appears to be a gap in research focused on energy-sensitive
processes. Particularly in domains emphasizing energy con-
sumption reduction and temperature preservation. On the one
hand, many studies in the IoT and food safety industry have
been primarily oriented toward logistics and transportation,
with limited attention given to energy-sensitive cold storage
processes. To showcase a few examples:

Pal and Kant deal with the entire logistics chain of per-
ishable goods, and they propose an IoT solution that is very
broad and layered, but with the emphasis situated mostly in
transportation and packaging [18].

Fan establishes the basis of a supervision of not just the
logistics chain, but the entire life cycle of the refrigerated
food products using IoT. However, the focus is centered in
the creation of the platform, whereas the processes of plant-
ing/culture, processing, transporting, and catering/marketing
that make up the life cycle of the product are not fully
elaborated on [26].

Lastly, Hu focus on the warehouse itself and the usage
of a digital twin, even touching the subject of temperature
monitoring, but is more focused on the implementation of the
Digital twin itself and its benefits rather than analysing the
energy sensitive process of temperature control itself [27].
While all these papers are well researched and constructed,

the analysis of energy-sensitive processes is not the main
priority in any of them.

The present work not only aims to shed light on this field
but also demonstrate with real examples some adaptations of
the most used mathematical models which are appropriate for
the energy-sensitive industries.

The latest advances in energy management distinguish
energy efficiency measures according to type, and in the
operational management part they all aim at treating data in
a holistic manner, given the different perspectives to consider
in these treatments. A good example of this is the work of
Mariano-Hernández, Deyslen, et al [28].

In the most recent works, there is clearly a trend towards
developments and advances in Industry 4.0 technologies for
energy management, from improving sensors and their relia-
bility, improving sensor communications with computers and
databases, to the treatment of this data for energy optimiza-
tion [29].

More specific studies on warehouses in 2023 point to
energy management as one of the major problems to be
solved, as well as pointing to the use of Industry 4.0 tech-
nology to improve their energy management [30]. The
difficulties in obtaining real data to validate procedures are
one of the barriers that those studies encounter, which in this
case, the authors have been able to overcome.

The main objectives can be therefore described as follows:
First is to determine which of the analyzed charts is more

effective in the control of an energy sensitive process. The
effectiveness of a chart will be measured in both in its ability
to detect anomalies and its capacity to do it as quickly as
possible. There are two types of anomalies to be detected:
Operational anomalies like load shifts, caused by the behavior
of the personnel in an installation; and Maintenance anoma-
lies, which are the result of an error in the system or its
equipment.

The second objective is to determine which variable would
be more useful in monitoring energy-sensitive systems, both
for operational and maintenance anomalies.

The third and final objective is to propose an effective
method for the control of energy efficiency in energy-
sensitive installations.

The authors of this study consider this objective of
paramount significance for two primary reasons:

The proliferation of these procedures within the con-
text of industrial digitalization, particularly from an energy
perspective.

The global importance of energy-sensitive industries
within the wider industrial landscape.

B. STRUCTURE OF THE PAPER
The remainder of this paper is organized as follows. Section II
will provide an overview of the main case study of a refrig-
erated warehouse, alongside some of the most important
specifications for the study. Section III will showcase and
provide the required amount of detail for the different control
charts that will be studied. Section IV will determine the time
scale in which the analyses will be conducted. Section V
demonstrate the conducted experiments and some of the
most important and noteworthy results and graphs. Finally,
Section VI will present the main conclusions of the project.

II. CASE STUDY FOR VALIDATION
The logistics center’s case study encompasses a vast array
of cold storage chambers, totaling over 140,000 m^3. The
outside view can be seen in Figure 1. These chambers come
in various types, all built with the same materials, but each of
them with unique sizes, refrigeration needs, and capabilities
for handling different products and storage temperatures. The
temperature ranges they can accommodate span from cold to
frozen.

A. EQUIPMENT
Tomeet the refrigeration requirements of these chambers, the
center utilizes a central refrigeration system that can be seen
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FIGURE 1. Outside view of the warehouse building.

FIGURE 2. Showcase of the engine room.

in Figure 2. In the interest of energy conservation, the same
system is used for all types of refrigeration instead of having
a separate source for each chamber. This is even though each
chamber has distinct interior units that regulate the tempera-
ture to suit the stored food, considering the specific needs of
the contents and the chamber volume.

The chambers obtain the cold they need from the installa-
tion by regulating the cooling flow based on the temperature
measured by a sensor and the difference it has from the
setpoint temperature. Since the products of the cambers are
different, the setpoint temperatures are also different, which
makes it difficult to adjust supply and demand. Consequently,
the warehouse lacks the ability to accurately measure and
adjust the energy consumption of a particular chamber or type
of food.

The in-cloud platform can help alleviate this, and some
progress has already been made, with additional equipment
being installed in the creation of a digital twin for the logistics
center. The most essential of this additional equipment are the
following items:

1) An Adquio Pro programmable controller from Make
Develop, which acts as a data processor and concentra-
tor of the installed sensors and connects to the cloud
platform that will create the digital twin of the logistics
center. This controller receives information from the
different devices connected to it, such as temperature
sensors. The data received by Adquio is temporarily
stored and organized to provide detailed information
on environment and consumption according to several
factors: The chamber to which it belongs, the location
within said chamber and the exact date of recording.

2) Regeltechnik AFTF temperature sensors inside the
chambers, necessary to allow the exhaustive control in
real time of the environmental conditions that is one of
the main objectives of this paper.

3) A Circuitor CVM-C10 network analyzer, used to
monitor and control the consumption of the cooling
generation equipment.

With this equipment, the data is organized and acquired
in real time, and then passed to an IoT platform for control
and visualization. In this case the Adquio Cloud platformwas
used, which has several advantages: On the one hand it allows
to see data in real time, as well as historical data. On the other
hand, it’s also programmable, allowing the addition of control
through automatic alerts. Furthermore, it has its own SCADA,
which gives the system the scheduled and real-time control of
the installation.

This arrangement can be observed in Figure 3 and allows
for real time control of the temperatures and can even be used
to program alerts with the proper software [31].

B. VARIABLES FOR ANALYSIS
The collected information can be utilized to generate a data
sheet containing various variables for monitoring the status of
the installation. In the case study, the data sheet will encom-
pass a timeframe starting from the 8th of November in 2021 at
12:00 to the same date in 2022 at 10:00, with measurements
taken at hourly intervals. In this research, we identify vari-
ables that can alert us as soon as possible to large deviations
that can be caused by significant differences between the
measured temperatures and the setpoint temperatures, or by
unusual consumption values, which indicate that something
is not adjusted and needs to be adjusted. The aim is to ensure
that consumption is not higher than desired, nor is there
product loss, greatly assisting in managing energy supply and
demand during plant operation over a representative period
of time where there have been different quantities of stored
product, loading and unloading processes, etc

For all this reasons, the focus of this study will be on two
main variables, and an auxiliary one:

On the one hand the energy consumption and the temper-
ature of the chambers were chosen, as these variables are
the most closely related to both the efficiency of the system
and the safety of the stored goods. While there are other
variables that could be considered in this fashion, like the
humidity of the chambers, not all the analyzed chambers
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FIGURE 3. First type of sample analyzed, showcasing the entire set of
data.

possess humidity sensors.Moreover, the temperature requires
a more uninterrupted flow of energy to keep a stable value
than the humidity. This makes the temperature a better vari-
able to examine energy sensitive processes.

On the other hand, a selected Key Performance Indicator
(KPI) was also created to aid in the analysis. Each of these
three variables has its own specifications:

As previously stated, due to how the refrigeration system
is designed, the energy consumption will consist of a single
value that will encompass all chambers.

TABLE 1. Set temperatures of the analyzed chambers.

The temperatures have a set point that can be used to check
howmuch the system corresponds to the desired values of the
chamber, and the three main set points used in the installation
are represented in Table 1, each of them assigned to one
specific chamber.

These chambers represent all the types of food products
that are stored in the warehouse and correspond to half of
the total chambers in the installation, which can be taken
as a reasonable estimate of the total functionality of the
system regarding the variability in temperature, since the rest
of the chambers have equivalent conditions, sizes and heat
transmissions to the three that have been chosen.

Lastly, a KPI is a measurable indicator used to track
progress towards a desired outcome. They are often used in
financial activities to measure a company’s success against
targets, objectives, or peers. To be effective, KPIs need to be
specific, continuous, and quantifiable, so choosing the right
factor is important.

In the context of energy efficiency and smart buildings,
there are different types of KPIs. These include energy costs,
equipment efficiency, load, and storage capacity [32], [33].

In this paper, the ‘‘Energy per analyzed magnitude’’ KPI is
considered the most suitable. The sources suggest that in our
example, this KPI should follow the formula:

KPI ij =
EC ij

Tij − TSetj
(1)

where EC ij represents the energy consumption of the sample
i in the chamber j, with Tij as the resulting temperature,
and TSetj represents the set point of the temperature in that
chamber j.
However, there are problems with this approach.
One problem is that the consumption value EC ij, which is a

key component of this KPI, is a unified value despite working
with multiple chambers, and cannot be easily separated for
individual chamber analysis. However, this can be overcome
by considering the three analyzed chambers as a reasonable
estimate for the entire system.

Another problem relates to the difference in temperatures,
where the ideal situation would be for the factor Tij − TSetj
to be equal to zero. But in the suggested version of the KPI
it’s impossible since this factor goes in the denominator and
would make the values tend towards infinity.

Swapping which value goes in the denominator would
solve this problem, and with both of these adjustments we
could create a ‘‘Difference of temperature per unit of energy’’
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KPI with the formula:

KPI i =

∑
j=1

(
Tij − TSetj

)
EC i

(2)

This new formula uses the same parameters, except that
now it employs the sum of all analyzed chambers in the
sample i, can work with the only energy consumption data
available EC i, and becomes 0 if the ideal value is reached.
Despite addressing those issues, this modification still has

some clarity problems in interpreting the information dis-
played. In an automated and unmanned system, it’s crucial
to have a clear pattern that indicates when the value exceeds
control limits and triggers an alarm. But in this case, when one
magnitude rises, it has the opposite effects on the KPI than the
other. This means that if the temperature difference increases,
the value of the modified KPI also increases, whereas a rise
in consumption decreases the KPI value, and vice versa.
Both of these situations are undesirable but it’s impossible
to distinguish them from a decrease in consumption or a
decrease in temperatures, respectively.

Because of this, a high value of this KPI could indicate
either a very high temperature difference or very low con-
sumption, making it difficult to knowwhat’s happening when
a value surpasses control limits.

To address this problem, a different type of KPI is pro-
posed, which is the product of the sum of temperature
differences and the energy consumed by the refrigeration
system. The formula for this KPI is as follows:

KPI i =

∑
j=1

(
Tij − TSetj

)
× EC i (3)

As in previous formulas, Tij represents the temperature of
the sample i in the chamber j, and TSetj represents the set
point of the temperature in that same chamber. Finally, ECi
showcases the energy consumption in the sample i.
This new KPI represents the combined impact of both vari-

ables in the system. Although there may be some ambiguity
in attributing a high value to consumption or temperature
difference, it’s clear that exceeding a control limit is detrimen-
tal to the system. This KPI also maintains the desired value
of 0, which can only be achieved if the chamber temperatures
match their set values.

Another option considered is using the absolute value
of the distance between the chamber temperature and the
set value. This approach measures variations in tempera-
ture equally. However, knowing the sign of the temperature
change in food refrigeration is essential since the conse-
quences of a deviation in temperature from the setpoint are
generally much worse than in a negative direction. Therefore,
knowing the sign of the deviation is very important and would
not be possible with an absolute value. For example, apples
withstand a rise in temperature much worse than a drop in
temperature, while green tomatoes are more vulnerable to
cooling [7], [8].

Furthermore, setting 0 as the minimum value doesn’t align
well with the employed charts, which work better when the
target value is close to themean of the data sample. Therefore,

the absolute value of the difference won’t be used, as the other
two variables can compensate for the limitations of the KPI.

With all these factors in mind, the next step is to evaluate
the control charts that will be used in future experiments.

III. STUDY OF STATISTICAL CONTROL TOOLS
Statistical process control (SPC) is the use of statistical tech-
niques to monitor and analyze process conditions, ensuring
accurate assessment of process performance and recommend-
ing necessary corrective actions.

As stablished previously, control charts are the most
widely used method for maintaining process control, allow-
ing the monitoring of quality-related variables in production
processes.

Although they have some drawbacks, such as sensitivity
to shift size and in some cases suffering to small delays
if not properly adjusted, their overall usefulness remains
significant.. [34]. This is because of several qualities like
their versatility and ease to implement [25]. But in the cases
of energy sensitive processes where every moment that the
process is not in control can incur losses, they have the added
advantages of not only employing a relatively small amount
of data per computation, but most critically; being able to
provide information in real time with the correct setup. This
makes them very well suited for energy sensitive procedures.

A. OVERVIEW OF THE TYPES OF CHARTS
The most basic definition of a control chart is that of a
graphical representation of a quality characteristic plotted
against three lines:

The Centre Line (CL), which represents the ideal value
of the quality characteristic, and the Upper Control Limit
(UCL), and Lower Control Limit (LCL), which showcase the
acceptable range of values of the characteristic. These control
limits are chosen to minimize the likelihood of in-control data
points falling outside their boundaries, and act as the main
parameters of the chart [35].

Other factors can influence the characteristics of the chart,
like the nature of it’s in-control data points, or the size of the
shift in values they are most specialized to detect. It should be
noted that the impact of a shift depends on the scale employed
in the sample, with larger shifts having more significance
in shorter time frames. With all of this considered, the key
control chart types that will be explored are:

1) The Shewhart control charts, which are the most
well-known examples of a memory-less control charts
and are widely used because of their simplicity [21].
Memory-less control charts only use the current obser-
vation to monitor the process, and so are more accurate,
if less sensitive than other charts. They are used mostly
to detect larger shifts, but they can still be useful in
smaller intervals [24].

2) The exponentially weighted moving average (EWMA)
and the cumulative sum (CUSUM) which are the
two most used memory-type control charts. These get
their name for the fact that they combine the usage
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of previous information with present information to
make them more sensible to changes in the patterns
of the analyzed data [36]. Because of this property,
EWMA and CUSUM control charts are most used to
detect moderate and small shifts respectively, but they
could potentially remain useful even when employ-
ing the bigger intervals [24]. However, it should be
noted that they generally to entail more complexity
and design considerations than the relatively standard-
ized memory-less control charts, and depending on
the specific type of chart used, the calculations can
become intricate, posing difficulties in their practical
application [37].

While other potential charts have been considered, the
three that have been selected are the most well-known and
employed of all of them. This makes them easy to understand
and work with, which will make the study easier to imple-
ment and increase its reach. The following sub-sections will
explore each of these charts in more detail.

B. SHEWHART CHARTS
Shewhart charts are the oldest and most used control charts.
The one that will be employed is the Shewhart X control chart,
favored for their simplicity, ease of comprehension, and lack
of complexity in calculations [38]. However, it’s important
to note that Shewhart control charts excel at detecting large
shifts in a process but struggle with identifying small or
gradual shifts, even more so than other memory-less charts.

This limitation has persisted since their inception and has
led to efforts to address it using supplementary rules.

Generally, the most popular formulas of the basic charac-
teristics of this type of charts are:

UCL = E (W ) + 3 ∗

√
Var (W ) (4)

CL = E (W ) (5)

LCL = E (W ) − 3 ∗

√
Var (W ) (6)

In whichW is a function used to estimate the process mean
of the data vector X, E(W) represents the mean value of W
and Var(W) represents its variance. The Control limits in this
context are often referred to as the three sigma limits.

The chart therefore displays the quality characteristic of a
product or process against the sample number (Often denoted
as ‘‘t’’)

This nomenclature assumes that W follows a normal
distribution, implying an approximately equal chance of con-
tinuous data being above or below the mean.

Under this assumption, these two limits form an interval
with a 99.73% probability of encompassing the values of W
when the process is in control. Consequently, the likelihood
of a false positive, or a false alarm, is quite low [25]. However,
the range of this interval also presents a problem: It’s the
reason that the chart struggles to detect small shifts.

Other problemwith this chart is that it relies on the average
value and variance of the sample and, as previously stated,
assumes that the data can be approximated to a normal dis-

tribution. If this is not the case, it can create problems in
both small and large sample sizes. This can potentially lead
to overfitting, or distortions in the mean and variance.

In the case that the mean and variance of the sample are
not adequate for the analysis in a certain experiment, another
set of values will be chosen.

C. EWMA CHARTS
EWMA charts offer a similar level of performance with
a straightforward design, making them easily applicable in
real-world scenarios [39].

One notable strength of these charts is their ability to
provide a smoothed representation of the current process
parameter status, rendering them valuable graphic tools [37].
Additionally, they excel at detecting small shifts in process

parameters and benefit from dedicated graphical techniques,
cementing their importance in identifying subtle to moderate
process changes [40].

In EWMA charts, historical data is considered alongside
current observations, with the weight of each measurement
diminishing exponentially as it becomes less recent. This also
makes it more resistant to have its control limits distorted by
outlier values.

The key statistic monitored in EWMA control charts is:

Yi = λXi +
(
1 − λ

)
Yi−1 (7)

In this formula i is the sample number and λ is the smooth-
ing parameter, which must have a predetermined value that
satisfies the condition 0 < λ ≤ 1. A value of 1 would make
the chart equal to that of a Shewhart X chart, with no memory
of past data. Y0 stands for the initial value and is typically
derived from either the average of initial data or the target
value if such information is available.

This monitoring statistic is then compared to the control
limits and the center line, which correspond to the following
values:

UCL = u0 + L ∗ σ

√
λ

2 − λ
(1 −

(
1 − λ

)2i) (8)

CL = u0 (9)

LCL = u0 − L ∗ σ

√
λ

2 − λ
(1 −

(
1 − λ

)2i) (10)

The default σ represents the standard deviation of the
observations, whereas λ and L represent the two primary
parameters that dictate the performance of the EWMA charts,
and which must be chosen with care.

‘‘λ ’’ is dictates how quickly measurements lose signifi-
cance over time and ‘‘L’’ determines the width of the control
limits.

The value of λ it’s crucial, as it represents the weight of
the current measurement over the previous values. Making it
too big will cause the EWMA chart to lose the capacity for
memory, while making it too small could cause the chart to
become a static value. Smaller values of λ enhance sensitivity
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to small shifts, whereas larger values make the chart less
vulnerable to being distorted by large shifts. As a result, it’s
common practice to recommend values of 0.1 or 0.2 for λ .

Regarding the parameter L, the three-sigma limit applied to
the Shewhart charts (Meaning L = 3) is generally used with
higher levels of λ . However, in the cases of λ being lesser
or equal than 0.1, there’s an advantage at reducing the width
of the limits for higher sensibility. In that case, employing a
value of L between 2.6 and 2.8 is considered the best course
of action [22], [24], [35]. Taking all of this into consideration,
the main values used in the experiments will be λ = 0.1 and
L = 2.7 unless stated otherwise.
It’s important to note that the control limits of the EWMA

are not static, unlike those in other chart types; they progres-
sively move further from the center line. However, the control
limits do eventually stabilize as the observation count ‘‘i’’
increases and the factor (1 - (1 - λ ) ^(2i)) approaches unity.

D. CUSUM CHARTS
Cumulative Sum charts or CUSUM chart, are arguably the
best at detecting small shifts in processes. Fundamentally,
these charts assume that the sum of deviations from the target
value, usually the mean, remains at zero if the process is
in control. When the process deviates from its target, the
cumulative deviation would either increase or decrease sub-
stantially, depending on the direction of shift [41].

Therefore, the chart effectively tracks the cumulative devi-
ation from a designated point, whether said point is the
mean or another target value. This does present a problem
of losing some information regarding the magnitude that’s
being analyzed, but that can be mitigated with the correct
representation. Despite the existence of other methods to
represent these charts, the most common one is the Tabular
method, in which the cumulative deviation is treated as a
statistical function and plotted against control limits. The two
main statistical functions of the tabular CUSUM are denoted
as C+ and C− which are generally defined as:

C+

i = max[0, (Xi − u0) − k + C+

i−1] (11)

C−

i = max[0, − (Xi − u0) − k + C−

i−1] (12)

Here, Xi represents the observation of the sample I, and
u0 is the target mean. The reference value is denoted as ‘‘k’’
and signifies the magnitude of the shift that the project aims
to detect and is usually set to half of the standard shift (in
standard units) of the process. C+

i−1 and C−

i−1 provide the
accumulation of deviations in their corresponding values that
gives the name to the chart. Both C+ and C− are initially set
to zero.

These two statistics are plotted against a control limit H
and breaching this limit indicates an out-of-control situation.
If the statistic C+

i exceeds H, the process mean is said to be
shifted above the target value. Conversely if the statistic C−

i
surpasses H, it signifies a shift below the target value [23],
[24], [35].

The fact that both statistics possess the same control limit
despite having different meanings can make the chart both
less demanding in terms of programming requirements, but
also more difficult to read for a human observer. To correct
this problem, it was decided that instead of having both
CUSUM statistics be positive, the lower CUSUM statistic
(C^-) has been adjusted so that its values fall below zero. This
adjustment also involves changing the sign of the correspond-
ing control limit.

The resulting statistic can be defined as follows.

C−

i = −max[0, − (Xi − u0) − k − C−

i−1] (13)

Regarding the size of the control limits, for a proper setup
its generally recommended using a control limit between four
and five times the magnitude of the shift to be detected.
However, the value is considerably flexible, and in this case,
to further enhance the sensibility of the chart, the value
chosen was 3.5 times the shift.

Both specifications will be employed in all three variables,
ensuring uniformity in the analysis unless specifically stated
otherwise.

IV. EMPLOYED TIME SCALE
To achieve the goal of automatic control in energy-sensitive
installations and processes, it’s important to thoroughly ana-
lyze all the presented charts not only in all the featured
variables but also in various time scales. This is important
because energetically sensitive processes have very small
ranges of variation, but those variations greatly impact the
results. This makes it necessary to analyze the time scales
that will be employed in the study, to verify which one is
most appropriate. The steps taken in this endeavor will be
showcased in the following sections:

A. SPECIFICATIONS OF THE TIME SCALE
The term ‘‘time scale’’ refers to the duration of the data
sample examined in the current analysis. For each chart type
and variable, we conducted analyses on the following sample
sizes, each accompanied by their respective graphical repre-
sentation:

1) The complete dataset, used to gain a comprehensive
understanding of variable behavior and to assess the
functionality of the graphs. Showcased in Figure 4

2) Twelve month-sized segments, which allow to pinpoint
anomalous behavior with greater precision. Showcased
in Figure 5

3) Four week-sized intervals, created by dividing the first
month-sized segment, and providing a more detailed
view of the graphs. Showcased in Figure 6

4) The daily data spanning from November 15th to
December 12th, examined for an even finer analysis,
and allowing to compare patterns across days of the
same week and the same day across different weeks.
Showcased in Figure 7
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FIGURE 4. First type of sample analyzed, showcasing the entire set of
data.

FIGURE 5. Second type of sample analyzed, employing the period from
Mid-February to Mid-March.

All the showcased graphs belong to the Shewhart analysis of
the energy consumption, as this type of graph and variable
requires the least amount of setup and previous adjustments.

B. SELECTION OF THE TIME SCALE
The amount of time scales analyzed is considerable, and all of
them have their advantages and disadvantages. Even though
it could be theoretically possible to simply employ all the
different time scales simultaneously in the cloud platform,
this could present problems. These problems could range
from heavy computing load, to raising the risk of false alarms.

Therefore, if possible, it’s helpful to select a time scale
that can serve as the main representative of the analysis.
This scale must strike a delicate balance by encompassing

FIGURE 6. Third type of sample analyzed, showcasing the first week of
the data set.

FIGURE 7. Fourth type of sample analyzed in which the comparison
between all the days of the third week examined can be observed.

a substantial amount of data, and so preventing overfitting,
while remaining manageable for analysis.

In that case, the week-sized division emerges as the
primary monitoring system for automatic revision and moni-
torization, striking the best balance between scope and detail.

The other temporal scales, on the other hand, serve as aux-
iliary components, enhancing the manual revision process.
Monthly and yearly analyses provide the capability of pattern
recognition on a larger scale, whereas daily analysis allows
for the identification of patterns on a smaller level.

Chart-specific observations related to temporal scales will
be indicated in their respective sections if needed.

The upcoming sections will focus on a detailed examina-
tion of each of the charts, assessing their performance with
respect to each variable.

The graphs chosen as examples were those of the third
week of analysis, because of its relatively small but noticeable
variations. This time frame starts onMonday 22 of November
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of 2021 at 12:00 and ends on Monday 29 of the same month
at 11:00. In the case of temperature-related data, Chamber C
has been chosen as the focal point for the graphical represen-
tation. This is because Chamber C is the most variable one,
and this significantly impacts the values of the KPI.

V. RESULTS AND DISCUSSION
With all the necessary specifications presented and accounted
for, the following sections will evaluate how each of the
control charts perform by examining the three main variables
in the selected time scale. The criterion for their evaluation is
their ability to reliably detect anomalies in all three variables,
along with the speed at which these anomalies are detected.
If an anomaly is detected quickly, it can be fixed faster, and
this minimizes the damage that they can cause and guarantees
the system’s efficiency. Distinguishing whether the anomaly
is the result of an inefficient operation or the result of a
need for maintenance would also be a desirable trait, but less
fundamental to the performance of the charts.

Afterwards, the advantages and the disadvantages of each
combination will be discussed, as well as the results that can
be extracted from them.

A. ENERGY CONSUMPTION
This magnitude can be reasonably assumed to follow a nor-
mal distribution, and it’s the least critical parameter among
those analyzed. This is because the energy consumption plays
a more significant role in evaluating the efficiency of the
system than in security considerations. However, it must be
considered in the analysis, as a higher power consumption can
also be symptomatic of other problems within the system.

The following graphs showcase the behavior of the energy
consumption in the three main charts, and the main points of
interest of each are highlighted in the following sub-sections:

1.Analysis of the Shewhart charts: The variable benefits
from the chart’s accuracy regarding the data employed, since
closely monitoring the variability of the energy consumption
is important in energy efficiency.

Also, because of the lower level of danger for the system
in the case of surpassing control limits, the benefits of hav-
ing less risk of false alarms could potentially outweigh the
drawbacks of a lower sensitivity.

The graph showcased in Figure 8 represents the natural
values extracted from the energy consumption sensors, along
with the Shawhart control limits, calculated using Formulas 4,
5, and 6 with parameters E(X) = 138.13 kW and

√
Var(X ) =

30.89. The values are plotted over the previously established
period, measured in hours. While the values don’t exceed
the control limits at any point, the hour 30, corresponding to
Tuesday 23 at 17:00, comes considerably close, with a value
of 227 against a SCL of 230.79.

2. Analysis of the EWMA charts: The main benefit of
the EWMA in the energy consumption is a higher sensibility,
especially to gradual shifts, but that can be compounded
by the fact that it also has a higher calculation complexity,

FIGURE 8. Shewhart chart of energy consumption.

FIGURE 9. EWMA chart of energy consumption.

a slight loss of precision, and the potential increase in possi-
bility of false alarms.

To see how much those drawbacks manifest, it’s important
to analyze the most meaningful values in Figure 9. This figure
represents the auxiliary variable Yi shown in Formula 7, cre-
ated from the values extracted from the energy consumption
sensors over the previously established time period, measured
in hours. This variable is represented against the EWMA
control limits calculated with the Formulas 8, 9 and 10, using
the values u_0 = 138.13 kW and σ = 30.89, alongside the
parameters λ = 0.1 and L = 2.7.
First, there’s a period between the hours 30 and 40, which

correspond to Tuesday 23 at 17:00 and Wednesday 24 at
3:00 respectively, in which the chart surpasses the Superior
Control Limit.

Second, there’s another interval in which the value sur-
passes the SCL between the hour 45, which corresponds to
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FIGURE 10. CUSUM chart of energy consumption.

Wednesday 24 at 8:00 and the hour 56, which corresponds to
that same day at 19:00.

The third of interest is a small 2-hour interval between the
hours 77 and 78 in which the EWMA surpasses the value of
the Superior Control Limit again. These hours correspond to
Thursday 25 between 16:00 and 17:00

Lastly, there’s an interval between the hours 134 and 162 in
which the graph goes below the Inferior Control Limit, and
that interval corresponds to Sunday, 28 at 1:00 and Monday
29 at 5:00.

3. Analysis of the CUSUM charts: The nominally higher
sensibility of this chart could be useful, but the drawbacks are
at the most prominent in this variable, as this chart hides most
of its information and only showcases the sum of the values
that exceed the designed limit. This is a problem since energy
consumption benefits from employing exact values to control
the efficiency of the system.

Moreover, the low severity of this variable makes it so
that an increased risk of false alarms is not worth the poten-
tially higher sensitivity. To evaluate the performance of this
chart, it’s most significant values in the examined data, repre-
sented in Figure 10, will be analyzed. This figure represents
the auxiliary variables C+

i and C−

i against their respec-
tive control limits during the previously established time
period, measured in hours. With a standard deviation of the
period σ = 30.89, the control limits are considered equal to
H= ±108,115. The auxiliary variables start from 0, with C+

i
following formula 11 andC−

i following formula 12. Both use
the data extracted from the consumption sensors together with
the values u0 = 138.13 kW and k= 15.445, equal to the mean
of the values of the sample and half of the value of its standard
deviation respectively.

The first period that exceeds one of the control limits in
either direction is the interval between the hours 30 and 67,
which corresponds to Tuesday 23 at 17:00, and Thursday

TABLE 2. Chart results in analyzing the energy consumption.

25 at 6:00, in which the values surpass the Superior Control
Limit.

The second period also surpasses the SCL and corresponds
to the interval between the hours 73 and 84. These represent
the dates of Thursday 25 at 12:00 and the same day at 23:00
respectively.

The last notable value is the hour 130, equivalent to Sat-
urday 27 at 21:00 and is the point where the value of the
chart drops below the Inferior Control Limit. Unlike other
examples, it doesn’t return to the control area for the duration
of the analyzed period.

However, the main difference is that the CUSUM appears
to take considerably longer to return to the control interval
once it has exceeded the control limits in any direction. The
most evident cases of this are the interval between hours
30 and 67, and the interval between hour 130 and the end
of the graph.

In the first interval, two cases of product loading are
grouped together with no distinction between them. In the
second interval, the value doesn’t return to the control limit
despite the low consumption period having already passed.

However, despite this drawback, the CUSUM chart detects
for the most part the same anomalies that the EWMA chart,
but earlier.

4. Discussion of the energy consumption: The different
properties of each chart have a considerable impact in their
performance and the type of analysis that they can be used
for in energy consumption. The table below shows the main
anomalies detected in the sample and the interval of their
detection, expressed in hours.

It’s very noticeable that the Shewhart doesn’t manage to
detect any of the anomalies the other two showcase. The hour
30 comes close but doesn’t surpass the control limits. The
next step is to analyze if these anomalies detected in the other
charts are real or false alarms.

The first three anomalies have the same explanation: New
products were being added into the installation. This caused
an increase in energy consumption, as the cooling system
must refrigerate an additional load of produce instead of
merely keeping the temperature of the pre-existing products.

The last interval encompasses the entire day of Sunday and
in the case pf the EWMA doesn’t recover its original values
until the early Monday hours. And this is not an isolated
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FIGURE 11. Energy consumption from early November to early December
of 2021.

phenomenon. Figure 11 showcases the monthly interval that
includes the analyzed week, and every single week suffers
from a similar low consumption interval between the first
hours of Sunday and early morning Monday. Those intervals
are:

Hours 134 to 164, equivalent to the 14th of November at
1:00 and the 15th of November at 7:00
Hours 301 to 332, equivalent to the 21st of November at

0:00 and the 22nd of November at 7:00.
Hours 469 to 499, equivalent to the 28th of November at

0:00 and the 29th of November at 6:00.
Hours 639 to 666, equivalent to the 5th of December at 2:00

and the 6th of December at 5:00.
Because of this regularity in their time of emergence and

their duration, it can be stated that this low consumption
interval is an existing pattern in the system instead of a false
alarm.

In fact, it can be stated that none of the detected anoma-
lous values corresponds to a false alarm in the system,
which highlights the sensibility of the memory type charts.
However, it should be noted that none of these values corre-
sponds to an error in the system either, they are exclusively
operational alerts. With the validity of the anomalies con-
firmed, the results of the analysis in energy consumption are
the following:

The Shewhart’s accuracy might be ideal for detecting
maintenance alerts in the installation since it works only
with present values and uses exclusively the mean value and
standard deviation. Therefore, it’s useful to set up an alarm,
for when it detects an anomaly, it’s practically guaranteed to
be an error in the system.

On the other hand, the other two charts work better from
an efficiency point of view and the detection of operational
errors. They help identifying overloads and drops in energy

consumption, which is very useful to consider when design-
ing energy efficiency measures.

Of these two, the EWMA doesn’t exceed the values as
much as the CUSUM chart and can get back to the control
interval faster when the anomaly has stopped. In the case of
the last anomaly, the CUSUSM doesn’t return to the control
values at all.

However, the CUSUM still works better for this function
since it can detect the same anomalies as the EWMA, but with
a couple of units of time faster. This is essential for an energy-
sensitive process, since the units employed in this analysis are
hours, so a small delay can make a big difference.

B. TEMPERATURE
Each analyzed chamber is assigned a specific target temper-
ature, and the primary goal when considering temperature
parameters for each chamber is to assess the deviation from
this designated set point.

In case the standard deviation proves inadequate for the
sampled data, it’s possible to estimate the acceptable tem-
perature variation necessary to maintain optimal storage
conditions [10]. In this instance, the chosen level of tolerance
is between 1 and 2.5◦C from the set point.
The temperature benefits from close monitorization. How-

ever, given its critical role in food storage, the potential
trade-off between heightened sensitivity, potential informa-
tion loss, and an increased risk of false alarmsmay be justified
if the advantages outweigh these concerns.

The following graphs showcase the behavior of the temper-
ature in the threemain charts, fromwhich themain results can
be reached:

1. Analysis of the Shewhart charts: The biggest problem
with this chart is that it cannot simply be assumed that the
data follows a normal distribution. It’s possible for a chamber
to stay at a temperature slightly higher or lower than the
set value for a long time. This generates a small standard
deviation, but it might not be harmful to the food if the
difference is very low.

Despite this, some modifications can be made on the
employed values so that they are more compatible with the
Shewhart chart. In this analysis, the modifications chosen
were the following ones:

First, using the set temperatures as an alternative control
line instead of the mean value.

Second, substituting the standard deviation for another
value that could serve a similar function. To synergize with
the first modification, the chosen value was the square root
of the Mean Squared Error (MSE). The MSE corresponds to
the average of the squared difference between the estimated
value of an experiment (In this case, the set point of the
temperature) and the actual measured values. This translates
into a value of 0.73, which turns into control limits with a
value of around 2.1 degrees Celsius from the set point. This
falls within the limits chosen earlier.

It was deemed that in with those modifications, the high
accuracy of this chart could become useful. The results of this
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FIGURE 12. Shewhart chart of the Chamber C temperature.

analysis are showcased in Figure 12. This figure represents
the natural values extracted from the temperature sensors of
chamber C, together with the Shawhart limits calculated by
Formulas 4, 5 and 6, with the values E(X) = −20◦C (The
set value of the Temperature in chamber C) and the value
√
Var (X) equal to 0.73 (Result of the previously calculated

MSE) The values are represented over the established period
of time, measured in hours.

Its most noticeable value is the huge spike in temperature
that surpasses the Superior Control Limit from the hours 95 to
97, which are equivalent to Friday 26 from 10:00 to 12:00.

2.Analysis of the EWMAcharts: The higher flexibility of
the EWMA provides a considerable advantage in the analysis
of temperature. The presence of fixed values for both the
control line and the weighting factor has the added effect
of making it much easier to detect larger and slower shifts
instead of being absorbed into the graphs. This factor is a
huge advantage that complements the higher sensibility of the
chart. Also, the chart still provides a comparatively accurate,
if smoothed, graph of the variable. In that case, the loss of
information isn’t very significant.

The graph showcased on Figure 13 represents the auxiliary
variable Yi shown in Formula 7, created from the values
extracted from the temperature sensors of chamber C during
the previously established period, measured in hours. This
variable is represented against the EWMA limits calculated
by Formulas 8, 9 and 10, using the values u0 = −20◦C
and σ = 1, which are equivalent to the set temperature of
Chamber C and an acceptable temperature deviation of 1◦C
respectively. The other parameters of the functions corre-
spond to the standardized values λ = 0.1 and L = 2.7.
Some minor noteworthy points of interest are the hour 69,

when there’s a minor peak in the temperature that never-
theless doesn’t manage to reach the Superior Control Limit,
corresponding to Thursday, 25 at 8:00.

Lastly, there’s a considerable interval between the start
of the sample on Monday 22 at 12:00 and the hour 42,

FIGURE 13. EWMA chart of the Chamber C temperature.

Wednesday 24 at 5:00 in which the temperature is noticeably
lower than normal, while also not managing to drop below
the Inferior Control Limit at any point.

The most notable interval of interest, however, is between
the hour 96, where the value surpasses the superior control
limit, and hour 106, there the value goes back to the control
interval. These hours correspond to the day Friday 26 at
11:00, and the same day at 21:00 respectively. This value is
equivalent to the same spike in temperatures detected in the
Shewhart chart but detected an hour later.

3. Analysis of the CUSUM charts: The higher sensibility
of the chart is a very tempting prospect for a variable so
essential for the security of the warehouse, not to mention
that the chart can bemade to easily fit the specifications of the
set value and standard 1◦C variation that was also employed
in the EWMA chart. The resulting graph is showcased in
Figure 14which represents the auxiliary variablesC+

i andC−

i
against their respective control limits during the previously
established period, measured in hours. With an acceptable
difference value σ = 1, the control limits are considered equal
to H = ±3.5. The auxiliary variables start from 0, with C+

i
following formula 11 andC−

i following formula 12. Both use
the data extracted from the temperature sensors of Chamber C
together with the values u0 = −20 ◦C and k = 0.5, which are
equivalent to the chamber setpoint temperature and half of the
accepted deviation respectively.

Its main distinctive feature is the massive spike in values
that surpasses the Superior control limit in hour 95, equivalent
to Friday 26 at 10:00, and the process does not go back to
being in control until hour 116, equivalent to Saturday 27
at 7:00.

4. Discussion of the Temperature: The temperature
presents some unique challenges regarding the monitoriza-
tion. All the charts have been able to detect the sudden rise
in the temperature of chamber C, but their performance is
influenced by other factors. The following table showcases
the intervals in which each chart detected the main anomaly.
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FIGURE 14. CUSUM chart of the Chamber C temperature.

TABLE 3. Chart results in analyzing the temperature.

There are two criteria to consider this a real alert and not a
false alarm: Either this point entails a noticeable fluctuation
in energy consumption, or it causes a risk to the stored goods.

Since the increase in temperature is considerable (Over
4.5 degrees in its highest point) this poses a noticeable danger
to the product and therefore is considered a maintenance alert
instead of a false alarm.

With the validity of the anomaly confirmed, the perfor-
mance of the charts will be analyzed:

One the one hand, while the Shewhart chart can employ
alternate values to help it with the development of the graphs,
and the results have been adequate on the experiment, those
are still ultimately dependent of the values of the sample. So,
even though it detected the anomaly in time, it can’t be con-
sidered reliable in the monitorization of temperature. While
it still could potentially be useful for detecting malfunctions
quickly, it’s inefficient and not a good fit for this kind of
variable.

On the other hand, the EWMA chart has the advantage
of being able to fit better with the needs of this variable.
Moreover, the sensibility of the chart can be adjusted more
ergonomically than with the Shewhart chart, and still helps
showing several tendencies within the graph that can help
with the selection of efficiency measures. However, by far
the biggest problemwith the chart is the fact that it detects the
anomaly one hour later than the Shewhart chart. This happens
because of the weight of the memory in the EWMA chart. It’s
not overwhelming, but it makes it more difficult for the chart

to detect strong sudden shifts, and it takes it slightly longer to
return to the control area.

While this point it’s also closer to where the auxiliary
cooling equipment starts functioning, this delay is a massive
problem for an energy sensitive system. In this example,
a whole hour could be the difference between a product being
lost or salvageable.

The CUSUM chart, meanwhile, has the advantages of
being able to be easily adjusted to the parameters of the
analyzed chamber, while at the same time managing to detect
the rise in temperatures at the same time as the Shewhart
chart. The biggest drawback of the CUSUM chart is that
when it surpasses the control limits, it takes considerably
longer time to return to the control values, even more than
the EWMA chart. This could be a problem, especially when
it hides other potential alarms when being outside the control
limits, or like this example when the anomaly is very brief,
but the chart doesn’t reflect it.

Despite these drawbacks, the CUSUM has the best of both
other charts and is the best to use to set up alarms in the
temperature.

It should be noted that all these charts require that their for-
mulas use of the set temperature in the place of the mean and
an assigned acceptable value instead of the standard deviation
to be functional. Using the unmodified formulas leads to the
analysis being performed around the sample instead of the
characteristics of the installation, which can lead to distorted
values and false alarms.

As an example of this phenomenon, let’s compare the
examination of the Chamber B with the CUSUM charts. Both
of the following graphs in Figure 15 cover the same week
and use the same parameters. However, the first one employs
all the modifications used on the previous graphs, while the
second one uses the standard formula without any changes.
This includes the adjusted lower CUSUM statistic (C−

i ) that
was made for easier observation.

It’s possible to see that with themodifications, the CUSUM
stays not just within limits, but without any variations big
enough to be noticeable. However, in the version without the
changes, not only surpasses the control limit multiple times
and with both statistics, said statistics overlap visually with
each other and their values are also noticeably lower.

This happens because the mean value of the chamber in
the sample is 3.5◦C and the standard deviation is 0.076◦C
compared to the set value of 3.7◦C and the assigned accepted
deviation of 1◦C. Which means the sample stays with very
little variation at a temperature slightly lower than the set
point, but at no point is this temperature a danger to the stored
goods. Therefore, in the second graph all the instances of a
statistic surpassing the control limit can be considered false
alarms, created because the chart is reacting very strongly to
very small changes to the temperature.

The proposed modifications help avoid these mistakes,
centering the set value of the installation as the point around
which the variations are considered, setting an acceptable
deviation that takes into account the needs of the specific
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FIGURE 15. CUSUM chart of the Chamber C temperature.

stored goods, and making it so more information is conveyed
visually in case of need.

C. KEY PERFORMANCE INDICATOR
One advantage that this magnitude has is that operates simi-
larly to temperature, with an ideal value that can be targeted,
in this case 0. As stated previously, this would correspond
to all the analyzed chambers being at their designated set
temperatures.

Accepting a variance of 1◦C for each chamber, the cumu-
lative sum of variations across the three analyzed chambers
results in an accepted variance of approximately 3◦C.
Conversely, the selected variance for consumption is

based on the standard deviation of the entire year’s dataset,
approximately 62.43 kW. This choice minimizes risk of over-
fitting and ensures applicability across experiments.

The product of these two variances, totaling 187.3, is used
as a substitute for the standard deviation of the KPI in all the
experiments.

FIGURE 16. Shewhart chart of the KPI variable.

The following graphs will analyze the behavior of the KPI
in the three main charts:

1.Analysis of the Shewhart charts: The fact that the cho-
sen KPI is a compound of two other values gives it flexibility
regarding the utility of the chart and the values used in it.

However, this parameter faces a similar problem than the
temperatures: The most important factor for the monitoriza-
tion is the distance of the values to a set point, when this chart
specializes more in keeping the said values stable. Despite
this, the chart has been analyzed, using the value of E(X) = 0
and

√
Var(X ) equal to 187.3 to (the previously mentioned

product of the variances) to create the Shewhart control limits
shown in Formulas 4, 5 and 6, and the results can be observed
in the Figure 16:

The only notable point of interest is hour 96, when the
graph surpasses the Superior Control Line. This corresponds
to Friday 26 at 11:00, and it’s the only point on the entire chart
in which the graph surpasses any of the control limits.

2. Analysis of the EWMA charts: The EWMA chart
employs the same standardized values for the construction of
the graph as the Shewhart chart. The results of this analysis
can be seen in Figure 17. It represents the auxiliary variable
Yi shown in Formula 7, created from the composite KPI
values over the previously established time period, measured
in hours. This variable is represented against the EWMA
limits calculated through Formulas 8, 9 and 10, using the
values u0 = 0 and σ = 187.3, which are equivalent to the
ideal value of the KPI and the deviation that was previously
designated as acceptable, respectively. The other parameters
of the functions correspond to the standardized values λ =

0.1 and L = 2.7.
There are two main points of interest in the chart. The first

one is from hour 34, where the graph drops below the Inferior
Control Line, to hour 41, when it goes back to the control
interval again. These are equivalent to Tuesday 23 at 21:00
and to Wednesday 24 at 4:00 respectively.
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FIGURE 17. EWMA chart of the KPI variable.

The second one is from hour 97, where it surpasses the
Superior Control Line, to hour 99, where it goes below it
again. The are equivalent to Friday 26 at 12:00 and at 14:00
respectively.

3. Analysis of the CUSUM charts: The KPI has a couple
of advantage over the others regarding the compatibility with
this chart: A high enough magnitude it’s warranted to be
harmful to the installation, and it’s not as crucial to know
the specific values. This means that the biggest drawback of
this chart is not as big of a problem for the KPI than for the
rest of the variables. The resulting graph can be observed
in Figure 18, which represents the auxiliary variables C+

i
and C−

i against their respective control limits during the
previously established time period, measured in hours. With
an acceptable difference value σ = 187.3, the control limits
are considered equal to H= ±655.55. The auxiliary variables
start from 0, withC+

i following formula 11 andC−

i following
formula 12. Both use the composite data generated for the
KPI with the information from the temperature and energy
consumption sensors, together with the values u_0 = 0 and
k=93.65 These are equivalent to the ideal value of the KPI
and half of the accepted deviation respectively..

The most notable points of interest are the following:
First, the interval between hours 38 and 40, when the

graph drops below the Inferior Control Limit. These hours
correspond toWednesday 23 at 2:00 and the same day at 4:00
respectively.

Second, the interval between hours 96 and 107, when it
surpasses the Superior Control Limit. These hours correspond
to Friday 26 at 11:00 and at 22:00 respectively.

4. Discussion of the KPI: In the analysis of this variable
all the charts have employed the same values of mean and
deviation, so they operate on a somewhat leveled playing
field. This helps emphasize the differences in performance
between the three of them. The results of the experiments can
be seen in the following table.

FIGURE 18. CUSUM chart of the KPI variable.

TABLE 4. Chart results in analyzing the KPI.

The KPI should prove its usefulness in two areas: when
there is a threat to the quality of the product or when excessive
energy consumption poses a risk to the installation.

The first point of interest is not detected by the Shewhart
chart, and it reflects an interval with a high level of consump-
tion happening around the same time as a period where the
temperature of the chambers was lower than normal.

The second point of interest is equivalent to the temper-
ature spike seen around that time, which had already been
identified as a danger to the quality of the products within the
installation.

Both anomalies can be considered genuine problems
within the system. Because the raise in consumption occurred
because a change in loads within the installation, first
anomaly can be considered an operational alert. The second
is a maintenance alert, as in the temperature analysis.

Knowing that both anomalies are valid, the next step will
be to analyze the performance of the charts:

First, the Shewhart’s precision proves itself to be mostly
inadequate. There isn’t a big advantage to the accuracy of the
showcased data given the ambiguity of the intermediate val-
ues, and its low sensitivity becomes a problem since there’s
an anomaly that it doesn’t manage to detect.

The memory-type charts do manage to detect both anoma-
lies but differ when they detect each one and how long does
the detection last.

The EWMA detects the drop below the ICL significantly
earlier and takes a while for the process to return to control
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values, while it detects the rise above the SCL one hour later,
even if it doesn’t stay out of control for very long.

In the CUSUM, the drop below the ICL is detected several
hours later and it’s only a brief incidence, while the rise in
temperatures is detected quickly and takes a considerable
amount of time to return to its control values.

Of the two anomalies, the rise over the SCL represents a
brief phenomenon, while the drop below the ICL is symp-
tomatic of a problem that happens over a period. Therefore,
the EWMA chart’s representation of the anomalies is more
in-line with the behavior of their root causes and manages
to detect the operational alert considerably faster than the
CUSUM chart. However, the CUSUM still manages to detect
the maintenance alert an hour earlier than the EWMA.

So, while both charts are useful, there doesn’t seem to be
one clearly superior to the other.

For the most part, the KPI appears to fulfill its function cor-
rectly within the EWMA and the CUSUM charts, surpassing
the control values when the energy consumption is so high
that it signals something harmful to the system (As in the
first anomaly) or when the quality of the product is being
compromised. (As in the second anomaly)

It should be noted, however, that for this to be the case,
both charts need to employ the setup and modifications that
were described in the previous sections. It might be possible
to select another deviation for the energy consumption rather
than the standard deviation of the entire year’s dataset, but
as shown with Figure 15 regarding the temperatures, using
the mean and deviation of the sample can easily lead to false
alarms and overfitting the chart to the sample. Employing the
set points of the temperatures and the acceptable deviation
in all the chambers helps avoid this problem, and this also
applies to the KPI as it’s a compound variable of the temper-
atures.

D. LIMITS AND FUTURE WORK
It should be noted that study examined only a specific type
of energy-sensitive process, the control of temperature in
refrigerated food storage. Future studies could investigate the
needs of more types of foods, analyze other variables like
the humidity, or apply the methods discussed in this paper
to other energy sensitive industries like pharmaceutics.

E. OVERALL DISCUSSION
The control charts are an extremely useful analysis feature,
but they need to be implemented with care. The characteris-
tics of the variable dictate how much the qualities of a certain
chart can benefit them, and in some cases, the theoretical
advantages offered by a chart can’t be observed in the studied
examples.

The following section will have two main functions:
Showcase notable situations in which more than one vari-

able is affected at once.
Evaluate the performance of the charts after having used

them to analyze all the variables.

TABLE 5. Comparison of the early anomaly between the different
variables.

1. Notable situations: There are a few instances where
an anomaly that doesn’t seem relevant enough in its own
chart has a higher significance in the whole system. The main
example of this is the valley that was observed in the EWMA
chart of the temperature from the start of the sample to around
hour 42, but it’s especially notable starting from hour 32.

This anomaly doesn’t surpass the established control lim-
its, and therefore doesn’t cause an alert, but it’s significant
when compared with the values of the EWMA chart in energy
consumption and in the KPI around the same time.

The fact that this temperature is so low while there’s an
unusual amount of energy consumption is what causes the
anomaly in the KPI variable.

This anomaly represents one of the problems with having
a single unified refrigeration system for all chambers. The
anomaly in energy consumption occurred because of the extra
load added to a different chamber at that time and forcing the
equipment to consume more energy to cool down the added
load instead of just keeping the existing goods refrigerated.

But because the whole system is connected, it also had the
unintended side effect of slightly decreasing the already low
temperature of the rest of the chambers for a few hours. This
is the reason the KPI surpasses the control limits, and notably
no other point in which the energy consumption surpasses the
control limits in its charts has an equivalent in the KPI.

2. Performance of the charts in energy sensitive indus-
tries: These are the main observations made on the three
employed charts and their usefulness:

The Shewhart chart seems perfectly capable to detect the
maintenance alerts quickly. However, it has been unable
to detect a single operational alert in all the experiments.
Because of this, the chart is only useful in certain situations
where the operational concerns don’t pose a huge risk to
the safety of the installation, like the monitoring of energy
consumption.

The EWMA can detect all the operational andmaintenance
alerts, but it suffers from a major problem: Every alert with
every variable is detected at least an hour later than the rest
of the charts. The only exceptions are the operational alert
in the KPI, in which is faster than the CUSUM; and the
first operational alert in the energy consumption, which is
detected at the same time as the CUSUM. These delays are
very damaging for energy sensitive processes, especially in
the case study since the smallest unit of time employed is an
hour. Therefore, the EWMA chart is extremely situational,
only surpassing other charts on operational alerts in the KPI
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variable. It would only be useful as an auxiliary measure
in that specific variable, or as a smoothing graphic tool to
evaluate tendencies, like in the previous section.

The CUSUM is also able to detect both operational and
maintenance alerts in all variables. The maintenance alerts
detect them at the same time as the Shewhart, and both types
of alerts faster than the EWMA chart. The only exception
is the operational alert in the KPI, in which is slower and is
barely able to detect the anomaly. Its biggest drawback is that
once the value surpasses the control limits, it takes a consider-
able amount of time to get back.While that could be remedied
by making it less sensitive, that could also prevent it from
detecting some anomalies at all, and the drawback is not as
big of a problem in this type of process.

3. Contributions of the analysis: While not perfect, the
CUSUM emerges as the optimal and most useful chart for the
control of variables in energy sensitive processes. However,
as it was pointed out in the discussion of the temperature and
the KPI, the chart requires some modifications to function
effectively in these conditions. Using the standard formula
with only the values of the specific samples leads to false
alarms, the overfitting of the sample, and less visual informa-
tion in the case that a manual revision is desired. Therefore,
these modifications are essential for the employment of this
chart in any energy sensitive industries.

In all variables, the two main statistics are as follows.

C+

i = max[0, (Xi − u0) − k + C+

i−1] (14)

C−

i = −max[0, − (Xi − u0) − k − C−

i−1] (15)

Both statistics are plotted against a control limit with the
same absolute value, and in all cases, Xi represents the obser-
vation of the sample I and both C+

i−1 and C
−

i−1 represent the
previous value of the statistic, which is initially set to zero.

However, in each of the variables, both the control limits
and the parameters u0 and k have different values.
In the Energy Consumption, both u0 and k have their stan-

dard values. u0 is the mean of the sample, lacking a precise
target value. The reference value k corresponds to half of the
standard deviation of the sample, and the control limits are
considered 3.5 times the standard deviation. Using the chart
to monitor the energy consumption with these values helps
analyze the energy efficiency of the system.

In the Temperature, the value of u0 is equal to the set point
of the corresponding chamber, which serves as the target
mean. And instead of using the standard deviation, both k
and the control limits use the assigned accepted deviation of
1◦C. Control of the temperature is essential for the safety of
the refrigerated system, and these values allow the CUSUM
chart to fit the needs of the stored goods.

In the KPI, the value of u0 is equal to 0, which signifies that
all the analyzed chambers are at their set temperatures. And
instead of the standard deviation of the sample, the reference
value k and the control limits employ a compound value.
This value is equal to the standard deviation of the energy

consumption along entire year’s dataset, multiplied by the
sum of the assigned accepted deviations of all the chambers.

With these parameters the analysis of the KPI with the
CUSUM chart serves to measure the impact of the deviations
in the system, making it useful in determining if any given
alert in the energy consumption also constitutes a potential
danger to the safety of the stored goods, as it was the case
with its operational alert explained above. The KPI can also
be used to monitor other variables with desired set points, like
the humidity, which makes it a versatile and useful monitor-
ing tool to increase the safety in energy sensitive industries.

VI. CONCLUSION
This article aims to serve as a steppingstone in the analysis
of efficiency in energy-sensitive processes, which are vital
elements in many industries. In these processes, there are
many variables that need to be kept in control simultaneously,
in this case the most notable are the energy consumption
and the temperature to which the energy consumption is
meant to regulate. In these variables, there are some minor
variations that are not the result of a system failure, but merely
a result of changes in the operationalmodes in the installation.
The control charts allow to keep control of these variables
while helping filter these regular variations out but some
modifications and specific values to help them detect the real
errors as quickly as possible without being so sensitive as to
create false alarms. This makes this study valuable because it
indicates not only which charts are better for the analysis, but
also the required adaptations of the charts so that they can be
used more efficiently.

In this case, the chart that performed better in all the
analyzed variables was the CUSUM chart. This chart was
able to detect all the operational alerts as well as the main-
tenance alerts, and the detection happens faster than with
other analyzed charts in most cases, which is crucial in energy
sensitive industries. The adaptations suggested in this article
help the chart in various ways. By turning the statistic C-
into a negative function and making it more obvious which
of the functions corresponds to the shifts below the target
value, the chart convey more visual information for manual
revision. Most critically, by setting the parameters of u0 and
k to the previously discussed values in each variable, it’s
possible to minimize the risk of false alarms in all variables,
while maximizing sensitivity.

Additionally, said variables are very important for the
analysis of the industry. All the variables examined have
demonstrated their usefulness in different areas:

First, the monitorization of energy consumption is crucial
for the analysis of the efficiency of the system, being able to
detect processes like the overloads resulting from the refrig-
eration of extra added load, or drops like the one detected
on Sundays. This makes it easier to assign proper energy
efficiency measures to the installation.

Second, the control of the temperature is essential for the
safety of the installation, being the main factor that deter-
mines the quality of the stored goods, and the main reason
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that the refrigeration process is energy-sensitive to begin
with.

Lastly, this study also introduces an additional Key Per-
formance Indicator or KPI. This variable helps measure the
impact of anomalies within the system and can be used to
measure the severity of some alerts. For example, in the
analyzed cases the KPI helps distinguish that a certain alert
that was also detected in the energy consumption possesses
a problem for the safety of the system rather than only its
efficiency. and allows to analyze the temperatures of the
whole installation rather than only chamber by chamber.
Additionally, this parameter is flexible and can be easily
customized to analyze other variables of interest.

Overall, practically any energy sensitive industry will ben-
efit from close monitorization. But choosing the optimal
tools and procedures for the monitoring process can make it
considerably more efficient, safe, and accessible.
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