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ABSTRACT The present paper proposes the application of global and exact differentiators with dynamic
gains based on higher-order sliding modes (HOSM) to the design of adaptive backstepping control for
nonlinear uncertain systems of strict-feedback type. The use of this kind of differentiator in the closed-loop
system allow us to guarantee global uniform stability (for any initial conditions) due to the variable nature
of the dynamic gain. The dynamic gain can grow or decrease with the unmeasured state. In addition,
asymptotic output tracking is also assured. In order to illustrate the results of the new theorem, the proposed
controller is applied to a high-performance aircraft system, suppressing the wing-rock phenomenon usually
observed for fast-speed flight conditions. Comparison results with a linear-inexact differentiator, a local
HOSM differentiator with fixed gains and the proposed global and exact HOSM differentiator with dynamic
gain shows the superiority of the latter over the former approaches. To demonstrate the practical efficacy
of the proposed approach, we conclude with an experimental test featuring a DC motor and the novel
differentiator-based backstepping control scheme.

INDEX TERMS Adaptive systems, backstepping control, global sliding mode differentiator, uncertain
nonlinear systems.

I. INTRODUCTION
Basically, the theory of nonlinear control can be roughly
divided into robust and adaptivemethods. In adaptive systems
the control law is designed using dynamic estimates for the
unknown parameters of the plant. In this way, gains are
adjusted all the time from a given adaptation law. In robust
control, in general, we try to guarantee stability properties
with fixed (or even dynamic) gains for a given range of
variation of the plant parameters, which is the case, for
example, of the sliding mode control [1].

A. LITERATURE REVIEW
In this sense, the backstepping control [2], [3] allows certain
state variables to act as ‘‘virtual control inputs’’ of other
variables, forming a cascade control project. This technique
is restricted to a certain class of systems called strict-feedback
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which name is given by the presence of a recursion in
the state equations that are dependent on each other (the
nonlinearities in the ẋi–equation depends only on the state
variables x1, x2, . . . , xi). In other words, all the unknown
information is lumped into the last state equation [4], [5].
This control strategy has several applications, for example,
in electric motors [6], diesel machines [7], jet engines [8],
robotics [9], quadcopters [10], ship positioning [11], control
of air vehicles [12] and attitude control of spacecrafts [13].

With the work of Krstić et al. [14], it was possible
to attenuate the degree of complexity of the original
backstepping controller since the number of parameters to
be adapted became small with the introduction of tuning
functions. Despite this effort, the task of analyzing and
designing such controllers remains arduous.

New methods are presented in [15] and [16] to enable the
use of the adaptive backstepping approach in applications
that were prohibitively difficult by the conventional method
with analytic derivatives, ending the complexity arising due
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to the ‘‘explosion of terms’’ that has made other techniques
difficult to implement in practice. Futhermore, reference [17]
mitigates the control design using the backstepping procedure
by combining the feedback linearization technique with the
high-order sliding modes. However it’s application was only
valid to linear systems and also using fixed gain.

In [18], with the help of local exact differentiators
based on higher-order sliding modes and fixed gains [19],
a new perspective for adaptive backstepping control has
emerged. The proposal of [18] dramatically simplifies the
control design since it extinguishes the calculation of partial
derivatives of the stabilization functions required in the
backstepping by tuning functions [14]. However, this work
did not present the proof of stability for the class of nonlinear
systems considered (of the strict-feedback type) and, with
that, it gave us the opportunity to advance in this topic in
order to obtain a rigorous stability proof not presented in the
literature yet.

B. RESULTS AND CONTRIBUTIONS
The main ingredient proposed for this generalization was the
introduction of an exact differentiator based on higher-order
sliding modes (HOSM) with dynamic gains [20] in order to
guarantee the global stability of the modified backstepping
controller. This result is innovative since with the fixed-gains
a differentiator in [17] and [18], only local results could
be achieved or a very restricted class of systems could be
considered.

The use of the HOSM Differentiator with Dynamic Gains
and finite time convergence allows for a much simpler control
designwhile preserves the global stability and output tracking
properties of the closed-loop system. Note that if we simply
employ standard exact HOSM differentiator with fixed gains,
we would lose the globality and only local stability results
could be proved.

Another possibility to replace the global HOSM differen-
tiator is to use the more involved Kreisselmeier filters [21],
similar to linear differentiators, as done in traditional back-
stepping control. However, as a rule of thumb: the simpler
adaptation law, the better is the transient performance since
the convergence rate of the adaptation law is directly related
to the amount of filters applied to derive it as well as the type
of convergence achieved. Each filter imposes an additional
layer of adaptation with its own demanding dynamics to settle
down. In the traditional and more involved backstepping
designs, none of such filter dynamics converges in finite
time, compromising the transient performance of the overall
scheme. In addition, the proposed adaptive backstepping
approach based on dynamic gains is still simpler than
more recent backstepping control versions including neural
networks components [22] and/or sliding mode architectures
for the filter designs [23].

C. ORGANIZATION
• The second section is dedicated to briefly revisiting the
theory of traditional backstepping control [24].

• The third section presents the problem formulation,
showing the type of plant to be studied (in the strict-
feedback form) and the backstepping adaptive control
approach through tuning functions [18].

• The fourth section describes the proposed HOSM
exact differentiator with dynamic gains which will be
employed in the proposed recipe for the new adaptive
backstepping control of the next section.

• The fifth section also states the main theorem with the
proof of global stability for the closed-loop system.

• The sixth section presents the simulation results involv-
ing the proposed controller via global HOSM differen-
tiator and dynamic gains by comparing its performance
with two other differentiation schemes: a linear differ-
entiator and another HOSM differentiator with fixed
gain. An engineering application example considering
the Wing Rock control problem is considered for the
evaluation scenario.

• The seventh section brings preliminary experimental
tests with a DC motor to illustrate the potential of the
proposed approach in a real-world scenario.

• The eighth section concludes the paper highlighting the
obtained advances according to our initial objectives and
discusses about future directions of investigation.

II. REVISITING THE TRADITIONAL BACKSTEPPING
ADAPTIVE CONTROL
The backstepping control procedure involves recursively
selecting appropriate state variable stabilization functions to
act as inputs for a pseudo-control (virtual control laws) of
smaller subsystems, obtained during the control design for
the entire system. Each adaptive control stage produces a
new pseudo-control input for each subsystem, which is again
expressed in terms of the pseudo-control signal previously
obtained. This process is repeated until the actual control law
is obtained in the final stage.

For this reason, adaptive backstepping control is a
systematic iterative control designmethod. It is based on state
feedback with a final control law given by a Lyapunov control
function (LCF) and the dynamics of the closed-loop system.

First of all, we will consider a nonlinear system of the
strict-feedback type according to Figure 1 and described
below [24]:

ẋ1 = x2 + θ∗Tϕ1(x1)

ẋ2 = x3 + θ∗Tϕ2(x1, x2)
...

ẋn−1 = xn + θ∗Tϕn−1(x1, . . . , xn−1)

ẋn = βu+ θ∗Tϕn(x)

y = x1 . (1)

The vector x = [x1, . . . , xn] ∈ Rn, u ∈ R and y ∈ R are
the state vector, the input and output signals of the system,
respectively. The vector of unknown constants θ∗ need to be
estimated throughout the design of the adaptation law. The
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FIGURE 1. Nonlinear system in the strict-feedback type with order n.

vector that has known nonlinear functions is given by ϕi ∈ R
for i = 1, . . . , n. The term β ̸= 0 is a known constant. In this
system, nonlinearities depend purely on the variables being
fed back.

The control objective is to force the output y(t) to track
the reference signal yr (t), while keeping all the closed-loop
signals uniformly bounded. The controller is developed using
an iterative procedure as shown below.

A. DEFINITION OF ERROR VARIABLES z1 AND z2
Consider

z1 = x1 − yr , (2)

z2 = x2 − ẏr − α1 , (3)

where z1 is the output tracking error and it is intended
to ensure that it will ultimately converge to zero, that is,
limt→∞ z1(t) = 0. Thus, the time derivative of z1 is defined
as

ż1 = ẏ− ẏr ,

= x2 + θ∗Tϕ1 − ẏr ,

= z2 + α1 + θ∗Tϕ1 , (4)

where α1 it is the first virtual control input to stabilize the
output tracking error z1. It is defined as

α1 = −c1z1 − θ̂Tϕ1 . (5)

Here, the constant c1 is positive and θ̂ (t) is the estimate of θ∗.
The first virtual control entry α1 acts as the desired value of
x2 in order to make the z1-subsystem stable.

The first Lyapunov function is defined as

V1 =
1
2
z21 +

1
2
θ̃T0−1θ̃ , (6)

where 0 is a positive-definite matrix and θ̃ is the estimation
error, defined by θ̃ = θ∗

− θ̂ . Through equations (4) and (5),
the first-time derivative of V1 is calculated as

V̇1 = z1
(
−c1z1 + z2 + θ̃Tϕ1

)
− θ̃T0−1 ˙̂

θ

= z1 (−c1z1 + z2)− θ̃T
(
0−1 ˙̂

θ − ϕ1z1
)
. (7)

The tuning function is defined as

τ1 = ϕ1z1 . (8)

Replacing (8) into (7), results in

V̇1 = −c1z21 + z1z2 − θ̃T
(
0−1 ˙̂

θ − τ1

)
. (9)

In order to guarantee V̇1 ≤ 0, the term z1z2 needs to be
canceled.

B. DEFINITION OF THE ERROR VARIABLE z3
Now, the next error variable z3 will be defined and then the
subsystem (z1, z2) is studied:

z3 = x3 − ÿr − α2 . (10)

From (3) and using (5), taking the derivative of z2 we arrive
at

ż2 = ẋ2 − ÿr − α2

= z3 + α2 −
∂α1

∂x1
x2 + θ∗T

(
ϕ2 −

∂α1

∂x1
ϕ1

)
+

−
∂α1

∂yr
ẏr −

∂α1

∂θ̂

˙̂
θ , (11)

where α2 is the second virtual control input to stabilize the
system (z1, z2) in (4) and (11):

α2 = −z1 − c2z2 +
∂α1

∂x1
x2 − θ̂T

(
ϕ2 −

∂α1

∂x1
ϕ1

)
+

+
∂α1

∂yr
ẏr +

∂α1

∂θ̂
0τ2 . (12)

Equation (12) guarantees the stability of the subsystem (4)
and (11). In (12), we have c2 as a positive constant and the
second tuning function τ2 based on τ1 as follows

τ2 = τ1 +

(
ϕ2 −

∂α1

∂x1
ϕ1

)
z2 . (13)

The conditions for the proof stability of the subsystem (z1, z2)
requires a second Lyapunov candidate function that is chosen
by

V2 = V1 +
1
2
z22 . (14)

From equations (9), (11)-(13), the time derivative of V2 can
be calculated as

V̇2 = −c1z21 + z1z2 − θ̃T
(
0−1 ˙̂

θ − τ1

)
+ z2(−z1 − c2z2+
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+ z3) + z2θ̂T
(
ϕ2 −

∂α1

∂x1
ϕ1

)
+ z2

∂α1

∂θ̂

(
0τ2 −

˙̂
θ
)
,

V̇2 = −c1z21 − c2z22 + z2z3 + θ̃T
(
τ2 − 0−1 ˙̂

θ
)

+

+ z2
∂α1

∂θ̂

(
0τ2 −

˙̂
θ
)
. (15)

C. DEFINITION OF THE ERROR VARIABLE z4
Analogous to the previous steps, we define

z4 = x4 −
...
yr − α3 . (16)

Now, the subsystem is (z1, z2, z3) and to deal with this, we use
the dynamic error z3 which is found from the derivative
of (11) along of (1), (13), (16), such that

ż3 = z4 + α3 −
∂α2

∂x1
x2 −

∂α2

∂x2
x3 + θ∗T (ϕ3 −

∂α2

∂x1
ϕ1+

−
∂α2

∂x2
ϕ2) −

∂α2

∂yr
ẏr −

∂α2

∂ ẏr
ÿr −

∂α2

∂θ̂

˙̂
θ . (17)

The third virtual control input is α3:

α3 = −z2 − c3z3 +
∂α2

∂x1
x2 +

∂α2

∂x2
x3 − θ̂T

(
ϕ3 −

∂α2

∂x1
ϕ1+

−
∂α2

∂x2
ϕ2
)
+
∂α2

∂yr
ẏr +

∂α2

∂ ẏr
ÿr +

∂α2

∂θ̂
0τ3+

+ z2
∂α1

∂θ̂
0

(
ϕ3 −

∂α2

∂x1
ϕ1 −

∂α2

∂x2
ϕ2

)
, (18)

with c3 being a positive constant and the third tuning function
τ3 based on τ2 defined by

τ3 = τ2 +

(
ϕ3 −

∂α2

∂x1
ϕ1 −

∂α2

∂x2
ϕ2

)
z3 . (19)

Considering the third Lyapunov candidate V3 for the subsys-
tem (z1, z2, z3):

V3 = V2 +
1
2
z23 . (20)

From (16), (18) and (19), the time derivative of V3 can be
calculated as

V̇3 = −c1z21 − c2z22 − c3z23 + z3z4 + θ̃T
(
τ3 − 0−1 ˙̂

θ
)

+

+ z2
∂α1

∂θ̂

(
0τ2 −

˙̂
θ
)

+ z3
∂α2

θ̂

(
0ϕ3 −

˙̂
θ
)

+

+ z2
∂α1

∂θ̂
0

(
ϕ3 −

∂α2

∂x1
ϕ1 −

∂α2

∂x2
ϕ2

)
z3 . (21)

Recalling that,

z2
∂α1

∂θ̂

(
0τ2 −

˙̂
θ
)

= z2
∂α1

∂θ̂
(0τ3 −

˙̂
θ ) + z2

∂α1

∂θ̂
0 (τ2 − τ3)

= z2
∂α1

∂θ̂
(0τ3 −

˙̂
θ ) − z2

∂α1

∂θ̂
0
(
ϕ3+

−
∂α2

∂x1
ϕ1 −

∂α2

∂x2
ϕ2
)
z3 , (22)

and replacing (22) into (21), one has

V̇3 = −c1z21 − c2z22 − c3z23 + z3z4 + θ̃T
(
τ3 − 0−1 ˙̂

θ
)

+

+

(
z2
∂α1

∂θ̂
+ z3

∂α2

∂θ̂

)(
0τ3 −

˙̂
θ
)
. (23)

D. DEFINITION OF THE ERROR VARIABLE zi
The error zi and its derivative are defined below:

zi = xi − y(i−1)
r − αi−1 ,

żi = zi+1 + αi −

i−1∑
k=1

∂αi−1

∂xk
xk+1 + θ∗T (ϕi+

−

i−1∑
k=1

∂αi−1

∂xk
ϕk
)
−

i−1∑
k=1

∂αi−1

∂yk−1
r

y(k)r −
∂αi−1

∂θ̂

˙̂
θ . (24)

The virtual control input is now obtained αi:

αi = −zi−1 − cizi +
i−1∑
k=1

∂αi−1

∂xk
xk+1 − θ̂T

(
ϕi+

−

i−1∑
k=1

∂αi−1

∂xk
ϕk
)
+

i−1∑
k=1

∂αi−1

∂yr

(
k−1
)
ẏr
(
k
)
+

+
∂αi−1

∂θ̂
0τi +

i−1∑
k=1

zk
∂αk−1

∂θ̂
0
(
ϕi −

i−1∑
j=1

∂αi−1

∂xj
ϕj
)
,

(25)

where the constant ci is positive and τi is the ith tuning
function defined as

τi = τi−1 +

(
ϕi −

i−1∑
k=1

∂αi−1

∂xk
ϕk

)
zi . (26)

The Lyapunov function candidate for the subsystem
(z1, z2 . . . zi) is defined by

Vi = Vi−1 +
1
2
z2i , (27)

whose derivative along with (24) is

V̇i = −

i−1∑
k=1

ckz2k + zizi+1 + θ̃T
(
τi − 0−1 ˙̂

θ
)
+

+
( i∑
k=2

z2
∂αk−1

∂θ̂

)(
0τi −

˙̂
θ
)
. (28)

E. DEFINITION OF THE LAST ERROR VARIABLE zn AND
THE CONTROL LAW
Finally, the last error zn and its corresponding derivative are
defined by

zn = xn − y(n−1)
r − αn−1 , (29)

żn = ϕ0 + βu−

n−1∑
k=1

∂αn−1

∂xk
xk+1 + θ∗T (ϕn+

−

n−1∑
k=1

∂αn−1

∂xk
ϕk
)
−

n−1∑
k=1

∂αn−1

∂yk−1
r

y(k)r − y(n)r −
∂αn−1

∂θ̂

˙̂
θ.

(30)

Hence, the control law u can be expressed as

u =
1
β

(
αn + y(n)r

)
. (31)
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The virtual control entry αn is given by

αn = −zn−1 − cnzn − ϕ0 +

n−1∑
k=1

∂αn−1

∂xk
xk+1+

− θ̂T
(
ϕn −

n−1∑
k=1

∂αn−1

∂xk
ϕk
)
+

n−1∑
k=1

∂αn−1

∂yr

(k−1)
yr (k)+

+
∂αn−1

∂θ̂
0τn +

n−1∑
k=2

zk
∂αk−1

∂θ̂
0
(
ϕn −

n−1∑
j=1

∂αn−1

∂xj
ϕj
)
,

(32)

where the constant cn is also positive and τn is the last tuning
function defined as

τn = τn−1 +

(
ϕn −

n−1∑
k=1

∂αn−1

∂xk
ϕk

)
. (33)

The candidate for the Lyapunov function and its respective
derivative for the subsystem (z1, z2 . . . zn) are

Vn = Vn−1 +
1
2
z2n , (34)

and

V̇n=−

n∑
k=1

ckz2k+θ̃
T
(
τn−0

−1 ˙̂
θ
)
+
( n∑
k=2

zk
∂αk−1

∂θ̂

)(
0τn−

˙̂
θ
)
.

(35)

Finally, choosing

˙̂
θ = 0τn , (36)

and replacing it into (35), we can show that

V̇n = −

n∑
k=1

ckz2k < 0 . (37)

As the function Vn is negative, the asymptotic stability
of the tracking error of the variables zi (considering i =

1, . . . , n) and boundedness of the error of the estimated
parameter θ̃ are finally proved.

In order to avoid the partial derivatives in the traditional
backstepping approach, as shown in this section, we will
formulate in the next one our control problem using the
modified version of this controller, as done in [18].

III. PROBLEM FORMULATION
Consider the nonlinear strict-feedback system, as described
in equation (1).
The control objective is the same of section II.
In particular, the yr (t) reference is the output of a reference

model with bounded and continuous input r(t), or a signal
whose first n derivatives are known, uniformly bounded and
continuous by parts. Using the reference model paradigm,
consider the following stable linear system

yr (s) =
km

sn + mn−1sn−1 + . . .+ m0
r(s) , (38)

where sn+mn−1sn−1
+ . . .+m0 is aHurwitz polynomial and

the gain km is positive.
To achieve the control objective, the adaptive backstepping

controller based on tuning functions [3] is used, but with
the advantage of eliminating the partial derivatives in the
controller structure.

Consider the following error variables in (39)–(40) and the
stabilization functions in (41)–(42):

z1 = x1 − yr , (39)

zi = xi−y(i−1)
r − αi−1 , (40)

α1 = −c1z1 − θ̂Tϕ1 , (41)

αi = −cizi − zi−1 − θ̂Tϕi + α̇i−1 , (42)

where ci are positive constants and the tuning functions are
given by

τ1 = ϕ1z1 , τi = τi−1 + ϕizi , (43)

for i = 2, · · · , n and α0 = z0 = τ0 = 0. In addition, the
estimate of the parameter vector θ∗ is obtained through the
adaptation law

˙̂
θ = 0τn , (44)

where 0 > 0 is the adaptation gain matrix.
Finally, we arrive at the control law based on state

feedback:

u =
1
β
(αn + y(n)r ) , (45)

where αn is defined according to (42) for i = n as

αn = −cnzn − zn−1 − θ̂Tϕn + α̇n−1 . (46)

Although the control law (45) seems to be simple, there is still
an issue to be overcome: it is necessary to obtain the derivative
of αn−1 that, a priori, is not available for the feedback design.
To try to eliminate this obstacle, the exact differentiator with
dynamic gain based on higher-order sliding modes (HOSM),
as presented in [20], [25], [26], and [27], will be used. In this
way, in addition to the exact differentiation, properties of
global stability can be ensured.

IV. GLOBAL HOSM DIFFERENTIATOR WITH DYNAMIC
GAIN
This section introduces the class of global HOSM differen-
tiators that guarantee the exact differentiation of signals for
arbitrary initial conditions. Since only the first derivative of
each αj(t), j = i−1, is necessary, the idea is to use the HOSM
differentiator with dynamic gainsLj(x, θ̂ , u, t) for each signal
αj ∈ R, j = 1 , . . . , n− 1 , as follows:

ζ̇ i−1
0 = vi−1

0 = −λi−1
0 L1/2

i−1(x, θ̂ , u, t)|ζ
i−1
0 − αi−1|

1/2

× sgn
(
ζ i−1
0 − αi−1

)
+ ζ i−1

1 , (47)

ζ̇ i−1
1 = −λi−1

1 Li−1(x, θ̂ , u, t)sgn
(
ζ i−1
1 − vi−1

0

)
, (48)
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where the j = i − 1 index is used to indicate which variable
αi−1 is associated with the differentiator.
The difficulty in calculating the upper bound Li−1 for α̈i−1

is in the fact that α̈i−1 always depends on α̇i−1. However, the
next lemma shows that α̇i is indeed a function of the state
x, of the estimate θ̂ , and of the time variable t (due to the
dependence of yr (t) and its derivatives up to order n), i.e.,
α̇i(x, θ̂ , t). In particular, for i = n, the dependence on u will
be explict as well. Therefore, due to the knowledge of the state
of the plant and the reference model, it is possible to assume
known functions that upper bound α̇i ,∀i = 1, . . . , n.
Lemma 1: There are known estimated upper bounds for

signs α̇i , i = 1 , . . . , n, so that

|α̇i| ≤ ψi(x, θ̂ , t) , ∀t > 0 , (49)

|α̇n| ≤ ψn(x, θ̂ , u, t) , ∀t > 0 . (50)

Proof: The proof will cover the calculations up to the
definition of the signal α̇3 in function of α1 and their
respective derivatives and is based on the equations in (42)
rewritten below:

α1 = −c1z1 − θ̂Tϕ1 ,

αi = −cizi − zi−1 − θ̂Tϕi + α̇i−1 ,

It’s easy to see that α2 is in function of α̇1, so we will skip
this step for calculating α3:

α3 = −c3z3 − z2 − θ̂Tϕ3 + α̇2 , (51)

α̇2 = −c2ż2 − ż1 −
d
dt
(θ̂Tϕ2) + α̈1 , (52)

α3 = −c3z3 − z2 − θ̂Tϕ3 − c2ż2 − ż1 −
d
dt
(θ̂Tϕ2) + α̈1 .

(53)

The same process is repeated for calculating α4:

α4 = −c4z4 − z3 − θ̂Tϕ4 + α̇3 , (54)

α̇3 = −c3ż3−ż2−
d
dt
θ̂Tϕ3−c2z̈2−z̈1 −

d2

dt2
(θ̂Tϕ2) +

...
α 1,

(55)

α4 = −c4z4 − z3 − θ̂Tϕ4 − c3ż3 − ż2 −
d
dt
θ̂Tϕ3+

− c2z̈2 − z̈1 −
d2

dt2
(θ̂Tϕ2) +

...
α 1 . (56)

Error variables (40) and their respective time derivatives can
also be converted into functions dependent on α1 and yours
‘‘ i− 1’’ time derivatives:

z1 = x1 − yr , ż1 = ẋ1 − ẏr , z̈1 = ẍ1 − ÿr , (57)

z2 = x2 − ẏr − α1 , ż2 = ẋ2 − ÿr − α̇1 , (58)

z3 = x3 − ÿr − α2 . (59)

Replacing α2 in (59) by an expression in function of α1 ,
we obtain

z3 = x3 − ÿr + c2z2 + z1 + θ̂Tϕ2 − α̇1 , (60)

ż3 = ẋ3 −
...
y r + c2ż2 + ż1 +

d
dt
θ̂Tϕ2 − α̈1 . (61)

And finally substituting the derivatives of the error variables,
we have

ż3= ẋ3−
...
y r+c2(ẋ2−ÿr − α̇1) + ẋ1 − ẏr +

d
dt
θ̂Tϕ2 + −α̈1 .

(62)

the expression in (56) is established in function only of the
known variables, that is, of α1 and their respective time
derivatives, the state, the reference model and the adaptive
law:

α4 = −c4
(
x4 −

...
y r − (−c3(x3 − ÿr + c2(x2 − ẏr − α1)+

+ (x1 − yr ) + θ̂Tϕ2 − α̇1) − (x2 − ẏr − α1) − θ̂Tϕ3+

− c2(ẋ2 − ÿr − α̇1) − (ẋ1 − ẏr ) −
d
dt
(θ̂Tϕ2) + α̈1)

)
+

− (x3 − ÿr − (−c2(x2 − ẏr − α1) − x1 + yr ) − θ̂Tϕ2+

+α̇1) − θ̂Tϕ4 − c3(ẋ3 −
...
y r + c2(ẋ2 − ÿr − α̇1) + ẋ1+

− ẏr +
d
dt
θ̂Tϕ2 − α̈1) − (ẋ2 − ÿr − α̇1) −

d
dt
θ̂Tϕ3+

− c2(ẍ2 −
...
y r − α̈1) − (ẍ1 − ÿr ) −

d2

dt2
(θ̂Tϕ2) +

...
α 1 .

(63)

By construction, we can realize that the time derivative of
each tuning function exhibits recursively the same structure:

α̇1 = ψ
1
(x, θ̂ , t) + f1(α1) , (64)

α̇2 = ψ
2
(x, θ̂ , t) + f2(α1, α̇1, α̈1) , (65)

α̇3 = ψ
3
(x, θ̂ , t) + f3(α1, α̇1, α̈1,

...
α1) , (66)

α̇4 = ψ
4
(x, θ̂ , t) + f4(α1, α̇1, α̈1,

...
α1,

....
α1 ) , (67)

...

α̇i = ψ
i
(x, θ̂ , t) + fi(α1 . . . α1(i)) , (68)

α̇i+1 = ψ
i+1

(x, θ̂ , t) + fi+1(α1 . . . α1(i+1)) , (69)

...

α̇n = ψ
n
(x, θ̂ , u, t) + fn(α1 . . . α1(n)) . (70)

By mathematical induction, we finally arrive at the conclu-
sion that every signal α̇i can be derived from known signals,
i.e., α̇i(x, θ̂ , t) and α̇n(x, θ̂ , u, t). Hence, there exist known
functionsψi(x, θ̂ , t) andψn(x, θ̂ , u, t) which are indeed upper
bounds for the right-hand sides of the equations (64)–(70),
according to (49)–(50), respectively. ■
Lemma 2: Consider the dynamic gain of the differentia-

tor (47)–(48) defined by

Li−1(x, θ̂ , u, t) : = k i−1
1 ∥x∥ + k i−1

2 ∥yR∥ + k i−1
3 |u|+

+ φ̄(x, θ̂ , t) , (71)

where yTR = [ẏr , . . . , y
(n)
r ]. In addition, φ̄(x, θ̂ , t) is a norm

bound for both nonlinear terms ϕT = [ϕ1 , . . . , ϕn] and
ϕ̇T = [ϕ̇1 , . . . , ϕ̇n], while k

i−1
1 , k i−1

2 and k i−1
3 are positive
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constants. Thus, the following upper bound can be obtained,
for some finite time T > 0:

|α̈i−1| ≤ Li−1(x, θ̂ , u, t) , ∀t ≥ T . (72)

Proof: It is not difficult to show that equation (42) can be
rewritten as

α̇i−1 = cizi + zi−1 + θ̂Tϕi + αi , (73)

whose time derivative is

α̈i−1 = ciżi + żi−1 +
˙̂
θTϕi + θ̂T ϕ̇i + α̇i . (74)

With help from equations (40), (42), (43), (44) and (73),
we get

α̈i−1 = ci(ẋi − yir − α̇i−1) + (ẋi−1 − yi−1
r − α̇i−2)+

+
˙̂
θTϕi + θ̂T ϕ̇i + α̇i

= ci(ẋi) + (xi + θ∗Tϕi−1) +
˙̂
θTϕi + θ̂T ϕ̇i+

− ci(yir + α̇i−1) − yi−1
r − α̇i−2 + α̇i

= ci(ẋi) + (xi + θ∗Tϕi−1) +

[
0
( n∑
k=1

ϕkzk
)]T

ϕi+

+ θ̂T ϕ̇i − ciyir − yi−1
r − ciα̇i−1 − α̇i−2 + α̇i . (75)

Now, the upper bound of (75) can be calculated using
equations (49)-(50) and following the same analogy made
in the proof of Lemma 1, that is, that both the stabilizing
functions and the error functions are dependents of the state
x, of the reference model yr and of a constant:

α̈i−1 ≤ (ciβ)|u| + (ci + 1)∥yR∥ + ∥θ∗
∥∥ϕ∥(ci + 1)+

+ |xi| + ∥0
( i∑
k=1

ϕkzk
)
ϕi∥ + ∥θ̂∥∥ϕ̇i∥ + ciψi−1+

+ ψi−2 + ψi ,

≤ (ciβ)|u| + (ci + 1)∥yR∥ + θ̄∥ϕ∥(ci + 1) + |xi|+

+ ∥0∥∥ϕ∥
2
(
p1∥x∥ + p2∥yR∥ +

i∑
l=1

ψl(x, t)
)

+

+ ∥θ̂∥∥ϕ̇∥ + ciψi−1 + ψi−2 + ψi ,

≤ (ciβ)|u| + (ci + 1)∥yR∥ + |xi| + θ̄∥ϕ∥(ci + 1)+

+ ∥0∥∥ϕ∥
2(p1∥x∥ + p2∥yR∥) +

i∑
l=1

ψl(x, t)+

+ ∥θ̂∥∥ϕ̇∥ + ciψi−1 + ψi−2 + ψi . (76)

where p1 and p2 are constants depending on the order of the
system and ∥θ∗

∥ ≤ θ̄ the upper bound of the unknown term.
Defining the constants

k i−1
1 > 1 ,
k i−1
2 > (ci + 1) ,
k i−1
3 > (ciβ) ,

(77)

non-negative, one can obtain the upper bound for non-linear
terms such as

φ̄(x, θ̂ , t) > θ̄∥ϕ∥(ci + 1) + ∥0∥∥ϕ∥
2(p1∥x∥ + p2∥yR∥)+

+

i∑
l=1

ψl(x, t) + ∥θ̂∥∥ϕ̇∥ + ciψi−1 + ψi−2 + ψi .

(78)

The inequality (72) can be further increased by

α̈i−1 ≤ k i−1
1 ∥x∥ + k i−1

2 ∥yR∥ + k i−1
3 |u| + φ̄(x, θ̂ , t) . (79)

Thus, the gains of the differentiator can be defined as in (71),
such that (72) is satisfied. ■

Lemma 2, therefore, proposes that the gain is independent
of the stabilizing functions, which according to Lemma 1, are
in function of ψi(x, t) e ψn(x, u, t). The stability proof of this
differentiator will be presented below.
Lemma 3: Consider the global HOSMdifferentiator (47)–

(48) with dynamic gains (71) satisfying (72). If the parame-
ters λi−1

j > 0 are chosen recursively, the following equalities

ζ i−1
0 (t) = αi−1(t) , ζ i−1

1 (t) = α̇i−1(t) , (80)

are globally satisfied in finite time.
Proof: In a similar way to that presented in [28], one can

find Lyapunov function of the auxiliary estimation error z̄ =

αi−1−ζ
i−1
1

Li−1
, i = 1 , . . . , n−1 ,whose time derivative satisfies,

for some constant k > 0, the following inequality

V̇ ≤ −kV (z̄)
p−1
p −

L̇i−1

Li−1
γ (L̇i−1)V (z̄) , (81)

where

γ (L̇i−1) =

{
γ1 if L̇i−1 ≥ 0 or
γ2 if L̇i−1 < 0 , 0 < γ1 < γ2 .

Thus, three cases can be admitted:
• The gainLi−1 is constant. This case is addressed in [19].
• The gain Li−1 is differentiable and grows at the most
exponentially ( |L̇i−1|

|Li−1|
≤ Mi−1) for a given constant

Mi−1 > 0. This case is addressed in [29].
• The gain Li−1 is differentiable and grows unboundedly
(L̇i−1 ≥ 0). The system is globally stable in finite time,
according to [28].

In closed loop, the differentiator converges and the control
signal leads the system to the equilibrium. Thus, the gain
decreases and enters into a compact region where all
the results of [19] or [29] can also be invoked. So, the
convergence of (80) can be guaranteed through the use of the
same arguments and statements in [19], [28], and [29].

In all the cases, thus (80) is satisfied in finite time. ■
It is important to clarify that although we assume the

complete measurement of plant state, we still need to find
a norm bound for α̈i−1—see inequality (72) in Lemma 2,
which will be employed to construct the dynamic gain (71)
of the HOSM differentiator (47) and (48), for ultimately
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obtaining an exact estimate of α̇i−1, according to (80) in
Lemma 3. The latter will be used in the derived control
law (45) and (46), for i = n. The crucial point here is to realize
that the computation of α̈i−1 depends on the unknown signal
α̇i, according to the expression (75) in the proof of Lemma 2.
However, at this point we do not need to know exactly α̇i.
We just need to find an upper bound for that. To this end,
Lemma 1 shows that implementable upper bounds for |α̇i|

can be assured, for all i = 1 , . . . , n. Such upper bounds are
functions of the measurable signals x(t), θ̂ (t), and yR(t) =

[ẏr (t) , . . . , y
(n)
r (t)]T , as shown in inequalities (49) and (50)

of Lemma 1.

V. GLOBAL HOSM DIFFERENTIATOR-BASED
BACKSTEPPING CONTROL
In this section, it is shown that the Adaptive Backstepping
Control via Tuning Functions presented in Section II can
be redesigned. Since the exact estimates of the derivatives
α̇i−1 can be obtained using the global differentiator presented
in Section III. Basically, the change is to use stabilization
functions of the type

α1 = −c1z1 − θ̂Tϕ1 , αi = −cizi − zi−1 − θ̂Tϕi + ζ i−1
1 .

(82)

The block diagram on Figure 2 and the Table 1 represent the
summary of the proposed control method. In the following
theorem, the main stability results are presented.
Theorem 1: Consider the plant (1), error variables (40),

tuning functions in (43), adaptation law (44), control
law (45), global HOSM differentiators (47)–(48) with
dynamic gains (71) satisfying (72) and the stabilization func-
tions (82). Hence, for any initial condition, all closed-loop
signals are globally uniformly bounded, and the tracking of
the system output y(t), in relation to the reference signal yr (t)
is achieved asymptotically.
Proof: The proof is divided into a few steps. We will first

prove that the exact estimates of α̇i−1 are indeed obtained in
finite time, according to Lemma 3.

Step 1: From Lemma 2, it is possible to conclude that
each dynamic gainLi−1 from the differentiators (47) and (48)
satisfy the conditions introduced in [28] and [29] in finite
time.

Thus, there are finite-time instants Tj > 0 for each αj such
that inequality (72) is satisfied, ∀t > max{T1 , . . . , Tn−1}.
Then, the errors of the differentiators are forced to reach a
compact set in which the conditions given in [28] and [29]
can be invoked and it follows that equation (80) is satisfied.
Consequently, the derivative of the stabilization function
α̇i−1 is exactly estimated, that is, ζ i−1

1 ≡ α̇i−1. Since this
equality is achieved after a finite time t > T , being T :=

max{T1 , . . . , Tn−1}, the next steps of the proof will be the
same as in [18].
Step 2: Consider the output error (39) and its derivative

through (1), given by

ż1 = x2 + θ∗Tϕ1(x1) − ẏr . (83)

Replacing x2 = z2 + ẏr + α1 in (40) for i = 2, we have

ż1 = z2 + α1 + θ∗Tϕ1 . (84)

Now, considering the estimation error

θ̃ = θ∗
− θ̂ , (85)

the Lyapunov function candidate for calculating the system
stability of (z1, θ̃ ) is given by

V1 =
1
2
z21 +

1
2
θ̃T0−1θ̃ , (86)

and its derivative, through (84) and (85), is given by

V̇1 = z1
(
z2 + α1 + θ̂Tϕ1

)
− θ̃T0−1

(
˙̂
θ − 0ϕ1z1

)
. (87)

Choosing the stabilization function

α1 = −c1z1 − θ̂Tϕ1 , (88)

the following expression is obtained

V̇1 = −c1z21 + z1z2 + θ̃T
(
τ1 − 0−1 ˙̂

θ
)
, (89)

where the first tuning function is simply

τ1 = ϕ1z1 . (90)

Step 3: Supposing the error z2 in (40) and calculating its
derivative using (1), we get

ż2 = x3 + θ∗Tϕ2(x1, x2) − ÿr − α̇1 . (91)

Replacing x3 = z3 + ÿr + α2 obtained in (40) and α̇1 for ζ 11
via (80), we get

ż2 = z3 + α2 + θ∗Tϕ2 − ζ 11 . (92)

The new Lyapunov function candidate is

V2 = V1 +
1
2
z22, (93)

and its derivative

V̇2 = −c1z21 + z2
(
z1 + z3 + α2 + θ̂Tϕ2 − ζ 11

)
+

+ θ̃T
(
τ1 + ϕ2z2 − 0−1 ˙̂

θ
)
, (94)

using (85), (89) and (92). Selecting the stabilization function

α2 = −c2z2 − z1 + ζ 11 − θ̂Tϕ2 , (95)

we have the expession

V̇2 = −c1z21 − c2z22 + z2z3 + θ̃T
(
τ2 − 0−1 ˙̂

θ
)
, (96)

where the second tuning function is written as

τ2 = τ1 + ϕ2z2 . (97)

Step i: The error zi has it’s general expression (40) and
its derivative by means of (1) changing α̇i−1 by ζ i−1

1 along
with (80), leads to

żi = xi+1 + θ∗Tϕi(x1, . . . , xi) − y(i)r − ζ i−1
1 . (98)
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FIGURE 2. Adaptive Backstepping control based on a Global HOSM Differentiator with Adaptive Gains.

TABLE 1. Summary of the main closed-loop equations.

Replacing xi+1 = zi+1+y
(i)
r +αi obtained in (40) for i = i+1,

we get

żi = zi+1 + αi + ϕTi θ − ζ i−1
1 . (99)

Now, the Lyapunov function candidate is

Vi = Vi−1 +
1
2
z2i , (100)

and its derivative can be calculated as:

V̇i = −

i−1∑
k=1

ckz2k + zi
(
zi−1 + zi+1 + αi + ϕTi θ̂+

− ζ i−1
1

)
+ θ̃T

(
τi−1 + ϕizi − 0−1 ˙̂

θ
)
. (101)

Finally, the choice of the stabilization function

αi = −cizi − zi−1 − ϕTi θ̂ + ζ i−1
1 , (102)

results in the expression

V̇i = −

i∑
k=1

ckz2k + zizi+1 + θ̃T
(
τi − 0−1 ˙̂

θ
)
, (103)

where the general tuning function is

τi = τi−1 + ϕizi. (104)

Step n: Considering the last error zn in (40), its derivative
along with (1) and the change of α̇n−1 by ζ

n−1
1 , with the help
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of (80), generates

żn = β(x)u+ ϕn(x)T θ − y(n)r − ζ n−1
1 . (105)

The last Lyapunov function candidate is

Vn = Vn−1 +
1
2
z2n , (106)

with time-derivative

V̇n = −

n−1∑
k=1

ckz2k + zn
(
zn−1 + βu+ ϕTn θ̂+

− y(n)r − ζ n−1
1

)
+ θ̃T

(
τn−1 + ϕnzn − 0−1 ˙̂

θ
)
. (107)

Finally, the control law defined as

u =
1
β

(
−cnzn − zn−1 − ϕTn θ̂ + ζ n−1

1 + y(n)r
)
, (108)

guarantees the global stability of the complete closed-loop
system since

V̇n = −

n∑
k=1

ckz2k + θ̃T
(
τn − 0−1 ˙̂

θ
)
, (109)

where the last tuning function is given by

τn = τn−1 + ϕnzn . (110)

By plugging the parameter adaptation law

˙̂
θ = 0τn , (111)

into (109), we get

V̇n = −

n∑
k=1

ckz2k . (112)

Thus, [zT , θ̃T ]T = [0, 0]T is a globally uniformly stable
equilibrium point. Moreover, using the theorem of LaSalle-
Yoshizawa [30], it can be concluded that the errors zi → 0 as
t → ∞. ■

VI. SIMULATION RESULTS
In this section, some simulation results for a third-order non-
linear system will be presented. The phenomenon presented
here is the Wing Rock1 which corresponds to the existence
of a limit cycle on the longitudinal axis of a high-speed
performance aircraft. The example proposed in this section is
similar to that described in the work of Krstić et al. [3, page
180].

1Watch the online videos available by NASA at:
https://www.youtube.com/watch?v=6EOo7jJ8Phg
https://www.youtube.com/watch?v=JcFd0o-LtUU.

FIGURE 3. High performance plane with angles φ , p , δ. Image adapted
from https://images.app.goo.gl/GyAYQTzedvucavB76 (last view in
15/07/2021).

A. APPLICATION TO WING ROCK CONTROL
Consider the third-order system with x = [φ , p , δA]T :

φ̇ = p ,

ṗ = δA + θ∗Tϕ(φ, p) ,

δ̇A =
1
τ
u−

1
τ
δA ,

y = φ . (113)

The vector ϕ(φ, p) = [1, φ, p, |φ|p, |p|p]T represents the
nonlinearity of the system as a function of the state, θ∗

=

[θ1, θ2, θ3, θ4, θ5]T are the unknown parameters and y is the
output of the system. The reference model adopted is yr (s) =

1
(s+10)(s2+4s+24.25)

r(s). The entry is r(s) = 0. The goal is to
drive the system smoothly to the origin with a performance
specified by the reference model. In this example, only the
derivative of α2 need to be estimated with the global HOSM
differentiator (47)–(48) with dynamic gain (71):

ζ̇0 = v0 = −λ0L
1
2
2 |ζ0 − α2|

1
2 sgn (ζ0 − α2)+ ζ1 , (114)

ζ̇1 = −λ1L2sgn (ζ1 − v0) . (115)

The differentiator has dynamic gain given by

L2(x, θ̂ , u, t) := k21 |δ| + k22∥yr∥ + k23 |u| + φ̄(x, θ̂ , t) ,

(116)

with the following constants:

k21 =
c2
τ

+ c2c1 + 1 +
c1
τ
, (117)

k22 = c2 + c1 + c2c1 + 1 , (118)

k23 =
c2
τ

+
c1
τ
, (119)

and with the upper bound φ̄ for the nonlinear terms defined
as

φ̄ =
(
c2 + c1

)
θ̄∥ϕ̇∥ +

(
c1c2 + 1 + ∥0∥∥ϕ∥

2)θ̄∥ϕ∥+

+ ∥θ̂∥∥ϕ̈∥ + ∥0∥

(
∥ϕ̇∥∥ϕ∥

[
|p| + |ẏr | + c1(|φ|+
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+ |yr |)
]

+ ∥ϕ∥
2
[
|δ| + |ÿr | + c1(|p| + |ẏr |)

])
+

+ 20∥ϕ̇∥

(
∥ϕ∥

[
|p| + |ẏr | + c1(|φ| + |yr |)

])
, (120)

being ∥θ∗
∥ ≤ θ̄ the norm bound of the unknown vector θ∗.

In this example, it was not necessary to use the know ledge
of the upper bounds for the known signals, as suggested in
Lemma 1.
The errors variables are:

z1 = φ − yr ,

z2 = p− ẏr − α1 , (121)

z3 = δA − ÿr − α2 ,

where as the stabilization functions obtained with the help of
the global HOSM differentiator are

α1 = −c1z1 ,

α2 = −c2z2 − z1 − θ̂Tϕ + ζ 11 . (122)

Finally, the control law and then the adaptivation law are
given by:

u = τ

(
−c3z3 − z2 +

1
τ
δA + ζ 21 +

...
y r

)
, (123)

˙̂
θ = 0τ2 = 0ϕz2 . (124)

The initial adopted conditions were φ(0) = 0.5, p(0) =

δ(0) = 0, while the unknown parameters θ∗ in the system
were chosen as θ∗

= [0, −26.67, 0.76, −2.92, 0]T , the
constant τ = 0, 67, the adaptivation gain 0 = 0.02I , with
the identity matrix denoted by I . The initial conditions of the
estimated parameter θ̂ (0) = [0, −36.00, 1.03, −3.94, 0]T ,
the control parameters c1 = c2 = c3 = 5 and the
diferentiator constants are λ20 = 1.5, λ21 = 1.1 and
θ̄ = 30. The numerical integration procedure for solving
ordinary differential equations was the Euler method and the
integration step was chosen as h = 10−4s. The simulation
results can be seen in Figures 4, 5, 6 and 7.

FIGURE 4. Phase plane for the open-loop (solid line) and closed-loop
(dashed line) systems.

FIGURE 5. Control signal of the proposed adaptive controller
backstepping for the Wing Rock system.

FIGURE 6. State variables.

FIGURE 7. Dynamic gain of the proposed exact HOSM differentiator.

B. COMPARISONS WITH OTHER DIFFERENTIATORS
UNDER MEASUREMENT NOISE AND DELAYED SIGNALS
In order to numerically compare the developed adaptive
backstepping control law with two other differentiator-
based schemes, we consider in the next results real-world
imperfections, such as noises and delays. It is used as a
noise signal the sinusoidal function with amplitude 0.05 and
frequency 1000rad/sec, and a delay of 0.1 sec in the
measured signals φ(t) and δA(t) employed for the control
design.
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1) GLOBAL HOSM DIFFERENTIATOR WITH DYNAMIC GAINS
Even under delays and measurement noise, the proposed
global HOSM differentiator with dynamic gain maintain the
basic properties of the control law leading to the convergence
of the output signal to the desired trajectory. The simulation
plots can be seen in Figures 8, 9 and 10.

FIGURE 8. State variables of the Wing Rock system under *delays, **noise
and no imperfections using the Global HOSM differentiator with dynamic
gains.

FIGURE 9. Control signal of the proposed Global HOSM differentiator
with dynamic gains for the Wing Rock system under *delays, **noise and
no imperfections.

FIGURE 10. Dynamic gain of the proposed Global HOSM differentiator on
the Wing Rock system under *delays, **noise and no imperfections.

2) LINEAR DIFFERENTIATOR
Also called lead filter, the linear (inexact) differen-
tiator is based on the following first-order transfer
function:

yout (t) =
s

τf s+ 1
f (t) , (125)

where yout (t) corresponds to the output, τf is the time constant
of the filter and the input f (t) is the signal to be differentiated.
The use of this differentiator requires a very low 0 < τf ≪ 1,
tending to zero so that the error between the output (estimate
of the derivative) and the ideal (exact) value also approaches
to zero. The control law, despite meeting the control objec-
tive, takes a huge effort due to the occurrence of the peaking
phenomenon [31]. The simulation results can be seen in
Figures 11, 12 and 13.

FIGURE 11. State variables of the Wing Rock system under *delays,
**noise and no imperfections using the linear differentiator.

FIGURE 12. Control signal of the adaptive backstepping with linear
differentiator for the Wing Rock system under *delays, **noise and no
imperfections.
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FIGURE 13. The same fixed gain (1/τf = 100) of the lead filter used for
the three studied cases: under *delays, with **noise, and without
imperfections.

3) HOSM DIFFERENTIATOR WITH FIXED GAINS
Based on the algorithm described in [17] and [18], the
following HOSM differentiator with fixed gain—also called
Robust Exact Differentiatior (RED)—can be employed to
estimate the base signal α2(t) (whose second derivative has
a local Lipschitz constant equal to C[2] > 0) according to:

ζ̇
[2]
0 =v[2]0 =−λ

[2]
0 C1/2

[2]

∣∣∣ζ [2]0 −α[2]

∣∣∣1/2 sgn (ζ [2]0 −α[2]

)
+ζ

[2]
1 ,

(126)

ζ̇
[2]
1 =−λ

[2]
1 C[2]sgn

(
ζ
[2]
1 − v[2]0

)
. (127)

The algorithm guarantees that ζ [2]0 (t) = α[2](t), ζ
[2]
1 (t) =

α̇[2](t) if ∣∣α̈[2]∣∣ ≤ C[2] , ∀t ≥ T , (128)

is at least locally satisfied, with some finite T > 0.
In this differentiator, the state must be confined to a region
of the state space and therefore does not apply to any
initial condition, with exceptions, when, for example, the
closed-loop system is homogeneous: local results imply
global results [29].

FIGURE 14. Selected gains of the HOSM differentiator with fixed gains on
the Wing Rock system over time.

In the simulations, the constant C[2] was considered equal
to 100 (the gain of the lead filter), 1000 (a mid term value)
and 3000 (approximately the highest value of the dynamic
gain found in Figure 10). The simulation results can be seen
respectively in Figures 14 to 20.

FIGURE 15. Unstable system with state variables of the Wing Rock
system with HOSM differentiator with fixed gain C[2] = 100 over time.

FIGURE 16. Unstable system with control signal of the HOSM
differentiator with fixed C[2] = 100.

FIGURE 17. State variables of the Wing Rock system with HOSM
differentiator with fixed C[2] = 1000.
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FIGURE 18. Control signal of the HOSM differentiator with fixed
C[2] = 1000.

FIGURE 19. State variables of the Wing Rock system with HOSM
differentiator with fixed C[2] = 3000.

FIGURE 20. Control signal of the HOSM differentiator with fixed
C[2] = 3000.

In addition to being valid only locally, the main disadvan-
tage of the HOSM differentiator with fixed gain, as the name
itself says, is that the gain is fixed and therefore does not
decrease with time as happens in the dynamic gain according,
to Figure 10. Thus, the HOSM differentiator with fixed gain
may be more sensitive to measurement noise in practical
applications.

VII. EXPERIMENTAL RESULTS WITH A DC MOTOR
An experimental evaluation of the proposed method is
showed below. Here, we restrict ourselves to some of the
considered relative degree compensation schemes.

The experiments were performed using a laboratory
prototype (Figures 21 and 22) based on a permanent magnet
DC motor 2342024CR with built in gear box (1 : 43), from
MicroMo Electronics, Inc., of the Quanser Consulting Plant
SRV-02. The control algorithmwas implemented on a motion
control system based on a digital signal processor (DSP)
hosted in a microcomputer.

The control signal u is the armature voltage, which
is generated by a 12-bit digital-to-analog converter con-
nected to a linear power amplifier (motor driver). The
sampling frequency is 2.5 kHz. The motor angular posi-
tion is measured by an incremental optical encoder with
resolution 1000 counts per revolution (cpr). The reso-
lution of the measured angular position of the load is
172000 cpr due to the gear box and the electronics on the
card.

The following nominal relative degree two model of
the DC motor is used, neglecting the small electrical time
constant

G(s) =
y
u

=
kp

s(s+ 10)
, (129)

where y is the angular position in degrees, u is the
armature voltage in volts and the gain kp ∈ [600, 1000] is
uncertain.

FIGURE 21. Top view of the SRV-02 by Quanser.

FIGURE 22. DC motor (front view of the SRV-02 by Quanser).
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FIGURE 23. Experiments using linear lead filter or nonlinear HOSM-based
differentiator: output error z1 (tracking a sinusoid). All angles expressed
in degrees.

FIGURE 24. Experiments using linear lead filter or nonlinear HOSM-based
differentiator: output error z1 in response to step inputs. All angles
expressed in degrees.

FIGURE 25. Experiments using linear lead filter or nonlinear HOSM-based
differentiator: y = x1 (solid) and reference step inputs (dashed). All
angles expressed in degrees.

The aim of the experiment discussed here is to evaluate
the practical advantage of using HOSM-based differentiators
in adaptive backstepping control, compared to a linear lead
filter, for a simple but real application, in order to obtain
precise output tracking. In this experiment, the reference
model (38) was chosen as yr (s) =

20
(s+5)(s+20) r(s) and

the linear lead filter given by (125), with τf = 2ms.
The HOSM-based differentiator is implemented as (114)
and (115), with λ0 = 100 and λ1 = 2500.

In what follows, we discuss in detail the results of the
experiment. In Figure 23, the linear lead filter is applied
for t ∈ [0, 16) seconds. Then, for t ∈ [16, 26] seconds,
it was manually switched to HOSM-based differentiator
and, finally, it was switched back to the linear lead filter
thereafter. One can clearly note the better performance of the
nonlinear HOSM-based differentiator and the performance
degradation caused by the phase lag of the linear lead filter,
with τf = 2 ms. This time constant was experimentally
tuned as small as possible so that the control chattering was
acceptable.

Figures 24 and 25 present the response of the system to step
changes in the reference input r(t). For t ∈ [14, 28] seconds
and t ∈ [37, 40] seconds, only the nonlinear HOSM-based
differentiator is used, while in the remaining intervals of

time, the linear lead filter is employed. Noticeable chattering
results appear in the latter case, during the steady state in
the step following experiment. In contrast, the chattering is
practically eliminated in the case of the nonlinear HOSM-
based differentiator. Thus, remarkably superior regulation
performance is observed when the proposed method is used.

VIII. CONCLUSION
In this paper, a new backstepping adaptive controller was
proposed for a class of nonlinear systems of the strict-
feedback type. In addition, to simplify the original back-
stepping adaptive controller, avoiding the use of partial
derivatives in its control law, the use of the global HOSM
differentiator with dynamic gains ensured a globally stable
closed-loop control system. For any initial conditions, the
control law will act leading to the convergence of the output
to a desired trajectory.

According to the final numerical comparisons of distinct
differentiation schemes being employed in the backstepping
control law, we could conclude that the linear differen-
tiators lead to a highly sensitive-adverse phenomenon of
peaking. On the other hand, HOSM differentiators with
fixed gains are valid only locally, demanding increments
on the domain of attraction by increasing the constant gain
of the differentiator. This results in a potential increase of
the sensitivity of the overall closed-loop systems to real-
world imperfections, such as noises and delays. Experimental
results with a DC motor also support the advantages of
obtaining a more precise output tracking with the proposed
method.

For future works we could use the adaptive backstepping
control for nonlinear systems to improve the research
background, for example, event-based adaptive fixed-time
fuzzy control for active vehicle suspension systems with
time-varying displacement constraint [32], adaptive multi-
gradient recursive reinforcement learning event-triggered
tracking control for multiagent systems [33], nonsingular
finite-time event-triggered fuzzy control for large-scale
nonlinear systems [34]. We invite the readers to perform new
experimental works on the topic for different engineering
applications [35].
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