
Received 22 April 2024, accepted 22 May 2024, date of publication 29 May 2024, date of current version 6 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3406893

XeroZerox: Analysis and Optimization of GPU
Memory Management for High-Integrity
Autonomous Systems
ALEJANDRO J. CALDERÓN 1, (Member, IEEE), LEONIDAS KOSMIDIS 2, (Member, IEEE),
CARLOS-F. NICOLÁS 1, AND FRANCISCO J. CAZORLA 2
1Ikerlan Technology Research Centre, Arrasate, 20500 Basque Country, Spain
2Barcelona Supercomputing Center (BSC), Barcelona, 08034 Catalonia, Spain

Corresponding author: Alejandro J. Calderón (ajcalderon@ikerlan.es)

This work was supported in part by European Union’s Horizon Europe Program through the Modular Model-Based Design and Testing for
Applications in Satellites (METASAT) Project under Grant 101082622, in part by Spanish Ministry of Economy and Competitiveness
(Spanish State Research Agency/Agencia Española de Investigación (AEI)/http://dx.doi.org/10.13039/501100011033) under Grant
PID2019-107255GB-C21 and Grant IJC-2020-045931-I, and in part by the Department of Research and Universities of the Government of
Catalonia with a Grant to the Computer Architecture and Operating Systems (CAOS) Research Group under Code 2021 SGR 00637.

ABSTRACT Autonomous systems require high-performance processing capabilities, which demand the
use of powerful accelerators such as GPUs. However, the use of GPUs in critical systems presents several
challenges, since GPU programming models rely on explicit dynamic memory management. Traditionally,
dynamic memory allocation in such systems is restricted to certain controlled scenarios, which require
programs to be rewritten so that all the required memory is allocated at the beginning of the program
and released at its end. However, many GPU applications do not follow this approach. Moreover, when
dynamic memory allocation is used, it is critical to compute the exact amount of memory that will be used
as well as to minimize it, to guarantee that it fits in the physical system memory. In this paper we present
XeroZerox, an open-source tool that automatically converts the traditional dynamic memory allocations of
GPU applications into allocations served from a centralized and optimally sized memory pool, which is
managed in a way better suited for critical systems. XeroZerox allows legacy GPU applications to be used in
a critical setup without rewriting them, minimizing at the same time their memory consumption and memory
management runtime overhead.

INDEX TERMS Graphics processing units, dynamic memory management, autonomous systems.

I. INTRODUCTION
As the capabilities of autonomous systems continue to
grow, there is an increasing demand for sophisticated com-
putational processes to drive their functionalities. Systems
such as unmanned aerial systems (UAS) and autonomous
driving (AD) vehicles require high-performance processing
capabilities to handle complex software-controlled func-
tionalities and make real-time decisions [1], [2]. However,
these systems are mostly deployed on resource-constrained
embedded platforms that are restricted by Size, Weight,

The associate editor coordinating the review of this manuscript and

approving it for publication was Cristian Zambelli .

and Power-consumption (SWaP). In this context, the robust
processing capabilities of Graphics Processing Units (GPUs)
make them an attractive choice for autonomous systems [1].
GPUs, originally designed to render complex graphics, have
evolved into general-purpose parallel processors capable of
handling a variety of computational problems. As a result,
they are frequently utilized in various domains, including
systems that require real-time processing [3]. Specifically,
embedded architectures that integrate CPU cores and a GPU
in the same System on Chip (SoC), are gaining preference for
the implementation of embedded autonomous systems due
to their SWaP advantages. In this direction, the GPU market
leader vendor NVIDIA has made significant investments

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 77141

https://orcid.org/0000-0003-2426-306X
https://orcid.org/0000-0001-9751-1058
https://orcid.org/0000-0002-2117-913X
https://orcid.org/0000-0002-3344-376X
https://orcid.org/0000-0001-8755-0504


A. J. Calderón et al.: XeroZerox: Analysis and Optimization of GPU Memory Management

in the autonomous systems sector by designing the Jetson
family of embedded GPU platforms, which offer a balance
between SWaP and parallel processing capabilities [4], [5].

However, despite the SWaP advantages offered by embed-
ded CPU-GPU platforms, the integration of GPUs into
critical systems presents several challenges. One of the
most significant challenges arises from the inherent GPU
programming models that rely heavily on explicit dynamic
memory management [6]. Dynamic memory allocation,
while offering flexibility and adaptability, presents inherent
uncertainties in real-time safety-critical applications. In such
systems, unanticipated memory allocations can lead to
unpredictable behaviors which can compromise the integrity
and reliability of the system. Consequently, most critical
systems traditionally adhere to strict memory management
paradigms, under which dynamic memory allocation is not
used, or where dynamic allocations are only allowed during
the system initialization, maintaining the corresponding
memory allocated during the whole program execution, and
releasing it at the program termination. In fact, Khronos
Safety Critical (SC) APIs, such as OpenGL SC 2.0 and
Vulkan SC, do not offer calls to free dynamically allocated
objects [7]. Furthermore, when this restricted type of dynamic
memory allocation is allowed in critical systems, it is
necessary to accurately compute the exact amount of memory
that the program will use, to ensure it fits in the available
physical system memory.

This conservative approach offers a degree of certainty,
ensuring that a program will not suddenly run out of memory
during execution, nor its performance will be affected by
frequent memory allocations and deallocations. As has been
demonstrated in [8], the allocation of dynamic GPU memory
involves the creation of memory pools, which negatively
impact the launch time of GPU kernels. However, this
approach poses a significant challenge for many existing
GPU applications. The vast majority of these applications
are designed without the constraints of critical systems
in mind. Consequently, they are not compatible with the
memory management model that such systems demand.
Re-engineering these applications to fit within these con-
straints would be a time-consuming and resource-intensive
task.

In industry, tools like Valgrind are typically used to
analyze and debug memory management issues in software
applications [9]. However, it is important to note that Valgrind
does not work well with GPU applications, as it was
primarily designed for CPU-based memory analysis. This
limitation presents a challenge when it comes to ensuring
the memory integrity and reliability of GPU-accelerated
critical systems [10]. Additional research and development
are necessary to address the unique memory management
challenges posed by GPU integration in these systems.
There are alternative approaches to manage GPU memory
in safety-critical applications, such as the use of static
memory allocation strategies and memory over-provisioning

techniques. These approaches aim to provide a balance
between predictable memory usage and the parallel pro-
cessing capabilities of GPUs in critical systems, offering
potential solutions for the integration of GPUs in high-
integrity applications.

In this work we present XeroZerox, an open-source tool
designed to address this scenario. XeroZerox transforms the
dynamic allocations of the traditional GPU memory model
into allocations served from a centralized memory pool.
For this, XeroZerox analyzes the memory use of a target
GPU application and determines the optimal size of the
centralized memory pool, which is created at the beginning
of the application and released at its end. XeroZerox acts
as a sub-allocator, merging redundant allocations of the
traditional GPU memory model into a single zero-copy or
unified memory allocation. This approach allows legacy
GPU applications to fit within the memory management
constraints of critical setups without the need for code
modifications. Additionally, XeroZerox ensures that the
memory consumption of these applications is minimized,
reducing both the memory footprint and the associated
runtime overhead of memory management. The research
presented in this work constitutes a refinement of the ideas
and findings originally presented in the doctoral thesis of the
main author [11].

The remainder of this article is organized as follows.
Section II provides background information on the use of
GPUs in high-integrity systems and on the field of dynamic
memory management for embedded GPUs. Section III
describes the design and implementation of XeroZerox,
detailing its key features and functionalities. Section IV
describes the experimental results of memory optimization
of various legacy GPU applications using XeroZerox, and
also presents some performance considerations when using
different memory models on embedded GPU platforms.
Section V provides an overview of related work in the field
of GPU memory management and optimization. Finally,
Section VI presents the conclusions of this work.

II. BACKGROUND
A. GPUS IN HIGH-INTEGRITY AUTONOMOUS SYSTEMS
The use of GPUs in high-integrity systems, particularly
in automotive and industrial control systems, is gaining
traction due to their high computational power and effi-
ciency. Trompouki and Kosmidis [12] have demonstrated a
methodology to develop and certify the entire GPU software
stack, including its toolchain, up to ASIL-D for automotive
applications, highlighting the importance of functional safety
certification at all levels of the system. This is critical
as autonomous driving and Advanced Driving Assistance
Systems (ADAS) require a high degree of resilience against
faults to meet the requirements of the ISO-26262 functional
safety standard [1]. However, the integration of GPUs
into high-integrity systems presents significant challenges,
particularly with regard to reliability, fault tolerance, and

77142 VOLUME 12, 2024



A. J. Calderón et al.: XeroZerox: Analysis and Optimization of GPU Memory Management

security. To address these challenges, extensive research and
development efforts have been directed towards enhancing
GPU reliability and security. An approach involves con-
ducting cross-layer GPU reliability evaluations, combining
high-energy neutron beam experiments, fault simulation
campaigns, and application profiling to unveil and mitigate
GPU vulnerabilities [13]. Security has also been a focal point,
with designs aiming to reduce the attack surface through
low-overhead secure GPU memory, leveraging value locality
to minimize authentication metadata and optimize memory
bandwidth usage [14] [15] [16]. Furthermore, the concept
of utilizing GPUs in System-on-Chip (SOC) architectures
for industrial applications has been explored, proposing
additional hardware and software diversity to improve safety
integrity [17]. Overall, the use of GPUs in high-integrity
systems is characterized by a multifaceted approach to
enhancing reliability, fault tolerance, and security, ensuring
these systems can meet the stringent requirements of their
respective applications. In this work, we focus on reducing
the uncertainty of GPU memory management to improve the
integrity and reliability of GPU-based autonomous systems.

B. CUDA MEMORY MANAGEMENT
The traditional CUDA programming model requires the
programmer to manage memory explicitly for both the
CPU and GPU, which includes tasks such as allocation,
deallocation, and transfers between host memory and device
memory. CPU memory, allocated with malloc, is by
default paged, meaning it can be swapped out to the disk
by the operating system due to memory oversubscription.
Conversely, GPU memory allocated with cudaMalloc is
always non-paged, ensuring that it is always present in the
memory.

Transferring data between CPU andGPUmemory involves
DMA (Direct Memory Access) operations, which are asyn-
chronous with respect to CPU execution. However, DMA can
only work when the pages are present in memory, and this is
not always guaranteed for paged CPU memory. Therefore,
the transfers need to pass through an intermediate buffer
of non-paged memory, requiring synchronous copying from
CPU before DMA can perform asynchronous transfers to
the device. This results in additional memory overhead and
timing delays in GPU transfers.

To avoid these overheads, programmers can allocate
non-paged CPU memory, known as pinned or paged-locked
memory, using cudaMallocHost. However, this type of
memory is limited and more expensive to allocate due to user
space to kernel space switches. This type of memory allows
fully asynchronous transfers using cudaMemcpyAsync.
An alternative option is to allocate another type of pinned

memory on the CPU side, which is memory-mapped to the
GPU, using cudaHostAlloc with the cudaHostAlloc
Mapped flag. This approach eliminates the need for explicit
copies between CPU and GPU memory, which gives the
name zero-copy. The implementation varies depending on the

GPU type. Discrete GPUs use DMA engines to transfer data
over the PCIe link, while embedded GPUs, sharing the main
memory with the CPU, directly access the same memory
as the CPU. In both cases, the programmer must ensure
consistency in the shared memory between CPU and GPU.
This functionality is supported by a feature known as UVA
(Unified Virtual Addressing), which allows both CPU and
GPU to use the same virtual address [18].
CUDA also provides Unified Memory, a feature that

removes the responsibility of manually transferring data
between CPU and GPU [19]. Unified Memory allows the
creation of a single allocation for both CPU and GPU using
cudaMallocManaged, eliminating the need for memory
copies and simplifying code writing. Unified Memory uses
the UVA feature, enabling a single memory pointer accessible
from both the host side and the device side. Data transfers
between CPU and GPU are handled internally by the CUDA
runtime, which migrates memory pages on demand. Despite
increasing productivity, the performance of Unified Memory
is heavily dependent on the memory access patterns of
each application and introduces more black-box behavior to
memory management.

C. MEMORY MODELS IN EMBEDDED GPUS
In embedded GPU platforms, the CPU cores and the
integrated GPU share the same physical memory, which can
be managed using different memory models. It becomes
essential to carefully select the appropriatememorymodel for
optimal performance and efficient memory utilization when
executing embedded GPU applications. The diagram shown
in Figure 1 illustrates the operation of distinct CUDAmemory
models within embedded GPU platforms.

When using the traditional memory model (shown in
Figure 1a), the physical memory is divided into two logical
domains: one for host allocations and the other for device
allocations. Before executing a kernel, data gets transferred
from the host logical space to the device logical space. After
the kernel execution, the output values are copied back from
the device logical space to the host logical space. In this setup,
both the CPU and GPU caches remain enabled, which can
accelerate data transfers. Additionally, the synchronization
of data access between the CPU cores and the integrated
GPU is guaranteed by design. However, in most cases,
the use of caches is not enough to completely hide the
data transfer overhead. Furthermore, memory consumption
remains suboptimal, as both CPU and GPU allocations are
served from the same physical memory.

The zero-copy memory model provides a more effective
strategy. Sharing physical memory between the CPU and
GPU allows the CPU to share pointers to pinned host
allocations directly accessible by the GPU, eliminating the
necessity for DMA transfers. This further eliminates the
need for memory copies and reduces memory consumption
compared to the traditional memory model. Nevertheless,
a shared memory space requires ensuring cache coherence

VOLUME 12, 2024 77143



A. J. Calderón et al.: XeroZerox: Analysis and Optimization of GPU Memory Management

FIGURE 1. CUDA memory models in embedded GPUs.

between CPU and GPU. Since cache coherency through
software-based mechanisms could introduce additional over-
head, certain platforms, like NVIDIA embedded GPUs with
compute capability below 7.2, tackle the cache coherency
challenge by disabling last-level caches in both CPU and
GPU (as illustrated in Figure 1b). This approach can
negatively impact the performance of cache-dependent GPU
applications. Consequently, NVIDIA suggests implementing
zero-copy memory for small buffers, where the caching
impact is minimal. In cases involving larger buffers, zero-
copy memory proves beneficial when memory access pat-
terns do not rely on caches.

To mitigate this constraint, the most recent NVIDIA
embedded platforms featuring a compute capability of
7.2 or higher incorporate a hardware-based I/O coherency
mechanism (as shown in Figure 1c) [20]. I/O coherency
enables an I/O device, such as a GPU, to access the latest
updates in CPU caches, eliminating the need for CPU cache
management actions when CPU and GPU share the same
physical memory. Nevertheless, GPU cache management
tasks remain necessary due to the unidirectional nature of

the I/O coherency mechanism. Consequently, the GPU cache
remains inactive when using zero-copy memory on these
platforms.

In embedded GPU platforms, unified memory allocations
consist of pointers to a single unified logical domain
accessible by both the CPU and the GPU (as shown
in Figure 1d). However, the implementation of unified
memory in embedded GPUs differs from that of discrete
GPUs. Instead of dynamically migrating pages between host
memory and device memory, the embedded unified memory
model mirrors the zero-copy memory model, featuring single
allocations for both CPU and GPU to reduce memory
consumption. Nevertheless, unlike the zero-copy memory
model, the unified memory model maintains active CPU
and GPU caches, requiring the runtime system to perform
software-based cache coherence management tasks. The
overhead caused by these operations is higher in embedded
platforms with a compute capability less than 7.2, as they
lack hardware I/O coherency [20]. It is important to note
that, according to NVIDIA, software-managed coherency is
by nature non-deterministic and not recommended in a safe

77144 VOLUME 12, 2024



A. J. Calderón et al.: XeroZerox: Analysis and Optimization of GPU Memory Management

FIGURE 2. GMAI workflow [21].

context. Therefore, in these applications, it is preferable to
use the zero-copy memory model [20].

D. GMAI: GPU MEMORY ALLOCATOR INSPECTOR
GMAI (GPU Memory Allocator Inspector) is a tool that can
be run on any Linux system equipped with a GPU to extract
its memory allocator properties [21]. GMAI consists of two
parts: the first part is a set of reverse engineering scripts,
based on the microbenchmarks defined in [8], to extract
the properties of a GPU memory allocator. The second part
is a preload library designed to obtain the real memory
consumption of GPU applications, using the properties
extracted in the previous part. Figure 2 shows the workflow
followed by GMAI to extract the properties of a GPU
memory allocator and to use this information to compute the
real memory use of GPU applications. The source code is
available at [22].

When GMAI is executed, it extracts key properties of the
underlying GPU memory allocator. These properties include
the size of the memory pools created by the allocator, the
internal granularity of thesememory pools, the size ranges for
which the pools are created (also known as size classes), and
the memory allocation policy. This information is presented
in a report similar to the one illustrated in Listing 1.
Additionally, the information is saved in a configuration
file that can be utilized later by the preload library to
automatically determine the actual GPU memory usage of
a target application. In this work, we use the information
extracted with GMAI to calculate the real amount of memory
used by GPU applications. Based on this information,
XeroZerox can create a single, optimally sized memory pool
for each target application.

III. DESIGN AND IMPLEMENTATION
In this section, we present the design and implementation
of XeroZerox. The main objective of XeroZerox is to adapt
the memory management of legacy GPU applications to a
memorymodel more suitable for critical systems, minimizing
at the same time their memory consumption. Legacy GPU
applications normally use the traditional CUDA memory
model, in which the programmer must define and initialize

LISTING 1. Example GMAI report for NVIDIA TX2 [21].

a set of allocations on the host side using dynamic pageable
memory, and also define an equivalent set of allocations on
the GPU side using dynamic device memory. Furthermore,
before executing a kernel, the programmer must explicitly
copy the initial values from host memory to device memory,
and after the kernel execution, copy the results back from
device memory to host memory. As explained in Section II-C,
in embeddedGPU platforms, both host and device allocations
are served from the same physical memory. Therefore, when
an application that uses the traditional GPU memory model
is executed on an embedded GPU platform, its memory
consumption is not optimal and it performs unnecessary
memory transfers.

XeroZerox has been designed to automatically detect
the memory allocations of the traditional memory model
and replace them with memory allocations served from
a centralized memory pool. This memory pool is created
using either zero-copy or unified memory, and its size is
calculated based on the amount of memory used by the
target application. This way, XeroZerox reduces memory
consumption and eliminates the need for memory transfers.

XeroZerox interacts with the CUDA runtime system at
the beginning of the application to create the centralized
memory pool and then at the end of the application to release
it. All memory allocations requested by the application
are served internally by XeroZerox using the centralized
memory pool. This is how XeroZerox also minimizes the
overhead produced when interacting with the CUDA runtime
memorymanagement system. Furthermore, since all memory
allocations are served from the centralized memory pool,
XeroZerox avoids memory leaks by releasing the entire
memory pool when the application finishes.

The functionality of XeroZerox is divided into two
different libraries: the analysis library and the optimization
library. As shown in Figure 3, XeroZerox is applied in two
different phases. In the first phase, the XeroZerox analysis
library must be included in the compilation process of the
target application. The analysis library contains wrapper

VOLUME 12, 2024 77145



A. J. Calderón et al.: XeroZerox: Analysis and Optimization of GPU Memory Management

FIGURE 3. XeroZerox analysis and optimization workflow.

functions for all key functions required for dynamic memory
management in CUDA applications. Each wrapper function
gathers the information required for the analysis before
calling the corresponding real function. When the resulting
compiled application is executed, it generates a file that we
call the optimization profile, which is used in the next phase.
The details related to the analysis phase are discussed in
Section III-A.
In the second phase, the target application must be com-

piled again, this time including the XeroZerox optimization
library in the compilation process. This library contains
alternative function replacements for all functions used for
dynamic GPU memory management in CUDA applications.
The alternative functions implement optimized versions of
the original functions. In order to work properly, these
functions require the information included in the optimization
profile generated in the previous phase. The details related to
the optimization phase are discussed in Section III-B.

A. XEROZEROX ANALYSIS PHASE
The functionality required for the XeroZerox analysis phase
is implemented in the analysis library. The objective of
the analysis library is to gather information about the
memory-related function calls of the target GPU application,
to characterize how the different types of dynamic memory
are used, and to create a memory optimization profile. The
results of the analysis phase are a memory characterization
report, an interactive memory plot showing the evolution
of the different types of dynamic memory used in the
application and the location of the related function calls
in the source code, and a memory characterization profile
that stores information needed for the optimization phase.
Figure 4 shows an example of amemory characterization plot.
The interactive memory characterization plot allows the user
to observe the dynamic memory behavior of a target GPU
application and trace back interesting function calls to their

location in the source code. To implement this functionality,
it is necessary to capture all GPU-related dynamic memory
calls and extract data related to the requested memory size,
assigned addresses, and location of the function calls in the
source code.

GPU applications can use different types of dynamic
memory. For each type of memory, there are specific
functions that the analysis library needs to capture. For
device memory, it must keep track of cudaMalloc
and cudaFree calls. For pinned memory, it must cap-
ture calls to cudaMallocHost, cudaHostAlloc and
cudaFreeHost. On the host side, GPU applications can
also use dynamic pageable memory, which is usually allo-
cated with malloc and deallocated with free. However,
pageable memory allocations can also be done with other
functions such as calloc, so the analysis library must keep
track of those function calls as well.

In order to capture the target memory functions, the
analysis library uses a technique known in the literature
as function interposition [23], which consists in replacing
target functions with user-defined wrapper functions. These
wrapper functions can then be used to add extra functionality
to the original functions, in our case, to extract information
from the arguments. In UNIX-like systems, function interpo-
sition can be done at run time using the environment variable
LD_PRELOAD [24] which is used by GMAI [21], at load
time using the --wrap argument of the ld linker [25], or at
compile time, replacing the target function calls at the source
code level.

Since GMAI uses LD_PRELOAD to implement function
interposition at run time, our first approach was to extend the
GMAI preload library to add the functionality required for the
analysis phase. However, with this approach, the extraction
of source code information is not optimal. To implement
it, it must be assumed that the target application has
been compiled with debugging information. Then, for each

77146 VOLUME 12, 2024



A. J. Calderón et al.: XeroZerox: Analysis and Optimization of GPU Memory Management

FIGURE 4. Example interactive memory characterization plot.

LISTING 2. Examples of function interposition at compile time.

function call, the debugging symbols must be extracted
from the compiled binary. We created a prototype using
this approach and found that the extraction of source
information added much processing overhead on function
calls. Moreover, while this approach works well with CUDA
functions, for more generic functions such as malloc
it generates recursion problems, since malloc is used
internally by functions like dlsym, which is used inside the
wrapper functions to invoke the real functions.

Due to the limitations of the LD_PRELOAD approach,
we opted to use function interposition at compile time for the
implementation of the analysis library. With this approach,
the calls of the target function are replaced in the source
code using #define directives. One of the advantages of
this approach is that extraction of source code information
is easier to implement. In C/C++, we have access to
the __FILE__ and __LINE__ macros which expand to
the full path of the current file and the current line number,
respectively [26]. In the analysis library, these macros are
added as extra arguments to the wrapper functions to get the
source information for every function call. Listing 2 shows
some examples.

As part of the analysis library, we created a header file
with #define directives to replace the target memory
management functions with wrapper functions. In order
to replace the original function calls with the wrapper
functions, this header file must be included in the source
files of the target application by adding a simple #include
directive. When the application is compiled, the memory
characterization functionality is added to the function calls.

The analysis library uses as input the configuration file
generated by GMAI. From this file, it gets information such
as the pool size and the size classes used by the GPU

memory allocators. Using these values, it keeps track of the
creation of memory pools and it calculates the real amount of
device memory and pinned memory reserved by the CUDA
allocators.

When the compiled application is executed, each wrapper
function gathers information about its correspondingmemory
function. At the end of the execution, the analysis library
creates a report with information such as the maximum
amount of dynamic memory used by the application, the
number of memory pools created, the number of memory
transfers, and if there are memory leaks. The library also
creates an interactive memory characterization plot, such as
the one shown in Figure 4.

The interactive memory characterization plot shows the
evolution of pageable host memory, pinned host memory, and
device memory through the execution of the application. For
device and pinned memory, it shows the values requested
by the user as Device memory (user) and Pinned memory
(user) respectively. It also shows the real amounts of
memory reserved by the CUDAmemory allocators asDevice
memory (allocator) and Pinned memory (allocator), based
on the information extracted with GMAI. At each point,
the Total memory is calculated as the sum of pageable host
memory plus the amount of device memory and pinned
memory reserved by the CUDA allocators. For each memory
operation, the plot shows the current state of all types of
memory and the information of each function call. As an
illustrative example, Figure 4 shows that the third memory
operation of the analyzed application was a cudaMalloc
call to reserve 2,725,888 bytes of devicememory, the function
call is at line 569 of the cutoff6overlap.cu source file, and the
total amount of GPU-related dynamic memory used at this
point of the program execution is 6,082,688 bytes.

VOLUME 12, 2024 77147



A. J. Calderón et al.: XeroZerox: Analysis and Optimization of GPU Memory Management

FIGURE 5. Generation of the optimization profile.

In addition to the interactive memory characterization plot,
the analysis library creates the optimization profile, as shown
in Figure 5. The optimization profile is a file that contains
information on the correspondence between host and device
allocations, the sizes requested for each allocation, and the
maximum amount of memory needed by the application. This
information is required to carry out the optimization phase.
To create the optimization profile, first, the host memory allo-
cation wrappers (malloc/calloc/cudaMallocHost)
and the cudaMalloc wrapper gather information about the
allocation sizes requested by the application and assign an
identifier to each allocation. Then, it is necessary to know
which host allocation is related to which device allocation.
For this purpose, we take advantage of the cudaMemcpy
function. The cudaMemcpy wrapper identifies the corre-
spondence between a host allocation and a device allocation
and creates the corresponding match in the optimization
profile.

To calculate the maximum amount of memory needed
by the application, the analysis library keeps track of the
amounts of memory requested on each individual allocation
using the malloc, calloc, cudaMallocHost and
cudaMalloc wrappers. It also keeps track on how these
allocations are released, using wrappers for the free,
cudaFreeHost andcudaFree functions.With that infor-
mation, the analysis library continuously updates the current
amount of memory used and keeps track of the maximum
value reached. At the end of the execution, the maximum
registered value is stored in the optimization profile as the
maximum amount of memory needed by the application. It is
worth noting that the analysis phase is only needed to be
executed once per application.

B. XEROZEROX OPTIMIZATION PHASE
The functionality required to apply the XeroZerox opti-
mizations is implemented in the optimization library. For
this library, we also created a header file with #define
directives to replace the original memory management
functions with alternative functions served by XeroZerox.
To carry out the optimization, the header filemust be included
in the source code of the target application. This way, the
memory management functions are replaced at the source

code level. Then, the target application must be linked
together with the optimization library. In the compilation
process, the optimization library must be configured to
use either zero-copy memory or unified memory to create
the centralized memory pool. When the resulting compiled
application is executed, it uses the XeroZerox functions
instead of the traditional memory model functions to serve
the allocations using the centralized memory pool.

As shown in Figure 6, when using the traditional memory
model in an embedded GPU platform, the memory is
partitioned into one logical space for the host allocations
and one logical space for the device allocations. The host
allocations are served by a host allocator in the system,
while the device allocations are served by an NVIDIA
allocator. As previously stated, the memory consumption
in this scenario is not optimal since both CPU and GPU
allocations are served from the same physical memory. Also,
it requires the application to perform memory transfers
between both logical spaces, which can negatively impact
performance. Furthermore, the NVIDIA allocator can create
multiple memory pools according to predefined size classes,
which can negatively impact both memory consumption and
performance [8].

XeroZerox proposes an alternative memory model, which
we show in Figure 7. When an application optimized with
XeroZerox is executed, it first reads the optimization profile
and loads the information required for optimization. The
first value it reads is the maximum amount of memory
needed, which is used as a reference to create the centralized
memory pool. For this task, XeroZerox requests the NVIDIA
allocator to reserve either zero-copy memory or unified
memory, according to the memory type configured in the
compilation process. It is worth noting that the minimum
amount of memory reserved for the centralized memory pool
still depends on the NVIDIA allocator and the configured
memory type. For zero copy memory, the minimum amount
of memory reserved by the NVIDIA allocator is the pool size,
which can be 1 MB or 2 MB depending on the platform [8].
In the case of unified memory, the minimum amount of
memory reserved by the NVIDIA allocator in the Jetson
platforms is 4 KB, which is the DRAM page size. For sizes
larger than the pool size in zero-copy, or the page size in

77148 VOLUME 12, 2024



A. J. Calderón et al.: XeroZerox: Analysis and Optimization of GPU Memory Management

FIGURE 6. Traditional memory model.

FIGURE 7. XeroZerox memory model.

unified memory, the amount of memory reserved by the
NVIDIA allocator is the next multiple of the page size.

After creating the centralized memory pool, XeroZerox
works as a sub-allocator, attending the allocation requests
from the application based on the matches loaded from the
optimization profile. Since each match represents a host
allocation and a device allocation, XeroZerox only allocates
memory for the first of these two allocation requests that
it receives. When it receives the second allocation request,
it returns a pointer to the region of memory that has been
already allocated for the first one. In this way, XeroZerox
transforms two matching host and device allocations into a
single allocation served from the centralized memory pool.
Similarly, XeroZerox deallocates amemory region onlywhen
it receives the two corresponding deallocation requests. At the
end of the application execution, XeroZerox deallocates the
centralized memory pool using the corresponding CUDA
function.

It is worth noting that, while the zero-copy and unified
memorymodels allow the reduction inmemory consumption,
the performance of the applications when using these

TABLE 1. Platforms used for XeroZerox evaluation.

memory models will depend on the memory access patterns
of each application and the coherency mechanisms of the
underlying platform, as explained in Section II-C. Even when
XeroZerox can improve the performance of an application
by eliminating the need for memory transfers and reducing
the interaction with the runtime system, this performance
improvement can be overshadowed by the limitations of the
zero-copy and unified memory models. The source code of
XeroZerox is available at [27].

IV. EVALUATION
This section presents the results we obtained after applying
the XeroZerox analysis and optimization to the benchmarks
of the Rodinia benchmark suite [28], one of the most widely
used GPU benchmarking suites. The Rodinia benchmark
suite contains 23 benchmarks with CUDA, OpenMP and
OpenCL implementations. Due to compilation issues, we do
not include the mummergpu benchmark in the evaluation.
The cfd, particlefilter and srad benchmarks have multiple
versions, but we consider that selecting one version of each
of these benchmarks is enough for the purposes of this work.
For cfd we selected the euler3d version, for particlefilter
we selected the particlefilter_float version, and for srad we
selected the srad_v1 version.

In order to carry out the evaluation, we first compiled the
CUDA version of the benchmarks, including the XeroZerox
analysis library in the compilation process. Then, we exe-
cuted the compiled benchmarks to obtain the information
for memory characterization and the optimization profiles.
Finally, we compiled the benchmarks again using the
XeroZerox optimization library, and generated one version
optimized with zero-copymemory and one version optimized
with unified memory for all the benchmarks. We used
two different platforms from the NVIDIA Jetson family
to perform the evaluation. The details of the selected
platforms are provided in Table 1. We selected one platform
with hardware I/O coherency and another one without
hardware I/O coherency, with the purpose of illustrating the
different behaviors we can expect in the performance of the
applications when using zero-copy and unified memory.

A. MEMORY ANALYSIS AND CHARACTERIZATION
For the analysis phase, we compiled the benchmarks
including the XeroZerox analysis library in the compilation
process, and we executed the resulting binaries to obtain the
information for memory characterization and the optimiza-
tion profiles. Table 2 shows a summary of the information
obtained in the memory characterization reports.

VOLUME 12, 2024 77149



A. J. Calderón et al.: XeroZerox: Analysis and Optimization of GPU Memory Management

FIGURE 8. Rodinia benchmarks distribution of maximum total memory used.

TABLE 2. Rodinia benchmarks characterization results.

Regarding memory transfers, Table 2 shows the number
of host-to-device and device-to-host memory transfers (H2D
and D2H respectively) for each benchmark. The benchmarks
with the highest number of memory transfers are myocyte,
srad and streamcluster. When executing applications like
these benchmarks on embedded GPU platforms, replacing
the pageable allocations and their corresponding device
allocations with zero-copy or unified allocations could help
to improve performance, since all related memory transfers
could be avoided.

In terms of memory consumption, Table 2 shows the
maximum dynamic memory used for each benchmark during
execution. The kmeans and streamcluster benchmarks are
the ones with more memory consumption. In the case
of streamcluster, the allocation activity is more intensive,
creating device memory pools up to 524 times. Themaximum

memory used value is composed by different types of
dynamic memory. To better understand its composition,
Figure 8 shows what percentage of the maximum value
corresponds to each type of dynamic memory in all the
benchmarks.

As we can see, in almost all the benchmarks, the maximum
memory used value is composed only by pageable host
memory and device memory. The only benchmark using
pinned host memory is dwt2d. There are some benchmarks
like backprop, bfs, hotspot, hotspot3D, lavaMD, leukocyte,
nw, pathfinder, and streamcluster where the memory is
almost evenly distributed between host memory and device
memory. When executing applications like these bench-
marks on embedded GPU platforms, replacing the pageable
allocations and their corresponding device allocations with
zero-copy or unified allocations could help to reduce the
memory consumption approximately to the half.

To analyze the behavior of the Rodinia benchmarks in
terms of how memory is allocated and deallocated, Figure 9
shows the memory characterization plots obtained for all the
benchmarks during the XeroZerox analysis phase. In typical
GPU applications, memory for different variables is allocated
gradually, presenting an increasing behavior until reaching
the peak of maximummemory used by the application. Then,
these allocations are gradually released after use, presenting
a decreasing behavior until the total memory used is zero.
In this category we have benchmarks like backprop, bfs,
gaussian, hotspot, hotspot3D, kmeans, lavaMD, lud, nn,
nw, particlefilter, pathfinder and srad. This is the desired
behavior for most GPU applications. We just need to make
sure that all allocations are grouped at the beginning of the
application and that all deallocations are done in the end. This
way, we can avoid the creation of memory pools in the middle
of the execution, which can have a negative timing impact
when launching GPU kernels [8].

On the other hand, there are applications like hybridsort,
leukocyte, and streamcluster which have a repetitive pattern
in allocation and deallocation along their execution. This

77150 VOLUME 12, 2024



A. J. Calderón et al.: XeroZerox: Analysis and Optimization of GPU Memory Management

FIGURE 9. Memory characterization plots of Rodinia benchmarks.

behavior usually corresponds to iterative blocks of code with
allocations and deallocations inside a loop. It is common

in applications that execute the same GPU kernel several
times, such as applications that process images or frames

VOLUME 12, 2024 77151



A. J. Calderón et al.: XeroZerox: Analysis and Optimization of GPU Memory Management

TABLE 3. Memory consumption results for Rodinia benchmarks.

in a video. The problem with applications like these is not
the iterative behavior, but to include the allocations and
deallocations inside the processing loop. For each allocation
and deallocation, the application needs to interact with the
CUDA runtime, which adds processing overhead on each
iteration. Moreover, some allocations can trigger the creation
of new memory pools, which can add timing overhead to the
execution time of the next GPU kernel launch [8].

B. MEMORY CONSUMPTION OPTIMIZATION
In order to evaluate XeroZerox in terms of reduction in
memory consumption, we compiled the benchmarks using
the XeroZerox optimization library and the optimization
profiles we obtained in the previous phase. We generated
zero-copy and unified memory versions of the benchmarks
and executed them on the selected embedded GPU platforms.
Since the memory page size is the same in all Jetson
platforms and both selected platforms share the same pool
size, the memory consumption results are identical for both
platforms. When performing the evaluation, we realized
that the hybridsort and the kmeans benchmarks were not
compatible with XeroZerox. By design, XeroZerox works
with legacy GPU applications in which the correspondence
between host allocations and device allocations is one-to-one.
If an application has one-to-many correspondences between
host allocations and device allocations, applying XeroZerox
can result in unexpected behavior. For this reason, these
benchmarks are not included in the evaluation. Table 3 shows
the results we obtained for the rest of the benchmarks.

In the table, the Allocated column shows the amount
of memory allocated in the original Rodinia benchmarks
using the traditional memory model. The Required column
shows the maximum amount of memory required by each

benchmark, which has been calculated in the XeroZerox
analysis phase. The XeroZerox columns present the size of
the centralized memory pool in both zero-copy (ZC) and
unified memory (UM) versions of the benchmarks. Finally,
the Reduction columns present the percentage of reduction
in memory consumption for both ZC and UM versions with
respect to the memory allocated in the original benchmarks.

As shown in the table, the ZC and UM versions present
an identical percentage of reduction in the cases where the
required amount of memory is larger than the pool size,
which in the selected platforms is 2 MB. This is an expected
result since, in the Jetson platforms, all unified memory
allocations and the zero-copy allocations larger than the
pool size are reserved using the same rule: reserve the next
multiple of 4 KB. On the other hand, for those benchmarks
that require small amounts of memory, like gaussian, lud,
myocyte, nn and particlefilter, the percentage of reduction
of the UM version is higher than the percentage of the ZC
version. This is so because of the minimum pool size that can
be allocated for each type of memory. For example, to serve
the 144 bytes required for the gaussian benchmark, it is more
efficient the minimum 4 KB that can be reserved with unified
memory than the minimum 2 MB that can be reserved with
zero-copy memory.

The highest reduction in memory consumption is obtained
in benchmarks like backprop, bfs, hotspot, hotspot3D,
lavaMD, leukocyte, nw, pathfinder and streamcluster, for
which the percentage of reduction is around 50% with both
ZC and UM versions. As shown in Figure 8, in these
benchmarks, the memory used is almost evenly distributed
between host memory and device memory, which makes pos-
sible the reduction in memory consumption to approximately
the half. On the contrary, for benchmarks like cfd, dwt2d,

77152 VOLUME 12, 2024



A. J. Calderón et al.: XeroZerox: Analysis and Optimization of GPU Memory Management

TABLE 4. Maximum execution times of Rodinia benchmarks.

heartwall and srad, for which the memory is not evenly
distributed, we obtain less than 25% of reduction in memory
consumption.

C. PERFORMANCE CONSIDERATIONS
As explained in Section II-C, the performance of appli-
cations using the zero-copy and the unified memory
models depends on the memory access patterns of the
application and the coherency mechanisms used in the
underlying platform. Therefore, to evaluate the performance
of the Rodinia benchmarks after applying the XeroZerox
optimizations, we executed several times the original, the
zero-copy, and the unified memory versions of the bench-
marks on both embedded GPU platforms and registered
their maximum execution times. The results are shown in
Table 4.
The performance of the cfd, heartwall and streamcluster

benchmarks is affected when we use zero-copy memory in
the Jetson TX2 platform. If we compare these results with the
results obtained when we use unified memory on the same
platform, we can see that the performance is not affected
in the same way. This means that these applications are
cache-dependent. In embedded NVIDIA platforms without
hardware I/O coherency, like the Jetson TX2, the last level
caches of both CPU and GPU are disabled when using
zero-copy memory but remain enabled when using unified
memory. In the case of the Jetson Xavier NX, there are no
significant changes in the performance of the applications
when using zero-copy or unified memory instead of the
traditional memory model. Due to the presence of hardware
I/O coherency in this platform, the performance of the
benchmarks is no longer affected when using zero-copy
memory.

It should be noted that the performance of the myocyte
benchmark improves on both platforms when using either
zero-copy or unified memory. As shown in Table 2, this
benchmark performs 7800 host-to-device and 7800 device-
to-host memory transfers, which are completely removed
when using XeroZerox. This means that the improvement in
performance when using a centralizedmemorymodel is more
evident in applications that have a high number of memory
transfers.

V. RELATED WORK
This section provides an overview of the existing lit-
erature about optimization of CPU-GPU communica-
tion and memory management for embedded platforms.
Otterness et al. [29] perform a comparison among the
three CUDA memory management policies and conclude
that unified memory can benefit applications only in
some scenarios. Dashti and Fedorova [30] compare the
performance of applications adopting different programming
frameworks under the unified memory mechanism in
integrated CPU-GPU systems. They also propose a new
configuration scheme called sharedalloc, which allows
programmers to manually flush CPU and GPU caches to
allow concurrent accesses to data. Lin et al. [31] present
vectorization and scheduling methods to effectively exploit
multiple forms of parallelism for throughput optimization
on hybrid CPU-GPU platforms, while conforming to
system-level memory constraints. They show that their meth-
ods can significantly improve system throughput compared
to previous approaches. Aghilinasab et al. [32] propose a
memory bandwidth allocation scheme to protect real-time
GPU kernels from memory-intensive, best-effort CPU tasks.
Bateni et al. [33] explore the performance implications of

VOLUME 12, 2024 77153



A. J. Calderón et al.: XeroZerox: Analysis and Optimization of GPU Memory Management

GPU memory management methods in integrated CPU-GPU
architectures. Through experiments on micro-benchmarks
and real-world workloads, they find that the performance
under different memory management methods may vary
depending on application characteristics. Lumpp et al. [34]
present a framework based on a performance model, micro-
benchmarks, and a zero-copy communication pattern to
accurately estimate the potential speedup of applications
considering different communication models in embedded
platforms. Related to this work, De Marchi et al. [35] present
efficient techniques to implement CPU-GPU communica-
tion, in compliance with the Robot Operating System (ROS).
To the best of our knowledge, XeroZerox is the first GPU
memory optimization tool that uses accurate information
extracted from the memory allocator properties to adapt the
memory model of embedded GPU applications to work with
critical setups, minimizing at the same time their memory
consumption.

VI. CONCLUSION
In this article, we presented XeroZerox, a tool designed
to minimize the memory consumption and memory man-
agement overhead of legacy GPU applications when exe-
cuted in embedded GPU platforms. To evaluate XeroZerox,
we applied it to the benchmarks of the Rodinia benchmark
suite and executed the resulting applications in two different
embedded GPU platforms. The results show that XeroZerox
can reduce to approximately 50% the memory consumption
in applications where the use of memory is evenly distributed
between host allocations and device allocations. In terms
of performance, we provided results showing the impact of
zero-copy and unified memory on the performance of the
applications, depending on the coherency mechanisms used
by the underlying platform.

In the Jetson TX2, we observed that zero-copy memory
could negatively affect the performance of cache-dependent
applications due to the absence of hardware I/O coherency
mechanisms. On the other hand, in the Jetson Xavier NX,
which includes hardware I/O coherency, the performance
of the benchmarks was not significantly affected. Finally,
we observed that even when XeroZerox can improve the
performance of an application by eliminating the memory
transfers and reducing the interaction with the runtime
system, the performance improvement can be negligible in
applications with a small number of memory transfers.

REFERENCES
[1] S. Alcaide, L. Kosmidis, C. Hernandez, and J. Abella, ‘‘High-integrity

GPU designs for critical real-time automotive systems,’’ in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2019, pp. 824–829.

[2] A. Sigala and B. Langhals, ‘‘Applications of unmanned aerial systems
(UAS): A Delphi study projecting future UAS missions and relevant
challenges,’’ Drones, vol. 4, no. 1, p. 8, 2020.

[3] T. Yang, Q. Xu, F. Meng, and S. Zhang, ‘‘Distributed real-time image pro-
cessing of formation flying SAR based on embedded GPUs,’’ IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 15, pp. 6495–6505, 2022.

[4] NVIDIA Corporation. Embedded Systems With Jetson. Accessed:
Sep. 2023. [Online]. Available: https://www.nvidia.com/en-us/autonom
ous-machines/embedded-systems/

[5] NVIDIA Corporation. Autonomous Machines: The Future of AI.
Accessed: Sep. 2023. [Online]. Available: https://www.nvidia.com/en-
us/autonomous-machines/

[6] NVIDIA Corporation. CUDA C++ Programming Guide. Accessed:
Aug. 2023. [Online]. Available: https://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html

[7] OpenGL SC Version 2.0.1 (Full Specification). (2019). OpenGL
SC Version 2.0.1 (Full Specification). [Online]. Available:
https://registry.khronos.org/OpenGL/specs/sc/sc_spec_2.0.1.pdf

[8] A. J. Calderón, L. Kosmidis, C. F. Nicolás, F. J. Cazorla, and P. Onaindia,
‘‘Understanding and exploiting the internals of GPU resource allocation for
critical systems,’’ in Proc. IEEE/ACM Int. Conf. Computer-Aided Design
(ICCAD), Nov. 2019, pp. 1–8.

[9] Valgrind Developers. Valgrind. Accessed: Mar. 2024. [Online]. Available:
https://valgrind.org/

[10] T. M. Baumann and J. Gracia, ‘‘Cudagrind: Memory-usage checking for
CUDA,’’ in Proc. 7th Int. Workshop Parallel Tools for High Perform.
Comput., Dresden, Germany, Sep. 2013, pp. 67–78.

[11] A. J. Calderón, ‘‘Real-time high-performance computing for embedded
control systems,’’ Ph.D. thesis, Dept. Comput. Archit., Universitat
Politècnica de Catalunya, Barcelona, Spain, 2022.

[12] M. M. Trompouki and L. Kosmidis, ‘‘BRASIL: A high-integrity GPGPU
toolchain for automotive systems,’’ in Proc. IEEE 37th Int. Conf. Comput.
Design (ICCD), Nov. 2019, pp. 660–663.

[13] M. B. Sullivan, N. Saxena,M. O’Connor, D. Lee, P. Racunas, S. Hukerikar,
T. Tsai, S. Kumar, S. Hari, and S. W. Keckler, ‘‘Characterizing and
mitigating soft errors in GPU DRAM,’’ in Proc. 54th Annu. IEEE/ACM
Int. Symp. Microarchitecture, Oct. 2021, pp. 641–653.

[14] R. Abdullah, H. Zhou, andA. Awad, ‘‘Plutus: Bandwidth-efficient memory
security for GPUs,’’ in Proc. IEEE Int. Symp. High-Performance Comput.
Archit. (HPCA), Feb. 2023, pp. 543–555.

[15] S. Na, S. Lee, Y. Kim, J. Park, and J. Huh, ‘‘Common counters:
Compressed encryption counters for secure GPU memory,’’ in Proc. IEEE
Int. Symp. High-Perform. Comput. Archit. (HPCA), Feb. 2021, pp. 1–13.

[16] S. Yuan, A. Awad, A. W. B. Yudha, Y. Solihin, and H. Zhou, ‘‘Adaptive
security support for heterogeneous memory on GPUs,’’ in Proc. IEEE Int.
Symp. High-Perform. Comput. Archit. (HPCA), Apr. 2022, pp. 213–228.

[17] F. Reichenbach, J. Endresen, and S.-E. Ellevseth, ‘‘Maximizing diversity
in CPUs: Using GPUs as coprocessors to achieve safety integrity,’’ in Proc.
12th IEEE Int. Conf. Ind. Informat. (INDIN), Jul. 2014, pp. 182–187.

[18] NVIDIA Corporation. Virtual Memory Management. Accessed:
Nov. 2023. [Online]. Available: https://docs.nvidia.com/cuda/cuda-c-progr
amming-guide/index.html?highlight=uva

[19] NVIDIA Corporation. Unified Memory Programming. Accessed:
Nov. 2023. [Online]. Available: https://docs.nvidia.com/cuda/cuda-c-progr
amming-guide/index.html?highlight=uva

[20] NVIDIA Corporation. CUDA for Tegra. Accessed: Jul. 2023. [Online].
Available: https://docs.nvidia.com/cuda/cuda-for-tegra-appnote/index.
html

[21] A. J. Calderón, L. Kosmidis, C. F. Nicolás, F. J. Cazorla, and P. Onaindia,
‘‘GMAI: Understanding and exploiting the internals of GPU resource
allocation in critical systems,’’ ACM Trans. Embedded Comput. Syst.,
vol. 19, no. 5, pp. 1–23, 2020.

[22] A. J. Calderón, L. Kosmidis, C. F. Nicolás, F. J. Cazorla, and P. Onaindia.
GMAI: GPUMemory Allocation Inspector. Accessed: Sep. 2023. [Online].
Available: https://github.com/ajcalderont/gmai

[23] A. Chatterjee. Function Interposition in C With an Example of
User Defined Malloc(). Accessed: Nov. 2023. [Online]. Available:
https://www.geeksforgeeks.org/function-interposition-in-c-with-an-
example-of-user-defined-malloc/

[24] M. Kerrisk. (2021). Linux Programmer’s Manual—ld.so(8). Accessed:
Aug. 2023. [Online]. Available: https://man7.org/linux/man-pages/man8/
ld.so.8.html

[25] S. Chamberlain. (1994). Using LD, The GNU Linker. Accessed:
Aug. 2023. [Online]. Available: https://ftp.gnu.org/old-gnu/Manuals/ld-
2.9.1/html_node/ld_3.html

[26] Free Software Foundation. (2021). The C Preprocessor—Standard Pre-
defined Macros. Accessed: Aug. 2023. [Online]. Available: https://
gcc.gnu.org/onlinedocs/cpp/Standard-Predefined-Macros.html

[27] A. J. Calderón, L. Kosmidis, C. F. Nicolás, and F. J. Cazorla.
XeroZerox. Accessed: Sep. 2023. [Online]. Available: https://github.com/
ajcalderont/xerozerox

77154 VOLUME 12, 2024



A. J. Calderón et al.: XeroZerox: Analysis and Optimization of GPU Memory Management

[28] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, ‘‘Rodinia: A benchmark suite for heterogeneous computing,’’
in Proc. IEEE Int. Symp. Workload Characterization (IISWC), Oct. 2009,
pp. 44–54.

[29] N. Otterness, M. Yang, S. Rust, E. Park, J. H. Anderson, F. D. Smith,
A. Berg, and S. Wang, ‘‘An evaluation of the NVIDIA TX1 for
supporting real-time computer-vision workloads,’’ in Proc. IEEE Real-
Time Embedded Technol. Appl. Symp. (RTAS), Apr. 2017, pp. 353–364.

[30] M. Dashti and A. Fedorova, ‘‘Analyzing memory management methods
on integrated CPU-GPU systems,’’ in Proc. 2017 ACM SIGPLAN Int.
Symp. Memory Manage., 2017, pp. 59–69.

[31] S. Lin, J. Wu, and S. S. Bhattacharyya, ‘‘Memory-constrained vectoriza-
tion and scheduling of dataflow graphs for hybrid CPU-GPU platforms,’’
ACM Trans. Embedded Comput. Syst. (TECS), vol. 17, no. 2, pp. 1–25,
2018.

[32] H. Aghilinasab, W. Ali, H. Yun, and R. Pellizzoni, ‘‘Dynamic memory
bandwidth allocation for real-time GPU-based SoC platforms,’’ IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 11,
pp. 3348–3360, Nov. 2020.

[33] S. Bateni, Z. Wang, Y. Zhu, Y. Hu, and C. Liu, ‘‘Co-optimizing
performance and memory footprint via integrated CPU/GPU memory
management, an implementation on autonomous driving platform,’’ in
Proc. IEEE Real-Time Embedded Technol. Appl. Symp. (RTAS), Apr. 2020,
pp. 310–323.

[34] F. Lumpp, H. D. Patel, and N. Bombieri, ‘‘A framework for optimizing
GPU-iGPU communication on embedded platforms,’’ in Proc. 58th
ACM/IEEE Design Autom. Conf. (DAC), Dec. 2021, pp. 685–690.

[35] M. De Marchi, F. Lumpp, E. Martini, M. Boldo, S. Aldegheri, and
N. Bombieri, ‘‘Efficient ROS-compliant CPU-iGPU communication on
embedded platforms,’’ J. Low Power Electron. Appl., vol. 11, no. 2, 2021.

ALEJANDRO J. CALDERÓN (Member, IEEE)
received the M.Sc. degree in embedded sys-
tems from the University of Mondragon, Basque
Country, Spain, in 2016, and the Ph.D. degree
in computer architecture from the Polytechnic
University of Catalonia, Barcelona, Spain, in 2022,
with a focus on the use of embedded GPUs
in real-time control systems. In 2018, he joined
the Real-Time Systems Team, Ikerlan Technology
Research Centre, to develop the Ph.D. thesis.

Currently, he is a Researcher with the Dependable Embedded Systems
Department, Ikerlan Technology Research Centre.

LEONIDAS KOSMIDIS (Member, IEEE) is cur-
rently a Senior Researcher with Barcelona Super-
computing Center (BSC) and a Faculty Member
with Universitat Politècnica de Catalunya (UPC).
He is leading the research on embedded GPUs
and accelerators for safety critical systems both
at the hardware and system software level within
the Computer Architecture/Operating Systems
(CAOS) Group, BSC. He is the Principal Inves-
tigator of several projects funded by European

Space Agency (ESA), European Commission and Industry, which focus
on the adoption of GPUs in space and avionics systems, including their
certification. He is also participating in standardization efforts regarding
GPU programming in safety-critical systems within Khronos.

CARLOS-F. NICOLÁS received the degree in
physics from the University of Valladolid, Spain,
in 1988, and the Ph.D. degree in engineering from
the University of Mondragon, Basque Country,
Spain, in 2017. In 1988, he joined the Ikerlan
Technology Research Centre, collaborating on
several automation-related projects. He is cur-
rently a Senior Researcher with the Dependable
Embedded Systems Department, Ikerlan Technol-
ogy Research Centre, where he works on the

application ofmodel-based design and virtualization techniques to efficiently
develop and commission programmable real-time control systems on
heterogeneous computing platforms.

FRANCISCO J. CAZORLA is currently the
Co-Head of the group on interaction between
the Computer Architecture/Operating Systems
(CAOS), Barcelona Supercomputing Center
(BSC). He has coordinated three European
projects of the FP7 and H2020 Program in the area
of software timing analysis in critical computing
systems and several projects with European
Space Agency. He is an ERC Consolidator Grant
Holder. He has authored over 200 papers in

top conferences and journals in the area of computer architecture, high
performance, and real-time computing systems.

VOLUME 12, 2024 77155


