IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 7 May 2024, accepted 25 May 2024, date of publication 29 May 2024, date of current version 6 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3406929

== RESEARCH ARTICLE

The Effectiveness of Hidden Dependence
Metrics in Bug Prediction

JUDIT JASZ

Department of Software Engineering, University of Szeged, 6720 Szeged, Hungary

e-mail: jasy @inf.u-szeged.hu

This work was supported in part by European Union Project within the Framework of the Artificial Intelligence National Laboratory under
Grant RRF-2.3.1-21-2022-00004; in part by the Ministry of Culture and Innovation of Hungary from the National Research, Development

and Innovation Fund, financed under the TKP2021-NVA Funding Scheme under Project TKP2021-NVA-09; and in part by the University
of Szeged Open Access Fund under Grant 6842.

ABSTRACT Finding and fixing bugs in programs is perhaps one of the most difficult, yet most important,
tasks in software maintenance. This is why in the last decades, a lot of work has been done on this topic,
most of which is based on machine learning methods. Studies on bug prediction can be found for almost
all programming languages. The solutions presented generally try to predict bugs based on information that
can be easily extracted from the source code, rather than more expensive solutions that require a deeper
understanding of the program. Another feature of these solutions is that they usually try to predict faults at
a high level (module/file/class), which is useful, but locating the bug itself is still a difficult task. This work
presents a solution that attempts to predict bugs at the method level, while also tracking the dependencies in
the program using an efficient algorithm, resulting in an approach that can predict bugs more accurately. The
practical measurements show that the defined approach really outperforms predictions based on traditional
metrics in most cases, and with proper filtering, the best-performing RandomForest algorithm according
to the F-measure can even achieve an improvement of up to 11%. Finally, it is proven that the introduced
metrics are even suitable for predicting bugs that will appear later in a given project if sufficient learning
data is available.

INDEX TERMS Bug prediction, method level, hidden dependencies, metrics.

I. INTRODUCTION
During software development, one of the biggest challenges

This is of great importance in program testing, since the
limited testing capacity can be concentrated on checking

is to ensure the quality of the software, to discover and
correct the bugs/errors in it, and to avoid newly introduced
bugs during the possible development of the software. There
are many tools to detect easily findable bugs in software,
even during development. However, noticing errors that
require a deeper understanding of the program is much
harder.

Bug prediction, or defect prediction is therefore a very
important area of software development, with extensive
literature and solutions. These methods can be used to
estimate which program elements (file, class, method) are
most prone to misbehaving without executing the program.

The associate editor coordinating the review of this manuscript and
approving it for publication was Khursheed Aurangzeb.

these program elements.

Most of the existing methods, as the one presented, are
product-based solutions that predict bugs by analysing the
source code of the program. The most common way of this
is to build an AST (abstract syntax tree) for the program
and to compute the appropriate metrics on it. The size and
complexity of the program elements can be well defined by
this method, and it is also possible to specify, for example,
how many other methods call a given method, which is
important for the computation of the coupling metrics [3].
However, these solutions only estimate the presence of errors
from data that can be read directly from the AST, without the
more complex analyses that require an understanding of the
program, which could point out errors that may be hidden in
this way.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

77214

For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 12, 2024

https://orcid.org/0000-0001-6176-9401

J. Jasz: Effectiveness of Hidden Dependence Metrics in Bug Prediction

IEEE Access

Solutions that take into consideration the control and data
dependencies in the program, including hidden dependencies,
where there are not any direct dependencies among the
dependent elements, are difficult to implement, much more
expensive, and often cannot be adapted to larger programs.
However, a major bug is often introduced into the program
because it is difficult to see and understand the dependencies
within the system that ultimately resulted in the bug.

To understand how a program works or to determine the
source of a bug in a program, programmers often turn to
methods that try to follow human thinking. One such method
is program slicing [35], which, starting from an arbitrary
statement in the program, determines the statements that are
affected by that statement or that affect the statement, thereby
narrowing the search space where the source of the error
may be. Surprisingly, there are only a few publications using
program slice metrics in error prediction models [4], [36].
This may be because computing program slices for larger
programs can be very time-consuming, and their practical
application is therefore questionable.

In most error prediction solutions, the program is handled
in a larger unit, such as the module, file or, in the case
of object-oriented languages, the class. According to the
examined granularity, the method specifies how reliable a
given program unit is or whether it may contain errors.
Of course, locating a potential error is much more difficult if
it is only known that the file contains an error instead of this
information being more specific, for example at the method
or statement level.

There are solutions, similar to the method introduced in this
paper, that try to efficiently predict errors by approximating
the slicing, but these solutions also tend to provide only a
file-level solution [1]. These methods, or the metrics defined
by these methods, can be used to predict errors as traditional
software metrics, but because they take into account not only
the structure of the program but also its behaviour, they can
be even better [27].

The presented method of this work approximates the
program slicing method and proposes metrics that can be
used to predict software bugs more effectively than traditional
software metrics. The goal is to provide an approach that
is computationally efficient at the method level for large
systems, as opposed to slice-based metrics, and thus suitable
for method-level bug prediction. The method-level prediction
helps to ensure the accuracy of the bug localization.

The introduced metrics are based on the previously
introduced Static Execute After (SEA) relation and the graph
used to define the relation [16]. The essence of the method
is that it tries to estimate possible program executions based
on the call graph and infer dependencies between program
elements based on this. An earlier work has shown that the
dependency sets computed by the SEA method approximate
program slicing sets well at the method level [15]. At the
same time, the computational requirements of SEA sets are
significantly smaller than those of slicing sets, so they can be
efficiently implemented for large programs.

VOLUME 12, 2024

In this paper, the accuracy with which models built
from metrics derived from SEA sets can estimate erroneous
methods is investigated. The models were built and evaluated
on the BugHunter dataset [9], which is widely used in
the field. The results showed that bug prediction models
built from metrics derived from SEA sets using different
learning algorithms are generally more accurate than models
computed from AST metrics. The best performing Random
Forest models show an 11% increase in F-measure.

The results are summarised by answering the following
research questions:

« RQ1: How suitable are the SEA-based metrics, which
also take into account the behaviour of the software, for
predicting bugs at the method level? Are these metrics
better than traditional metrics for predicting bugs?

« RQ2: How much can prediction results be improved by
properly filtering the dataset created with the SEA-based
metrics?

« RQ3: Can the introduced metrics help error prediction
by themselves when trained and used on a particular
project? What are the limitations of such a learning
approach?

The rest of the paper is organized as follows. Section II
describes the most common solutions and datasets in the area
of bug prediction. Section III deals with the Static Execute
After relation, which is a method-level approximation of
program slicing dependencies, and defines the SEA-related
metrics that are used for bug prediction. Section IV briefly
introduces the dataset on which the practical evaluation is
implemented. Research questions are answered in Section V
by presenting and evaluating practical measurements, and
then summarising the results in Section VI.

Il. RELATED WORKS

Thanks to the prominence of the topic, numerous methods
and datasets are available for almost every programming
language in the field of bug prediction [25]. Although the
method of this work is language-independent, in this paper
it is evaluated on Java programs, so the literature review
focuses on solutions and evaluation databases that analyse
error prediction solutions for programs written in Java.

In most solutions, some kind of metric provides the basis
for bug prediction. These can be some kind of product or
process-based metrics [21], [22], but can also be based on
traditional source code metrics or object oriented metrics [2],
[5], [29]. Some of the solutions examine the errors of previous
versions of a given software and their characteristics for
error prediction [19], [24]. All of these methods work with
easily definable features that focus on the structure of the
program. Techniques that take into account the behaviour
of the program may include anti-pattern and code-smell
solutions [18], [26], [30], but they have the disadvantage of
not being able to detect all kinds of bugs. However, when
examining the effects of changes to the program that may lead
to a bug, it is not enough to examine only the dependencies

77215

IEEE Access

J. Jasz: Effectiveness of Hidden Dependence Metrics in Bug Prediction

that can be directly read from the code, or which occur based
on a given pattern. So-called hidden dependencies should
also be investigated, which can be considered as special data
flows [32], [37]. At the class level, this hidden dependency
can occur between classes that are apparently unrelated,
but which are nevertheless related through a mediator class
and influence each other’s functioning. At the method level,
it may involve methods that are not in a direct or indirect call
relation, but affect each other by virtue of their execution one
after the other [32].

Methods that look at the behaviour of the program are
most often based on the program slicing method [1], [27],
which is capable of detecting these dependencies at the
statement level, but because of its cost, only a class-level
approximation is used in prediction. Although prediction may
be more efficient for approaches that predict errors at a higher
granularity, identifying the error itself in a larger code snippet
is more difficult. In addition, practical measurements have
shown in [20] that on average only 17% of the methods in
a file that is said to be faulty are responsible for the error, i.e.
actually finding the error requires scanning a lot of code that
is not even related to the error. Although the proposed method
in this paper is metric-based, these metrics are defined on
the program representation that aims to approximate program
slices, and thus all kinds of direct and hidden dependencies, at
the method level. Based on the understanding of the program,
it has the property that the metrics of code fragments that
are harder to understand and process are different from the
metrics of code fragments of similar complexity that are
easier to understand and process because of their role in
the program. Although these are not the metrics that can be
determined by slicing, the underlying method for determining
the metrics has been shown to be efficient in approximating
slicing at the method level, while still being efficient for large
programs [15].

In order to evaluate the presented method, it is essential
to select an appropriate bug database. To provide a bug
prediction solution, which is ready for industry use, it is
essential that it is evaluated on a properly labelled and
trained database, possibly compared with the results of
other methods [6]. The extensively used Java bug prediction
datasets are Promise [17], the Bug Prediction dataset [7],
Eclipse Bug Dataset [38], Bugcatchers Bug Dataset [12],
and the GitHub Bug Dataset [31], which are used by the
Unified Bug dataset [10] that unifies a larger dataset to
make different prediction methods more widely evaluable.
These datasets contain several small and large projects, each
with several versions, and in these versions, the program
elements are labelled buggy or not buggy based on the
entries and tags of the version tracking systems. Although the
Unified Bug Dataset itself contains a large number of entries
(47,618 at the class level and 43,744 at the file level), which
makes these databases suitable for testing various machine
learning or deep learning methods with a sufficient amount
of data, the disadvantage of these databases is that in most
cases only high-level bug assignments are available, with

77216

few assignments at the method level. This may be because
extracting method information from existing version tracking
systems is a more difficult problem [13].

The method-level bug prediction of Giger et al. [11] and
Hata et al. [13] has already demonstrated practically that the
smaller the area of the bug, the more efficiently it can be
predicted. The former has built its own dataset to prove
its method, but it is not publicly available. The first major
dataset to examine Java programs with method-level data is
the ELFF dataset [28]. This dataset contains 69 versions of
23 projects. This dataset already contains significantly more
method-level data than the previous ones, but the number
of buggy and non-buggy methods is very unbalanced. Mo
et al. [20] have made a similarly large method-level bug
database available for Java programs. This classifies 45,682
methods of 18 projects into bug-prone and non-bug-prone
classes (13,571 methods are bug-prone, while 32,071 are not
bug-prone). A weakness of their database may be that they
classify methods that they have not seen modified in bug-fix
commits as not buggy.

The BugHunter dataset [9] using the experience gained
from the creation of the databases available up to that time,
provides perhaps the largest method-level bug prediction
dataset for Java. Although it only examines 15 projects, these
projects have more than 13,000 versions, and these versions
have 150,000 methods that are classified as buggy or not
buggy based on the version tracking system of the project.
The advantage of this dataset is that in each case it only
classifies those methods that can be uniquely classified by
the bug report or fix associated with that version. With this
method, it may be able to reduce the number of false negatives
substantially compared to previous databases. Since the
method presented in this paper is evaluated on the BugHunter
dataset, it will be described in more detail in Section IV.

Ill. STATIC EXECUTE AFTER RELATION

Most often, statically definable metrics are used to predict
bugs in software. These metrics describe the structure of
the methods/classes and their relationship to other meth-
ods/classes. The intuition behind the use of these metrics is
that a complex method/class with many connections likely
to be responsible for errors in the software than those that are
small and simple with few connections. Quite simply because
they are more difficult to understand, to see through and,
if necessary, to modify.

These metrics often do not take into account the effects
of the hidden dependencies of the software because these
dependencies arise between program components that appear
to be completely unrelated [37]. Moreover, in most cases,
the relationships are determined based on only statically
available information among the source code elements.
However, the number of connections can be much larger, for
example through polymorphism and inheritance in object-
oriented programs.

As a motivating example, consider a snippet of the JUnit
program, one of the analysed programs of the evaluation,

VOLUME 12, 2024

J. Jasz: Effectiveness of Hidden Dependence Metrics in Bug Prediction

IEEE Access

Description

- Runner ~fChildren: Description[]

-fDisplayName: String

|

Failure

+ getDescription(): Description

- fDesc: Description

+ getTestHeader() : String

FIGURE 1. Motivation example.

from which the part corresponding to the class diagram
in Figure 1 could be highlighted. The description of
the TestSuits’ tests is provided by the Description
class according to the Composite design pattern, which is
generated by various concrete implementations of the abstract
Runner class by executing the getDescription ()
method. When a Description object is created, the
value of the fDisplayName final data member is set.
When the tests are run, there will be tests that fail,
in which case Failure objects are created and initialized
with the Description object associated with the failing
test. Any display that then wants to list the failure will
call the getTestHeader () method of the Failure
object, which effectively returns the £DisplayName of the
description for that failure object, as set by the Runner
class. It can be seen that there is no concrete relationship
between the Runner and Failure classes (class level), and
no call relationship between the getDescription () and
getTestHeader () methods (method level), however, the
name that the former sets determines what will be returned in
the event of a failure. That is, there is a hidden dependency
between these classes or methods. The aim of this given work
is to give some metrics that are also able to take into account
such types of dependencies.

A. DEFINING THE SEA RELATIONS

The Static Execute After relations of the methods, presented
in [15], are intended to also reveal these hidden dependencies
in the program. The idea for the relation was given by the
Execute After relation of Orso et al. [23], which is based on
the analysis of execution traces of a program. The essence of
this relation is that it relates program elements that run one
after the other during the execution of the program.

The Static Execute After (SEA) relation, which can be
derived from static information available from the source
code analysis of the program, was defined based on this
dynamic Execute After relation, which in turn can be
determined during the execution of the analysed program.

Formally the SEA relation for methods f and g is defined
as follows:

SEA = CALL U RET U SEQ[UID],

VOLUME 12, 2024

where

(f,g) € CALL < f (transitively) calls g,
(f,8) € RET < f (transitively) returns into g,
(f,g) € SEQ <= 3h: h (transitively) calls f first,
then A (transitively) calls g, and
the second call site is flow-reachable
from the first one.
(f.9)elD < f=¢g

It should be pointed out, however, that the determination
of these relations, should take into account all possible
destinations of an actual call location from a late binding.
That is, for example, in a C language, calls implemented
with function pointers must be handled separately, processing
each possible destination the call might point to. Similarly,
for object-oriented languages, a call may have multiple
destinations due to polymorphism, all of which must be taken
into account when analyzing the program. Even a pointer
analysis, or just a simpler heuristic algorithm, can be used
to connect not only the call targets that can be determined
from static information, but all potential targets in the call
graph. Based on the call graph the above relations, which
form the basis of the SEA relation, are easily computable.
Of course, the determination of SEA relations may give
relations that will not be realized during program executions,
so it gives only an upper estimation compared to the original
Appiwatanapong definition. At the same time, the SEA
relation can be easily computed without dynamic executions
of the program.

B. DETERMINING THE SEA RELATIONS

This chapter briefly introduces the concepts that are nec-
essary for a simple determination of SEA relations among
program methods. The program representation presented here
forms the basis of the simple metrics defined in Section III-C,
which will form the basis of the practical evaluation in
Section V.

First, the call graph of the program must be defined.
However, it is not enough to determine a call graph based only
on static type information, it is important to map all possible
call relations that could occur during any program execution.
This can still be specified just by parsing the source code.
However, care should be taken to ensure that the call graph
defined in this way contains all the call relations that can
be realised by the different executions of the program. The
evaluation of this paper uses the so-called Class Hierarchy
Analysis approach [8], but of course, a more accurate but
time-consuming method could also be usable.

By itself, a call graph has much less information than
is needed to define the SEA, since the potential execution
order of the call sites within a given method is not known,
and without it, the SEQ relations that are part of the SEA
are not determinable. Therefore, as a second step, the so-
called intra- and interprocedural Component ControlFlow

77217

IEEE Access

J. Jasz: Effectiveness of Hidden Dependence Metrics in Bug Prediction

Graph (CCFG and ICCFG, respectively) are introduced. Each
CCFG represents a single method. The representation is much
poorer than a control flow graph representation, but sufficient
enough to isolate the call site locations within a method and
to provide information about the order in which control can
be placed on each call site. Each CCFG graph consists of
an entry node and a number of component nodes connected
by control edges. Technically, the CCFG is derived from the
CFG, but by keeping only the call sites and the paths between
them, and by also taking the strongly connected components
of this reduced CFG graph, these components become the
vertices of the CCFG graph. The explanation for this is that
if multiple call sites are connected through a loop, then the
destinations of those call sites will be mutually SEA-related,
which can be expressed by a single node with a reflexive
control flow edge. Connecting the CCFGs of the methods
gives the analysed program’s ICCFG, which can be used
with its appropriate traversal to determine the SEA relations
between methods.

C. SEA-BASED SOFTWARE METRICS
In this section, the SEA-based metrics used in the evaluation
are presented. These metrics are very simple to compute
using the ICCFG graph. Of course, based on the ICCFG,
many other, even better metrics could be also definable,
but the purpose of this paper is only to present that even
these very quickly computable metrics have in most cases
better bug prediction abilities than metrics that only look at
statically determinable data and direct relationships. Since the
definition of these metrics is based on a relation or program
representation that can be used to approximate not only the
AST-based, but also the hidden dependencies in the program,
the metrics introduced are considered hidden dependency
metrics, referred to in the rest of this work as SEA-based
metrics.

In the evaluation, the following metrics are assigned to
each method analysed:

o Number of caller edges: the number of components
from which the method is directly reachable with a
call edge. This number is an upper bound of the
number of methods from which the method can be
called directly (or to which the current method can
return directly), since there may be situations when
a method calls another method several times, from
different components.

o Number of call blocks: the number of components in
the method’s CCFG graph that contain at least one call
edge to a method which is a part of the analysed system.
This metric value is higher for methods that are more
complex and harder to understand because of the large
number of method calls. However, for a method that is
otherwise considered complex and contains few or no
calling edges, this value will be small, since even though
it takes more time to understand the method, everything
is locally given.

77218

TABLE 1. The characteristics of the selected projects.

Number of

Project name analysed investigated buggy not buggy

version methods methods methods
Android Universal 61 251 88 163
Image Loader”
ANTLR v4? 116 427 132 295
Elasticsearch® 4060 49 681 19 060 30 621
jUnitd 58 512 112 400
MapDB* 194 1778 638 1140
mcMMO/ 403 1 340 476 864
Neodj® 695 9 686 3170 6516
Nettyh 1344 13 508 3601 9907
OrientDB’ 959 13 160 4429 8731
Oryx 2 87 842 100 742
Titan® 110 1 009 285 724
Eclipse plugin 385 2357 652 1705
for Ceylonl
Hazelcast™ 3817 56218 23 694 32524
Broadleaf 781 5225 1315 3910
Commerce”

[TOTAL [13070 155994 57752 98242 |

“https://github.com/nostral3/Android- Universal-Image-Loader
hhttps:// github.com/antlr/antlr4
“https://github.com/elastic/elasticsearch
dhttps://github.com/junit» team/junit4
“https://github.com/jankotek/MapDB

f https://github.com/mcMMO-Dev/mcMMO
$https://github.com/neo4j/neodj

I https://github.com/netty/netty
"https:/github.com/orientechnologies/orientdb

J https://github.com/OryxProject/oryx

k https://github.com/thinkaurelius/titan

! https://github.com/eclipse/ceylon-ide-eclipse
"https://github.com/hazelcast/hazelcast
"https://github.com/BroadleafCommerce/BroadleafCommerce

Number of callee edges: the number of call edges
originating from the component nodes of the method’s
CCFG. This number estimates from above the number of
methods in a CALL relationship with the given method.
Number of SEA relations: the number of the SEA
relation of the method, that is, the number of methods
that are SEA-related to the given method. A method that
runs after another method can potentially depend on that
method, even if that dependency is not easily visible.
Number of CALL relations: the number of the method
CALL relations, i.e. the number of methods that can be
accessed directly or indirectly from the given method
through call edges.

Number of RET relations: the number of methods to
which the method can return directly or indirectly.
Number of SEQ relations: the number of methods with
which the method has a SEQ relation.

CALLURET relations ratio: ratio, which compares the
number of methods in call and ret relation to the number
of methods in SEA relation with the method.

“Strong” relations ratio: ratio of the number of
methods among the SEA connections with which the
given method has both SEQ and CALL or RET
connections.

Only SEQ relations ratio: ratio of the number of
methods among the SEA connections with which the
given method has only SEQ connections.

VOLUME 12, 2024

J. Jasz: Effectiveness of Hidden Dependence Metrics in Bug Prediction

IEEE Access

« Has loop: attribute with two classes, its value is 1 if at
least one of the components of the given method has
a reflexive edge, i.e. the method contains a cycle that
contains method calls. Otherwise its value is O.

IV. BUGHUNTER DATASET

In this paper, the presented method is evaluated on the
BugHunter dataset introduced in [9]. In this study, the main
parts of the evaluation of the paper [9] are repeated in order to
compare the prediction ability of the introduced metrics and
the traditional software metrics they used. In the evaluation,
the introduced metrics are computed by the Open Static
Analyser tool.!

A. DATA SOURCE

The BugHunter dataset is based on a few GitHub projects.
GitHub is one of today’s most popular source code hosting
services, which includes features such as built-in bug and
issue tracking. This feature made it possible to classify
commits by bug fixes and to classify certain methods as
buggy or not buggy in a given revision. In contrast to other
bug databases, the authors of the BugHunter dataset examine
thousands of revisions of different Java projects, and in them,
they characterize only the methods that they know have had
a bug fixed in that revision by their modification, and thus
the bug has been eliminated, or they specify methods that are
supposed to have a bug in the revision under examination, but
have been fixed in the next revision.

When creating this bug database, the authors focused on
GitHub projects that were written in Java and were larger in
size, as these systems more often contain issues tagged as
bugs that are subsequently fixed at some point, and this fact
is reflected in the log messages. In addition, their selection
criteria included that the chosen projects should be active and
popular, ranked by the number of stars given by logged-in
users.

The authors analyzed several revisions of the BugHunter
dataset projects, and determined the methods associated with
each revision that were classified as buggy or non-buggy.
In some cases, a method was affected by multiple errors,
so instead of simply assigning a binary classification to the
methods, a metric was assigned depending on how many
errors the method was affected by. The authors observed
that in some cases the same metric values were associated
with different bug numbers. In order to reduce the noise in
the BugHunter dataset and to eliminate these redundancies,
different filtering solutions were tried when designing the
database. Of these, the best results were obtained with
what the authors call ““subtract” and ‘“‘removal” filtering.
Analysing these filterings separately, the authors’ final con-
clusion was that subtract filtering was the most appropriate,
so we used this filtering as the starting point of our practical
evaluation.

1 https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer

VOLUME 12, 2024

TABLE 2. The method level metrics of the BugHunter dataset.

Abbreviation Full name

CLOC Comment Lines of Code

LOC Lines of code

LLOC Logical Lines of Code

NL Nesting Level

NLE Nesting Level Else-If

NII Number of Incoming Invocations
NOI Number of Outgoing Invocations
CD Comment Density

DLOC Documentation Lines of Code

TCD Total Comment Density

TCLOC Total Comment Lines of Code

NOS Number of Statements

TLOC Total Lines of Code

TLLOC Total Logical Lines of Code

TNOS Total Number of statements

McCC McCabe’s Cyclomatic Complexity
HCPL Halstead Calculated Program Length
HDIF Halstead Difficulty

HEFF Halstead Effort

HNDB Halstead Number of Delivered Bus
HPL Halstead Program Length

HPV Halstead Program Vocabulary
HTRP Halstead Time Required to Program
HVOL Halstead Volume

MIMS Maintainability Index (Microsoft version)

MI Maintainability Index (Original version)

MISEI Maintainability Index (SEI version)
MISM Maintainability Index (SourceMeter version)
NUMPAR Number of Parameters

B. DATA CORRECTION

Unfortunately, the selection strategy of the projects was not
entirely appropriate, because one of the selected projects,
NASA’s Mission Control Technologies, has since become
unavailable at the link provided, so this project was omitted
from this current analysis, and thus also its classified
methods.

In addition, there were some method names in the database
that were not possible to identify with the analyser used. Since
the dataset identified the methods only by their JNI names,
and in some cases not by their exact names due to some
type resolution issue, these methods could not be identified
unambiguously. Similarly, due to the different numbering of
anonymous methods, there were some not clearly identifiable
methods.

Since the number of these cases did not vary much with the
size of the database, these methods were also omitted from the
database and the evaluation, rather than possibly mismatching
other methods by a heuristic. In order to make the existing
dataset usable for everyone in the future, independent of the
generation of the JNI name of the methods, or the numbering
of the anonymous methods, in the online appendix of this
paper, the line information alongside the method names are
provided, which will make their identification clear.

Overall, this omission resulted in a slightly smaller number
of methods than in the original ‘“‘subtract” dataset. Table 1
summarises the characteristics of each of the projects on
which the evaluation was carried out in Section V. In the case
of two projects, significantly more methods were analysed
than in the others. This is important in the present work, since
looking for the answer to how much each project in itself,
as an independent error prediction model, can help the further
development of the given software is also of key interest.

77219

IEEE Access

J. Jasz: Effectiveness of Hidden Dependence Metrics in Bug Prediction

Classified
methods’ data

Filtered methods

with metrics

Traditional
software metrics

SEA-based
software metrics

FIGURE 2. The main steps of the evaluation.

C. USED METRICS

The BugHunter dataset gives traditional statically com-
putable metric values for each analysed method at method,
class and file level. Using these metrics in learning at different
levels, the authors of the dataset realized that the metrics
defined at the method level proved to be the best predictors
in terms of bug prediction. Since the current evaluation deals
with metrics that can be defined at the method level, so only
the method-level metrics of the BugHunter dataset are used
in the current evaluation for comparison. The evaluation of
this paper repeats the measurements presented in [9] with
the metrics of Table 2 and with the set of methods that
were slightly reduced according to the subsection I'V-B, and
then compares these results with the predictive ability of the
metrics defined in subsection III-C.

V. EVALUATION
The evaluation of the paper summarizes the achieved results.
The measurements implemented in [9] were partly repeated
to show that using SEA-based metrics instead of traditional
software metrics can even give more accurate results. Since
the initial dataset was slightly modified, it is important to
be able to repeat the original learnings and compare the
recomputed data with the learning results of SEA-based
metrics. This comparison forms the basis of the first RQ.
The practical evaluation followed the process shown in
Figure 2 for answering each of the questions. The main
strength of the BugHunter dataset is that it classifies methods
of many versions of many projects. These methods are
labelled as buggy or not buggy. The BugHunter dataset also
provides the traditional metric values for these methods,
which are highlighted in Section IV-C. In addition to the
traditional metrics, SEA-based metrics were also calculated
for labelled methods. To compare which set of metrics has
better predictive ability, all measurements were performed
with the same settings. Measurements were carried out by
the Weka tool [34], which, in each case, took the learning
algorithms with their own default settings.

77220

Random tree Random forest
Naive Bayes OneR
i
J48 Decision table I —
| Results
Simple lagistic Logistic
SGD Voted perceplion

The metric values assigned to methods can be redundant in
the sense that the exact same metrics can be associated with
multiple methods. It is also possible that, for the same metrics,
the classification of methods is different. That is, in some
cases, the method is labelled as buggy, and in some cases not
buggy. Cases like these make the database noisy, so filtering
them in different ways to get a more accurate result before
the actual evaluation. The effects of different filterings are
investigated by the second RQ.

Since the number of buggy and non-buggy methods in the
dataset is unbalanced, random undersampling2 [14],[33] was
applied to the data, also similar to [9], to ensure that the
number of elements in the two categories is equal, adjusted
to the number of elements of the smaller category. This was
repeated 10 times using different seeds, and the learning was
performed on 10 balanced datasets, after which the results
was averaged. During the training, 10-fold cross-validation
was used to measure the accuracy of the models with different
machine learning algorithms. The purpose of filtering (i.e.
reducing noise), the repeated preparation of balanced data
sets, and the application of 10-fold cross-validation are to
reduce overfitting. While answering the last RQ, this process
was modified so that the balanced datasets always consisted
of only the methods of a single project, i.e. not the entire
dataset was examined.

To compare the different models, the precision, recall, and
F-measure metrics were used in the usual way:

o TP
precision = ———,
TP + FP
TP
recall = ———,
TP + FN

precision - recall
F-measure =2

precision + recall’

where TP is the number of methods correctly marked as
buggy, FP is the number of methods marked as buggy which
were not actually buggy, and FN is the number of methods

2Weka.filters.supervised.instamce.SpreadSubsample Weka’s filtering.

VOLUME 12, 2024

J. Jasz: Effectiveness of Hidden Dependence Metrics in Bug Prediction

IEEE Access

TABLE 3. The ranking list of the learning algorithms based on the difference of the SEA-based and traditional metric based F-measure values. The best

algorithm is bolded.

Algorithm Precision Recall F-measure
traditional SEA traditional SEA traditional SEA
NaiveBayes 0.5441 0.5851 0.523 0.5809 0.4594 0.5751
OneR 0.5983 0.705 0.5983 0.7015 0.5982 0.7005
DecisionTable 0.6181 0.666 0.6082 0.6611 0.5998 0.6583
RandomForest 0.6604 0.7161 0.6594 0.7159 0.6587 0.7158
RandomTree 0.6518 0.6884 0.6517 0.6881 0.6517 0.6881
J48 0.6452 0.6619 0.638 0.6615 0.6333 0.6614
VotedPerceptron 0.5605 0.5854 0.5455 0.5688 0.5212 0.5472
SimpleLogistic 0.589 0.5929 0.589 0.5929 0.589 0.5929
SGD 0.5927 0.5899 0.5914 0.5899 0.5902 0.5898
Logistic 0.5951 0.5901 0.5946 0.5901 0.594 0.5901

marked as not buggy that should have been classified as
buggy.

A. EVALUATION ON THE BUGHUNTER DATASET

The BugHunter dataset classifies thousands of methods and
labels them as buggy or not buggy. However, it also provides
each method with its traditional software metrics, which
can be used to test any learning algorithm with any setting.
The first RQ seeks to answer the question of how well the
SEA-based metrics can improve error prediction for the most
frequently used machine learning algorithms.

RQ1: How suitable are the SEA-based metrics, which
also take into account the behaviour of the software, for
predicting bugs at the method level? Are these metrics
better than traditional metrics for predicting bugs?

Performing the same learnings on both the traditional
and SEA-based metrics, can be found that although the
number of SEA-based metrics is much fewer than the
number of traditional metrics, their bug prediction ability is
better in most cases. Table 3 compares the precision, recall,
and F-measure values obtained. For easier transparency,
the rows in the table are sorted by the difference of
the F-measure metrics when using SEA-based metrics as
opposed to the traditional metrics. As can be seen, the newly
introduced metrics could improve the F-measure values of
the NaiveBayes algorithm by more than 11% and even OneR
shows an improvement of over 10%. There are only two
cases where the F-measure values are worse, but in these
cases, the differences are almost negligible. It is important to
highlight that the best-performing RandomForest algorithm
for traditional metrics also improved by 6% in terms of
F-measure using SEA-based metrics.

As pointed out earlier, for a given set of metrics, noise in
the database is conceivable in the sense that a method will be
labelled as both faulty and not faulty in cases with the same
metric values. That is why it is worth filtering the dataset
before learning to manage noise. In this measurement, the
filtering was selected in a way to gave the best results for

VOLUME 12, 2024

traditional metrics. However, by replacing the metrics with
a completely different set of metrics, it is possible that this
filtering is inappropriate and results in noise, which reduces
the predictive ability of the new set of metrics.

Answering RQ1: It can be concluded that SEA-based
metrics performed better than traditional metrics for
most learning algorithms, even when the dataset was
filtered by the latter metrics, and SEA-based metrics may
have introduced noise.

B. FILTERING

Since the filtering strategy of the BugHunter dataset is based
on the similarity of the metrics they provide, the question
arises whether the same filtering using on completely
different metrics than the original will be better or not. That
is why, the measurements of this section repeated the filtering
itself, but this time on SEA-based metrics, and compared the
results.

RQ2: How much can prediction results be improved
by properly filtering the dataset created with the SEA-
based metrics?

The BugHunter dataset distinguishes between 4 basic
filtering states and one no filtering state. These filterings sort
out methods that are identical in their metric values, differing
only at least in their classification label, i.e. whether the
method is buggy or not. In the unfiltered version, which is
denoted as “ALL”, none of the methods will be filtered out.
Filtered datasets are obtained by filtering this initial ALL
dataset. For each of these methods, the possible sets of metrics
associated with them are taken. For each occurring set, it is
determined how many times the set is buggy and how many
times it is not buggy in the ALL dataset. After that, the filtered
datasets are defined in a similar way to BugHunter’s dataset
filtering.

« REMOVAL: it keeps a given set of metrics with the
same number of elements as the majority class.

77221

IEEE Access

J. Jasz: Effectiveness of Hidden Dependence Metrics in Bug Prediction

FM

ALl e—SUBTRACT -

-REMOVAL SINGLE ~em==GCF

FIGURE 3. F-measure values using the SEA-based metrics and based on
different filtering methods.

o SUBTRACT: it keeps a given set of metrics as many
times as the difference between the number of elements
of the majority and minority classes.

o SINGLE: it keeps a single instance of a given set of
metrics with the label of the majority class. If the number
of the two classes is the same, then it does not keep a
copy of this metric set.

o GCF: it keeps the labels of both classes of a given set
of metrics, but instead of the original multiplicity of
the classes, it divides the original multiplicities by the
greatest common divisor of the multiplicities of the two
classes.

Based on Figures 3, 4, and 5, by using and filtering
the SEA-based metrics, similar results were obtained to
those found when filtering the BugHunter dataset with the
traditional metrics.

That is, overall, it can be said that the best learning
results can be achieved by filtering the entire dataset with
the “removal” and “‘subtract” filtering. These two are very
close overall. At the same time, the ‘“‘single” and “GCF”
filters also produced results below the baseline in the current
measurements.

Although it can be seen from the figures, and also from
the online appendix, it can be quantified that the efficiency
of the RandomForest algorithm, which is the most efficient
for traditional metrics, is further improved for SEA-based
metrics, with an F-measure value of 76% for the “‘subtract”
filtering and 76.7% for the “removal” filtering.

Answering RQ2: It can be stated that by filtering
the database according to SEA-based metrics and then
performing the learning on these filtered datasets,
learning outcomes continue to improve, up to 10.8%,
for the most successful learner. However, it can be
also concluded that different filterings of a fixed set
of metrics had a similar effect on the results as it was
seen in the results of [9]. That is, this measurement
came to a similar conclusion as in [9], namely that the
“subtract” and “remove” filtering techniques were the
most effective for prediction.

77222

Precision

. &
& b & * Lod
3 3

|| e—SUBTRACT -REMOVAL SINGLE ~emm=(CF

FIGURE 4. Precision values using the SEA based metrics and based on
different filtering methods.

Recall

e ALL e SUBTRACT REMOVAL SINGLE s GCF

FIGURE 5. F-measure, precision, and recall values using the SEA-based
metrics and based on different filtering methods.

o8
0s
°
o‘*¢ ¢ ‘b

> g 5 X
R & 2 S
b‘o & \‘)(\ @ dz*\ @&z o & e)(? (,0
S © & °¢ g
) \,br—,
&
 RandomTree u 148 RandomForest SimpleLogistic M DecisionTable
= NaiveBayes Logistic mSGD HVotedPerceptron B OneR

FIGURE 6. Average F-measure values per projects with “removal”
filtering.

C. PROJECT-BASED BUG PREDICTION

In the measurements so far, the learning algorithms were
evaluated on a model based on several projects. However,
the question arises as to how good error predictors the given
metrics can be for a separate but independent project. To test
this, the purpose of the following experiment was to see how
well the bugs can be predicted in a project by creating the
learning model based only on the given project. The last RQ
is formulated accordingly.

RQ3: Can the introduced metrics help error prediction
by themselves when trained and used on a particular
project? What are the limitations of such a learning
approach?

The measurements followed the same steps as the evalua-
tion of the full database. Multiple occurrences of the same set

VOLUME 12, 2024

J. Jasz: Effectiveness of Hidden Dependence Metrics in Bug Prediction

IEEE Access

Android-Universal-Image-Loader

[.3
u 5" +HIF :

elasticsearch
— -

= B RandomTree
= . W 48
—
I RandomForest
SimpleLogistic
B DecisionTable
B NaiveBayes
-
Logistic
== . W Log
W seD
B VotedPerceptron
= W oner

FIGURE 7. The deviation of F-Measure values of the smallest and the largest model.

of metrics can cause noise here too, so the filtering techniques
described in the previous sections were applied. Since the two
best filterings were the “‘removal” and “‘subtract” filterings,
these were the only ones measured.

The filtered methods of the given project were then further
balanced so that the number of methods with and without
bugs was the same. The algorithm used was again Weka’s
SpreadSubsample algorithm. After that, the models were
trained and tested using 10-fold cross-validation. All of these
were repeated 10 times using different seeds for the first
filtering step and the results were averaged.

The basic hypothesis was that this kind of learning would
only be successful if a large amount of training data was
available, but it was realized that this was not necessarily
true. For each project filtered both with filtering “removal”
and “subtract” the resulting F-measure, precision, and recall
values were compared with the values obtained on the full
dataset. Figure 6 shows the F-measure values with “removal”
filtering. The recall and precision values, as well as the values
calculated for ““subtract” filtering, show similar trends. These
results can all be found in the online appendix. In the figure,
the projects are sorted by ““size”, i.e. their order reflects the
number of methods analysed in each project.

The conclusion is that only for the Android-Universal-
Image-Loader, ceylon-ide-eclipse, and MapDB projects there
were no learning algorithms that on average could perform
better on the individual project than on all data. Their
total number of analysed methods is 251, 2357, and 1778,
respectively, i.e. they were the smaller projects. However,
there were learning algorithms that performed better in the
similarly small titan, junit, and oryx, with 1009, 512, and
842 analysed methods, respectively. However, the hazelcast
and elasticsearch projects with significantly more methods
analysed still gave much higher F-measure values.

Looking at the learning algorithms, it is clear that
for all projects, the RandomTree, RandomForest, ONeR,
DecesionTable, and J48 algorithms were the most successful
in using SEA-based metrics both at the project level and for
the whole dataset.

There is, however, another important conclusion from
these measurements. To ensure that for each learning
algorithm, the dataset is based on the same number of
buggy and non-buggy methods, random undersampling was

VOLUME 12, 2024

applied 10 times. The final values of precision, recall, and
F-measure were obtained by averaging the results of the
learning on the resulting datasets. Observed at during the
measurements is how much the variance of these values
depends on the size of the project. Without claiming to
be complete, Figure 7 highlights the smallest and largest
projects, as well as their separate F-measure values on each
learnings, and their standard deviation. (Similar results of
the precision and recall values are available in the online
appendix.)

It can be found at that the average F-measure values of
the small programs are not necessarily bad in each case, but
the standard deviation is much larger for all measurements.
These smaller projects often have outliers, too. For the larger
programs, where more methods (at least 5000) were classified
according to whether or not they were buggy, not only were
the average F-measure values better, but the values of the
different measurements were also closer to each other.

Answering RQ3: Overall, it can be concluded that on
a project in which the error habits are known, the SEA
metrics are suitable for predicting the project’s errors.
However, it is important to point out that for unbalanced
datasets, the result obtained for smaller projects is highly
dependent on the balancing, and the more data it has,
the more reliable the prediction becomes. The size of the
training set is very important when building a prediction
model.

D. ONLINE APPENDIX

The online database is available at: https://www.inf.u-
szeged.hu/~jasy/research/hiddenMetricsInBugPrediction or
https://dx.doi.org/10.21227/t74t-vj82. The biggest problem
with using the BugHunter database was that the methods it
contained were not always clearly identifiable in the source
code. One technical reason for this is the generation of JNI
names for the method names, which is not always perfect if
the types are not resolved correctly by the parser. The other
reason is simply that the naming of anonymous classes is not
deterministic, so different analysers may give different names
to the same anonymous class.

77223

IEEE Access

J. Jasz: Effectiveness of Hidden Dependence Metrics in Bug Prediction

In order to make it easier to identify the methods in the
database, the online appendix completes the original dataset
with the physical location of each method (i.e. in which file,
in which rows, the method is located) in the hope that this will
facilitate similar evaluations by many in the future.

The online appendix of course also contains details of all
the presented results. For each method, the online database
also contains the calculated metric values and all the data
from the evaluation of each research question.

VI. CONCLUSION AND THREATS TO VALIDITY
This paper presented a new approach for method-level
error prediction. It showed that instead of using traditional
software metrics, metrics that take into account the potential
implementations of the software under study, and hence
the dependencies that are realized, often allow for more
efficient learning and prediction. The results were validated
on an existing bug database where the prediction ability
of the newly introduced SEA-based metrics was compared
with the prediction ability of traditional software metrics.
All of the results are available in the online appendix
of the paper. The online appendix completes the original
database with additional elements to help others to more
easily and accurately identify the database’s methods in the
source code. Through the newly performed experiments, it is
confirmed that the filtering strategy added to the BugHunter
database has similar properties for both traditional and newly
introduced metrics. Finally, the paper has shown that SEA-
based metrics can be used to predict future project failures,
even independently, using the known failures of a project.
This work is not extensive in the sense that it did not try
to determine the best settings for each learning method, but
only applied their default parameter settings. Nevertheless,
it can be stated that the metrics presented predict errors in
the programs at the method level with good efficiency. These
results are better despite the fact that the evaluation used a
relatively imprecise heuristic to detect call relations when
calculating the introduced metrics. In future works, the author
considers it important to examine how the metrics calculated
on more expensive but more accurate call graphs improve
the error prediction ability of the method. Furthermore, it is
also planned to not only evaluate the introduced metrics using
traditional machine learning methods, but also to demonstrate
their predictive ability using deep-learning models. Planned
future work also includes the evaluation of the suitability
of the presented metrics for predicting bugs on other bug
databases, possibly on bug databases of other programming
languages.

REFERENCES

[1] B.S. Algadi and J. I. Maletic, “Slice-based cognitive complexity metrics
for defect prediction,” in Proc. IEEE 27th Int. Conf. Softw. Anal., Evol.
Reengineering (SANER), Feb. 2020, pp. 411-422.

[2] V. Basili, L. Briand, and W. Melo, ““A validation of object-oriented design
metrics as quality indicators,” IEEE Trans. Softw. Eng., vol. 22, no. 10,
pp. 751761, Oct. 1996.

77224

[3]

[4]

[5]

[6]

[71

[8]

[9]

(10]

(11]

[12]

[13]

(14]

[15]

(16]

[17]

(18]

(19]

[20]

(21]

(22]

(23]

A. Beszedes, R. Ferenc, and T. Gyimothy, “Columbus: A reverse
engineering approach,” in Proc. 13th Workshop Softw. Technol. Eng.
Pract., Budapest, Hungary, Sep. 2005, pp. 93-96. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.80.6933

S. Black, S. Counsell, T. Hall, and P. Wernick, “Using program
slicing to identify faults in software,” in Beyond Program Slicing
(Dagstuhl Seminar Proceedings), vol. 5451, D. W. binkley, M. harman,
and J. krinke, Eds. Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-
Zentrum Fiir Informatik, 2006. [Online]. Available: https://drops.dagstuhl.
de/entities/document/10.4230/DagSemProc.05451.11

L. Briand, J. Daly, and J. Wust, “A unified framework for coupling
measurement in object-oriented systems,” IEEE Trans. Softw. Eng.,
vol. 25, no. 1, pp. 91-121, Jan./Feb. 1999.

S. Chowdhury, G. Uddin, H. Hemmati, and R. Holmes, ‘“Method-level bug
prediction: Problems and promises,” ACM Trans. Softw. Eng. Methodol.,
vol. 33, no. 4, pp. 1-31, 2024, doi: 10.1145/3640331.

M. D’Ambros, M. Lanza, and R. Robbes, “An extensive comparison of
bug prediction approaches,” in Proc. 7th IEEE Work. Conf. Mining Softw.
Repositories (MSR), May 2010, pp. 31-41.

J. Dean, D. Grove, and C. Chambers, ““Optimization of object-oriented
programs using static class hierarchy analysis,” in Proc. European Conf.
Object-Oriented Program. Aarhus, Denmark: Springer, 1995, pp. 77-101.
R. Ferenc, P. Gyimesi, G. Gyimesi, Z. Téth, and T. Gyiméthy, “An auto-
matically created novel bug dataset and its validation in bug prediction,”
J. Syst. Softw., vol. 169, Nov. 2020, Art. no. 110691. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121220301436
R. Ferenc, Z. Toth, G. Ladanyi, I. Siket, and T. Gyimothy, “A public
unified bug dataset for Java and its assessment regarding metrics and bug
prediction,” Softw. Quality J., vol. 28, pp. 1447-1506, Dec. 2020, doi:
10.1007/s11219-020-09515-0.

E. Giger, M. D’Ambros, M. Pinzger, and H. C. Gall, “Method-level bug
prediction,” in Proc. ACM-IEEE Int. Symp. Empirical Softw. Eng. Meas.,
Sep. 2012, pp. 171-180.

T. Hall, M. Zhang, D. Bowes, and Y. Sun, “Some code smells have a
significant but small effect on faults,” ACM Trans. Softw. Eng. Methodol.,
vol. 23, no. 4, pp. 1-39, Sep. 2014, doi: 10.1145/26296438.

H. Hata, O. Mizuno, and T. Kikuno, “Bug prediction based on fine-grained
module histories,” in Proc. 34th Int. Conf. Softw. Eng. (ICSE), Jun. 2012,
pp. 200-210.

H. He and E. A. Garcia, “‘Learning from imbalanced data,” IEEE Trans.
Knowl. Data Eng., vol. 21, no. 9, pp. 1263-1284, Sep. 2009.

J. Jasz, ““Static execute after algorithms as alternatives for impact analy-
sis,” Periodica Polytechnica Elec. Eng., vol. 52, nos. 3—4, pp. 163-176,
2008.

J. Jasz, A. Beszédes, T. Gyimothy, and V. Rajlich, “Static execute
after/before as a replacement of traditional software dependencies,” in
Proc. IEEE Int. Conf. Softw. Maintenance, Oct. 2008, pp. 137-146.

M. Jureczko and L. Madeyski, ‘“Towards identifying software project
clusters with regard to defect prediction,” in Proc. 6th Int. Conf. Predictive
Models Softw. Eng. New York, NY, USA: Association for Computing
Machinery, 2010, pp. 1-10, doi: 10.1145/1868328.1868342.

F. Khomh, M. Di Penta, Y.-G. Guhneuc, and G. Antoniol, “An exploratory
study of the impact of antipatterns on class change- and fault-proneness,”
Empirical Softw. Eng., vol. 17, pp. 243-275, Jun. 2012.

S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller, “Predicting
faults from cached history,” in Proc. 29th Int. Conf. Softw. Eng., 2007,
pp. 489-498.

R. Mo, S. Wei, Q. Feng, and Z. Li, “An exploratory study of bug
prediction at the method level,” Inf. Softw. Technol., vol. 144, Apr. 2022,
Art. no. 106794. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0950584921002330

R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of
the efficiency of change metrics and static code attributes for defect
prediction,” in Proc. ACM/IEEE 30th Int. Conf. Softw. Eng., May 2008,
pp. 181-190.

N. Nagappan and T. Ball, “Use of relative code churn measures to
predict system defect density,” in Proc. 27th Int. Conf. Softw. Eng., 2005,
pp. 284-292.

A. Orso, T. Apiwattanapong, and M. J. Harrold, “Leveraging field data
for impact analysis and regression testing,” in Proc. 11th ACM SIGSOFT
Symp. Found. Softw. Eng. Held Jointly, 9th Eur. Softw. Eng. Conf.,
Sep. 2003, pp. 128-137.

VOLUME 12, 2024

http://dx.doi.org/10.1145/3640331
http://dx.doi.org/10.1007/s11219-020-09515-0
http://dx.doi.org/10.1145/2629648
http://dx.doi.org/10.1145/1868328.1868342

J. Jasz: Effectiveness of Hidden Dependence Metrics in Bug Prediction

IEEE Access

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

T. Ostrand, E. Weyuker, and R. Bell, “‘Predicting the location and number
of faults in large software systems,” IEEE Trans. Softw. Eng., vol. 31, no. 4,
pp. 340-355, Apr. 2005.

J. Pachouly, S. Ahirrao, K. Kotecha, G. Selvachandran, and A. Abraham,
“A systematic literature review on software defect prediction
using artificial intelligence: Datasets, data validation methods,
approaches, and tools,” Eng. Appl. Artif. Intell., vol. 111, May 2022,
Art. no. 104773. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0952197622000616

F. Palomba, M. Zanoni, F. A. Fontana, A. De Lucia, and R. Oliveto,
“Smells like teen spirit: Improving bug prediction performance using the
intensity of code smells,” in Proc. IEEE Int. Conf. Softw. Maintenance
Evol. (ICSME), Oct. 2016, pp. 244-255.

K. Pan, S. Kim, and E. J. Whitehead Jr., “Bug classification using program
slicing metrics,” in Proc. 6th IEEE Int. Workshop Source Code Anal.
Manipulation, Sep. 2006, pp. 31-42.

T. Shippey, T. Hall, S. Counsell, and D. Bowes, “So you need more
method level datasets for your software defect prediction? Voila!” in
Proc. 10th ACM/IEEE Int. Symp. Empirical Softw. Eng. Meas. New York,
NY, USA: Association for Computing Machinery, 2016, pp. 1-6, doi:
10.1145/2961111.2962620.

R. Subramanyam and M. Krishnan, ‘“Empirical analysis of CK metrics
for object-oriented design complexity: Implications for software defects,”
IEEE Trans. Softw. Eng., vol. 29, no. 4, pp. 297-310, Apr. 2003.

S. E. S. Taba, F. Khomh, Y. Zou, A. E. Hassan, and M. Nagappan,
“Predicting bugs using antipatterns,” in Proc. IEEE Int. Conf. Softw.
Maintenance, Sep. 2013, pp. 270-279.

Z. Toth, P. Gyimesi, and R. Ferenc, “A public bug database of GitHub
projects and its application in bug prediction,” in Proc. 16th Int. Conf.
Comput. Sci. Appl. Beijing, China: Springer, Jul. 2016, pp. 625-638.
[Online]. Available: https://link.springer.com/chapter/10.1007%2F978-3-
319-42089-944

R. Vanciu and V. Rajlich, ““Hidden dependencies in software systems,” in
Proc. 26th IEEE Int. Conf. Softw. Maintenance, R. Marinescu, M. Lanza,
and A. Marcus, Eds., Timisoara, Romania, Sep. 2010, pp. 1-10, doi:
10.1109/ICSM.2010.5609657.

S. Wang and X. Yao, “Using class imbalance learning for software defect
prediction,” IEEE Trans. Rel., vol. 62, no. 2, pp. 434-443, Jun. 2013.

VOLUME 12, 2024

(34]

(35]

(36]

(37]

(38]

1. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining, Fourth
Edition: Practical Machine Learning Tools and Techniques, 4th ed. San
Francisco, CA, USA: Morgan Kaufmann, 2016.

B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen, ‘A brief survey of program
slicing,” SIGSOFT Softw. Eng. Notes, vol. 30, no. 2, pp. 1-36, Mar. 2005,
doi: 10.1145/1050849.1050865.

Y. Yang, Y. Zhou, H. Lu, L. Chen, Z. Chen, B. Xu, H. Leung, and
Z.Zhang, “Are slice-based cohesion metrics actually useful in effort-
aware post-release fault-proneness prediction? An empirical study,” /IEEE
Trans. Softw. Eng., vol. 41, no. 4, pp. 331-357, Apr. 2015.

Z. Yu and V. Rajlich, ““Hidden dependencies in program comprehension
and change propagation,” in Proc. 9th Int. Workshop Program Compre-
hension, Feb. 2001, pp. 293-299.

T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy, “Cross-
project defect prediction: A large scale experiment on data vs. domain vs.
process,” in Proc. 7th Joint Meeting Eur. Softw. Eng. Conf. ACM SIGSOFT
Symp. Found. Softw. Eng. New York, NY, USA: Association for Computing
Machinery, 2009, pp. 91-100, doi: 10.1145/1595696.1595713.

JUDIT JASZ received the Ph.D. degree in com-
puter science from the University of Szeged,
Hungary, in 2010. She is currently an Assistant
Professor with the Department of Software Engi-
neering, University of Szeged. Her main research
interests include static program analysis and bug
prediction. In addition to research, she is actively
involved in the department’s teaching activities
and research development projects.

77225

http://dx.doi.org/10.1145/2961111.2962620
http://dx.doi.org/10.1109/ICSM.2010.5609657
http://dx.doi.org/10.1145/1050849.1050865
http://dx.doi.org/10.1145/1595696.1595713

