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ABSTRACT Deep reinforcement learning (DRL) is a prevalent learning method in robotics. DRL is
commonly applied in real-world scenarios, such as learning motion behavior in rough terrain. However,
the lengthy learning epochs reduce DRL practicability in many such environments. Curriculum learning can
significantly enhance the efficiency of DRL, but establishing a curriculum is challenging, partly because it
can be difficult to assess the operation complexity for each task. Determining operation complexity can be
especially difficult for reconfigurable search and rescue robots. We present a method for learning based on
an automatically established curriculum tuned to the robot’s perspective. The method is especially suitable
for outdoor environments with multiple obstacle variants, e.g., environments encountered in search and
rescue missions. After an initial learning stage, the behavior of a robot when overcoming each obstacle
variant is characterized using Gaussian mixture models (GMMs). Hellinger’s distance between the GMMs is
computed and used to cluster the variants hierarchically. The curriculum is determined based on the formed
clusters and the average success rate in each cluster. The method was implemented on RSTAR, a highly
maneuverable and reconfigurable field robot that can overcome a variety of obstacles. Learning using the
automatically determined curriculum was compared to learning without a curriculum in a simulation with
three obstacle types: a narrow channel, a low entrance, and a step. The results show that learning using
the automatically determined curriculum enables overcoming obstacles faster and with higher success rates
than learning without a curriculum for all obstacles, especially for complex obstacle variants. The developed
method offers a promising method for learning motion behavior in real-world scenarios.

INDEX TERMS Deep reinforcement learning, curriculum learning, reconfigurable robot, Hellinger’s
distance.

I. INTRODUCTION
Deep reinforcement learning (DRL) is a prevalent learning
method in robotics [1], [2], [3], [4], [5], [6]. The method
is particularly suitable for robots operating in unstructured
environments since, with reinforcement learning, the robot
learns optimal behavior directly through interaction with the
environment. This interaction obviates the need for explicitly
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detailing the solution, and the designer is required only to
provide the means for assessing the robot’s performance. The
downside of the method, particularly for complex situations,
is that DRL typically requires a lengthy interaction with the
environment [6]. The complexity of real-world operations
thus poses a significant challenge for such learning meth-
ods [7], and the need for a lengthy interaction limits the
practicability of DRL in many real-world scenarios.

One way of addressing the complexity is via transfer learn-
ing. Transfer learning is used to expedite deep neural network
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training [8], [9] and has been successfully used in DRL [10].
In transfer learning, previously learned network weights form
a baseline from which the subsequent learning effort starts.
Curriculum learning extends transfer learning by establishing
a learning order (a curriculum) [11], [12], [13], [14], [15],
[16]. Determining a curriculum, i.e., choosing the learning
tasks and their order of presentation, is complex since an
effective curriculum is tailored to the required operations,
the environment, and the agent’s capabilities. In addition, the
order of presentation as training progresses must prevent the
agent from forgetting behaviors previously learned [17].
Curricula for robots are based on a separation of learn-

ing tasks according to different criteria, e.g., the execution
timeline, robot operations, or environment targets or tasks.
In curricula arranged by timeline, the mission that the robot
is required to learn is divided into sub-stages or sub-goals,
arranged according to their execution timeline, and the robot
gradually learns the overall mission either from start to finish
or vice versa [18], [19], [20]. This type of curriculum may
be automatically generated based on a generative adversarial
network (GAN), where the GAN is trained to produce new
goals with increasingly distant states from the target [13].
In curricula arranged by robot operations, the robot’s mis-
sion is divided into distinct operations [12] via manual
segmentation, interactive feedback, or prior knowledge about
the mission and the operations. However, the above meth-
ods typically require human intervention and may perform
sub-optimally in the case of erroneous underlying assump-
tions regarding the robots’ capabilities [7]. Various methods
have been developed for automatically deconstructing a
complex mission into sub-operations to enhance reinforce-
ment learning, e.g., by applying abstract high-level behavior
sketches to learn composable deep sub-policies [21]. In cur-
ricula arranged by tasks in the environment, the presented
tasks are divided into subsets. For example, for automatic
curriculum generation for learning generative models from
data points, the data points were divided into clusters. The
clustered data was presented to a learning algorithm based
on data point centrality within each cluster, i.e., from cen-
tral, denser regions to the cluster boundary [22]. Since
points on cluster boundaries are commonly related to out-
liers and noise, learning with the devised curriculum was
more robust to the potentially harmful effects of outliers
and noise. In an approach suitable for a more elaborated
definition of tasks, task distributions are interpolated based
on distribution similarity. The distribution is shifted in accor-
dance with agent performance [23], [24]. Teacher-student
and self-paced learning prescribe various methods for the
selection of the following learning episode based on cur-
rent previous learning scores [15], [16], [25]. In procedural
content generation (PCG), each environment instance is a
level. As in teacher-student and self-paced learning, priori-
tized level replay was suggested for selecting the next level
based on estimated learning potential [26]. The current work
suggests a new separation criterion, obstacle characteristics,

vital for operations typically encountered in search and rescue
scenarios.

Losses of human life caused by disasters like earth-
quakes and hurricanes have driven the development of robotic
systems to assist rescuers. Search-and-rescue robots have
attracted significant attention in recent years due to their par-
ticipation in search operations following such disasters [27].
There is an obvious need for search-and-rescue robots to
be fast, but there is an equally important need for them
to be flexible due to the complicated and rough terrain in
disaster areas [28]. Compared to fixed-design robots, re-
configurable mobile robots provide superior mobility and
safety in irregular terrain. Mobile robots with active artic-
ulated elements are particularly suitable for moving on
rough terrain. These elements facilitate configuration con-
trol according to environmental conditions and adapting
the center of mass to the terrain [29]. Wheeled robots
with internal articulated elements can adapt their config-
uration, reposition their center of mass, and influence the
contact forces against the terrain [30]. Actively articulated
wheel-on-leg robots can adapt to the terrain, control the
forces on the wheels, move through narrow passages, and
climb over complex obstacles [31]. A quadruped robot
fitted with such mechanisms can even climb over obsta-
cles that are much larger than itself [32]. DRL has been
used for learning optimal motion behaviors for off-road
robots, such as a 4 × 4 wheeled robot [33], a quadruped
robot [32], a crawler robot [34], and the RSTAR (Rising
Sprawl-Tuned Autonomous Robot), which is a four-wheel
drive, reconfigurable, off-road quadruped search-and-rescue
robot [35], [36] (Figure 1).

The RSTAR can be fitted with wheels, spoked legs, or their
combination to improve stability and reduce energy con-
sumption. The unique advantages of RSTAR lie in its ability
to rotate its wheel axles and to change its shape and cen-
ter of mass [37]. The robot’s configuration can be changed
via a sprawl mechanism and a four-bar extension mecha-
nism (FBEM). The sprawl mechanism can change the angle
between wheel pairs (one on each side - port and starboard)
and the main body. The FBEM can move the robot’s main
body forward and backward with respect to the wheels.
Independent control of the FBEM and the sprawl mecha-
nism enables shifting the center of mass forward-backwards
and upwards-downwards in parallel (as demonstrated in the
accompanying video). This high maneuverability of RSTAR
allows it to operate successfully in the face of the particularly
challenging obstacles commonly found in search and rescue
scenarios. RSTAR can crawl on surfaces, climb vertically in
a pipe or between two walls, move upside down, and climb
obstacles whose height exceeds the diameter of its wheels.
However, these unique abilities complicate the conceptual-
ization and the realization of plausible motion behaviors.
Therefore, learning with automatic curriculum determina-
tion, as proposed in the current study, was tested with
the RSTAR.
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A significant challenge facing outdoor mobile robots,
especially in search and rescue missions, is dealing with
uncertainty in the environment. The size and characteristics
of the obstacles they must tackle may vary significantly.
Therefore, the robot must learn to overcomemultiple obstacle
variants, but directly learning maneuvers for all variants is
prohibitively time-consuming. A potential solution lies in
applying curriculum learning, which may be expected to
enhance learning efficiency significantly. Nonetheless, when
establishing a curriculum for reconfigurable robots such as
the RSTAR, it is critical to examine the operations and
environments based on the robot’s capabilities, which is
non-intuitive for humans.

Motion behavior analysis is a preliminary step for automat-
ically establishing a curriculum from the RSTAR’s perspec-
tive. When controlled by a deep neural network, the motion
behavior of RSTAR can be complex and appear stochas-
tic. Complex motion of this type can be analyzed using
stochastic models, e.g., Gaussian mixture models (GMMs).
Multidimensional spatio-temporal GMMs facilitate parsimo-
nious motion behavior representation [38], [39], [40], [41],
[42]. Classical maximum-likelihood-based goodness-of-fit
measures (e.g., the χ2 test) cannot be used for multivari-
ate distributions. However, the distance between the GMMs
modeling the motion behaviors can be quantified using
stochastic distance measures, e.g., the Hellinger distance
(HD) [43], [44]. HD measures the similarity between two
probability distributions P, Q and quantifies data separability,

D2
HD (P||Q) =

1
2

∫
∞

−∞

(√
p (x) −

√
q (x)

)2
dx

= 1 −

∫
∞

−∞

√
p (x) q(x)dx (1)

HD is a non-negative measure with values between 0 and 1.
Higher values of the HD measure are associated with less
similarity between the distributions, where 0 implies the dis-
tributions are identical. While HD between GMMs cannot
be computed analytically, the unscented HD [43] provides a
highly accurate estimate.

Using HD, the motion behavior for different obstacle vari-
ants can be clustered by hierarchical clustering [45]. The
current paper proposes using hierarchical clustering based on
HD to automatically establish a curriculum for learning to
overcome obstacle variants. The learning is examined for the
RSTAR with three obstacle types: a narrow channel, a low
entrance, and a step (see associated video).

II. METHOD
The framework for learning based on an automatically
designed learning curriculum adapted to the capabilities of
the learning robot has three stages (Figure 2): the initiation
stage, which includes data acquisition; the analysis stage, dur-
ing which a curriculum is formed based on the acquired data;
and the curriculum-based learning stage, wherein the robot
learns based on the devised curriculum. The performance is
tested after the learning has ended.

FIGURE 1. Top: RSTAR robot. Bottom: the FBEM angle changing the width
and the length of the robot and the sprawl angle, changing the relative
angle between the legs and the main body.

FIGURE 2. Curriculum determination and learning framework.

A. INITIATION
The method aims to adapt the curriculum learning to the
capabilities of the robot within the given environment. To this
end, data regarding the robot’s capabilities within the environ-
ment are required. To facilitate the acquisition of such data,
an initial learning stage is conducted with a pre-determined
number of iterations of all the required occurrences of the
task, for example, for overcoming a step obstacle for all the
size variants of the obstacle. The learning at this stage does
not need to converge to successful operation but rather to start
forming motion behaviors.

After the initial learning, the robot is tested with a set
of occurrences of the required task, e.g., for the task of
overcoming a step obstacle, the occurrences can be steps of
different heights. The tests are repeated several times for each
task occurrence. During the execution, data regarding the
robot’s behavior is collected and stored. For example, when
overcoming a step obstacle, the paths performed by the robot
are stored.

78344 VOLUME 12, 2024



Z. Karni et al.: Automatic Curriculum Determination for DRL in Reconfigurable Robots

B. ANALYSIS
The data generated during the tests in the initiation stage is
used in the analysis stage to generate the appropriate curricu-
lum (Figure 3). The behavior of the robot for each obstacle
occurrence is characterized by a GMM distribution function:
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where x is an m-dimensional vector of motion features, wi
are the mixture weights, K is the number of mixture model
components, and gi are the Gaussian densities with a mean
vector µi and a covariance matrix 6i. The parameters of the
GMM (µi, and 6i) are determined using the expectation-
maximization method [46], [47].

The number of model components, K , is determined using
the Bayesian information criterion (BIC),

BIC = −2L + T � ln (N ) (3)

where L is the log-likelihood of the model, T is the number
of independent parameters in the GMM, and N is the number
of observations used in fitting the model [47].
The m-dimensional motion feature vector is spatio-

temporal, representing the robot’s configuration over time.
The distances between the GMMs are characterized using
HD. HD values were computed using the unscented trans-
form [43]. Task success rate is also calculated for each
obstacle variant.

The HD distances between the GMMs are used for clus-
tering the obstacle variants into groups using agglomerative
hierarchical clustering [48]. This clustering determines that
obstacle variants for which the robot behaves similarly are
clustered into the same group. The initial separation is based
on the link inconsistency coefficient (which identifies divi-
sions for which similarities change abruptly) [48]. However,
clusters with a small number of obstacle occurrences (less
than an order of magnitude with respect to the number of
variants) are merged with adjacent clusters based on their
distance (according to a hierarchical clustering dendrogram).

The complexity of a group is defined based on the average
success rate: the lower the success rate, the higher the group
complexity. Groups with a low success rate require additional
learning iterations. A level in the current work is defined
by a discrete probability function of groups (each group has
a probability weight, and the sum of weights of a level is
equal to 1). A curriculum is defined by levels, where the
number of levels equals the number of groups for which
the success rate is low. The levels are arranged according to
increasing complexity, and a probability function is defined

for each level (2). The probability function is a polynomial
distribution function of the groups, and the tasks in each
group are uniformly distributed.

Zi ∼ U (LBi,UBi) , i = 1 . . .N

Pj ∼

∑N

i=1
wiZi,

∑N

i=1
wi = 1, j = 1 . . .M (4)

where N is the number of groups; LBi and UBi are the lower
and upper bounds, respectively, of the obstacle dimensions
in group i. The designer selects these bounds, e.g., based on
robot capabilities; wi are the distribution weights, where the
weights of the groups at each level vary according to the
curriculum; and M ≤ N is the number of curriculum levels.
At each level j, the highest weight is given to one group.
Values of lower complexity groups have non-zero weights
(wi < 0) to prevent forgetting [17], values of higher com-
plexity groups may also be non-zero to develop some
familiarization.

FIGURE 3. Pseudocode for analysis stage.

C. CURRICULUM-BASED LEARNING
After the curriculum is determined, the robot continues to
learn based on the curriculum. Any deep reinforcement learn-
ing algorithm that facilitates transfer learning can be used at
this stage. The learning starts using the probability function of
the first level for task presentation. At each level, the learning
continues for a preset initial number of iterations, k . After
that, the quality of the learning is determined, and a decision
is made as to whether to continue learning at the current level
or to progress to the next level. If the decision is to remain at
the current level, learning continues for an additional prede-
termined number of iterations p, where p < k and the learning
quality is re-tested until a decision to continue to the next
level is reached. After the robot completes the final level, the
learning is completed.

In reinforcement learning, the agent maximizes the
expected cumulative reward. Therefore, the learning quality
is defined based on examining whether the current change in
the cumulative reward is significantly smaller than the change
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in the cumulative reward at the beginning of the level,

rcurrentL − rcurrentF
rbeginningL − rbeginningF

< 0.1 (5)

where F indicates the sum of the firstW learning steps of the
iteration, and L indicates the sum of the lastW learning steps
of the iteration. This test determines whether the robot is still
learning and should remain on the current level or has already
learned enough and can continue to the next level.

III. EXPERIMENT
Learning based on the developed method was compared to
learning without a curriculum. The RSTAR robot learned to
overcome obstacles with each method in a simulated environ-
ment (see accompanying video). Three obstacle types were
defined, where each obstacle posed different challenges for
the RSTAR robot. We hypothesized that for the same number
of steps, learning with the automatically determined curricu-
lum would lead to better performance than learning without
a curriculum.

A. ENVIRONMENT
The simulated RSTAR was modeled based on a physical
RSTAR, length 150 mm, width 115–290 mm, and height
42–125 mm [35], [36]. The robot learned to overcome three
different obstacle types: a narrow channel, a low entrance, and
a step (Figure 4). Overcoming each obstacle type was learned
in a separate experiment. The target location was placed such
that the robot had to overcome the obstacle to reach the
target. The narrow channel variants were 180–320 mm wide,
so the robot was required to reduce its width to pass through
the channels (the narrower the channel, the more complex the
task). The low entrance variants were 55–140mm high, so the
robot was required to lower its body to crawl underneath
the obstacle (the lower the entrance, the more complex the
task). The step obstacle variants were 21–50 mm high, so the
robot was required to climb over the step while maintaining
its balance (the higher the step, the more complex the task).
Obstacle sizes were determined according to the capabilities
of the robot. Based on prior work with the robot, the step
obstacle is known to be the most difficult for the robot to
overcome, and the narrow channel is the simplest.

The simulations were conducted using a Unity® soft-
ware environment (real-time engine development platform),
and the learning was programmed using the Unity Machine
Learning Agents Toolkit (ML-agents, https://unity.com/
products/machine-learning-agents). The training process was
conducted in nine environments simultaneously, where the
agents share a common learned behavior (network weights)
to reduce the learning time. The simulations were performed
with an Intel® Core™ i7-7700 processor 3.6GHz, 16GB
RAM running a Windows 10 operating system x64 bits. The
GMMs were computed using Matlab® (Version R20201a,
Mathworks, USA). The statistical analysis was conducted
with R using the RStudio interface (Version 1.2.5001, Open
Source).

FIGURE 4. The simulated environments: (A) Narrow channel, (B) Low
entrance, and (C) Step. (D) Example of nine concurrent training
environments.

B. REINFORCEMENT LEARNING
RSTAR learned to overcome the variants of the three obstacle
types by using the Proximal Policy Optimization (PPO) DRL
algorithm [49]. PPO is an on-policy gradient-based opti-
mization algorithm implemented in Unity Machine Learning
Agents Toolkit. The network was defined as a four-layer
neural network with 256 neurons in each layer. The obser-
vations were of the robot configuration, namely, the yaw
angle, the pitch angle (for the step obstacle), the FBEM
angle, the sprawl angle, and the tangential speed of the robot.
In addition, the observations included the distance of the
robot from the obstacle and the dimensions of the obstacles,
namely, width for the narrow channel or height for the low
entrance or the step. The observations of the robot’s actions
were based on the robot’s velocity in the forward (Z axis)
direction (maximum change in each step ±1 mm/s) and
changes in the FBEM and sprawl angles (maximal change in
each step ±0.08◦, which were chosen empirically to ensure
smooth motion). The velocity range was ±250 mm/s, the
FBEM angle range was ±72◦, and the sprawl angle range
was 0–180◦. The reward was defined according to Eq. 6.

Kb =

{
1 (|Yaw| > 100) | (|Pitch| > 100)
0 else

,

Kyaw =


0.0001

∣∣θyaw∣∣ ≤ 5
0.001 5 <

∣∣θyaw∣∣ ≤ 10,
0.01 10 <

∣∣θyaw∣∣
Rf =


5 Dz = 0
−5 (Dz ̸= 0)&(RY< −1),
0 else

Ri = −
1 + 2Kb (i)

Sm
− Kyaw (i)Dz (i) − 10−8S (i)

− 0.005 |1S (i)| − 0.005 |1FBEM (i)| ,

V =

∑n

i=1
Ri + Rf (6)

where Rf is the final cost, Ri is the cost at step i, V is a value
function, Dz is the distance of the robot from the target along
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the Z (forward) axis, RY is the height of the robot, Sm is the
maximal number of learning steps in a simulation episode,
Kb is the backward fall identifier, Kyaw is the yaw angle cost
(attenuated by i), S (i) is the tangential speed at step i, 1s is
the change in the sprawl angle, and 1FBEM is the change in
the FBEM angle.

The final cost Rf rewards the robot for reaching the goal
or strongly penalizes it for falling off the surface. The step
cost Ri has five components. The first component is divided
by the maximal number of learning steps and is related to
simulation time and the robot falling on its back during the
run. The second component is associated with the yaw devi-
ation and promotes a straight approach toward the obstacle.
The remaining three components are designed to encourage
a reduction in energy consumption by imposing penalties for
high speed and excessive motion of the sprawl and FBEM
mechanisms.

C. PROCEDURE
In the initiation stage, the number of learning steps for each
learning episode was set to 500,000 for the narrow channel
and the low entrance and 1,000,000 for the step obstacle. The
difference in the number of learning steps was the greater
difficulty of overcoming the step obstacle. The step obstacle
is more complex since the robot must move its center of
mass both forward-backward and up-down. In each learning
episode, an obstacle occurrence was randomly selected from
the appropriate range of obstacle sizes, and the configuration
(sprawl and FBEM angles) and position of the robot in the
workspace were randomly determined. The initiation stage
was conducted with a different seed in each run and twice for
each obstacle, so a total of 6 independent networks (two for
each of the three obstacle types) were learned.

A set of obstacle occurrences evenly distributed within the
size range of the obstacle was defined for each obstacle type.
For the narrow channel, the set included 15 widths; for the
low entrance, the set included 18 heights; and for the step, the
set included 30 heights. After the initial learning stage, data
was collected for each obstacle occurrence with the learned
networks. Thirty repetitions of the task execution were con-
ducted for each obstacle occurrence, with each of the two
networks learned for the obstacle type. Each repetition started
from the same initial position and configuration. Repetitions
lasted 20 s at most, or less if the robot overcame the obstacle
faster. There were 450 repetitions for the narrow channel,
540 for the low entrance, and 900 for the step obstacle.
The data collected in each simulation time step included the
time elapsed from the start of the trial, the sprawl angle, the
FBEM angle, and the Euclidean distance from the target.
The collected data was arranged as a four-dimensional feature
vector.

Four-dimensional GMMs were computed based on the
feature vectors for each occurrence of each obstacle, i.e.,
15 models for the narrow channel, 18 models for the low
entrance, and 30 models for the step. The number of GMM

components was set at 16 after testing the models with 2–20
components for the highest step height based on theminimum
estimated BIC. This step is the most challenging obstacle for
the robot to overcome and, therefore, most probably requires
the most model components. HD was computed between all
models of each obstacle.

For each obstacle, GMMs were clustered into groups using
hierarchical clustering with HD as the distance measure. If a
group contained two GMMs or less, it was merged with
the adjacent group to which it was most similar according
to the dendrogram. The task complexity of the group was
determined by the average success rates in overcoming the
obstacle in each group, as ‘easy,’ ‘medium,’ or ‘difficult.’ A
curriculum was determined for each obstacle type based on
the formed groups and the average success rate.

The robot continued to learn using transfer learning with
or without the curriculum. With the curriculum, the robot
progressed based on an automatic performance examina-
tion after pre-determined training durations. Each curriculum
stage started with k = 500,000 learning steps. The number
of learning steps averaged at the start and end, W, was set to
5,000. If the robot did not pass the examination, it learned
for another p = 100,000 learning steps, after which it was
examined again. After ten consecutive iterations, the robot
progressed to the next curriculum stage without an additional
test.

The learning duration for both with and without a curricu-
lum was determined according to the progress attained when
learning with a curriculum. Learning with the curriculumwas
terminated when the robot successfully completed the final
curriculum level. For each obstacle type, the same duration
and the same initial network were used when learning without
a curriculum. This way, pairs of learning processes (with and
without a curriculum) that lasted the same time were created.
Four networks were learned for each obstacle, two with and
two without a curriculum.

D. ANALYSIS
To test the performance of the learned behaviors, the robot
was required to overcome three obstacles, each in a differ-
ent simulation environment: A narrow channel with variable
width between 180 mm to 320 mm (in steps of 10 mm –
15 values), a low entrance with variable height between
55 mm and 140 mm (in steps of 5 mm – 18 values), and a step
with variable height between 21 mm and 50 mm (in steps of
1 mm – 30 values). For each obstacle occurrence, the robot
was required to overcome the obstacle 30 times with each of
the four learned networks (120 trials). For each obstacle, the
orientation and configuration of the robot at the beginning of
each trial were the same: the robot was placed at the same
distance from the obstacle, the sprawl angle was initialized
to 48◦, and the FBEM angle was initialized to 0◦. The trial
ended when the robot overcame the obstacle or when the
pre-allocated task execution time had expired.

In each trial, data regarding the robot’s trajectory were col-
lected. The following measures were computed: The success
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rate was graded as yes/no based on whether the robot reached
the goal within the repetition duration. The task completion
time was calculated in seconds, and if the goal was not
reached, the time was set as the repetition duration. The path
length of the sprawl angle and the path length of the FBEM
angle (in degrees) were computed for successful paths, i.e.,
summation of the absolute values of the respective angles
(sprawl or FBEM). The distance traveled in the environment
was not used as a measure since it was highly correlated to
the distance between the initial position and the obstacle and
to the time duration of the task.

E. STATISTICAL ANALYSIS
All statistical analyses were performed using R Studio IDE
for R (version 1.2.5001, Open source), with a significance
level of 5%. All analyses were conducted separately for each
obstacle.

The success rates with and without a curriculum were
compared with a 2-sample test for equality of proportions
with continuity correction [50]. Since trial duration caps task
completion time, task completion time was analyzed using
survival analysis [51]. Survival analysis considers censoring,
e.g., repetitions in which success was not reached during
the trial duration, preventing bias in the estimates of the
distribution. The survival curves (Kaplan-Meier estimates of
survival) with and without a curriculumwere compared using
the log-rank test (Mantel-Haenszel) [52].
Sprawl and FBEM angles were analyzed with a linear

mixed model (LMM) with multiple comparisons computed
with the restricted maximum likelihood (REML) criterion for
convergence. The fixed factors included complexity group
(i.e., ‘easy,’ ‘medium,’ ‘difficult’), learning method (with or
without a curriculum), and their interaction. The random
effect was the initial network used (two networks).

IV. RESULTS AND DISCUSSION
A. INITIAL LEARNING AND ANALYSIS
The feature vectors for each occurrence were successfully
recorded for all three obstacle types. Figure 5 depicts a scatter
plot of recorded data from all the repetitions of the 50 mm
step. The shift in the FBEM angle when reaching the obstacle
(for balancing the robot when climbing the high step) is
apparent. The scatter plot of the points sampled from the
estimated model is similar to the scatter plot of the recorded
data. The BIC values for GMMs with 2-20 components show
that 16 components are sufficient for the model (Figure 5C).
For all three obstacle types, the hierarchical clustering

algorithm found three groups (Figure 6). The success rates
(Table 1) of overcoming obstacles in each group were consis-
tent with our understanding of the task, i.e., the success rate
is lower for narrower channels, lower entrances, and higher
steps. The groups were named in accordance with the success
rates, i.e., easy, medium (in case of three groups), difficult.

For the narrow channel, the ‘difficult’ group had only two
obstacle widths. Therefore, it was merged with the adjacent

FIGURE 5. Constructing the GMM model for a 50 mm Step obstacle. Color
codes distance from target. A. Scatter plot of recorded values from all
initial learning repetitions. B. Scatter plot of values randomly sampled
from the estimated GMM with 16 components. C. BIC values computed
for estimated GMMs with 2-20 components.

TABLE 1. Success rate in overcoming the obstacle at the end of the initial
learning.

TABLE 2. Curricula for the obstacle types by level (E: ‘easy’, M: ‘medium’,
D: ‘difficult’).

‘medium’ group. For the low entrance, the ‘medium’ group
contained only two heights, and it was more similar (based
on the dendrogram) to the adjacent ‘easy’ group than to the
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FIGURE 6. Dendrograms of the meaningful dimension clusters for the
three obstacles, as found by the hierarchical clustering algorithm (which
is the reason why the order is not monotonic in numbers). From top to
bottom: narrow channel (width), low entrance (height), and step (height).
Dotted purple lines indicate separate complexity groups.

‘difficult’. Therefore, the ‘easy’ and ‘medium’ groups were
merged.

After the initial training, the policy was very good for the
easy groups, especially for the wider narrow channels and
higher low entrances. To overcome these obstacles, the robot
needs very little change (if at all) in its configuration. The

FIGURE 7. Average cumulative reward (Y axis) as function of the number
of learning steps (X axis), during the training with and without a
curriculum. Orange graphs indicate learning with a curriculum, and cyan
graphs indicate learning without a curriculum. The initial learning is the
same for both methods, and therefore the lines were merged; shown as
cyan graphs on a gray background. According to the curriculum, for the
narrow channel and the low entrance, there was only one level,
represented by an orange background. For the step obstacle, the
curriculum consisted of three levels, represented by the gradated
background (orange to green). The learned tasks differ between the
learning methods. When training without a curriculum the obstacle
occurrences are drawn uniformly from the entire range throughout the
training. When learning with a curriculum, there are more difficult tasks
as the learning progresses. Therefore, the overall learning success cannot
be directly deduced from these graphs. Accordingly, a testing stage and a
statistical analysis were conducted following the learning.

performance at the end of the initial stage was poor for all
other obstacles, i.e., the medium and difficult groups, for
which the robot needs to change its configuration to pass. This
finding strengthens the basic hypothesis on which the method
is based, that indeed, the algorithm can identify groups of
obstacle variants based on robot behavior and that these
different obstacle variants pose different difficulty levels for
the robot motor behavior learning process.

The curriculum levels and their distribution (Table 2) were
determined based on the complexity groups and success rates.
The robot is assumed to have learned the task when the
success rate is above 95%. For the narrow channel and the low
entrance, there were two groups, and in addition, for these
obstacle types, the success rates for the ‘easy’ group were
above 95%. Therefore, the curriculum designed for these two
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FIGURE 8. Success rate (top) and time (bottom) statistics, by complexity and obstacle type. From left to right: narrow channel, low entrance, and
step. Dark pink indicates learning with curriculum, and cyan indicates learning without curriculum. Significance is shown for both the bar-plots
and the Kaplan-Meier curves estimating survival, i.e., the estimated time it takes the robot to overcome the obstacle. Significance values are
indicated: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

FIGURE 9. Box plots of sprawl angle (top) and FBEM angle (bottom) by obstacle and complexity group. From left to right: narrow channel, low
entrance, and step. Red indicates learning with curriculum, and cyan indicates learning without curriculum. Significance values: ∗ p < 0.05, ∗∗ p <

0.01, ∗∗∗ p < 0.001.

obstacle types had only a single level in which the ‘difficult’
group was dominant, i.e., had a high probability weight. For
the step obstacle, there were three groups, and the success
rates for all three groups were below 95%. Therefore, a cur-
riculum with three levels, ‘easy,’ ‘medium’, and ‘difficult’,
was designed.

B. CURRICULUM LEARNING
The convergence of the reward functions is presented in
Figure 7. For the step obstacle, the cumulative rewards con-
verged for both learning methods. For curriculum learning,
the reward increased after the initial learning (after 1 million
learning steps), as the curriculum starts with the ‘easy’ task
level. The cumulative reward decreased briefly when moving

to the next (more complex) task level (after about 1.8 million
learning steps). The effect of curriculum learning is less
apparent in the convergence of the narrow channel and the
low entrance. For both these obstacles, when learning with
a curriculum, there is an initial decrease in the cumulative
reward when curriculum learning starts (after the initiation
stage), which coincides with the level’s emphasis on the
‘difficult’ group.

For the success rate (Figure 8, top), the differences between
the methods depend on obstacle and complexity group. For
the narrow channel, there was no difference in the success
rate with or without a curriculum. For the low entrance, there
was no difference in the success rate with or without a cur-
riculum for the ‘easy’ group, but the success rate was higher
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when learning with a curriculum for the ‘difficult’ group
(χ2

= 26.73, p < 0.001). For the step obstacle, there was
no difference in the success rate with or without a curriculum
for the ‘easy’ group, but the success rate was higher when
learning with a curriculum for the ‘difficult’ (χ2

= 468.07,
p < 0.001) and ‘medium’ (χ2

= 809.76, p < 0.001) groups.
The difference between the methods was very significant in
the ‘difficult’ group as the robot overcame the step obstacle
in only one of the trials when learning without a curriculum
but in 99.6% of the trials when learning with a curriculum.

For all obstacles and all complexity groups, the survival
curves for learning with a curriculum converged to zero ear-
lier (p< 0.05) than without the curriculum, i.e., after learning
with a curriculum, it took the robot less time to overcome the
obstacle (Figure 8, bottom).

For all obstacles, there were differences between the cumu-
lative sprawl angle for all groups [narrow channel: ‘difficult’
(t1794 = −4.77, p < 0.001), ‘easy’ (t1794 = 6.04, p < 0.001);
low entry: ‘difficult’ (t2125 = −11.47, p < 0.001), ‘easy’
(t2125 = −2.75, P < 0.01); step: ‘medium’ (t2807 = −4.77,
p <0.001), ‘easy’ (t2807 = −2.98, p < 0.01) (Figure 9,
top). For all obstacles, there were differences between the
cumulative FBEM angle for all groups [narrow channel: ‘dif-
ficult’ (t1794 = 5.27, p < 0.001), ‘easy’ (t1794 = 14.38, p <

0.001); low entry: ‘difficult’ (t2125 = −39.13, p < 0.001),
Easy (t2125 = −32.71, p < 0.001); step: ‘medium’ (t2807 =

16.42, p < 0.001), ‘easy’ (t2807 = 29.20, p < .001) (Figure 9,
bottom)]. For the ‘difficult’ group of the step obstacle, the
sprawl and the FBEM angles could not be compared because
there was only one successful trial when learning without a
curriculum.

V. CONCLUSION
The robot’s behavior (e.g., sprawl and FBEM angle motion
profiles) differed when learning with and without a curricu-
lum. The behaviors learned with a curriculum enabled the
robot to overcome the three obstacle types more success-
fully and more rapidly than the behaviors learned without a
curriculum. The advantage of learning with the prescribed
curriculum was more significant for the more challenging
obstacle variants (narrower channels, lower entrances, and
higher steps). For example, for the low entrance, the success
rate in the ‘difficult’ level was 95% when learning without
the curriculum and 100% when learning with the curriculum.
Evenmoremarkedly, for the ‘medium’ level of the step obsta-
cle, the success rate was only 31% when learning without
the curriculum and 100% when learning with the curriculum.
Finally, and most strikingly, for the ‘difficult’ level of the
step obstacle, learning without a curriculum produced only
one successful trial (out of 30 repetitions), whereas almost all
trials (99.6%) were successful for learning with a curriculum.

The developed method is especially suitable for develop-
ing curricula for tasks where the division into sub-groups
and their difficulty are unclear to the human operator. Such
tasks are commonly encountered when using reconfigurable
robots since reconfigurable robots present multiple motion

possibilities. These motion capabilities may be critical for
search and rescue missions where the robot encounters
challenging surroundings requiring dexterous motion. The
developed method builds on analyzing the task from the
robot’s perspective and is, therefore, suitable for situations
where the operator’s intuition regarding the required opera-
tion may not be sufficient.

The task groups are clustered based on the distance
between the motion models learned based on data from the
initial training stage. The model features are related to the
robot’s dynamics and, in some sense, to task requirements.
Indeed, for tasks or robots that require different features,
measuring the distance between models is not supported by
the current method. In the current work, the features (the
robot’s degrees of freedom) were pre-determined. In future
work, features can be automatically determined based on
methods such as principal component analysis or regression
analysis [40].
The current study examined the learning scores period-

ically to determine a learning level and task distribution.
The period length and distribution coefficients at each level
were empirically determined and clearly affected the results.
For example, neglecting to retain some weight to previously
learned groups causes forgetting and hinders overall per-
formance. On the other hand, giving too much weight to
previously learned groups slows up the learning process with
unnecessary learning instances. The periodic estimation and
group distribution should be compared to stepwise group
selection (as in [15], [16], [23], [24], [25], and [26]), which
obviates the need for determining period and distribution
coefficients.

The developed method was tested in the current work in
simulation only. Prior work by the authors has successfully
tested discrete policies learned in simulation usingQ-learning
with a physical setup [35]. Not only were the learned policies
successful in overcoming the physical obstacles, but they
even outperformed the performance attained by human oper-
ators. This seamless transfer from the simulation into the
physical setup is partly due to the advanced maneuverability
of the RSTAR. The current physical model and controller are
unsuitable for run-time operation with network-based con-
trol. We are currently constructing a physical setup suitable
for testing these issues.
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