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ABSTRACT The improvement of the signal-to-noise ratio of seismic data is crucial for high-precision
processing. The self-supervised denoising methods based on correlation differences are gaining attention
due to their low cost of training data construction and the ability to build training data directly on test
data. However, as the volume of data processed increases, these methods must maintain a denoising effect
by adding extra processings. This increase in processing times can lead to a rise in total cost, making
these methods less cost-effective compared to other deep learning methods for processing large data.
Therefore, we improved these self-supervised methods by altering the training data construction process,
thereby retaining its cost advantage. Specifically, we modified the selection process of zones used for
training data construction. Through correlation analysis, these methods can obtain higher-quality zones
from the original zone for training, indicating that the network needs to be trained only once to process
any data in the original zone. Without the requirement for additional processing to ensure noise attenuation,
these self-supervised methods can maintain their cost advantage when processing large data. We applied
one of these self-supervised methods to synthetic and field examples to demonstrate the enhancement’s
effectiveness. Experimental results show that the improved method performs as well as the conventional
self-supervised method in suppressing random noise and constructing reflection events but with a significant
cost advantage.

INDEX TERMS Seismic data, random noise, deep learning, noise attenuation.

I. INTRODUCTION
The significance of precise geological exploration is becom-
ing more apparent with the increasing focus on deep
and ultra-deep seismic exploration. High-precision seismic
exploration necessitates seismic data with a high signal-to-
noise ratio (SNR) to ensure accurate seismic data inversion
and geological interpretation [1]. During the seismic data
acquisition process, noise inevitably contaminates the data.
There are two types of noise: coherent noise and random
noise. Coherent noise has a fixed frequency and apparent
velocity, whereas random noise is typically caused by various
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disturbances in the acquisition environment and has no
fixed frequency or apparent velocity. Random noise can
significantly reduce the SNR of seismic data and affect
subsequent processing of the seismic data. The attenuation
of random noise in seismic data has consequently received
considerable attention from researchers.

Various methods have been proposed to reduce random
noise in seismic data. Prediction filtering methods [2], [3],
[4], [5] assume that effective seismic signals can be predicted
in the frequency or time domain, whereas random noise
remains unpredictable. Appropriate filter operators can be
designed to reduce random noise in the frequency domain
based on this difference in predictive characteristics. A subse-
quent inverse transformation can then be used to obtain clean
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data. Transform-domain filtering approaches [6], [7], [8], [9]
can convert seismic data to a specified transform domain
and then apply specific thresholds to perform denoising.
These thresholds are formulated based on the distinguishable
difference between effective signals and random noise within
the transform coefficients. While effective at attenuating
random noise, these transform-domain methods often fail to
completely eliminate noise. This is because these methods
often blend a mixture of noise and valid data, resulting in
residual noise. Modal decomposition methods [10], [11],
[12], [13] aim to improve signal reconstruction and reduce
random noise by decomposing seismic data into multiple
components and superimposing primary components repre-
senting clean data. However, the clean data and noise can be
inevitablely mixed during this decomposition process. This
can result in multiple signal components with indeterminate
mixing ratios, potentially leading to loss of effective signal
and residual noise in the denoised output. Rank-reduction
methods [14], [15], [16], [17], such as multichannel singular
value analysis (MSSA), propose that the optimal clean data
can be represented as a low-rank matrix. The target is to
attenuate the rank enhancement induced by the random noise
present in the seismic signal matrix, thereby facilitating
noise suppression. Machine learning methods, with their
innovative and efficient approach to data processing tasks,
have gained considerable traction. Among these, techniques
based on deep learning, especially those using convolutional
networks, have made significant progress. Numerous deep
learning-based methods [18], [19], [20], [21], [22], [23],
[24], [25] have also been proposed for seismic denoising,
especially for suppressing random noise. These techniques
have significantly improved SNR of seismic data and
attenuated random noise. However, the complexity and
diversity of geological structures pose a challenge for deep
learning methods, making it difficult to process all data with
a universal training dataset. Typically, most methods can only
reference the geological structure and features of the test area
to construct training datasets with similar features, which
complicates data processing to some extent.

In recent years, self-supervised denoising methods [18],
[26], [27] based on similarity differences have gained
attention. Unlike other deep learning methods, which require
referencing geological features of the test zone to build
a training dataset, these self-supervised methods can con-
struct a training dataset directly from the test zone. This
significantly reduces the cost of training data construction.
However, as the volume of data processed increases, the
cost advantage becomes less evident. This is due to the
additional processing required by self-supervised methods
on large data processing, which increases the overall cost.
Specifically, these methods need to divide the large original
data into several test data and process them independently.
This strategy ensures differences in network learning rates
between clean data and random noise in each test data,
thereby effectively ensuring the effect of noise attenuation on
the large original data.

Therefore, we proposed an improved self-supervised
suppression method based on correlation differences. This
improved method primarily alters the selection process of
zones used for constructing training data. By performing
correlation analysis between each selected zone, it can select
zones with less similarity, thus building a higher-quality
training dataset. With this high-quality dataset, this method
eliminates the need to divide the large original data into
several test data and process them individually. It only needs
to be trained once to process any data in the large original
data. In addition, this improved method has a similar training
calculation cost to the conventional self-supervised method.
Specifically, the training calculation cost for the improved
method on large original data is similar to the cost for the
conventional method on single test data. These advantages in
cost lead to a significant reduction in the total cost for pro-
cessing the entire large data. Moreover, complex geological
structures usually represent only a small portion of the overall
data. This ratio is also reflected in the training data when
using conventional self-supervised methods. Consequently,
these methods may perform worse when processing complex
structures compared to their performances on more common
and relatively simple structures. However, with high-quality
zone selection, self-supervised methods can more easily
capture zones with complex structures. It increases the ratio
of data representing these structures in the training dataset,
leading to improved performance when processing complex
structures.

The rest of this paper is organized as follows. Section II
presents the denoising strategy of a self-supervised method
we used for the test, the corresponding specific approaches
of the conventional method and the improved method,
and similarity analysis. Section III introduces the network
we applied in this paper. In Section IV, experiments are
conducted on synthetic and field data to demonstrate the
effectiveness of the improved method in attenuating random
noise and reducing the cost of processing. Finally, Section V
concludes this paper.

II. METHODS
Conventional self-supervised methods employ various strate-
gies to achieve similarity differences between valid data and
random noise for noise attention. For comparison purposes,
we used one such conventional method (MRN-OLD) [26]
for the test. Fig. 1(a) and Fig. 1(b) illustrate the processing
flow of the original zone using the improved method and
the conventional method, respectively. Despite differences in
their zone selection processes, both methods apply the same
denoising strategy.

A. DENOISING STRATEGY BASED ON DIVISION
As we know, 3D seismic data (Ym,n,t ) can be expressed as
follows:

Ym,n,t = Xm,n,t + noisem,n,t (1)
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FIGURE 1. Flows of self-supervised methods for 3D seismic random noise attenuation. (a) The improved method (MRN-NEW).
(b) Conventional self-supervised method for comparison (MRN-OLD).

where Xm,n,t denotes clean data; noisem,n,t denotes Gaussian
white noise; m and n denote trace number; and t denotes
time sampling point. Clean data in adjacent traces generally
show similar seismic characteristics, such as interface and
phase, indicating spatial correlation. On the other hand,
random noise, being a disorganized time series, lacks
spatial correlation. Thus, the similarity of clean data and
random noise between adjacent traces can be described as
follows: {

X2m−1,n,t ≈ X2m,n,t
noise2m−1,n,t ̸= noise2m,n,t

. (2)

The difference in similarity between clean data and random
noise can affect the network’s learning efficiency towards
both, subsequently leading to a difference in the network’s
mastery of the two.

Dif fsim
(
Xm,n,t , noisem,n,t

)
⇓

Dif fle
(
Xm,n,t , noisem,n,t

)
⇓

Dif fmas
(
Xm,n,t , noisem,n,t

)
(3)

where Dif fsim, Dif fle, and Dif fmas denote the difference
in similarity, learning efficiency of network, and mastery
of network, respectively. Specifically, an increased sim-
ilarity can reduce the complexity of network learning,
thereby enhancing its efficiency. Consequently, given the

same timeframe, a network can learn clean data more
swiftly than random noise. Furthermore, according to
Gao et al. theory [26], the network parameter vector can
be significantly influenced by a specific local optimal
solution with a denoising effect during the initial training
epochs due to the statistical characteristics of random
noise. If the parameter vector is located near this specific
optimal solution, the corresponding model can exhibit noise
attenuation.

Therefore, by dividing the original gather into two sub-
gathers (GAsub and GBsub) based on the trace number’s
parity, and using them as the network’s input and label
respectively, we can find an appropriate epoch interval
([Emin,Emax]). In this epoch interval, the corresponding
model (FNet (: ; ϕ) , ϕ ∈ [Emin,Emax]) can achieve noise
attenuation and signal reconstruction effectively.

FNet
(
Ym,n,t ; ϕ

)
= FNet

(
Xm,n,t + noisem,n,t ; ϕ

)
≈ Xm,n,t

(4)

The mean square error (MSE) is commonly employed to
assess the network’s training efficiency. The loss function in
this article can be expressed as follows:

L (θ) =
1
2M

M∑
i=1

∥∥∥FNet (BIi ; θ
)

− BLi
∥∥∥2
F

(5)
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whereM represents the number of samples in the training set;
∥·∥F represents the Frobenius norm; BIi denotes the patches
from the input; BLi denotes those from the label.

B. CONVENTIONAL SELF-SUPERVISED METHOD
The flow of conventional self-supervised method (MRN-
OLD) for processing an original zone is shown in Fig.1 (b).
The process can be described in detail as follows.
Step 1: Divide several appropriate test zones from the

original zone.
Step 2: Process each test zone individually. For each test

zone, randomly select small zones from the test zone to be
the selected zones, and add them to the zone set. Then, divide
the zones from the zone set into two sub-gathers (GAsub and
GBsub) based on the parity of the trace number. Next, utilize
these two sub-gathers to construct the training data.
Step 3: Obtain well-trained networks from each training

data. Then perform noise attenuation on each test zone by
corresponding well-trained network.
Step 4:Compose denoised test zones into denoised original

zone.
Random selection of zones in this method can enhance

data diversity in the selected zones, thereby improving data
quality. However, as the test zone size increases, ensuring
this diversity becomes challenging, and the selection loss of
complex structures is inevitable. Furthermore, a larger test
zone can reduce the learning efficiency difference between
clean data and random noise in the network. This could
potentially lead to a failure in obtaining a model with a noise
attenuation effect. Therefore, it is necessary for conventional
self-supervised method to divide large original zone into
several small test zones and perform individual processings
to ensure the effect of noise attenuation. However, it can
increase the total cost for processing the large data due to
these additional processings.

C. THE IMPROVED METHOD
The flow of the improved method (MRN-NEW) for process-
ing original zone is shown in Fig.1 (a). The process can be
described in detail as follows.
Step 1: Identify the direction with the highest similarity

in the 3D original zone. Given the random distribution
and limited power of random noise, the similarity between
adjacent seismic traces primarily reflects the similarity of
effective data. Hence, the greater the similarity between
adjacent seismic traces, the larger the difference in learning
efficiency between clean data and random noise.
Step 2: Select small zones from the original zone randomly.

After the first selected zone is directly added to the zone
set, each subsequent selected zone must undergo a similarity
analysis (correlation analysis) with every zone in the zone
set. Only zones that meet the similarity requirements with all
zones in the zone set can be added to the zone set.
Step 3: Repeat Step 2 until the demand for the number of

training samples is satisfied.

Step 4: Divide the zones from the zone set into two sub-
gathers (GAsub and GBsub) based on the parity of the trace
number. Then, utilize these two sub-gathers to construct the
training data.
Step 5:Obtain well-trained network from the training data.

Then perform noise attenuation on each test zone by the well-
trained network.
Step 6:Compose denoised test zones into denoised original

zone.
Compared to the conventional self-supervised method

(MRN-OLD), the improved method doesn’t need to consider
the influence of the test zone size. On the one hand, the
improved method can easily identify complex structures
to construct high-quality training data through similarity
analysis. On the other hand, with this high-quality training
data and a limited number of training samples, the difference
in learning efficiency can be easily guaranteed. Therefore,
it’s unnecessary to divide the original zone into smaller test
zones and perform independent processings to ensure noise
attenuation. With the improved method, the network needs to
be trained only once to perform noise attenuation anywhere
in the original zone.

D. SIMILARITY ANALYSIS
The Structural Similarity Index Measure (SSIM) can be
used for similarity analysis. SSIM is a perceptual model
which quantifies image distortion andmeasures the similarity
between two images. It evaluates images based on three
aspects: luminance, contrast, and structure. We used SSIM
and a threshold a to determine the similarity between the two
zones. If the SSIM value is less than or equal to the threshold
a, it suggests that the selected zone satisfies the similarity
requirement with the reference zone. In this article, we set
the threshold a at 0.4.

III. NETWORK ARCHITECTURE
In this article, we employed M-ResUNet [26] to demonstrate
the effectiveness of our improved methodology, as depicted
in Fig. 2(a). Unlike the traditional U-shaped pathway of the
conventional UNet network,M-ResUNet performs additional
processings on certain feature maps for improved training
results. The M-ResUNet network consists of three core
structures: the U-shaped structure, the feature enhancement
structure, and the multi-layer descending structure.

The U-shaped structure extracts features at different levels
and provides an interface for further feature processing.
The feature enhancement structure can process features with
a specific scale and control the bias of the final output
towards various scale features by adjusting the ratio of
the channels associated with these features. Lastly, the
multi-layer descending structure minimizes feature loss after
convolution operations and possesses a larger count and a
wider selection space for parameters, thereby accelerating
network learning.

Additionally, a feature processing module, comprised of
two components, Conv Block A and Conv Block B, is utilized
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FIGURE 2. M-ResUNet framework. (a) Overall framework. (b) Feature processing module.

to enhance network learning, as illustrated in Fig. 2(b). Conv
Block A facilitates feature extraction across all data through
consecutive double convolutions. In contrast, Conv Block B
hastens the update of the network parameter vector towards
the specific local optimal solution with a denoising effect
through a unique multiple residual structure.

IV. NUMERICAL RESULTS
In this section, we performed experiments on synthetic
and field examples to demonstrate the effectiveness of the
improved method. However, it is challenging to evaluate
its effect directly on original zone processing, as the way

of dividing on original zone has an obvious influence on
the total cost. To further compare the total cost between
methods, we used the calculation cost for a single test zone
to estimate the cost for the whole original zone, which can
eliminate the influence of dividing and effectively assess the
cost. In addition, all experiments were performed on a PC
(Intel Core i5-12400F 2.50 GHz CPU, 16-GB memory, and
an NVIDIA GeForce RTX 3060 GPU).

A. DATA ANALYSIS
To quantitatively assess the denoising performance from
different methods, the SNR and root mean squared
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TABLE 1. Training information of network for examples.

FIGURE 3. Synthetic original zone for training. (a) Noisy data. (b) Clean data. (c) Random noise.

FIGURE 4. Synthetic example for test. (a) Noisy data. (b) Clean data. (c) Random noise.

error (RMSE) [28] were applied to evaluate the results. SNR
and RMSE can be expressed as follows:

SNR = 10log10


N∑
i=1

M∑
j=1

L∑
k=1

(
Xi,j,k

)2
N∑
i=1

M∑
j=1

L∑
k=1

(
FNet

(
Yi,j,k

)
− Xi,j,k

)2

(6)

RMSE =

√√√√√ 1
NML

N∑
i=1

M∑
j=1

L∑
k=1

(
FNet

(
Yi,j,k

)
− Xi,j,k

)2 (7)

where FNet
(
Yi,j,k

)
and Xi,j,k represent the denoising result

and the clean data, respectively; M , N , and L are the
dimensions of the seismic data. In addition, to provide a
more accurate assessment of the total computational cost
for the original zone, we have established a new evaluation

index, that is pixel number per second for processing (PNS),
as follows:

PNS =
S

Tprep + Ttrain + Tproc
(8)

where Tprep denotes preparation time for training data
construction; Ttrain denotes training time; Tproc denotes
processing time for data; S denotes the number of pixel in the
zone for processing. Due to differences in processing ways
between MRN-NEW and MRN-OLD, the PNS needs minor
adjustments.

MRN-OLD requires individual processing on each test
zone, that is MRN-OLD needs to perform independent
training dataset construction, training, and processing for
each test zone. Thus, PNS of MRN-OLD for a test zone can
be approximately regarded as PNS for the original zone. The
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FIGURE 5. Denoising performances of synthetic example. (a)-(c) Denoising results: MRN-NEW, MRN-OLD, and MSSA. (d)-(f) Removed noise:
MRN-NEW, MRN-OLD, and MSSA. (g)-(i) Local similarity maps: MRN-NEW, MRN-OLD, and MSSA.

PNS of MRN-OLD (PNSOLD) is as follows:

PNSOLD =
S test

T testprep + T testtrain + T testproc
(9)

where T testprep, T
test
train, T

test
proc and S

test denote the Tprep, Ttrain, Tproc
and S of the test zone. Since MRN-NEW only needs to be
trained once to process any test data within the original zone,
its PNS for the original zone (PNSNEW ) can be as follows:

PNSNEW =
Sorig

T origprep + T origtrain +
Sorig
S test T

test
proc

(10)

where T origprep , T
orig
train and Sorig denote the Tprep, Ttrain and S

of the original zone. The Tproc for original zone can be
approximately regarded as Sorig

S test T
test
proc.

B. NETWORK TRAINING SETTINGS
In this article, we used the conventional self-supervised
method from Gao et al. (MRN-OLD) for comparison, as seen
in Fig. 1(b). As shown in Table 1, most of hyperparameters
for the improved method (MRN-NEW) are identical to those
of MRN-OLD. Both methods use the Adam optimizer with
an initial learning rate of 0.001. The patch size is set to
20×20×20, and the batch size is set to 32. The training set
for the synthetic example had 192 samples, while the set for
the field examples contained 640 samples and 192 samples,
respectively.We conducted training for the synthetic example
to 12 epochs and for the two field examples to 6 epochs and
18 epochs, respectively. It’s worth noting that the training
zone for MRN-NEW covers the entire original zone. This
means it only needs to be trained once to process any zone
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FIGURE 6. Amplitude comparisons and spectrum comparisons on a trace record (Xline=40, Inline=40). (a)-(c) Amplitude comparisons: MRN-NEW,
MRN-OLD, and MSSA. (d)-(f) Spectrum comparisons: MRN-NEW, MRN-OLD, and MSSA.

FIGURE 7. SNR and RMSE comparisons at different noise levels. (a) SNR comparison. (b) RMSE comparison.

inside the original zone. However,MRN-OLD’s training zone
is limited to its test zone.

C. EXPERIMENTS ON SYNTHETIC DATA
To showcase the outstanding performance of our improved
method, we chose synthetic post-stack data with a

240×240×240 zone as the original zone. From this,
we selected an 80×80×80 zone to serve as our test zone.
We added 0dB of random noise to the original zone
to create a synthetic example, as displayed in Fig. 3.
Fig. 4(a)-(c) illustrate the noisy data, clean data, and
added noise within the test zone. The denoising results
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TABLE 2. Computational cost comparisons for synthetic example.

TABLE 3. SNR and RMSE of the Synthetic Results [SNR (dB)/RMSE].

for MRN-NEW, MRN-OLD, and MSSA are displayed in
Fig. 5(a)-(c), with respective SNRs of 16.729 dB, 14.686 dB,
and 1.844 dB. Both MRN-NEW and MRN-OLD perform
well in attenuating noise, whereas MSSA remains obvious
residual noise. The corresponding removed noises and
local similarity maps can be viewed in Fig. 5(d)-(f) and
Fig. 5(g)-(i). MRN-NEW and MRN-OLD show similar
performance in amplitude preservation, both outperforming
MSSA. The comparisons of computational costs for
self-supervised methods are presented in the Table 2. Note
that the processing time of MRN-NEW represents the time
cost for the original zone, which is converted from the
processing time of the test zone. The PNS for MRN-NEW
is 34,517.72, while the PNS for MRN-OLD is 3,480.86.
The processing efficiency of MRN-NEW is approximately
10 times that of MRN-OLD. Despite requiring more time
for training data construction, training, and processing,
MRN-NEW significantly outperforms MRN-OLD. This
improvement in processing efficiency is due to the much
larger number of pixels processed by MRN-NEW.

Moreover, we performed comparisons of amplitude and
spectrum on a specific trace record (Xline=40, Inline=40),
depicted in Fig. 6. It’s evident that MRN-NEW and
MRN-OLD display similar efficiency in noise attenuation,
surpassing MSSA. Lastly, we applied these methods to
a synthetic example with five different levels of random
noise. We compared their SNRs and RMSEs, as shown
in Fig. 7 and Table 3. The results show that MRN-NEW
generally outperforms MRN-OLD across different noise
levels, demonstrating superior resistance to strong noise
interference.

D. EXPERIMENTS ON FIELD DATA
To further demonstrate the effectiveness of our improved
method, we first utilized post-stack field data from an original
zone measuring 1252×734×286 for the test. We selected a
240×240×240 zone from the original zone as our test zone,
as shown in Fig. 8. Fig. 9(a)-(c) present the denoising results
for MRN-NEW, MRN-OLD, and MSSA. Both MRN-NEW

FIGURE 8. First field example for test.

TABLE 4. Computational cost comparisons for first field example.

TABLE 5. Computational cost comparisons for second field example.

and MRN-OLD effectively attenuate noise, whereas MSSA
leaves noticeable residual noise. The corresponding removed
noises and local similarity maps are shown in Fig. 9(d)-(f) and
Fig. 9(g)-(i). MRN-NEW andMRN-OLD exhibit similar per-
formance in amplitude preservation, both surpassing MSSA.
Table 4 presents the cost comparisons of self-supervised
methods for the first field example. The PNS for MRN-NEW
is 72,298.38, while the PNS for MRN-OLD is 34,742.40.
The processing efficiency of MRN-NEW is approximately
2 times that of MRN-OLD. As the test zone expands, the
number of samples in the test set that need processing
gradually increases. This results in a notable rise in the cost of
single, independent processing, while the cost associatedwith
the number of times for independent processing becomes less
significant. Even though the processing efficiency advantage
of MRN-NEW has diminished in this example, it still
outperforms MRN-OLD.

Furthermore, we used additional post-stack field data
from an original zone measuring 1500 × 3392x292 for
testing. We chose an 80 × 80x80 zone from the original
zone as our test zone, as shown in Fig. 10. Fig. 11(a)-(c)
displays the denoising results for MRN-NEW, MRN-OLD,
and MSSA. All methods effectively attenuate random noise,
but both MRN-NEW and MRN-OLD outperform MSSA
in maintaining the continuity of reflection events. The
removed noises and local similarity maps are shown in
Fig. 11(d)-(f) and Fig. 11(g)-(i). MSSA preserves more clear
reflection events in its removed noise than MRN-NEW and
MRN-OLD.Additionally,MSSA exhibits higher similarity in
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FIGURE 9. Denoising performances for first field example. (a)-(c) Denoising results: MRN-NEW, MRN-OLD, and MSSA. (d)-(f) Removed noise:
MRN-NEW, MRN-OLD, and MSSA. (g)-(i) Local similarity maps: MRN-NEW, MRN-OLD, and MSSA.

FIGURE 10. Second field example for test.

its local similarity map compared to MRN-NEW and MRN-
OLD. Therefore, it’s evident that MSSA performs the poorest
in amplitude preservation. MRN-NEW slightly outperforms
MRN-OLD in amplitude preservation due to its slightly

lower similarity in its local similarity map. Table 5 presents
the cost comparisons of self-supervised methods for the
second field example. The PNS for MRN-NEW is 91,956.27,
while the PNS for MRN-OLD is 2,254.12. The processing
efficiency of MRN-NEW is approximately 41 times that of
MRN-OLD. As the original zone expands and the test zone
shrinks, the cost of single independent processing is no longer
significant, while the cost associatedwith the number of times
for independent processing increases significantly. In this
example, the processing efficiency advantage of MRN-NEW
is significantly better than that of MRN-OLD. Considering
that the size of the test zone cannot be infinitely increased
and the massive amount of data needs to be processed, the
cost comparison of this example still has a certain reference
value.
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FIGURE 11. Denoising performances for second field example. (a)-(c) Denoising results: MRN-NEW, MRN-OLD, and MSSA. (d)-(f) Removed noise:
MRN-NEW, MRN-OLD, and MSSA. (g)-(i) Local similarity maps: MRN-NEW, MRN-OLD, and MSSA.

V. CONCLUSION
In this article, we address the cost challenge of self-supervised
attenuation methods for random noise in large-volume 3D
seismic data. We improved the zone selection process for
self-supervised methods, facilitating the selection of higher-
quality zones. With this high-quality dataset, the network
only needs to be trained once to process any data in the
original zone. This eliminates the need for conventional
self-supervised methods to perform independent processing
on large data. It effectively reduces the influence of the
cost caused by the number of times for independent
processing, thereby maintaining the total cost advantage
of self-supervised methods when they process large data.
Experimental evaluations using synthetic and field data have

demonstrated the improved method’s excellent performance
in random noise attenuation and total cost reduction. How-
ever, under very low SNR conditions, the method’s denoising
ability may be compromised. Furthermore, a method for
quickly selecting the SSIM value and training sample number
for large 3D data needs to be explored. This is because
different original zones with varying sizes, resolutions, and
structural complexities lead to differences in the suitable
value of SSIM and the number of training samples. Selecting
the wrong SSIM value or training sample number can
increase the calculation cost and make the improved method
more difficult to use. Despite these limitations, our improved
method shows promise in complex random noise attenuation
and cost reduction.
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