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ABSTRACT We propose an improved representative color transformation (RCT++), which is an effective
framework to describe complex color transformations between low- and high-quality images. We identify
the representative colors and features of the input image. For each representative color, we estimate a
transformed color that represents its enhanced version. Then, we enhance all input colors by interpolation,
taking into account the similarity between input pixels and representative features. We further improve the
original RCT framework by introducing the reconstruction term, which clarifies the representative colors,
and the entropy term, which diversifies the representative features. Finally, we develop the enhancement
network to achieve fast and lightweight image enhancement. Comprehensive experiments on various image
enhancement tasks validate our superiority in both effectiveness and efficiency. Our method exceeds recent
state-of-the-art methods in efficient image enhancement on MIT-Adobe 5K, Low Light, and Underwater
Image Enhancement Benchmark datasets, with comparable computational and memory costs.

INDEX TERMS Image enhancement, efficient image enhancement.

I. INTRODUCTION
Image quality is one of the fundamental concept in computer
vision and image processing. People want to capture
their daily lives in visually appealing photographs. The
performance of computer vision systems such as object
detection [1] and segmentation [2], [3] relies heavily on
the quality of input images. Regrettably, the visual quality
of images can be easily degraded due to inadequate
shooting environments like low-light conditions and camera
sensor limitations. Therefore, image enhancement techniques
become more popular, which automatically retouch input
images to improve their visual quality.

Recently, image enhancement studies have primarily
focused on the learning-based approach that involves training
models using pairs of low-quality and high-quality images,
aiming to learn the mapping between them. Especially, with
advances in datasets [4], [5], [6] and deep learning [7], most
state-of-the-art techniques [8], [9], [10], [11], [12], [13],
[14], [15] train deep neural networks to learn a complex
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pixel-wise mapping between low-quality and high-quality
images and yield promising enhancement results. However,
their networks come with substantial computational costs.
Considering that image enhancement algorithms often serve
as a pre-processing step in various computer vision systems,
it is crucial to develop them to be fast and lightweight.

To address this issue, many attempts [16], [17], [18], [19],
[20], [21] have been made to learn a color transformation,
which defines a color mapping between input and output
images, rather than pixel-wise mapping between them.
This approach models a color transformation controlled
by only a few parameters. Then, instead of outputting
enhanced images directly, neural networks predict these
parameters, resulting in a significant improvement in the
computational complexity of learning-based image enhance-
ment algorithms. However, despite the advantages of this
approach, developing an effective color transformationmodel
remains a challenge. For instance, some methods [18],
[19], [20], [21] design a color mapping as a weighted
combination of predefined 3-dimensional lookup tables
(LUTs) [18], which are data structures to describe a
color mapping. Consequently, their networks only need to
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predict a small number of LUT weights, enabling real-time
processing. Nevertheless, these LUT-based methods may
encounter difficulties in accurately emulating complex color
mappings due to the limitations imposed by the less flexible
predefined LUTs.

In this paper, we propose an efficient image enhance-
ment algorithm called the improved representative color
transformation (RCT++), which is an extension of our
previous work [22]. The RCT++ algorithm estimates the
representative features associated with the representative
colors found in the input image, as well as the transformed
colors that indicate the enhanced representative colors in the
output image. Subsequently, it interpolates the output image
from transformed colors based on the similarities between
the representative features and per-pixel features. Compared
to the original RCT [22], our method has three major
improvements: First, we clarify the concept of representative
colors by incorporating the reconstruction loss into the RCT
framework. This encourages the representative features to
correspond to the significant color of the input image. Sec-
ond, we introduce the entropy term to measure the diversity
of representative features. By maximizing this entropy term,
our scheme can estimate more diverse representative features,
which are useful to enhance minority colors in the input
image. Third, we design an efficient enhancement network
that performs the RCT++ algorithm for fast and lightweight
image enhancement. Specifically, we implement RCT++
algorithm based on depth-wise separable convolution [23]
to lighten our network. Experimental results on three
datasets [4], [5], [6] with different characteristics demonstrate
that our RCT++ outperforms existing algorithms in efficient
image enhancement with comparable computational costs
and parameters. The main contributions are summarized as
follows:
• We propose the novel color transform, RCT++, for
image enhancement. The RCT++ improves the original
RCT [22] by incorporating the reconstruction term and
the entropy term.

• We develop an efficient image enhancement network.
Our network contains about 131K parameters and takes
3ms to process an image of 480× 720 resolution.

• RCT++ outperforms state-of-the-art methods in effi-
cient image enhancement on three datasets collected in
different shooting environments.

The rest of this paper is organized as follows. Section II
reviews related works. Section III describes the proposed
algorithm, and Section IV discusses experimental results.
Finally, Section V draw a conclusion.

II. RELATED WORK
Image enhancement is a long-standing problem with wide
applications. Therefore, lots of attempts have been made to
improve the image enhancement performance. In this section,
we briefly review relevant studies on learning-based image
enhancement and efficient image enhancement which are
closely related to our work.

A. LEARNING-BASED IMAGE ENHANCEMENT
Early learning-based image enhancement methods [24],
[25], [26] mainly depend on hand-crafted features, such as
intensity, brightness, and the amount of highlight, or pre-
fixed mappings. Dale et al. [24] introduced visual context
based on scale-invariant feature transform (SIFT) [27].
Wang et al. [25] defined tone and color adjustments given
a set of examples. Hwang et al. [26] searched contextually
similar images from examples and adjusted the input image
via corresponding transformation functions. However, due
to the limited representation of hand-crafted features, it is
difficult for these methods to reliably enhance various input
images.

Deep neural networks allow image enhancement methods
to learn complex mapping between low-quality and high-
quality images. Therefore, over the past decade, many
deep learning-based image enhancement methods [8], [10],
[11], [14], [15], [28], [29], [30], [31] have been proposed.
Yan et al. [8] learned the feature descriptor for each input
image pixel to consider semantic information in retouching.
Lore et al. [10] stacked a sparse denoising autoencoder,
which can learn to adaptively enhance and denoise from
synthetically darkened and noise-added training examples.
However, these methods [8], [10] often fail to exploit
high-level context for image enhancement due to the small
receptive field of their networks.

Chen et al. [28] employed the encoder-decoder struc-
ture [32] for image enhancement, in which the encoder
gradually performs down-sampling to increase the size of
receptive fields, and the decoder restores the original reso-
lution while enhancing images. Yang et al. [11] developed
two encoder-decoder structures for low-light image enhance-
ment. Based on the retinex theory [33], Wang et al. [29]
enhanced an input image by decomposing it into reflectance
and illumination, and then improving the illumination.
Xu et al. [30] proposed the frequency-based decomposition
to enhance low-light images. Kim et al. [31] adopted the
encoder-decoder structure to perform a personalized image
enhancement. Tu et al. [14] proposed a general image
processing network through multi-axis multilayer percep-
tron (MLP). Cai et al. [15] designed a transformer-based
network to leverage the large receptive field of the attention
mechanism [34]. These methods [11], [14], [15], [28], [29],
[30], [31] yields the promising enhanced results. However,
it requires many parameters and computational costs, making
it difficult to apply to various applications.

B. EFFICIENT IMAGE ENHANCEMENT
Efficient image enhancement aims to minimize high com-
putational burdens while maintaining the high visual quality
of output images. There are two streamlines for efficient
image enhancement. The first focuses on efficient color
transformation modeling, defining color mappings between
input and output images rather than pixel-wise mappings
between them. Deng et al. [16] defined the piece-wise
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intensity curve controlled by only a few parameters predicted
by the neural network. And the small size of the output space
reduces the complexity of learning-based image enhancement
algorithms. Similarly, Kim et al. [17] presented the learnable
non-monotonic intensity transformation for both paired and
unpaired image enhancement.

Look-up tables (LUTs) are another popular way to model
color transformation, which are efficient data structures
enabling real-time enhancement [18], [19], [20], [21].
Zeng et al. [18] stored non-linear color transformation in a
3D lattice, which can be loaded through simple indexing and
leveraged by affine transforms. Wang et al. [20] integrated
1D-LUTs and 3D-LUTs, considering image-level and pixel-
wise transforms, respectively. Yang et al. [21] designed an
effective sampling strategy to improve the quality of the
output image Despite their efforts to improve enhancement
quality, they demonstrate limited capability to estimate
highly non-linear retouching mappings due to predefined
transformations on LUTs. In contrast, the proposed method
estimates adaptive representative colors according to the
input image and predicts color transformation for each
representative color.

The second streamline attempts to design a lightweight
architecture. Gharbi et al. [35] used a low-resolution image
to predict bilateral coefficients. It then applied an affine
transform to the original resolution. Ma et al. [36] relieved
the computational burden of cascaded blocks via sharing
weights. In this line, we compose the network using
depth-wise convolution layers resulting in the small-sized
model.

III. PROPOSED ALGORITHM
In this section, we first describe the original RCT
algorithm [22] and highlight its limitations. We then propose
the improved RCT (RCT++) algorithm and develop its
network architecture for efficient image enhancement.
Finally, we present the loss functions used to train our
network.

A. REPRESENTATIVE COLOR TRANSFORM
Given an RGB input image X ∈ Rh×w×3, where h and w
are the height and width of the image, we extract its feature
map Z ∈ Rh×w×c to embed high-level context for image
enhancement:

Z = fθ (X ) (1)

Here, c is the dimension of the feature space, and fθ (·) is an
embedding function parameterized by θ . In practice, fθ (·) is
a deep neural network.

RCT estimates n representative features F ∈ Rn×c

corresponding to representative colors of the input image.
Also, it predicts n transformed colors Ct ∈ Rn×3 that are
enhanced representative colors. These are given by

F = gφ(Z ) (2)

Ct = gψ (Z ) (3)

where gφ(·) and gψ (·) are mapping functions with parameters
φ and ψ , respectively.

Note that the transformed colors only describe the color
mapping for N representative colors. To determine the
enhanced colors for all input colors, we interpolate them
through the scaled-dot product attention mechanism [34].
Specifically, we consider these enhanced colors as the
weighted sum of transformed colors, in which the weights
are proportional to the feature similarities between the input
colors and representative colors. So, the weight matrix
A ∈ Rhw×n between the input features and representative
features is given by

A = softmax
(
ZFT

τ

)
(4)

where τ is the temperature parameter to control the confi-
dence of the resulting distribution, and aij ∈ A represents the
similarity between the ith pixel in the input image feature and
the jth representative feature. Finally, the enhanced image Ŷ
is given by

Ŷ = ACt (5)

Since the RCT is fully described by the representative
features F , transformed colors Ct , and the image feature
map Z , it is crucial to carefully design these components
to achieve successful image enhancement. However, the
original RCT [22] has a drawback as it lacks an explicit
mechanism to guarantee that representative colors become
the actual important colors of the input image. Moreover, the
original RCT does not encourage diversity in representative
features. As a result, it may face challenges when enhancing
some colors appearing rarely in the input image, using a
weighted sum of transformed colors.

B. IMPROVED REPRESENTATIVE COLOR TRANSFORM
To overcome the first limitation, we explicitly define the
representative colors of the input image. We introduce a
function denoted as gω(·) with learnable parameters ω. The
function takes the image feature map Z and estimates n
representative colors Cr ∈ Rn×3:

Cr = gω(Z ) (6)

Subsequently, we restore the input colors by computing the
weighted sum of the representative colors, using the same
weights as in (4). Thus, the reconstructed image X̂ is given by

X̂ = ACr (7)

We train the parameters ω to minimize the reconstructed
error between the input image and the reconstructed image.
Unlike the original RCT, our scheme explicitly learns that the
estimated representative colors serve as actual representatives
of input colors. Consequently, the representative feature
is also guaranteed to be a feature of the representative
color.

Next, we address the second problem of the original RCT
by introducing an entropy term that quantifies the diversity
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FIGURE 1. An overview of the proposed RCT++ process. The blue dotted line, which reconstructs the input image, is only used in the
training.

among representative features. To this end, we compute a
similarity matrix S whose each element sij indicates the
cosine similarity between the ith representative feature fi and
jth representative features fj:

sij =
fifTj
||fi||||fj||

(8)

We set the diagonal elements of the similarity matrix to zero
using a masking operation to constrain the contribution of
self-similarity. Then, we apply a softmax function to the
masked similarity matrix S̃ to obtain the distributionmatrixP,
given by

P = softmax(S̃) (9)

Since each row of the matrix is a probability distribution,
we can define the entropy of each row. Finally, the entropy
term of representative colors is given by the average entropy
of distributions:

entropy = −
1
n

n∑
i=1

n∑
j=1

pij log pij (10)

where log pij indicates the element at the ith row and jth
column of the distribution matrix. Algorithm 1 summarizes
this procedure to obtain the entropy term.

Note that the entropy term is maximized when each repre-
sentative feature is dissimilar to each other. By incorporating
this entropy term into the RCT method, we effectively
promote the diversity of representative features, enabling the
RCT method to handle colors that exist in the input image

Algorithm 1 An Entropy of Representative Features

Input: F ∈ Rc×n

Output: entropy ∈ R
S ← Compute the similarity matrix ; // (8)
S̃ ← Set the diagonal elements of S to 0 ;
P← Compute the distribution matrix ; // (9)
entropy← Compute the entropy term ; // (10)

as a minority. In Section IV, we will provide experimental
results to demonstrate the effectiveness of the entropy term.

C. ENHANCEMENT NETWORK
We develop an enhancement network to implement the
proposed RCT++ method, aiming for efficient image
enhancement. Figure 1 illustrates the overall architecture of
our enhancement network, which comprises four modules: an
encoder, a representative feature module, a transformed color
module, and a representative color module. These modules
correspond to fθ , gφ , gψ , and gω in our RCT++ framework,
respectively. Table 1 summarizes the detailed specification of
each module.

1) ENCODER
The encoder embeds the input image X into the image
feature Z for the RCT++ process. As shown in Figure 2,
the encoder is a residual block [37] with two branches. The
first branch is a single convolution layer with 1 × 1 filters,
employed to transform input pixel colors into feature vectors.
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TABLE 1. Specification for the proposed enhancement network. Each row
describes a stage and an output size.

FIGURE 2. (a) The detailed structure of the encoder module. (b) The
detailed structure of depth-wise separable convolution block.

The second branch, on the other hand, incorporates a 5× 5
convolution, a batch normalization [38], a sigmoid linear unit
(SiLU) activation [39], and a 1× 1 convolution layers. Then,
the encoder produces the image feature Z by merging the
outputs from both branches. Note that the second branch is
essential to improving the RCT++ results. Despite RCT++
being a color transformation model, we have found that
exploiting the local structure of input colors is beneficial. This
facilitates the mapping of the same input colors to different
transformed colors based on the neighboring context. Further
discussions regarding this will be presented in Section IV.

2) REPRESENTATIVE FEATURE MODULE
The representative feature module takes the image fea-
ture map Z and estimates the representative features F .
Specifically, the representative feature module first reduces
the spatial resolution of the feature map to 256 × 256.

This downsampling brings two benefits: It helps decrease
the computational cost, making the RCT++ process more
efficient. Also, it enables the subsequent convolution layers to
have larger receptive fields, which aid in the extraction of the
global context, leading to more effective image enhancement.

Next, the module feeds the resized feature map into
four depth-wise separable convolution (Dwconv) blocks.
As depicted in Figure 2, each Dwconv block is made up
of a depth-wise convolution and a point-wise convolution,
which leads to fewer parameters and operations compared
to standard convolutions. These computational and memory
gains become more significant in the later stages of the
network when the number of feature channels increases.
Subsequently, the module performs a global average pooling.
It then estimates c = 16 dimensional n = 64 representative
features using a multilayer perceptron (MLP) block, which
consists of a linear layer, a layer normalization [40],
a SiLU activation, and another linear layer. Here, we set the
number of neurons of the first and second linear layers to
64 and 1024.

3) TRANSFORMED/REPRESENTATIVE COLOR MODULE
Our design involves the prediction of two color sets: one
for improving the input images and another for restoring
them. To achieve this, we design both the transformed and
representative color modules to have identical architectures.
As specified in Table 1, these architectures are the same
as the representative feature module, except they predict n
colors by adjusting the number of neurons in the second linear
layer of the MLP block. Note that the representative color
module only works during the training phase and thus does
not increase computational or memory load during the testing
phase.

D. LOSS FUNCTION
We train the enhancement network by minimizing the total
loss, which encompasses multiple loss components: a color
loss (Lcol), a reconstruction loss (Lrec), an entropy loss (Lent),
and a grid frequency loss (Lfreq). More precisely, we define
the total loss as

L = Lcol + Lrec + Lent + Lfreq (11)

The individual loss terms are carefully designed to capture
various aspects of ground-truth images. Let us describe each
term subsequently.

1) COLOR LOSS
The color loss is the mean absolute error between the
ground-truth image Y and the predicted image Ŷ

Lcol = ||Y − Ŷ ||1 (12)

The color loss encourages the predicted image to be close
to the ground-truth image in the color space. For this
reason, we employ color loss as the primary loss function in
our work.
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2) RECONSTRUCTION LOSS
The reconstruction loss is the mean absolute error between
the input image X and the reconstructed image X̂

Lrec = ||X − X̂ ||1 (13)

It is worth noting that inaccurate representative colors make
it difficult to correctly rebuild the input image, resulting
in increased reconstruction loss. Hence, the reconstruction
loss enforces that the representative colors become an actual
significant color set of the input image.

3) ENTROPY LOSS
We set the entropy loss to the inverse of the entropy term.

Lent =
1

entropy+ ϵ
(14)

Thus, minimizing entropy loss encourages the scattering of
representative features F , i.e., increases their entropy. Here,
ϵ = 0.00001 for numerical stability.

4) GRID FREQUENCY LOSS
To compute the grid frequency loss, we decompose images
into m non-overlapping grids. Let Yi and Ŷi be the i th grid
of ground-truth and predicted images, respectively. We then
define the grid frequency loss as follows:

Lfreq =

m∑
i=1

||F(Yi)− F(Ŷi)||1 (15)

where F(·) indicates the 2D Fast Fourier Transform (FFT)
function. Likewise, with other losses [14], [41], [42] based on
the frequency domain, our loss enforces that the enhancement
network retains high-frequency details. However, our loss
has an additional advantage in that it can concentrate
on local high-frequency details. We empirically set the
hyperparameter m to 4.

IV. EXPERIMENTS
In this section, we present a comprehensive evaluation of the
proposed method. We compare our method with state-of-the-
art methods on three datasets:MIT-Adobe 5K (Adobe5K) [4],
Low-Light (LoL) [5], and Underwater Image Enhancement
Benchmark (UIEB) [6]. These datasets are collected in a
diverse range of shooting environments, providing a faithful
evaluation of our method. Furthermore, we study the impact
of the proposed components. For quantitative comparison,
we use three performance metrics: peak signal-to-noise
ratio (PSNR), structural similarity index measure (SSIM),
and learned perceptual image patch similarity (LPIPS) [43].
These metrics measure the color, structural, and perceptual
similarity between the enhanced image and the ground-truth
image, respectively. Also, we evaluate the efficiency of our
method compared to existing methods in terms of a number
of parameters and run-time cost.

A. DATASETS
1) MIT-ADOBE 5K
The Adobe5K [4] dataset contains 5,000 image pairs. Each
pair consists of a low-quality image and manually retouched
versions by five experts (A/B/C/D/E). For experiments,
we use the enhanced images improved by expert C as the
ground truth, following the experiment setting of recent
image enhancement methods [18], [19], [21]. We split the
dataset into 4,500 pairs for training and 500 pairs for
validation. As done in [18], we resize each image to have
480 pixels on the short side, whilemaintaining its aspect ratio.

2) LOW LIGHT
The LoL [5] dataset is developed for low-light image
enhancement. This dataset comprises 500 pairs of low-light
and normal-light images, all of which were taken from real-
world scenes. The dataset is divided into 485 pairs for training
and 15 pairs for testing. Compared to the Adobe5K dataset,
the LoL dataset contains a considerable amount of noise
generated during the image capture process. All images in
this dataset have a resolution of 400× 600.

3) UNDERWATER IMAGE ENHANCEMENT BENCHMARK
The UIEB [6] dataset consists of 950 real-world underwater
images, 890 of which have their reference images and the
others do not. Thus, we divide 890 reference pairs into
800 pairs of training and 90 pairs for our experiments
evaluation, following the previous work [22].

B. IMPLEMENTATION DETAILS
For training, we use the AdamWoptimizer [44] with an initial
learning rate of 0.0005 and a weight decay of 0.05. We set the
batch size to 16. The training is done for 600 and 5000 epochs
for experiments on Adobe5k and the other datasets, respec-
tively. We schedule a learning rate via cosine annealing.
For data augmentation, we randomly crop images and then
resize them to 256× 256. Subsequently, we randomly apply
horizontal and vertical flips. All experiments are carried out
on an NVIDIA A6000 GPU.

C. MAIN RESULTS
We compare the proposed RCT++ with recent state-of-
the-art methods. For evaluation, we obtain the results of
existing methods by executing the published codes of these
algorithms. If the code is not available, we use the results
reported in its paper.

1) RESULTS ON MIT-ADOBE 5K
Table 2 compares the proposed RCT++ with recent efficient
image enhancement algorithms on the Adobek5K dataset [4]:
HDRNet [35], 3D-LUT [18], Sep-LUT [19], and AdaInt [21].
In Table 2, our method establishes the best results on all three
metrics with large margins. Compared to AdaInt [21], which
is the LUT-based efficient image enhancement algorithm
giving the second best algorithm in Table 2, our method
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TABLE 2. Quantitative results on the Adobe5K [4] dataset. The best and second results are highlighted in bold and underline.

FIGURE 3. Qualitative comparison with the existing method [21] on the Adobe5K [4] dataset.

provides better scores by 0.11, 0.008, and 0.003 in terms of
PSNR, SSIM, and LPIPS, respectively, despite having the
five times fewer parameters. In addition, our network has a
comparable size to Sep-LUT [19] but demonstrates superior
performance. For a comprehensive evaluation, Figure 3
shows the enhanced images of ours and AdaInt. We see
that AdaInt fails to estimate accurate color mappings for the
three examples due to the limitation of a predefined look-
up table. In contrast, our method is the more flexible color
transformation model, resulting in more similar images to
manually retouched ground-truth images.

2) RESULTS ON LOW LIGHT
We evaluate the performance of our method in extremely
low-light shooting condition. Table 3 lists the quantitative
comparisons with existing methods [12], [13], [48], [49],
[50], [51] on the LoL dataset [5]. Our method achieves the
highest PSNR score, meaning the best color enhancement
results. Despite Zero-DCE [49] and RUAS [50] demon-
strating efficient low-light enhancement networks with the
lowest and second-lowest network parameter consumption,
respectively, they show poor performance. On the other hand,
our method not only utilizes a low number of parameters but
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TABLE 3. Quantitative results on the LoL [5] dataset. The best and second results are highlighted in bold and underline.

FIGURE 4. Qualitative comparison with the existing method [13] on the LOL [5] dataset. +BF denotes the post-processed results through bilateral filtering.

also achieves superior performance across various metrics.
Our method shows relatively lower performance on SSIM
and LPIPS, which are more sensitive to sensor noise
due to low-light shooting condition. This is because, the
RCT++ models a global color transformation, resulting
in less effectiveness in denoising than spatial filtering-
based methods. However, this problem can be mitigated by
using simple denoising techniques as the post-processing.
As shown in Table 3, a simple bilateral filter improves our
method in all of the performancemetrics. Specifically, PSNR,
SSIM, and LPIPS scores increase to 22.47 dB, 0.825, and
0.156, respectively.

Figure 4 qualitatively compares the enhancement results
of our method with KIND++ [13], the second best algorithm

in Table 3. For all input images, KIND++ [13] fails to
faithfully restore the ground-truth images. In contrast, the
proposed RCT++ produces enhanced images with color
tones more similar to ground-truth images. We also see that
our results contain slightly more noise than KIND++. How-
ever, it can be suppressed through simple post-processing
using a bilateral filter.

3) RESULTS ON UNDERWATER IMAGE BENCHMARK
Finally, we assess the enhancement results of the proposed
RCT++ using underwater images to validate its scalability
to various shooting environments. Table 4 summarizes the
quantitative results of RCT++ and those of the existing
algorithms [6], [52], [53], [54] on the UIEB [6] dataset.
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TABLE 4. Quantitative results on the UIEB [6] dataset. The best and second results are highlighted in bold and underline.

FIGURE 5. Qualitative comparison with the existing method [54] on the UIEB [6] dataset.

In Table 4, our method exceeds conventional algorithms
in all of the performance metrics, with significantly fewer
parameters. Figure 5 illustrates the enhanced results on the
UIEB dataset. We see that RCT++ effectively corrects
biased hue caused by underwater shooting environment.
In the first and second rows, in which input images
are predominantly biased toward blue tone, our method
successfully balances the overall hue and restores the original
color of the shark and coral. Also, in the third row, we see that
our method successfully enhances the input image to a color
tone similar to ground-truth.

D. ABLATION STUDY
We perform ablation studies on the Adobe5k [4] dataset to
analyze our design. For all ablation studies, we use the same
experiment settings in Section IV-B.

1) LOSS FUNCTIONS
Table 5 reports the performance of the proposed method
with different combinations of loss terms. The model trained
with only the color loss Lcol yields the worst results.
The grid frequency loss slightly improves the enhancement
results. Especially, it boosts the SSIM score by preserving
high-frequency details. The reconstruction loss encourages
our method to estimate more meaningful representative

TABLE 5. Results on the Adobe5K [4] with different loss functions. The
best results are highlighted in bold.

colors and features, resulting in a more accurate RCT++
process. As a result, the PSNR score, which measures color
restoration performance, has improved significantly. The best
performance is obtained by incorporating all loss terms.
Remarkably, the entropy loss improves the performance of
our method in all metrics by diversifying representative
features.

Figure 6 visualizes the enhanced images and error
maps according to different loss combinations. As shown
in Figure 6b, the output image with only color loss Lcol
exhibits unsatisfactory contrast and saturation. Figure 6c
shows better result by considering the grid frequency
loss Lfreq. It gives enhanced results, especially for local
contrast in hair, shirts, and facial structures. Figure 6d further
enhance the image by using the reconstruction loss Lrec.
However, it slightly distorts the red saturation, resulting in
excessive red tones on the skin. Finally, adding the entropy
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FIGURE 6. Results on the Adobe5K [4] with different loss functions. The error map is located at the bottom left of each image, with
brighter pixels indicating higher errors.

TABLE 6. Results on the Adobe5K [4] with different encoder structures.
The best results are highlighted in bold.

loss Lent, Figure 6e makes the overall color tone more
balanced and gives the best output. From this, we can make
a conclusion that the entropy loss effectively promotes the
diversity of the representative features and leads to more
favorable enhanced outputs.

2) ENCODER DESIGN
Next, we study the effectiveness of the encoder structure.
To this end, we detach the first or second branch from the
encoder module, respectively. In Table 6, the second branch
improves the performance in all three metrics. This means
that considering neighboring pixels helps generate better
image features for the RCT++ process. This is because
it allows the RCT++ to enhance the same input colors
to different transformed colors. It also helps mitigate the
negative effects of noise in the input color. Note that the
improvement is much more significant in SSIM (5.0%)
and LPIPS (10.1%) than in PSNR (1.4%), which are more
sensitive metrics to noise levels. In Table 6, the best result is
obtained when we use the output of both branches.

V. CONCLUSION
We presented a novel algorithm, called the improved
representative color transform (RCT++), for efficient image
enhancement. The algorithm predicts image adaptive rep-
resentative colors and their features, and their transformed
colors. It then interpolates output colors for all pixels based
on the similarities between representative features and image
features. Compared to our conference version paper [22],
this work has distinct improvements in that we clarified the
role of representative colors and diversified the representative
features by introducing the reconstruction and entropy
losses, respectively. Also, we developed a fast and light
enhancement network for efficient processing. We validated
the effectiveness and efficiency of our method through

extensive experiments on three different image enhancement
datasets [4], [5], [6]. Notably, our method outperforms
the existing methods in efficient image enhancement with
comparable memory and computation costs.
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