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ABSTRACT In pedestrian detection, small-scale pedestrians often face challenges such as limited pixel
values and insufficient features, often leading to wrong or missed detection. Therefore, this paper proposed
a multi-scale structure perception and global context-aware method for small-scale pedestrian detection.
Firstly, to address the issue of decreasing features caused by the network deepens, we designed a feature
fusion strategy to overcome the constraints of the feature pyramid hierarchy. This strategy combines
deep and shallow feature maps and leverages the advantages of Transformer to capture long-distance
dependent features, incorporating a global context information module to retain a substantial amount
of small-scale pedestrian features. Secondly, considering the confusion between small-scale pedestrian
features and background information, we employed a combination of self-attention modules and channel
attention modules to jointly model the spatial and channel correlations of feature maps. This utilization
of small-scale pedestrian context and channel information enhances small-scale pedestrian features while
suppressing background information. Finally, to address the issue of gradient explosion during model
training, we introduced a novel weighted loss function named ES-IoU, which significantly improved
the convergence speed. Extensive experimental results on the CityPersons and CrowdHuman datasets
demonstrate that the proposed method achieves a substantial improvement upon state-of-the-art methods.

INDEX TERMS Context information, self-attention, small-scale pedestrian detection, Transformer.

I. INTRODUCTION
Pedestrian detection, as a specialized branch of general
object detection, has been widely studied and applied in both
academia and industry. In recent years, significant progress
has been made in pedestrian detection through the successful
application of deep convolutional neural networks [1], [2],
[3], [4], [5], [6], [7], [8], [9]. But in complex practical scenes,
especially for small-scale pedestrians, these current methods
suffer from wrong or missed detection due to confusing
human-like objects or heavily occlusion.

The associate editor coordinating the review of this manuscript and

approving it for publication was Alessandro Floris .

Anchor-based and anchor-free pedestrian detection are two
major approaches based on convolutional neural networks.
Typical anchor-based methods include Faster R-CNN and its
derivatives [10], [11], [12]. Thesemethods generate candidate
proposals beforehand and then use a classifier to determine
whether each proposal contains a pedestrian. Anchor-based
models are time-consuming, and most candidate proposals
provide limited information. To address these issues, some
researchers have proposed anchor-free detectors that can
directly predict pedestrians from images [13]. In other words,
redundant steps such as defining anchors and extracting
features from candidate regions are skipped, and pedestrians
are predicted directly from the raw images. For example,
ALFNet adopts a progressive localization fitting strategy to
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continuously optimize default anchor boxes [14]. For anchor-
free detectors, CSP can locate pedestrian targets by directly
predicting the center point, width, and height of bounding
boxes [15].
Although the above methods have achieved good results

in pedestrian detection, but they are mainly used for general
pedestrian detection and perform poorly in detecting small-
scale pedestrians. Based on the characteristics of small-scale
pedestrian, some researchers have proposed a series of
detection methods for small-scale pedestrian. Regarding the
detection of small-scale pedestrians, current research mainly
falls into image pyramid methods, feature pyramid methods,
and other methods. Firstly, the most common image pyramid
methods are Gaussian pyramids and Laplacian pyramids.
Secondly, feature pyramid methods utilize feature maps of
different resolutions generated by multi-layer convolutional
layers for detection. Liu et al. [16] proposed the Single
Shot Multibox Detector (SSD), which utilizes shallow
high-resolution feature maps to detect small objects and
deep low-resolution feature maps to detect large objects.
Lin et al. [17] introduced Feature Pyramid Networks (FPN),
which adopt a top-down approach to up-sampling deep
feature maps and fuse them with the next feature map to
ensure that each layer has appropriate resolution and semantic
information. Finally, besides image and feature pyramid
methods, researchers have proposed some novel detection
approaches [18], [19].
Although existing methods can locate pedestrians in given

images, their detection accuracy for small-scale pedestrians is
low and prone to missed detections, which is one of the core
challenges in pedestrian detection.

To address the detection problem of small-scale pedestri-
ans, this paper constructs a detector based on a multi-scale
structure perception and global contextual information. The
method enhances the features of small-scale pedestrians
by focusing on their characteristics in convolutional neural
networks to improve the accuracy of small-scale pedestrian
detection. The main contributions of this paper can be
summarized as follows:

(1) We designed a feature fusion strategy to break through
the constraints of the hierarchical structure of the
feature pyramid, by integrating deep and shallow
feature maps. Additionally, leveraging the advantages
of Transformer to capture long-distance dependent
features, a global contextual information module is
designed to retain a large amount of small-scale
pedestrian features.

(2) We employed a combination of self-attention modules
and channel attention modules to model the spatial and
channel correlations of feature maps. By incorporating
the contextual and channel information of small-scale
pedestrians, this approach enhances their features while
suppressing background information.

(3) We proposed a new weighted loss function, ES-IoU,
which can alleviate the gradient explosion phenomenon

and effectively improve the convergence speed of the
network.

II. RELATED WORKS
A. PEDESTRIAN DETECTION
Currently, computer vision based on deep learning tech-
nology is rapidly expanding, many variants of Faster
R-CNN [10], such as SA-Fast RCNN [20] andMS-CNN [21],
have achieved improved detection performance by directly
solving the problem of target scale. Although two-step
detectors are widely used, they mostly use visual information
only to locate pedestrian objects in images. Cascade R-
CNN [8] is a multi-step detection model.
This method continuously increases the Intersection over

Union (IoU) threshold, enabling the model to better regress
on the generated proposals, ultimately training a high-quality
detector. Wang proposed Repulsion Loss [48] to improve
pedestrian detection accuracy in occluded scene. Repulsion
loss includes three parts: the loss value between the predicted
box and the target ground-truth box; loss value between the
predicted box and adjacent target ground-truth box; loss value
between predicted boxes and adjacent predicted boxes that
are not predicting the same real target. Xie et al. proposed
the MGAN network [22], the network emphasized on visible
pedestrian regions while suppressing the occluded ones by
modulating full body features. Xu et al. [52] designed a joint
prediction scheme, which is executed through an assignment
of bounding boxes and a joint loss to improve the accuracy of
pedestrian detection.

B. SMALL-SCALE PEDESTRIAN DETECTION
In recent years, researchers have devoted significant efforts
to overcoming challenges in small-scale pedestrian detection.
Song et al. [13] proposed a pedestrian detection network
which is based on vertical lines by using the vertical
characteristics of upright pedestrians. This approach does
not need to set additional prior box parameters, but directly
use feature maps for classification prediction and location
regression. Ding et al. [40] proposed a learnable Dynamic
HRNet (DHRNet) to generate different network paths adap-
tive to different scales. Xie and Wang [23] design a feature
enrichment unit to produce more representative features
to improve small-scaled pedestrian detection performance.
GDFL [24] encodes fine-grained attention masks into convo-
lutional feature maps, which enables the model to pay more
attention to small-scale pedestrian information. Li et al. [25]
proposed a novel perceptual generative adversarial network,
which narrows the representation gap between small and
large targets, making the characteristics of small targets closer
to those of large targets, ultimately improving the detection
of small targets. Hu et al. [26] designed attention mechanism
weights to utilize the interrelationship between objects in
images, providing more surrounding information for small
objects to aid in recognition and thus improving detection
accuracy. Tan et al. [27] proposed a Bidirectional Feature
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Enhancement Module, which enhances the semantic infor-
mation of low-level features and enriches the localization
information of high-level features.

C. REGRESSION LOSS FUNCTION BASED ON IOU
The regression loss function based on Intersection over Union
(IoU) is one of the key techniques for evaluating the sim-
ilarity between predicted bounding boxes and ground truth
bounding boxes in object detection tasks. Yu et al. proposed
a method called Unitbox [28]. This method achieved more
effective results by directly using IoU as a regression loss
function for object detection. However, IoU fails to reflect the
distance between bounding boxes when they do not intersect.
Researchers proposed a generalized IoUwith scale invariance
and introduced the maximum enclosing rectangle of two
boxes to improve IoU calculation [29]. However, subsequent
studies revealed slow convergence issues with generalized
IoU. To address this problem, DIoU [30] introduced a
new metric that considers geometric measures such as
overlap area, aspect ratio, and center distance between
boxes, enhancing object detection performance. CIoU [30]
loss further improved upon DIoU by considering additional
geometric factors such as overlap area, aspect ratio, and
center distance, resulting in improved accuracy and stability
of object detection algorithms. However, it is unfair for
CIoU to evaluate predictions of pedestrians at all scales
using the same loss, as pedestrians of different scales occupy
different proportions of pixels during training. To address this
issue, we propose a loss function, ES-IoU, more suitable for
small-scale pedestrian detection. The improved loss function
not only enhances model accuracy in small-scale pedestrian
detection but also resolves gradient explosion issues caused
by excessively small targets.

III. METHODOLOGY
To enable the network to integrate features of different
scales while maintaining focus on the target itself, this paper
proposed a method based on multi-scale structural perception
for small-scale pedestrian detection. Additionally, to better
utilize global information, a global contextual information
module is designed. Considering the problem of small-scale
pedestrian features being easily confused with background
information, a feature enhancement module is constructed by
combining self-attentionmodules and channel attentionmod-
ules to model feature map spatial and channel correlations.
Thismodule utilizes both the context information and channel
information of small-scale pedestrians to enhance their
features while suppressing background information. Finally,
a loss function more suitable for small-scale pedestrian
detection, ES-IoU, is proposed, which can improve both the
convergence speed of model training and detection accuracy.

A. NETWORK ARCHITECTURE
As shown in Figure 1, the model consists of three key
components. For input images, YOLOv5 is chosen as the
baseline network to extract pedestrian features, obtaining

multi-layer feature maps with varying resolutions from
shallow to deep layers. YOLOv5 balances detection accuracy
and real-time performance, not only meeting the needs
of real-time image object detection but also having a
smaller structure. YOLOv5 is relatively mature in pedestrian
detection. Hence, we used YOLOv5 as the basic pedestrian
detection model. Subsequently, a feature pyramid module is
employed to fuse shallow and deep feature maps, facilitating
the flow of information between high-level and low-level
features. To obtain more comprehensive structural feature
information, particularly for small-scale objects with fewer
pixel points, this paper designs a Transformer-based Global
Context Information Module (TGCM) to further enrich the
semantic information in the deeper layers, compensating for
the loss of details in small targets in deep layers. Then,
a feature enhancement module is utilized to enhance the
features of small-scale pedestrians, guiding the network
to focus on small-scale pedestrians. Finally, the detection
module completes the prediction of classification, regression,
and position information for feature points, thereby obtaining
the predicted bounding boxes.

B. FEATURE PYRAMID MODULE
This paper utilized a bidirectional feature pyramid to facilitate
the information flow of {F2, F3, F4, F5} feature maps. Among
them, the shallow feature map {F2} with high resolution can
provide more accurate position information and edge shapes,
while the deep feature map {F5} with lower resolution
possesses stronger semantic information. The bidirectional
feature pyramid up-samples the deep features to increase
resolution and integrates them with shallow feature maps,
and then down-samples the shallow feature maps to decrease
resolution and integrates them with deep feature maps. This
feature pyramid effectively retains pedestrian information
from shallow feature maps and compensates for the one-way
information flow during the top-down feature fusion process,
laying a solid foundation for the enhancement of small-scale
pedestrian features in the next step.

C. GLOBAL CONTEXT INFORMATION MODULE
As is well known, the comprehensive perspective of an
image holds significant contextual cues, suggesting that
surrounding objects near a small target can enhance detection
outcomes. Moreover, given that convolution operates locally,
constrained by the convolutional kernel’s size, it primarily
computes correlations among neighboring pixels, thus lim-
iting the utilization of global contextual cues. To address this
limitation and capture inter-pixel relationships across various
regions, this study introduces a Transformer-based Global
Context InformationModule (TGCM), illustrated in Figure 2,
built upon the Transformer architecture [31], [32]. Given
the Transformer’s ability to capture extensive dependencies
within image features, TGCM acts as a global mechanism,
connecting the current region to others. Through learning
interactions among pixels in disparate regions, TGCM
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FIGURE 1. Network architecture diagram. The model consists of three modules: the Feature Pyramid Module, the Feature Enhancement Module, and
the Detection Module. The Feature Pyramid Module is primarily used to merge shallow and deep feature maps, enabling the flow of high-level and
low-level feature information; the Feature Enhancement Module is mainly used to enhance the features of small-scale pedestrians, guiding the
network to focus on small-scale pedestrians; the Detection Module is primarily used to perform classification, regression, and prediction of positional
information for feature points, resulting in predicted bounding boxes.

effectively harnesses global information, mitigating the
challenge of inadequate feature representation associated
with small targets and enhancing the model’s detection
performance in such scenarios. Notably, the ConvBN-
SiLu in Figure 2 represents convolution (Conv), batch
normalization (BN), and activation function (SiLu). The
original Transformer incorporates LayerNorm normalization,
primarily tailored for variable-length text sequences, whereas
image dimensions typically remain uniform. Therefore, the
LayerNorm of the original design model, represented as
Transformer-Encoder in the figure, is omitted.

FIGURE 2. Transformer-based Global Context Information Module
(TGCM).

D. FEATURE ENHANCEMENT MODULE
Based on Convolutional Neural Networks, small-scale pedes-
trian features exhibit two characteristics. First, they are scarce

and mostly concentrated in shallow feature maps. Among
the {C2, C3, C4, C5} feature maps obtained through the
feature extraction network, only {C2, C3} contain some
small-scale pedestrian features. Although the bidirectional
feature pyramid promotes information flow between deep
and shallow feature maps through top-down and bottom-up
approaches, the hierarchical structure of the pyramid still
greatly suppresses small-scale pedestrian features. Second,
the features are not prominent and are easily submerged
in background noise. Although {C2, C3} feature maps
contain small-scale pedestrian information, inevitably, a lot
of background environmental information is also included.
To enhance the detection network’s focus on small-scale
pedestrian information and reduce background noise, thereby
enhancing the detector’s capability to detect small-scale
pedestrians, this paper designs a Feature Enhancement
Module embedded between the feature pyramid module and
the prediction network, whose module structure is shown
in Figure 1. First, for the {P2, P3, P4, P5} feature maps
outputted by the feature pyramid module, the feature fusion
strategy breaks through the hierarchical structure of the
feature pyramid, merging shallow and deep feature maps
of different resolutions with equal importance, retaining a
large amount of small-scale pedestrian features in shallow
feature maps. Secondly, the self-attention module explores
the correlation between individual feature points in the fused
feature map {Pm} and other feature points, enhancing the
contextual information of target features and suppressing
noisy features at the level of individual pixels. Then, after
restoring the feature map {Pa} to the original size of {P2,
P3, P4}, the {P2’, P3’, P4’} feature maps respectively utilize
the channel attention module to further model the correlation
between feature map channels, guiding the network to focus
on small-scale pedestrians based on the response of feature
map channel importance. Finally, the three feature maps
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{P2’’, P3’’, P4’’} outputted by the Feature EnhancementMod-
ule enter three detection modules with identical structures,
predicting target category, regression, position, and other
information in the three feature maps respectively.

The following, we will provide a detailed introduction
about feature fusion strategy, self-attention module and
channel attention module.

1) FEATURE FUSION STRATEGY
The feature fusion strategy scales and integrates shallow to
deep feature maps, ensuring each resolution feature map
receives the same information from other resolution feature
maps. As depicted in Figure 1, the feature maps {P2, P3,
P4, P5} outputted from the bidirectional feature pyramid
are scaled to the size of {P3} feature map through max-
pooling, upsampling, and convolution operations applied to
{P2, P4, P5} feature maps, respectively. Subsequently, the
three feature maps of identical size are added together and
averaged to obtain the mixed information in the {Pm} feature
map. Equation (1) represents the calculation formula for the
{Pm} feature map.

Pm
= (Fm(Conv (P2)+P3+Fu(Conv (P4))+Fu(Fu(Conv (P5))))

(1)

where, Fm(·) represents the max-pooling operation, and
Fu(·) is the up-sampling operation utilized to adjust the
resolution of feature maps {P2, P4, P5}. Conv (·) represents
the convolution operation, employed to adjust the channel
count of feature maps {P2, P4, P5}.

2) SELF-ATTENTION MODULE
Convolutional Neural Networks use convolution operations
to extract and integrate features, which are locally connected,
thus overlooking the dependency of pedestrian detection on
global information. Particularly for small-scale pedestrians,
their weak representation in feature maps necessitates con-
textual information to help the network focus on small-scale
pedestrian features and suppress background noise. The
self-attention module establishes the similarity between each
feature point in the {Pm} featuremap and other feature points,
obtaining descriptors representing the spatial correlation of
the feature map, as illustrated in Figure 3.

FIGURE 3. Self-attention module.

To establish the spatial correlation model of the {Pm}
feature map, the self-attention module first reshapes the size

of the {Pm} feature map to C × HW, representing C × HW
individual feature points within {Pm} feature map. Secondly,
a 1 × 1 convolution linearly maps the {Pm} feature map,
yielding three separate mappings: g(Pm), θ (Pm), and ∂(Pm);
Next, the transpose of θ (Pm), denoted as θ(Pm)

T
∈ RHW×C/2,

is multiplied by g(Pm) ∈RC/2×HW, resulting in the feature
map spatial correlation matrix Vs ∈ RHW×HW, where each
value in this matrix signifies the similarity between every
pair of pixels. Finally, the normalized feature map spatial
correlation matrix Vs is multiplied by the original feature
mapping matrix ∂(Pm), yielding the self-attention response
zs for the {Pm} feature map. Equation (2) presents the
calculation formula for the self-attention response zs.

zs = softmax(Vs) · ∂(Pm) (2)

g(Pm) = Wg1(Wg2(Pm)) (3)

θ(Pm) = Wθ1(W θ2(Pm)) (4)

∂(Pm) = W∂1(W ∂2(Pm)) (5)

where Wg1, Wg2, Wθ1, Wθ2, W∂1, and W∂2 represent the
learnable parameters in the 1 × 1 convolutional kernel
respectively.

The self-attention response zs is manifested in the form of a
residual block, with Equation (6) representing the final output
calculation formula of the self-attention module.

Pa = Wzzs + Pm (6)

where, Wz represents the learnable parameters in the
1 × 1 convolutional kernel.

3) CHANNEL ATTENTION MODULE
The self-attention module endows feature maps with global
information in the form of attention, enabling small-scale
pedestrian areas to leverage contextual information and
attract the network’s attention. To further enhance the
features of small-scale pedestrians, inspired by the referenced
paper [33], this article introduces a channel attention mech-
anism. the channel attention module models the correlation
between feature channels to obtain descriptors that express
the importance of each channel. It adaptively corrects the
channel features, as illustrated in Figure 4.

FIGURE 4. Channel attention module.

To establish the channel correlation model of the feature
map, the channel attentionmodule first compresses the global
spatial information of each channel of the input feature map
through average pooling, forming a feature map channel
information statistical description vector zch ∈ RC×1×1. Next,
zch serves as the input to two consecutive fully connected
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layers to predict the importance of each channel; the fully
connected layer is structured with adjacent layers of neurons
fully interconnected. Its function is to globally analyze
zch and nonlinearly combine its channel features. In the
channel attention model, the fully connected layers capture
the nonlinear relationships between each channel of zch,
enabling zch to adaptively adjust the description of channel
importance. Finally, the sigmoid activation function outputs
the importance of different channels, forming the feature
channel attention vector Vch ∈ RC×1×1, where the value of
each element in this vector reflects the importance of the
corresponding feature channel. Equation (7) represents the
calculation formula for the channel attention vector Vch.

Vch = σ (W2(δ (W1 · zch))) (7)

σ (x) =
1

1 + e−x
zch (8)

δ (x) = max(0, x) (9)

where W1 and W2 are the parameters of the two fully
connected layers.

The feature channel attention vector Vch weights the input
features channel-wise, with Equation (10) representing the
final output calculation formula of the channel attention
module.

Fchn = Vch ⊗ F (10)

where, ⊗ denotes element-wise multiplication.

E. DETECTION MODULE
After the feature enhancement module, the model inputs
three different resolution feature maps {P2’’, P3’’, P4’’, P5’’}
into the detection module to obtain detection results. The
prediction network consists of three components: category,
regression, and position. Position and category predictions
are simplified into a binary classification problem, using
cross-entropy loss as the loss function. Equations (11)
and (12) represent the calculation formulas for the loss func-
tions of the category and position components, respectively.

Lcls

=
1
N

∑
i
Li =

1
N

∑
i
−[gt i · lg (pi) +(1 − gt i) lg

(
1 − pi

)
]

(11)

where, pi represents the predicted category result for the
feature point, gt i denotes the class of the true box, and N is
the total number of samples.

Lobj

=
1
M

∑
j
Lj =

1
N

∑
j
−[gt j · lg

(
pj

)
+(1 − gt j) lg

(
1 − pj

)
]

(12)

where, pj represents the predicted result of whether the
feature point contains an object, gt j denotes the class of the
true box, and M is the total number of samples.

After obtaining the predicted bounding boxes for the
feature points in the regression component, ES-IoU loss
is used as the loss function. Section F provides a detailed
explanation of the loss function calculation formula for the
regression component.

Lreg =
1
Z

∑
k
Lk =

1
Z

∑
k
1 − ESIoU2 (13)

The loss function of this paper is composed of these
three parts combined into a multi-task loss function for
joint optimization of training the network. Equation (14)
represents the formula of the loss function in this paper.

L(γ ) = λLreg + Lobj + Lcls (14)

where, γ is the learning parameter of the network, and λ is the
weight factor which is set to 5 according to reference [60].

F. ES-IOU LOSS FUNCTION
Some existing methods commonly utilize the CIoU loss
function [30], defined as shown in Equations (15), (16),
and (17).

CIoU = 1 − IoU +
ρ2

(
b, bgt

)
C2 + av (15)

v =
4
π2

(
arctan

wgt
hgt

− arctan
w
h

)2

(16)

a =
v

(1 − IoU) + v
(17)

where, IoU represents the intersection over union, b and
bgt respectively denote the centers of the predicted box and
the ground truth box, ρ represents the Euclidean distance
between these center points, C represents the diagonal length
of the minimum rectangle that covers the predicted box and
the ground truth box,w andwgt respectively denote thewidths
of the predicted box and the ground truth box, h and hgt
respectively denote the heights of the predicted box and the
ground truth box. Considering the gradient of penalty term v
with respect to w and h, as shown in Equations (18) and (19).

∂v
∂w

= −
8
π2

(
arctan

wgt
hgt

− arctan
w
h

)
×

h
h2 + w2 (18)

∂v
∂w

=
8
π2

(
arctan

wgt
hgt

− arctan
w
h

)
×

w
h2 + w2 (19)

We can observe that:
In equation (16), v only reflects the difference in aspect

ratio, rather than the actual relationship between w and
wgt or h and hgt . That is, all instances with the property{(
w = kwgt ,h = khgt

)
k ∈ R+

}
have v = 0, which is

inconsistent with reality;
In equation (18) and (19), we have ∂v

∂w = −
h
w

∂v
∂h , where

∂v
∂w and ∂v

∂h have opposite signs. Therefore, at any given time,
if one of these variables (w or h) increases, the other will
decrease. This is unreasonable, especially when
w < wgt and h < hgt or w > wgt and h > hgt ;
Since v only reflects the difference in aspect ratio, the

CIoU loss may optimize similarity in an unreasonable way,
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hindering the effective reduction of the true differences
between w, h, wgt , and hgt .
Addressing these two limitations, we propose a more

efficient loss function called ES-IoU, defined as shown in
Equations (20) and (21).

ESIoU = 1 − IoU +
ρ2

(
b, bgt

)
C2 +

ρ2
(
w,wgt

)
C2
w

+
ρ2

(
h, hgt

)
C2
h

+ γ 2 (20)

γ =
(e−wgt − e−w)2 + (e−hgt − e−h)

2

2
+ ε (21)

where, Cw and Ch are the widths and heights of the
minimum enclosing rectangle of the predicted and ground
truth bounding boxes, ρ is the Euclidean distance between
two points, ε is an offset added to prevent the situation where
γ = 0, and the meanings of the other parameters remain
consistent with CIoU. Additionally, each term is squared
to accelerate the convergence speed of the loss function.
Similarly, considering the gradient of γ with respect to w and
h, as shown in Equations (22) and (23).

∂γ

∂w
= (e−wgt − e−w) × e−w (22)

∂γ

∂h
= (e−hgt − e−h) × e−h (23)

It can be observed that, in this case, the gradient function
will not cause the problem of gradient explosion due to
excessively small targets.

IV. EXPERIMENTS
A. DATASETS
This section conducted experiments on two widely used
public datasets, CityPersons [12], CrowdHuman [34]. The
results include ablation studies and performance comparisons
with related methods.

1) CITYPERSONS
CityPersons [12] is a diversified pedestrian detection dataset
evolved from the Cityscapes dataset. It contains a total of
5000 images with a size of 2048 × 1024 pixels, including
2975 images in the training set, 500 images in the validation
set and 1525 images in the test set. In this paper, only
the data from the ‘‘pedestrian’’ category, which represents
walking, running, or standing human targets, is used for
model training and testing. Additionally, as illustrated in
Figure 6, the dataset is further divided based on different
levels of occlusion: ‘‘Reasonable’’, ‘‘Bare’’, ‘‘Partial’’ and
‘‘Heavy’’.

2) CROWDHUMAN
The CrowdHuman [34], which is developed by MEGVII
Technology, is specifically tailored for pedestrian detection.
Most of the image data is obtained from Google searches.
This extensive dataset includes 15,000 images in the training

FIGURE 5. The loss curve during training on the CityPersons dataset.

FIGURE 6. Samples for four occlusion levels.

set, 5,000 images in the test set, and 4,370 images in
the validation set. In total, the training and validation sets
comprise 470,000 instances, with an average of around
23 people per image. Diverse occlusion scenarios are cap-
tured simultaneously. Each human instance is meticulously
annotated with bounding boxes for the head, visible area, and
the entire body.

B. EXPERIMENTAL ENVIRONMENT AND
IMPLEMENTATION DETAILS
The experiment was conducted using a Parsai server with
Ubuntu 20.04 operating system, Intel Core Xeon Platinum
8373 processor (36 cores, 2.6 GHz), 64GB RAM, and
NVIDIA GeForce RTX 4090 GPU (24GB VRAM). The
training process was implemented using open-source Python
language and Pytorch.

During the training phase, images from the CrowdHuman
datasets [34] were resized to 640 × 640 pixels, with each
training batch containing 8 images. The training iterations
were set to 150. Input images were randomly preprocessed
using operations such as color distortion, image flipping,
and image scaling. The Adam optimizer [35] was used
with an initial learning rate of 0.01, which was adjusted to
0.0001 from the 30th epoch onwards.

During the testing phase, images from the CrowdHu-
man [35] and CityPersons [12] datasets were resized to
1280 × 1280 and 2048 × 1024 pixels, respectively, without
any additional preprocessing operations.
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C. EVALUATION METRICS
MR (Miss Rate) is an evaluation metric used to describe
the results of human body detection, where lower values
indicate better performance. The accuracy of human body
detection is primarily reflected in two aspects: detecting
as many human targets as possible while minimizing false
positives. Therefore, in the evaluation of pedestrian detection
performance, MR and FPPI (False Positives per Image)
are usually considered together, and it is often necessary
to adjust the decision threshold (or confidence score) in
the detection algorithm to achieve a balance between the
two. If a lower decision threshold is set, MR decreases and
FPPI increases; conversely, if a higher decision threshold
is set, MR increases and FPPI decreases. Hence, to better
represent the performance of human body detection under
different decision threshold conditions, Dollar [45] proposed
calculating the logarithmic average of theMRwithin a certain
range of FPPI as a quantitative metric, referred to as the
log-average miss rate (LAMR). The calculation formula is
as follows:

LAMR = exp(

∑N
i=1(MR(FPPI i)

N
) (24)

where FPPIi represents the FPPI value corresponding to
the selected sampling point i, and N denotes the number
of sampling points. To better reflect the miss rate of the
detector under low false positive conditions and to facilitate
fair comparisons with existing methods, FPPI is sampled at
intervals of 100.25 in the range of [10−2, 100]. The logarithmic
average miss rate (LAMR) in this state is referred to as the
miss rate and denoted as MR−2 in this paper.
AP (average precision) represents the average accuracy

of all image detections belonging to a certain class. The
calculation formula is as follows:

AP =

∑
n Precision

n
(25)

Precision =
TP

TP+ FP
(26)

where n represents the total number of images belonging to a
certain class. A higher AP value indicates better performance
of the detection model.

This paper follows the division criteria for objects of
different scales based on the COCO dataset [44], as shown
in Table 1. Pedestrians with an area less than or equal to
32×32 pixels are categorized as small scale; pedestrians with
an area greater than 32×32 pixels and less than 96×96 pixels
are categorized as middle scale and pedestrians with an area
greater than or equal to 96×96 pixels are categorized as large
scale. For the CityPersons dataset, the official evaluation
standard ofMiss Rate (MR−2) is used for assessment, where a
lower value indicates better detection performance. Similarly,
to illustrate the detection performance of the proposed model,
this article discusses MR values for five different scenarios
on CrowdHuman, with criteria primarily based on varying
degrees of occlusion and scale. The division criteria for

TABLE 1. The scaling criteria for objects in the COCO dataset.

TABLE 2. The division criteria for certain subsets within the CityPersons
dataset.

TABLE 3. Module validation ablation experiment results on module
validation (MR−2%).

different degrees of occlusion based on the CityPersons
dataset are shown in Table 2.

D. ABLATION EXPERIMENTS
To verify the effectiveness of the feature enhancement
module, experiments were conducted by comparing detectors
that exclude the feature enhancement module and global
contextual information as the baseline. These experiments
were carried out on the CityPersons dataset, and the
evaluation metrics used were MR−2 values under three
scenarios: Reasonable, Heavy, and Small. The experimental
results are shown in Table 3. From the module verification
experiment results in Table 3, the following observations
can be made: Firstly, the feature fusion strategy retains
most of the features of medium and small-scale pedestrians,
but the introduction of a lot of background noise at the
same time prevents the overall detection performance from
being optimized. Secondly, the self-attention module, built
upon the feature fusion strategy, enhances the features of
small-scale pedestrians by utilizing contextual information
of the features while suppressing background information.
Thirdly, the channel attention module, due to insufficient
feature information, does not yield ideal overall detection
performance but significantly improves the detection per-
formance of small-scale pedestrians. This demonstrates the
effectiveness of the channel attention module in enhancing
the features of small-scale pedestrians through nonlinear
modeling of channel correlations. Finally, with all three
sub-modules working together, the proposed model not only
improves the overall detection accuracy but also optimizes the
detection of medium and small-scale pedestrians.

In summary, compared to the baseline, the proposed
model achieved a 2.8% improvement on Reasonable,
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TABLE 4. Comparison experiments between different channel attentions
and self-attentions(MR−2%).

demonstrating the enhancement effect of the proposed
modules on pedestrian detection. Meanwhile, the detection
accuracy for small-scale pedestrians improved by 5.2%,
validating the effectiveness of the designed modules for
small-scale pedestrian detection.

To validate the impact of different types of channel
attention and the order of channel attention and self-attention
on model detection accuracy, we conducted comparative
experiments, the results are shown in Table 4, where CA
stands for channel attention and SA stands for self-attention.
The experimental results indicate that employing TGCM
and then self-attention followed by the channel attention
proposed in SENet yields the best results. Although in the
CBAM [36] paper, the channel attention proposed in CBAM
(which includes MaxPool and AvgPool) performs better
than the channel attention proposed in the SENet (Squeeze-
and-Excitation) method, however, CBAM only conducted
classification experiments on ImageNet-1K dataset and did
not verify its effectiveness in pedestrian detection. For
pedestrian detection tasks, our proposed approach of using
TGCM and self-attention followed by the channel attention
from SENet achieves the best results. The main reason may
be that the channel attention proposed in CBAM includes
an additional MaxPool operation compared to the channel
attention proposed in SENet [33]. Max Pooling can lead
to inconsistent detection performance for pedestrians of
different scales, especially for smaller pedestrians, which
may decrease detection accuracy due to scale variations.
Similarly, in the small-scale pedestrian detection task of
this paper, using the channel attention proposed in SENet
yields better results than the channel attention proposed in
ECA-Net [37].

To verify the proposed ES-IoU loss function, the perfor-
mance of several mainstream loss functions in small object
detection was compared. The experimental results are shown
in Table 5. From the table, it can be observed that the ES-IoU
proposed in this paper performs well in most metrics. It only
slightly lags behind EIoU in the Reasonable metric, mainly
because EIoU minimizes the differences in width and height
between predicted and ground truth boxes. In contrast, the
designed loss function ES-IoU considers the characteristics
of small-scale pedestrians comprehensively and plays a role
in accelerating convergence by alleviating gradient explosion.
This is evident in the excellent performance on the Heavy
and Small metrics, indicating that ES-IoU focuses more

TABLE 5. Loss function comparison experiment results (MR−2%).

TABLE 6. Transformer global context ablation experiments.

on high-quality predicted boxes. Overall, considering all
metrics, ES-IoU is more suitable for small object detection.

To further validate the impact of the Top-Down Global
Context Module (TGCM) on small object detection, we con-
ducted comparative experiments by adding this module at
different positions in the backbone network. The experimen-
tal results are shown in Table 6.

From the experimental results, it can be observed that
the Transformer-based Global Context Information Module
(TGCM) exhibits significant improvements when applied in
deeper layers, while its performance in shallower layers is
not particularly ideal. Interestingly, as the network depth
increases, the performance of the network tends to degrade.
As shown in the table, when TGCM is added only on
a single layer, the best results for Reasonable and Small
metrics are achieved when added at the F5 layer. The inferior
performance of the F6 layer compared to the F5 layer is
mainly due to that as the feature pyramid goes higher, i.e.,
deeper layers, the scale of the feature maps becomes smaller,
resulting in fewer features containing small object regions
and thus deteriorating small object detection performance.

Furthermore, combining experiments and analysis,
we attribute the inferior performance of this module in F2, F3,
and F4 compared to F5 to the following reasons. Firstly, the
quality of features learned in shallower layers is not high. The
features learned in shallower layers mostly consist of easily
learned low-level features such as texture and appearance of
the target, and some channel branches even learn features
like background noise. In contrast, deeper layer features
tend to focus more on human body targets. This module
enables the interaction of feature information learned by
each channel with the global context to make better use of
global contextual information. Secondly, there are not enough
channels in shallower layers. The shallow layers have too few
feature channels, resulting in insufficient feature information
for interaction. Even if some feature information about small
objects is learned in shallow layers, the TGCM module finds
it challenging to interact with the global context and learn
more discriminative features.
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FIGURE 7. Illustration of the results for different methods.

Additionally, it is observed that adding TGCM to both
F4 and F5 layers simultaneously and fusing information
leads to better experimental results. This is because it
effectively integrates human body target features. Therefore,
this paper chooses to add TGCM to both F4 and F5 layers
simultaneously.

E. COMPARISON WITH STATE-OF-THE-ART METHODS
To assess the performance of the algorithm proposed in this
paper, we conducted comparative experiments on different
subsets of the CityPersons dataset, utilizing MR−2 as
the evaluation metric. Thirteen typical methods from the
CityPersons dataset were chosen for comparison, and the
results of these experiments are presented in Table 7.
From Table 7, we can conclude that the model proposed in

this paper demonstrates optimal performance on small-scale
pedestrians. Compared to the currently leading algorithm,
it shows an improvement of 1.7%. Moreover, our proposed
model also outperforms others on the Heavy dataset and
demonstrates commendable performance across subsets such
as Bare, Reasonable, and Partial. These experimental results
strongly support the effectiveness of the model introduced in
this study.

F. GENERALIZATION EXPERIMENT
To assess the generalization capabilities of our proposed
model, we conducted experiments on the CrowdHuman
dataset. Evaluation metrics such as Average Precision (AP),
Recall, Miss Rate (MR−2), and Small AP values were
employed.

TABLE 7. Comparison of miss rate with existing methods on CityPersons
(MR−2%).

The results are summarized in Table 8. Notably, our
model achieved a detection accuracy of 22.3% for small-scale
pedestrians on CrowdHuman dataset, showcasing a notable
improvement of 5.8% over baseline algorithms. Furthermore,
the model exhibited optimal performance in terms of MR−2

and AP. These experimental results confirm the robust
generalization performance of our proposed model.

G. VISUALIZATION
We compared the visual results of our improved model with
the baseline network, as shown in Figure 7, it is evident
that the improved model exhibits significant improvements
in detecting small-scale pedestrians compared to the original
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TABLE 8. Comparison of miss rate with existing methods on
CrowdHuman.

model, with noticeable reductions in missed detections and
false alarms, demonstrating superior performance.

V. CONCLUSION
In this work, we propose a small-scale pedestrian detection
algorithm based on multi-scale structural perception and
global contextual information. Firstly, to integrate feature
information of small objects at different scales and quickly
locate pedestrians, a multi-scale structural perception module
is proposed. The feasibility of this module is validated
through experimental results and visual analysis, showing
that it enhances the network’s focus on small-scale pedestrian
features. Secondly, to better utilize contextual information,
the paper leverages the advantages of capturing long-distance
dependencies using Transformer structures and proposes a
global contextual information module. This module enables
interaction and learning among different channels, con-
sidering that small-scale pedestrian features are prone to
confusion with background information. Through the joint
modeling of spatial and channel correlations of feature
maps using self-attention and channel attention modules,
it enhances small-scale pedestrian features while suppressing
background information. Lastly, a loss function more suitable
for small-scale pedestrian detection, namely ES-IoU loss
function, is proposed, which effectively accelerates the
convergence speed of the model. Extensive experimental
results demonstrate significant improvements in metrics such
as recall and average precision, validating that the proposed
method is more suitable for small-scale pedestrian detection
in complex scenarios.
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