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ABSTRACT Wireless Sensor Networks (WSN) are adopting low-power wide area networks (LPWAN),
such as long-range (LoRa) wide area networks, to increase communication standards. LoRa has been used
to gather sensor data for many applications, such as environmental monitoring. The existing LoRa system
faces degradation in network performance because of interference and congestion with the development
of Internet-of-Things (IoT) devices. More than the device parameters and algorithms must be improved
in large IoT applications. In massive LoRa systems, resource allocation is effectively performed using
new reinforcement learning and machine learning approaches. These approaches have proven to be quite
effective. Hence, this work implements an efficient optimal resource allocation scheme for effective data
transmission over the LoRa with the minor power requirement with the aid of Deep Adaptive Reinforcement
Learning (DARL). The parameters required to minimize the power requirement while transmitting the data
are estimated with the help of this DARL model. The variables in the DARL are optimally selected by
using a new optimization algorithm named Integrated Remora with Lotus Effect Optimization Algorithm
(IR-LEOA) that is executed by combining Remora Optimization Algorithm (ROA) with the Lotus Effect
Optimization Algorithm (LEA). The network parameters, such as the transmission power, channel, and
spreading factor, are tuned using the same IR-LEOA. The server in the LoRa is matched by the agents
generated by the DARL model. Then, the transmission parameters are given to the network’s terminal hub
after the agents in the DARL are generated. Throughput, energy efficiency, latency, and transmission rate are
analyzed using this optimization strategy. The effectiveness of the model is proved by conducting extensive
experimentation.

INDEX TERMS Optimal resource allocation, data transmission, low power wide area network, integrated
remora with lotus effect optimization algorithm, deep adaptive reinforcement learning, latency, transmission
rate.
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I. INTRODUCTION
The development of the Internet of Things (IoT) promises
to connect 22 billion devices, and long-range (LoRa) will
effectively manage it in 2025 [1] LoRa is effectively used in
cellular networks and domains like industry and academia to
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provide better communication [2]. LoRamechanism provides
low deployment costs and low power consumption. The chirp
spread spectrum strategy uses different spreading factors
(SF) in LoRa with low energy consumption [3]. It is used
to increase the network efficiency. In LoRa technology,
the LoRa network devices use physical layer operations
to improve the network performance and battery life [4].
Customization and resource allocation are the critical part
of IoT. Some vital issues, such as limited shared resources,
inaccurate radio connections, and limited intrinsic networks,
affect resource allocation [5]. It increases the heterogeneity
and quality of service (QoS) regarding hardware diversity.
Coexistence issues have increased in the development of
LoRa [6]. The server increases the communication power
and modifies the SF by considering the signal-to-noise
ratio (SNR) to enhance the energy efficiency, airtime, and
data [7] transmission speed. The transmit power is changed at
each stage using a centralized approach, increasing resource
efficiency [8]. A wide range of IoT technology requires
a lot of linked devices for resource allocation-based data
transmission. A compelling resource allocation mechanism
is needed to increase resource efficiency and avoid channel
conflicts [9], and an intelligent resource allocation system is
necessary [10].
In traditional systems, the resource allocation in LoRa

suffers from high computational cost and channel utilization.
The network capacity is decreased while allocating the
resources to large networks [11]. The existing resource allo-
cation strategies provide low quality of service. It degrades
the robustness of the network. Several lightweight strategies
for allocating SFs in dense LoRa networks are used in
the literature [12]. But, it gives inaccurate reliability. The
conventional system’s goal is to statistically minimize the
probabilities of two or more communications overlapping in
frequency and time [13]. Traditional LoRa networks must
improve reliability and control overhead because they are still
adopted based on network size.

On the other hand, the scheduling strategy’s primary goal
is to improve reliability by allocating transmission slots with
minimal cost [14]. However, the existing network increases
the overhead and computational cost issues. Recently,
other reinforcement learning and deep reinforcement learn-
ing methods have been used for resource allocation in
wireless LoRa networks. The deep adaptive learning and
reinforcement learning algorithms are combined to form a
deep adaptive reinforcement learning (DARL) strategy. This
strategy solves the high-dimensional space and selection
problem [15]. The deep adaptive learning approach primarily
uses artificial neural networks to solve high-dimension
problems during the decision-making process [16]. Using
an agent aware of the decision-making procedure to interact
with its surroundings and obtain the best reward is the
primary goal of the reinforcement learning algorithm. The
interactions with educational settings, such as user volume,
color, and service quality requirements, are issues of existing
approaches [17].

Because of the above interaction, a reinforcement agent
determines the best resource allocation policy in Long
Range Wide Area Networks (LoRaWAN) to resolve the
above interaction issue. The traditional method increases
the possibility of information loss and interference when
transmitting data with more devices. Additionally, the con-
ventional method selects the best solution for large networks
due to its conservative environment [18]. The conventional
LoRa system suffers from low power consumption, range,
limited data rate, and interference issues. Traditional methods
need to address multi-objective problems. Balancing spectral
efficiency, energy usage, and fairness poses a significant
challenge in future WAN resource allocation. A better
method using advanced learning is proposed to reduce
transmission power while meeting reliability, latency, and
transmission rate requirements. However, finding the best
rules in the current environment takes a lot of work. Also,
it’s essential to understand and apply several critical theories
quickly at the beginning. Hence, a novel optimal resource
allocation-based data transmission scheme on the LoRa
system is developed in this work. Existing research has not
addressed the multi-objective resource allocation challenges
in LoRa systems.

The following sections give the designed resource
allocation-based data transmission objectives over LoRa
networks.

• To develop a practical resource allocation-based data
transmission to minimize the transmission power and
maximize the transmission data rate in LoRa networks.
It is used to improve wireless communications without
any congestion and interference.

• To implement an efficient IR-LEOA strategy that opti-
mizes the variables like spreading factor (SF), channel,
number of iterations, and transmission power from
the DARL model to improve the resource allocation
effectiveness in high throughput, energy efficiency,
transmission rate, and low latency.

• To design a DARL model inspired by deep adap-
tive reinforcement learning techniques using IR-LEOA
optimization to solve resource allocation issues and
increase total computing productivity in large-scale
LoRa networks.

• To compare the effectiveness of the resource
allocation-based scheme data transmission with sev-
eral heuristic algorithms using various performance
measures.

The remaining sections comprehensively examine the
designed resource allocationmodel for data transmission over
LoRa networks. They encompass the elucidation of advan-
tages and limitations of the current resource allocation-based
data transmission in Section II, followed by the presentation
of the network model for the LoRa system, the motivation
for resource optimization, and an explanation of the proposed
framework in Section III. Additionally, Section IV delves
into both conventional and suggested strategies in detail.
Section V presents objective results, followed by a discussion

76516 VOLUME 12, 2024



M. R. Rao, S. Sundar: Enhancement in Optimal Resource-Based Data Transmission Over LPWAN

of the reinforcement learning technique and an explanation
of the developed DARL model in Section VI. Section VII
concludes the designed resource allocation model-based
data transmission over LoRa networks, summarizing its
effectiveness and implications. Finally, Section VIII outlines
future research directions, including security enhancements
and optimization strategies.

II. LITERATURE SURVEY
Many researchers have explored methodologies and strate-
gies proposed by different studies to optimize resource
allocation in LoRa networks. These approaches encompass
reinforcement learning, decentralized and centralized meth-
ods, game-theoretic paradigms, and mathematical models,
each aiming to enhance throughput, reduce energy usage, and
improve overall network performance. This comprehensive
analysis sets the stage for the current research to build upon
existing knowledge and propose novel solutions for effective
resource management in LoRa networks; the following
sections concisely describe each study discussed:

A. DISCUSSION ON RESOURCE ALLOCATION MODELS
In 2023, Rao and Sundar [19]. offered a reinforcement
learning approach-based system to minimize power transmis-
sion and increase the data transfer rate in LoRa networks.
The reinforcement learning technique was used to find the
variables during the data transmission. Here, the transmission
power was effectively minimized. In LoRa, the network
resources like transmission power, spreading factor, and
channel were effectively optimized. An effective hybrid coati
with an energy valley strategy tuned these parameters. Many
reinforcement learning agents were used to equalize the
terminal hubs in the LoRa server. The tuned parameter was
applied to the terminal hubs. The parameter optimization
was used to enhance the throughput and reduce the energy
usage. The explored system showed higher efficacy than
other resource allocation systems in LoRa.

In 2023, Xu et al. [20] integrated reconfigurable intelligent
surfaces (RIS) with cell-free networks to enhance net-
work capacity. The learning-based deep distributed ADMM
(D2-ADMM) network was developed based on algorithm
unrolling to use parallel computing resources. Further-
more, the research introduces a monodirectional information
exchange strategy with minimal signaling overhead to
enhance the efficiency of D2-ADMM in distributed base
stations (BSs).

In 2023, Gava et al. [21]. offered a new resource
optimization methodology in LoRas. The maintenance costs
and implementation complexity were decreased using a
low-cost spanning tree and Variable Neighbourhood Search
(VNS) strategy. Performance investigations were carried out
in LoRa using LoRa repeaters to improve the coverage.
VNS strategy was used to determine the repeater’s location.
Total execution time and energy usage were minimized
by adjusting parameters like transmission power, spreading
factor, and bandwidth. The performance evaluation was

conducted over various previously used data transmission
frameworks.

In 2023, Minhaj et al. [22]. implemented a novel way
of distributing the spreading factor (SF) and transmission
power to the devices by combining a decentralized and
centralized method with two independent learning method-
ologies. Transmission power was assigned centrally by
reducing the contextual bandit issue using machine learning
(ML) techniques. The reinforcement learning (RL) technique
allocated the spreading factor parameter to the network
devices. The designed system proved higher accuracy and
low energy usage for large congested networks than current
state-of-the-art algorithms.

In 2023, Garrido-Hidalgo et al. [23]. developed a new data
communication framework in LoRa. It was one of the most
advanced technologies in industry and academia for low-cost
and low-power communications. The characteristics of LoRa
were known to compromise its reliability in large-scale and
high-traffic deployments. Some time-slotted techniques were
proposed to schedule LoRa transmissions appropriately. The
traditional resource allocation system needed to be given
more effectiveness while training the real-world applications.
This work effectively worked in real-life implementations
and showed better efficacy for data transmission in LoRa.
This research developed an effective resource allocation
model using a multi-agent systems (MAS) techniques in
LoRa networks, and it proved high scalability, better design,
and logic implementation. The system’s integration of agents
led to improved network size. This work showed better node
allocation and accurate time slot computation in massive
LoRa networks.

In 2023, Wei et al. [24]. suggested a new resource alloca-
tion model in LoRa networks. The LoRa application services
had three primary groups. That was safety, monitoring, and
control. The suggested priority-based resource allocation
(PB-RA) strategy increased the throughput. It decreased
the average packet loss by allocating the spreading factor
parameter to network devices based on the highest priority
parameter. The IEEE 2668 standard was initially developed
to thoroughly and quantitatively assess the coordination
capabilities regarding quality of service (quality of service)
effectiveness, such as throughput, latency, and packet loss rate
(PLR). The best service parameters enhanced the network’s
HDex and device capacity using the Genetic Algorithm
(GA)–based strategy.

In 2022, Xu et al. [25] presented a reconfigurable
intelligent surface (RIS) based on deep reinforcement learn-
ing (DRL) in millimeter-wave (mmWave) multiple-input
multiple-output (MIMO) systems. It achieved more robust
performance with reduced interaction overhead and relayed
on perfect channel state information (CSI). It attained average
enhanced achievable rates compared to existing DRL-based
methods.

In 2022, Gumaei et al. [26]. recommended a practical
framework using a game-theoretic paradigm for LoRa, which
aims to maximize the energy efficiency and packet delivery
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TABLE 1. Features and challenges of resource-based data transmission in LPWAN using existing techniques.

ratio simultaneously-the ratio of throughput to transmit power
defined by the LoRa node’s utility function. The rational

users were used to maximize the utility function. The energy
allocation strategy used in this LoRa network was based
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on the SF and SINR parameters. The best equal LoRa
(BE-LoRa) strategy was used to optimize the LoRa nodes.
The suggested BE-LoRa allocation strategy improved the
numerical and simulation results better than those of existing
systems.

In 2019, Bankov et al. [27]. investigated an accurate
mathematical model of low-power data transmission in a
LoRa sensor network. It validated important quality of
servicemetrics such as packet loss ratio and network capacity.
The transmission model attempted failures brought on by
channel noise, and the LoRa networks used an unlicensed
spectrum. This model was effectively used in high traffic and
other scenarios. Most of the existing networks were affected
by the efficacy of the LoRa and quality of service parameters.
They utilized the Modulation and coding schemes (MCSs) to
improve LoRa’s quality of service. The resource allocation
was used to improve the throughput and transmission
efficiency.

In 2022, Azizi et al. [28]. explored a resource allocation
model using reinforcement learning techniques to allow
the parameters to adjust their transmission parameters.
The optimization strategy had two phases: exploitation and
exploration. This strategy was used to allocate the resources
in LoRa. The simulation findings proved that the imple-
mented framework performed better than other currently used
methods. The suggested solution outperformed the current
schemes regarding PDR and convergence time by considering
the numerical results.

B. PROBLEM STATEMENT
The conventional resource allocation-based data transmission
in LoRa has many challenges, including security, server
dependence, quality of service, network connectivity, cover-
age, limited resource capacities, coexistence, and scalability.
It is hard to allocate the resources while training the massive
networks. The existing systems suffer from high compu-
tational load and communication latency issues. Hence,
an efficient resource-based data transmission in LoRa is
needed to solve the above problems. The advantages and
disadvantages of the existing optimization-based resource
allocation framework in LoRa are given in Table 1. Hybrid
coati with energy valley optimization algorithm (HC-EVOA)
[19] decreases the energy consumption and increases the
throughput during the execution. Also, it reduces the time
consumption while performing the resource allocation pro-
cess. It does not handle complex optimization issues but only
supports low data rates. Integrating reconfigurable intelligent
surfaces (RIS) [20] into cell-free systems reduces costs
and enhances network efficiency by optimizing performance
using computing resources. However, challenges persist in
improving and optimizing resource allocation and managing
interference and hardware costs. Variable Neighbourhood
Search (VNS) and minimum spanning tree (MST) [21] pro-
vide low convergence rates and high packet reception ratio.
Also, it improves the quality of service of the LoRa networks.
However, it suffers from contextual bandit problems, and

it is hard to maintain the network’s stability using various
network conditions. Combining reinforcement learning and
supervised machine learning [22] has improved the energy
efficiency, output quality, and Packet Reception Rate (PRR)
of dense LoRa networks, reducing the required processing
time. However, its operation necessitates a feedback system,
potentially leading to uplink and downlink interference.

Yet, training the massive IoT networks requires a lot of
device parameters, increasing the packet loss ratio. A multi-
agent system (MAS) [23] handles the high-traffic scenarios
and obtains better reliability outcomes. Also, it effectively
supports real-world experiments. Yet, it suffers from allo-
cating resources to highly congested and extensive networks
and performs poorly because of interference and congestion
issues. Genetic Algorithm (GA) [24] minimizes the average
packet loss rate. Also, it increases the capacity while
controlling the threshold value for every service in LoRa.
Yet, it increases the computational load and communication
latency and suffers from uncoordinated network configu-
ration, scalability problems, and limited channel resources.
The introduced deep reinforcement learning (DRL) [25]
approach in reconfigurable intelligent surface (RIS)-aided
millimeter-wave (mmWave) multiple-input multiple-output
(MIMO) systems provides a novel solution. It creates a
location-aware imitation environment and effectively reduces
interaction overhead. However, challenges persist due to
the dynamic nature of the wireless channel in RIS-aided
mmWave MIMO systems. Dependence on accurate channel
state information, which is incredibly challenging to obtain
in mmWave frequencies, poses another hurdle. Additionally,
interference management remains a significant challenge
in such systems. Game theory [26] effectively supports
multiple services in LoRa networks. Also, it provides high
security and avoids economic imbalances. Yet, it suffers
from server dependence and limited resource capacities and
requires more maintenance services. Modulation and coding
schemes (MCSs) [27] reduce the traffic load issues. Also,
it enhances the network capacity and quality of service during
communication in LoRa. Yet, it only supports high data rate
applications and suffers from coverage, mobility, and security
issues. MIX-multi-armed bandit (MIX-MAB) [28] requires
less maintenance. Also, it improves the network connectivity
during the data transmission. However, the computational
cost is high and also, and it also increases the computational
complexity. A new efficient resource-based data transmission
framework in LoRa is designed based on reinforcement
learning techniques to overcome the above difficulties.

III. SYSTEM MODEL OF LOW POWER WIDE AREA
NETWORKS, MOTIVATION AND ARCHITECTURE OF
RESOURCE OPTIMIZATION FOR BETTER DATA
TRANSMISSION
A. LORA: SYSTEM MODEL
A single LoRa model comprises a half-duplex gateway and
fixed LoRa end devices. The LoRa system contains three

VOLUME 12, 2024 76519



M. R. Rao, S. Sundar: Enhancement in Optimal Resource-Based Data Transmission Over LPWAN

classes: A, B, and C. The end devices are evenly spaced
around the gateway and are considered class A devices.
Most of the time, the end devices are in sleep mode to
preserve battery life. They only wake up to conduct uplink
transmissions when a new packet arrives.

Additionally, each end device completes an uplink trans-
mission during the system training process, and each end
device gets a downlink acknowledgement from the gateway.
They assume that the gateway transmits the acknowledge-
ment separately from the uplink channel to prevent inter-
ference between downlink acknowledgements and uplink
transmissions. The LoRa defines two receive windows, like
SY1 and SY2. It is used to determine the confirmed traffic in
the network. In the second receive window, SY2, end devices
wait for an acknowledgement, which saves channel resources
and energy. The symbol duration of LoRa is determined
based on the bandwidth EI and the spreading factor
PF . EI denotes the bandwidth, PF denotes the spreading
factor. The LoRa’s symbol duration Ut is calculated using
Eq. 1.

Ut =
2PF

EI
(1)

The gateway transmits the acknowledgements to a fixed
spreading factor. The high spreading factor uses transmit
energy qt = 27 dBm. The term eo represents the path loss
exponent in LoRa communication range, which is determined
by path loss. The path lossMpath is calculated using Eq. 2.

Mpath =

(
4.π.g
d

)2

.eo (2)

Here, the LoRa frequency is noted by g, and the link budget
MBud is measured using Eq. 3.

MBud =
QUs

Ts(TG,CX)
(3)

Here, the term QUs indicates the transmission power
and the term Ts(TG,CX ) denotes the receiver sensitivity,
which is determined by the bandwidth and spreading factor.
The minimal received power for detecting the signal is
receiver sensitivity. The term SNR0 is calculated using
Eq. 4.

SNR0 =
FBIT
O0

(4)

Here, Oo notes the noise power density. The parameter
is assumed to be FBIT = TS .UBIT The received power is
denoted by Ts and the bit duration is noted byUBIT . The above
formula is rewritten using Eq.5.

SNR(0) =
Ts · 2TG

OG · l · U · CX
(5)

The term Ts is calculated using Eq. 6.

Ts =
SNR0 · O · l · U · CX

2TG
(6)

FIGURE 1. Network model of LoRa.

The receiver sensitivity Ts(TG,CX ) is calculated using
Eq. 7.

Ts(TG,CX ) = SNR(TG) · O0

= SNR(TG) · OG · l · U · CX (7)

Here, the parameters Kelvin constant, noise, and temper-
ature are indicated by l, OG and U , respectively. The term
SNR(TG) is measured by Eq. 8.

SNR(TG) =
SNR0

2TG
(8)

Next, the link budget equals the path loss and is used to
estimate the value of the maximum communication range of
the LoRa. The LoRa communication range is validated using
Eq. 9.

e =

 Mpath(
4·π ·g
d

)2


1
o

(9)

The high spreading factor values are used to get long
LoRa ranges. Hence, the LoRa range is increased based
on the spreading factor. The details of LoRa modulation
and accurate radio environment are captured in the uplink
transmission. Every possible LoRa parameter is used to
reduce the packet loss at the uplink transmission. The LoRa
parameters are bit error rate, co-SF capture effect, temporal
collision, fading, wireless channel attenuation and inter-
spreading factor. The network model of LoRa is shown in
Fig. 1.

76520 VOLUME 12, 2024



M. R. Rao, S. Sundar: Enhancement in Optimal Resource-Based Data Transmission Over LPWAN

B. MOTIVATION BEHIND RESOURCE OPTIMIZATION
One of the challenges of the LoRa network is the near-far
effect issue. Route loss, fading, and other factors affect the
received power at different places during data transmission in
wireless communication. In the general scenario, the receive
power at the receiving end near the transmitter source is
higher than the remote receiving end. This scenario impacts
the LoRa network’s capture effect. Hence, independent of
the terminals’ distance from the gateway, all terminals
received power must be balanced to improve the data rate.
However, most of the LoRa network’s resource allocation
strategy was limited to a single objective: maximizing the
terminal adaptive data rate. It is concentrated on a single
parameter, such as the spreading factor. Here, the primary
goal of resource allocation is multi-objective optimization.
It optimizes factors like the spreading factor, transmission
power, channel, and time. The tools, techniques, and models
for multi-objective optimization and multi-radio parameters
still need to be improved. Several Lagrangian relaxation
techniques and conventional approaches in LoRa suffer from
dimensionality issues. The implementation of the DARL
model has demonstrated better solutions.

Optimization problems are typically used in the DARL
model to seek solutions that satisfy particular optimal
qualities under specific conditions. A collection of objective
functions, a set of constraints, and a set of decision
variables are used to express these issues. Its primary
benefit is that it uses well-established computational tools
and several solution techniques with regulated calculation
times and accuracy. In this work, the designed IR-LEOA
strategy is used to optimize factors such as spreading factor,
transmission power, channel, and number of iterations from
the DARL model to enhance the performance of LoRa
networks. The gateway manages wireless resources and then
performs the resource allocation using optimized parameters
from the DARL model. The motivation of this work is
formulating and optimizing a solution using the designed
IR-LEOAwith the DARLmodel to achieve the lowest energy
consumption and maximize the data extraction rate in the
LoRa network. We contribute to providing solutions and
decreasing resource allocation optimization issues for LoRa
network uplink transmission. Optimal resource allocation
with the lowest packet collision probability and the lowest
network energy usage is the biggest challenge of the LoRa
systems. This DARL approach uses the designed IR-LEOA
optimization to solve the above resource allocation issue.

C. PROPOSED RL-BASED RESOURCE OPTIMIZATION IN
LORA
Most conventional resource allocation-based data transmis-
sion models increase the packet loss and interference issues
on LoRa systems. It provides high energy consumption,
limited coverage, low transmission rate and high cost. Due to
packet loss, the existing system affects the network’s service
quality and causes network overload issues. Many users in
the existing system need more resources, such as energy

FIGURE 2. Architectural view of suggested resource allocation-based data
transmission in LoRa.

and spectrum. It provides low transmission throughput.
Because of the extensive range of application demands,
increasing security and privacy during data transmission
is challenging. It gives low adaptability and efficiency
outcomes. As a result, the agent’s training could be more
trustworthy. A feedback mechanism is necessary for most
of the system to function correctly. It suffers to reduce the
uplink and downlink interference issues. In conventional
systems, the resource allocation performance is decreased
in terms of spectrum constraint, real-time communication,
security, scalability and application-specific needs, including
data rates andmobility. Thus, a new resource allocation-based
data transmission system in LoRa is developed to resolve
the above difficulties. The architectural illustration of the
suggested resource allocation scheme for data transmission
in LoRa is depicted in Fig. 2.

A newly developed resource allocation-based data trans-
mission scheme in LoRa is used to reduce the transmission
power and effectively increase the data rate during the
data transmission. It helps to enhance the wireless com-
munication environments without interference and network
congestion. Here, the DARL technique is used to identify
the appropriate parameters in the LoRa system to minimize
the transmission power. DARL is used to solve the LoRa
challenges, and its goal is to optimize the allocation of
network resources like transmission power, spreading factor,
and channel. It allocates transmission power, spreading
factor, and channel for IoT devices to improve quality of
service requirements. Here, the LEA and ROA strategies are
combined to implement an IR-LEOA strategy. It is used to
select the parameters in the DARL model optimally. The
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IR-LEOA is developed to tune the network resources or
parameters such as channel, spreading factor, transmission
power, and number of iterations from the DARL model
to increase throughput, energy efficiency, and transmission
rate and minimize latency. The agents produced by the
DARL model match the terminal nodes in the LoRa server.
The optimal transmission variables are sent to the network
terminal hub when the DARL agent is generated. This
optimization strategy analyses the transmission rate, latency,
energy efficiency, and throughput. Performance analysis of
the suggested system is conducted using existingmethods and
algorithms with various performance metrics and a proposed
integrated Heuristic Strategy for Resource Optimization in
LoRa.

D. REMORA OPTIMIZATION ALGORITHM
Remora [29]. is well-known for its propensity to swim top
oceangoing whales, ships, and other marine. This behavior is
not only free from enemy invasion but also labor-saving. The
remora is typically found in tropical waters and can also go
to colder waters. Remora primarily consumes invertebrates
and other fish. it adsorbed the next host and moved on to
another sea area. The ROA strategy has two behaviors. That is
host feeding and eating. The remora position and individual
solutions of remora are initialized in the ROA. The remora
is attached to the swordfish-the position of the swordfish
updates simultaneously with the remora’s attachment Eq. 10.
gives this mathematical behavior of position updating.

Su+1
j = SuBEST −

(
rand(0, 1)∗

(SuBEST + Surand
2

)
− Surand

)
(10)

Here, the number of present iterations is noted by u.
The term U denotes the maximum iteration. The random
position is noted by Surand. The optimal location of the remora
is effectively updated using the random parameter. It takes
small steps to change the host effectively. The term Sbuu is
calculated using Eq. 11.

Sbuu = Suj + (Suj − SPR)∗rand (11)

Here, the term SPR is the previous position of the remora.
The small step is noted by Sbuu. The active step of remora is
said to be a slight global movement, represented in Eq. 12.
and Eq. 13. correspondingly.

g(Suj ) > g(Sbuu) (12)

g(Suj ) < g(Sbuu) (13)

Here, the present solution is indicated by g(Suj ). The strived
solution is noted by g(Sbuu). The minimal strived solutions
are used to determine the fitness function. If the fitness value
of the strived solution is higher than the present solution,
it returns for the host selection process.

1) EATING
In this phase, the position is updated based on the whale’s
position. Here, the remora is attached to the whale. This

mathematical expression is measured using Eq. 14.

Sj+1 = E∗f b∗ cos(2πβ) + Sj (14)

The calculation of β, and E are given in Eq. 15. and Eq.
17. respectively.

β = rand(0, 1)∗(b− 1) + 1 (15)

The term b is determined using Eq. 16.

b = −

(
1 +

u
U

)
(16)

E =
∣∣SBEST − Sj

∣∣ (17)

Here, the term E is the present optimal solution. It is
determined based on the distance of prey and hunter. In this
phase, the remora and the whale position are the same. The
random value is indicated by β, and it is chosen in the interval
of [−1, 1].

2) HOST FEEDING
In the exploitation procedure, the host feeding is one of the
subdivisions. The remora moves around the host using the
small steps given Eq. 18. and Eq. 19. respectively.

Suj = Suj + B (18)

B = C∗(Suj − D∗SBEST) (19)

The term C is determined through Eq. 20.

C = 2∗W ∗rand(0, 1) −W (20)

The termW is estimated using below Eq. 21.

W = 2∗

(
1 −

u
MAX_iTr

)
(21)

Here, the term B is the small step. The term D is the condi-
tion assumed to be 0.1. C notes the random host. The search
space is decreased during the remora feeding on the host.
The iteration runs 30 times, and the best fitness solutions
are effectively determined. The best solution is determined
in the range of [0, 0.3]. The ROA strategy effectively reduced
the computational complexity issues. The pseudocode of the
suggested ROA is given in the Algorithm. 1.

E. LOTUS EFFECT OPTIMIZATION ALGORITHM
The lotus effect is referred to as leave’s self-cleaning and
super-hydrophobic features. This LEA [30]. strategy has two
phases: extraction and exploration. In the exploration phase,
the actions of insects like dragonflies and the seed-spreading
activities are used. In the extraction phase, the flower buds
grouped around a focal core could inspire local search
strategies that use multi-populations and search parameters.

1) EXPLORATION STAGE
The dragonflies cause leaf pollination. The dragonfly
algorithm is inspired to implement the LEA strategy. In the
dragonfly strategy, the enemy and food behavior of the
dragonfly are effectively used to determine the best solutions.
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Algorithm 1 Implemented ROA
1: Load the position of the population.
2: Initialize the optimal solution.
3: while condition do
4: Determine the fitness solution of remora.
5: Verify the search agent space.
6: Update the variables x, y, and z.
7: for each agent do
8: if condition then
9: Determine the position using Eq. 14.

10: else
11: Calculate the position using Eq. 18.
12: end if
13: end for
14: Find the current fitness value.
15: end while
16: Return the best fitness solution.

The dragonfly position is updated based on the escaping
strategy from enemies and food-searching activities. The
location of the individual is measured using Eq. 22.

T uj = −

O∑
k=1

(
Y uj − Y uk

)
(22)

Here, the term Yj denotes the present position. The term k
is the index. The current iteration is noted by u. The number
of individuals is indicated by O. The alignment is measured
using Eq. 23.

Hu
j =

∑O
k=1 Y

u
k

O
(23)

Here, the term Y uk is the velocity. The cohesion is measured
using Eq. 24.

Iuj =

∑O
k=1 Y

u
k

O
− Y uj (24)

Here, the term Yj denotes the present position. The term k
is the index. The current iteration is noted by u. The term Yj
indicates the position of the individual. The food-searching
activities are calculated using Eq. 25.

Guj = Y u+ − Y uj (25)

Here, the term Y u+ is the food position. It is used to
determine the best fitness solution. The escaping strategy is
calculated using Eq. 26.

Quj = Y u− − Y uj (26)

Here, the enemy position is noted by Y u−. It is used
to determine the worst fitness solution. The dragonfly
movement is measured using Eq. 27.

1Y u+1
j = (tT uj + hHu

j + iIuj + gGuj + qQuj ) + x1Y uj (27)

Here, the term t is the coefficient value. The separation
degree is indicated by T uj . The alignment coefficient is noted
by b. The individual’s alignment is noted by Hu

j . The term

i is the cohesion coefficient. The individual’s cohesion is
indicated by Guj . The food source is indicated by g, and the
enemy is noted by q. The individual’s enemy is noted by Quj .
The term x denotes the weight, and the term u indicates the
iteration. The term Y (u+1)

j is calculated using Eq. 28.

Y u+1
j = Y uj + x1Y u+1

j (28)

Here, the term Y u+1
j is the location vectors. The location is

updated using Eq. 29.

Y (u+1)
j = Y uj + LEVY(z) × Y uj (29)

Here, the term u is the present iteration. The dimension is
indicated by z.The term LEVY(y) is calculated using Eq. 30.

LEVY (y) = 0.01 ×

(
S1 × ϑ

|S2|
1
θ

)
(30)

Here, the random values are noted by s1 and s2, respec-
tively. The constant value is noted by θ . The term ϑ is
measured using Eq. 31. and Eq. 32.

ϑ =

 ζ (1 + θ ) × sin
(

πθ
2

)
ζ
(
1+θ
2

)
× ϑ × 2 ×

(
θ−1
2

)


1
θ

(31)

ζ (y) = (y− 1)! (32)

2) EXPLOITATION STAGE
The pollination activity is used in this phase. It is also said to
be the extraction stage. A coefficient specifies the size of each
flower’s growing area around the best-found flower in this
type of pollination. This behavior is measured using Eq. 33.

Y (u+1)
j = Y uj + S(Y uj − h∗) (33)

Here, the term Y (u+1)
j is the pollen position. The best

position is noted by h∗. The term S denotes the area growth,
calculated by Eq. 34.

S = 2q
−

(
4u
M

)2
(34)

Here, the term M is the iteration count. The term S is
utilized to balance the exploitation and exploration phases.
The capacity is measured using Eq. 35.

iuj =

(
|guj − gMAX|

)
× Cns

(|gMIN − gMAX|)
(35)

Here, the term iuj is the capacity. guj indicates the size,
and gMAX denotes the maximum fitness size. gMIN denotes
the minimum fitness size. The term SLCTuj is calculated by
Eq. 36.

SLCTuj =
iuj∑i
k=0 i

u
k

(36)

Here, the term l is the number of pits. The term iuj is the
capacity. The drop velocity is measured using Eq. 37.

W u+1
j = r ×W u

j (37)
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The position of moving drops is measured using Eq. 38.
and Eq. 39.

W u+1
j = W u

j + rnd(Y uDEp − Y uj ) (38)

Y u+1
j = Y uj +W u+1

j (39)

Here, the term Y uDEp is the present location, and the term
W u
j is the present velocity. The pseudocode of the investigated

LEA is provided in the Algorithm. 2.

Algorithm 2 Designed LEA
1: Initialize the search agents, size of population, and

random parameter.
2: Determine the best search agent.
3: Update the parameters and velocity.
4: for each agent do
5: Determine the best optimal solution.
6: for each agent do
7: Update the position.
8: if condition then
9: Update the position of the new flower using Eq.

29.
10: else
11: Update the position using Eq. 33.
12: end if
13: end for
14: end for
15: Evaluate the water movement and capacity.
16: Return the best optimal solution.

F. PROPOSED IR-LEOA
The suggested Integrated Remora with Lotus Effect Opti-
mization Algorithm (IR-LEOA) strategy is used to enhance
the efficacy of the resource allocation process by optimizing
the parameters. Parameters like channel, spreading factor,
transmission power, and number of iterations are optimized
using the deep adaptive reinforcement learning (DARL)
model to maximize energy efficiency, transmission rate,
and throughput and minimize latency. The implemented
IR-LEOA strategy is used to enhance the computing pro-
cess during resource allocation. The Remora Optimization
Algorithm (ROA) optimization has high convergence accu-
racy and speed. It reduces the computational complexity.
It does not change the host. Hence, it is easy to implement.
Yet, it suffers from high-dimensional complexity issues.
It requires more time for the computation. The Lotus Effect
Optimization Algorithm (LEA) optimization effectively
solves global optimization difficulties. It gives efficient and
scalable outcomes. However, it requires more computational
resources when using large-scale data. It provides low
accuracy and high error rates. To solve these difficulties,
the IR-LEOA strategy is implemented. In the designed
IR-LEOA, the solution is upgraded based on current fitness.
If the current fitness solution is greater than the mean
fitness like (CurFit > MEnFit), the implemented IR-LEOA
updates the position using the ROA. Otherwise, the position

will be updated using the LEA. Here, CurFit denotes the
current fitness, and MEnFit indicates the mean fitness.
The pseudocode of the explored IR-LEOA is given in
Algorithm 3. The flowchart illustration of the investigated
IR-LEOA is shown in Fig. 3.

Algorithm 3 Explored IR-LEOA
1: Set the location of population.
2: Load the optimal fitness and best solution.
3: Update the position vectors and velocity.
4: for each agent do
5: Determine the remora’s fitness solution and global

optimal solution.
6: for each agent do
7: Verify the search agent space.
8: if condition then
9: Update the position using LEA in Eq. 33.
10: else
11: Update the position using ROA in Eq. 10.
12: end if
13: end for
14: end for
15: Return the best fitness solution.

FIGURE 3. Schema chart of the developed IR-LEOA.

IV. DISTRIBUTION OF NETWORK SOURCES USING
ADVANCED REINFORCEMENT LEARNING STRATEGY FOR
EFFICIENT DATA TRANSMISSION IN LORA
A. REINFORCEMENT LEARNING
The reinforcement learning model [31]. Contains only one
LoRa gateway and multiple counts of LoRa nodes. The
number of LoRa nodes is noted by P. The term cv denotes
the network variables. The compensation parameter sv is
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determined using the network variables. Reinforcement
learning effectively learns the optimal decision. The Markov
process is used to implement reinforcement learning. It con-
tains action, state, discount factor, transaction, and reward
function. The agent’s primary goal in reinforcement learning
is to improve the total reward. The total reward Iv is calculated
using Eq. 40.

Iv =

v∑
k=v

Sk+1 (40)

Here, the term V denotes the time. The action phase is also
said to be R-network. These two components are positioned
with the grid size of 1500 × 1500. The LoRa gateway is
placed in the center of the grid, and the remaining nodes are
distributed throughout the grid. The nodes and the gateway
adjust the spreading factor and the transmission power based
on the adaptive data rate. The LoRa gateway is taken as a
container for every agent node. This gateway is used in the
reinforcement learning to achieve a better spreading factor
and transmission power. In this case, the network has more
nodes to organize with an agent. So, it easily controls the
agent and their uses.

Finally, optimal resource allocation achieves a high
balance between energy collection and energy consumption
at sensors. It is used to maximize the future compensation
and convergence rate. The Deep Q-network (DQN) structure
model generates the reinforcement learning agent, which is
used to identify LoRa’s network parameters.

B. DARL-BASED NETWORK RESOURCE DISTRIBUTION
Reinforcement learning and deep learning technologies are
used to develop a deep reinforcement learning method.
The DARL technique is used to identify the appropriate
parameters in the LoRa system to minimize the transmission
power. DARL is used to solve the LoRa challenges, and
its goal is to optimize the allocation of network resources
like transmission power, spreading factor, and channel.
It allocates transmission power, spreading factor, and channel
for IoT devices to improve quality of service requirements.
DARL can directly leverage raw state representations
and train policies with efficient and effective methods
for non-linear generalization and high-dimensional feature
extraction for complex systems and tasks with a deep learning
approach. The DARL algorithms are effectively used in
the discrete action space of DQN. It estimates R-values
by using a neural network with weights. DQN is different
from conventional learning in that it uses the function
approximation approach, which typically necessitates a large
amount of manual adjustment to stabilize the learning
process. That is experience replay and the target network.
The term R̂ denotes the target network. The R-network
and the target network have the same architecture. The
R-network weights are copied to the target network at a
regular periodicity. The agent status fu = (tu, bu, su, tu+1) is
stored in a data set with minimal time to conduct experience

FIGURE 4. Structural illustration of the offered DARL-based network
resource distribution.

replay. R-network is executed using several mini-batches and
randomly taken from the parameter F . This parameter F is
used to minimize the loss function and is measured using
Eq. 41.

Mj(∅j) = F(t,b)∼q
⌊(
Zj − R(t, b; ∅j)

)2⌋ (41)

Here, zj denotes the target R-valuemodeled using the target
network R̂ at the iteration j. The term t denotes the state
value, and the term b denotes the action value. The probability
distribution (t, b) is noted by q. Stochastic gradient descent is
one method for updating neural network weights, calculated
using Eq. 42.

∇∅jMj(∅j) = F(t,b)∼q
⌊
(Zj − R(t, b; ∅j))∇QjR(t, b; ∅j)

⌋
(42)

The DQN is used in the DARL structure to decrease
the training variance and increase the data efficiency.
A neural network approximation is used to construct and
learn a stochastic policy based on a joint distribution
of mixed random variables to maximize the discrete and
continuous actions simultaneously. The suggested IR-LEOA
is used in DARL training to increase the safety require-
ments during data transmission in LoRa networks. The
suggested DARL method allows the agent to investigate
safe data scheduling operations at a low cost. Hence,
the DARL model allocates the resources directly to
LoRa networks. The structural illustration of the offered
DARL-based network resource distribution is displayed in
Fig. 4.
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C. OBJECTIVE FUNCTION
The suggested DARL-based resource allocation for data
transmission over the LoRa network’s goal is reducing
power consumption and enhancing the data transmission
rate. The DARL model effectively learns the optimal
resource allocation using the designed IR-LEOA. Deep
reinforcement learning effectively solves complicated issues
with minimal training knowledge. It provides better and more
stable solutions to optimize the algorithms. However, the
computational cost is high and suffers from dimensionality
issues. It requires large-scale data for the training. It needs
to solve the overload issues of states. To overcome these
issues, the DARL-based resource allocation is developed.
It effectively solves the resource allocation issues. The
IR-LEOA is designed to tune the network resources or
parameters such as channel, spreading factor, transmission
power, and number of iterations from the DARL model to
increase the throughput, energy efficiency, and transmission
rate and minimize the latency. The objective functions of
increased throughput, energy efficiency, transmission rate,
and minimized latency are given in Eq. 43.

Obj= argmin{
MRDARLc ,VGDARL

s ,JMtp]DARL,IADARLi

}
(
1
T

+
1
E

+
1
TR

+ LA
)

(43)

Here, the value MRDARLc denotes the optimized channel,
and it is selected in the range of [1, 20]. The parameter
VGDARLs denotes the optimized spreading factor, and it is
taken in the range of [0.01, 0.99]. The optimized transmission
rate is noted by JMDARL

tp and it is chosen in the range of
[2, 128]. The optimized number of iterations is noted by
IADARLi , and it is selected in the range of [10, 1000]. The
throughput T formula is provided in Eq. 44.

T =

∑v
l=1 Tl
v

(44)

Here, the term v indicates the total transmission, and the
term Tl denotes the total received data. Eq. 45. measures the
energy efficiency formula.

E =

∑p−1
p=0 TSum,p∑p−1
p=0Uup,p

(45)

Here, the term p denotes the channel. TSum,p. notes the total
data transmission time. The successful transmission is noted
by Uup,p. Eq. 46. measures the transmission rate formula.

TR =
Os− D
Ot

(46)

Here, Ot denotes the total number of sent data, and Os
denotes the total number of received data. The number of
conflicting packets is noted by D. The latency formula is
given in Eq. 47.

LA =
K SU

SSUt
(47)

FIGURE 5. Schema chart of the developed method.

Here, the term SSUt indicates the total data transmission
time. The term K SU denotes the time of received data.

D. FRAMEWORK IMPLEMENTATION
This section provides a detailed, step-by-step explanation
of the general resource allocation-based data transmission
framework over LPWAN. The developed method’s flowchart
illustration is presented in Fig. 5
1) Configure the parameters and variables for the network.
2) Apply reinforcement learning (RL) through the Markov

process:
(i) Determine action, state, discount factor, transaction,

and reward functions.
(ii) Create RL agents by utilizing the Deep Q-network

(DQN).
(iii) Determine the overall reward by utilizing Eq. 40.

3) The spreading factor and transmission power are
modified based on the adaptive data rate.

4) Employ Distributing Network Resources with
DARL-based Approach:
(i) Apply deep learning methods and deep

reinforcement learning.
(ii) Determine the optimal channel, spreading factor,

and transmission power using DARL.
(iii) Distribute network resources to enhance service

quality.
(iv) Develop training policies that utilize effective

techniques for non-linear generalization.
(v) Use a weighted neural network to estimate

R-values.
(vi) Apply mini-batches to R-network execution.
(vii) Reduce loss function by applying Eq. 41.
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FIGURE 6. Performance investigation of the designed resource allocation-based data transmission in LoRa among several algorithms for (a) Delay,
(b) Energy Consumption, (c) Energy Efficiency, (d) Execution Time, (e) Remaining Resource, (f) SINR, (g) Throughput, (h) Transmission Rate.

FIGURE 7. Performance investigation of the designed resource allocation-based data transmission in LoRa among several conventional methods for
(a) Delay, (b) Energy Consumption, (c) Energy Efficiency, (d) Execution Time, (e) Remaining Resource, (f) SINR, (g) Throughput, (h) Transmission Rate.

5) Apply the stochastic gradient descent Eq.42. to update
the weights of neural networks.

6) Distribute resources to LoRa networks directly based on
the DARL model.

7) To optimize the channel, spreading factor, transmission
rate, and number of iterations, evaluate the objective
functions (Eq. 43).

8) Determine the throughput (Eq. 44), energy efficiency
(Eq. 45), transmission rate, and latency (Eq. 47).

V. RESULTS
A. EXPERIMENTAL SETUP
The proposed resource allocation-based LoRa data transmis-
sion protocol was implemented using the Python platform.
The node attributes were initialized between 20, 40, 60, 80,
and 100. Chromosome length, number of population, and
maximum number of iterations were fixed at 4, 10, and

50 during the experimental analysis. For the performance
comparison, several heuristic algorithms such as Rain Opti-
mization (RO) [32], Energy Valley optimizer (EVO) [33],
Remora Optimization Algorithm (ROA) [29]. And Lotus
Effect Optimization Algorithm (LEA) [30]. And various
methods like Reinforcement Learning (RL) [19], MST [21],
Game Theory [26]. and MIX-MAB [28]. were used in the
offered resource allocation-based data transmission in LoRa.

B. EVALUATION MEASURES
The performance measure of the explored resource allocation
system for data transmission is given below.

(a) Throughput: It is calculated using Eq. 44.
(b) Energy efficiency: It is calculated by Eq. 45.
(c) Transmission rate: It is calculated by Eq. 46.
(d) Delay: The delay parameter is calculated using Eq. 48.
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TABLE 2. Statistical analysis of the offered resource allocation-based
data transmission in LORA with various algorithms.

D =

(
1
J

) N∑
n=1

Ln
Yn − Ln

(48)

Here, the distance is noted by Ln, and the velocity is
indicated by Yn. J . indicates the data transmission time.
(e) Energy consumption is calculated using Eq. 49.

E =

O∑
j=1

Ut,j × Quy,j (49)

Here, the term Ut,j denotes the transmission time of
packets. The two terminals received power as indicated by
Quy,j.

(f) SINR: It is calculated using Eq. 50.

S =
|JkYk |2∑o

j=1 |JkYk |2 + L2
(50)

FIGURE 8. Cost function evaluation of the designed resource
allocation-based data transmission in LoRa among several algorithms for
(a) Nodes 20, (b) Nodes 40, (c) Nodes 60, (d) Nodes 80, (e) Nodes 100.

Here, Jk indicates the channel vector and Yk indicates the
beam vector for data transmission.

C. PERFORMANCE ANALYSIS OF THE DESIGNED MODEL
BY VARYING THE NUMBER OF NODES
The performance estimation of the suggested IR-LEOA-
DARL-based resource allocation system for data transmis-
sion in LoRa over several heuristic strategies and methods
by varying the number of nodes is displayed in Fig. 6.
and 7. respectively. Node variations like 20, 40, 60, 80 and
100 were taken in the x-axis for the experimental analysis.
The suggested IR-LEOA-DARL-based resource allocation
for data transmission over LoRa achieved high transmission
rate of 75.12% than RO, 83.17% than EVO, 66.12% than
ROA, and 33.20% than LEA at the node variation of 40. The
proposed model proved high throughput of 32.69% than RL,
15.01% than MST, 38.02% than Game Theory, and 40.81%
than MIX-MAB at the node variation of 60 from Fig. 7. For
the performance comparison, the investigated system showed
high performance when compared to other conventional
resource allocation models for data transmission over LoRas.

D. COST FUNCTION EVALUATION OF THE PROPOSED
SYSTEM
The cost function of the suggested IR-LEOA-DARL-based
resource allocation for data transmission in LoRa was
compared with several heuristic strategies, and it is shown
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TABLE 3. Numerical analysis of the offered resource allocation-based data transmission in LoRa with various algorithms.

in Fig. 8. At the iteration of 30, the developed IR-LEOA-
DARL-based resource allocation system over LoRa had
given low convergence of 67.93% than RO, 73.22% than
EVO, 40.55% than ROA, and 80.72% than LEA. Hence, the
implemented model’s convergence rate is low compared to
existing resource allocation models over LoRas.

E. NUMERICAL ANALYSIS BY VARYING NUMBER OF
NODES
Table 3. shows the numerical analysis of the proposed
resource allocation scheme in LoRa by varying the number
of nodes as 20, 40, 60, 80, and 100. Metrics such as
delay, transmission rate, throughput, energy consumption,
execution time, SINR, remaining resources, and energy effi-
ciency were used for the experimentation. When compared
to the conventional models, the throughput of our model is
improved by 21% to RO, 4.54% to EVO, 15.5% to ROA
and 7.26% to LEA, for considering the total number of
nodes as 20. The transmission rate of proposed IR-LEOA is
enhanced with 40.66% better than RO, 14.59% better than
EVO, 30.05% better than ROA and 32.75% better than LEA
for taking the number of nodes as 80. The delay of our model
is obtained with 8.84%, 9.49%, 1.29%, and 5.63% than RO,
EVO, ROA, and LEA for the number of nodes as 60. For

taking the number of nodes as 20, the total execution time
of our model is better than 65.13%, 35.94%, 31.52%, and
19.6% when compared to RO, EVO, ROA, and LEA. The
energy utilization of our developed method is improved with
74.89%, 73.49%, 60.58%, and 68.63% than RO, EVO, ROA,
and LEA. The SINR of developed IR-LEOA is enhanced
with 11.57% better than RO, 56.88% better than EVO, 0.21%
better than ROA and 1.68% better than LEA for taking the
number of nodes as 100. For the number of nodes as 40,
the remaining resources of our model are progressed with
25.67%, 54.75%, 46.01%, and 53.13% when compared to
RO, EVO, ROA, and LEA. The energy efficiency of the
proposed IR-LEOA is improved with 48.31% better than
RO, 5.17% better than EVO, 33.76% better than ROA and
10.13% better than LEA for taking the number of nodes
as 40. This calculation concludes that the offered resource
allocation-based data transmission model provides promising
performance in LoRa.

F. STATISTICAL ESTIMATION OF THE OFFERED RESOURCE
ALLOCATION OVER LPWAN
Table 2. displays the statistical analysis of the suggested
IR-LEOA-based resource allocation for data transmission
over the LoRa systems. The developed IR-LEOA-based
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resource allocation system over LoRa specified a best value
of 12.03% than RO, 10.70% than EVO, 44.03% than ROA,
and 95.82% than LEA at the number of node 20. The resource
allocation system offered in LoRa based on IR-LEOA was
more effective than the other traditional models regarding
performance efficiency.

VI. DISCUSSIONS
An adaptive reinforcement learning-based resource alloca-
tion scheme based on a hybrid optimization strategy has
been developed in this research work. Various evaluation
measures are considered for analyzing the resource allocation
efficiency of our model concerning several previously
developed models. By examining the result, the resource
allocation performance is greatly improved in our model,
and a detailed description is given below. The throughput of
the proposed IR-LEOA model is 68.64% for the nodes as
60. The execution time and delay of the proposed resource
allocation model are significantly lower than those of the
conventional algorithms. However, the energy efficiency of
the model is greatly improved in the proposed model. The
transmission rate accomplished by our model for considering
the number of nodes as 100 is 0.99bps. For node 80, the
delay of our model is achieved with 0.71sec, which is lower
than conventional techniques. The total execution time of our
model is significantly lowered and attained with 19.01sec
for the node variation as 20. The energy consumption of
our method is highly reduced, which is achieved with 0.26J
for the node variation of 80. The SINR of this developed
scheme is 12.65dB for the total number of nodes 40, which is
highly enhanced than the previous models. Considering the
total number of nodes 100, our model’s remaining resources
and energy consumption are achieved with 5.53 and 15.65J,
which is more impressive than the previous models. The
results revealed that the resource allocation efficacy of this
offered IR-LEOA method is superior to earlier models by
analyzing all the metrics used for validation.

VII. CONCLUSION
A newly developed resource allocation-based data transmis-
sion in LoRa was used to improve the transmission data
rate with minimal transmission power. It helped to enhance
wireless communication applications without interference
and network congestion. Here, the DARL technique was used
to identify the variables to minimize the transmission power.
It effectively solved the resource allocation issues using sug-
gested IR-LEOA in large-scale IoT networks. The LEA and
ROA strategies were combined to implement an IR-LEOA.
It was used to select the parameters in the DARL model
optimally. The designed IR-LEOA was developed to tune
the network resources or parameters like channel, spreading
factor, transmission power, and number of iterations from the
DARL model to increase the throughput, energy efficiency,
and transmission rate and minimize the latency. The agents
produced by the DARL model were used to match the
terminal nodes in the LoRa server.When theDARL agent was

generated, the optimal transmission variables were sent to the
network terminal hub. This optimization strategy was used
to analyze the transmission rate, latency, energy efficiency,
and throughput. The suggested IR-LEOA-based resource
allocation over LoRa achieved higher energy efficiency of
21.03% than RO, 17.70% than EVO, 25.77% than ROA,
and 67.24% than LEA. Many experiments were conducted
to validate the performance of the suggested system with
various performance metrics.

VIII. FUTURE SCOPE
Even though the current research has significantly improved
resource allocation-based data transmission in LoRa net-
works, several areas still need to be explored. In particular,
the following topics will be the focus of future work:

• Strengthening security by adding strong security con-
trols to protect data transfer in LoRa networks from
possible intrusions and weaknesses.

• Creating effective procedures and frameworks to expe-
dite system maintenance procedures, especially in the
case of node malfunctions or network outages.

• Investigating ways to improve resource allocation
algorithms to guarantee scalability and flexibility in
ever-more complicated Internet of Things contexts.

• Field trials and deployment studies will validate the
suggested procedures in real-world circumstances and
evaluate their practicability and efficacy.

Future research endeavor will concentrate on these topics.
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