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ABSTRACT The magnetic spring placed on vibration generator consists of top and bottom fixed magnets
with a third magnet levitated between them. Nonlinear dynamic analysis appears in the magnetic flux density
of the magnetic spring activated by the vibration generator. This paper is focused on fast data-driven and
accurate model for the prediction of magnetic flux density using a deep neural network (DNN) in the
form of a Long Short-Term Memory (LSTM). As the input and training data for LSTM are used: supply
voltage of the vibration generator, its frequency and measured magnetic flux density. The magnetic flux
density measurements of the magnetic spring have been recorded by three Hall effect sensors. The prediction
of magnetic flux density in magnetic spring has given accurate results and good applicability for better
characterization of the device in energy harvesting system.

INDEX TERMS Deep learning, magnetic flux density, magnetic spring, energy harvesting, vibration.

NOMENCLATURE
Ĉ t New cell state vector.
bc Bias matrices of new cell state.
bi Bias matrices of input gate.
bo Bias matrices of output gate.
C t Current cell state.
C t−1 Previous cell state.
f t Forget gate vector.
ht−1 Hidden state vector from previous cell.
it Input gate.
ot Output gate.
W c Weight matrices of new cell state.
W i Weight matrices of input gate.
Wo Weight matrices of output gate.
xt Input vector at particular time.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sandra Costanzo .

ρ Mass density of magnet.
σ Activation binary sigmoid function.
B Magnetic flux density.
Br Remanence of magnet.
BHmax Maximum energy product.
Fm Approximated spring force of magnetic spring.
fr Resonance frequency.
fs Sampling frequency.
fcut Cutoff frequency.
H (s) Transmittance of Butterworth filter.
HcB Normal coercivity of magnet.
HcJ Intrinsic coercivity of magnet.
kn nth coefficient of polynomial of the

approximation of the magnetic spring.
mm Middle magnet mass.
n Natural number.
s Complex frequency.
tanh Activation tangents hyperbolic function.
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Vo Measured output voltage.
Voffset Offset voltage.
z Displacement of middle magnet.

I. INTRODUCTION
Energy consumption and environmental pollution from fossil
fuel extraction have led to the investigation and optimization
of new energy harvesting solutions and devices [1], [2],
[3], [4]. For small electronic devices, the most common
energy sources are considered solar panels and vibration
energy harvesters that use piezoelectric, electrostatic, and
electromagnetic technologies [3], [5], [6], [7], [8]. Recently
the magnetic springs are considered the promising devices
in energy harvesting system for magnetic and mechanical
properties. Magnetic springs are a fatigue-free alternative to
mechanical springs and have the potential to enable compliant
actuation concepts in highly dynamic industrial applications,
more durable than the conventional mechanical springs and
can be conveniently adjusted to the required force [9].
Magnetic spring is a set of permanent magnets that

repel each other. The repulsive force is considered spring
force, because it allows to store the energy when magnets
are brought close together - spring is compressed. The
energy is then released when the magnets move away -
spring is stretched [10]. The spring force of the magnetic
spring is nonlinear and highly depends on the magnetic
properties of the magnetic spring components and their
configuration [11], [12], [13], [14]. In energy harvesting
application magnetic spring is used as the mechanism that
hold moving magnet inside the coil. The optimization of
such magnetic spring focuses mainly on the magnetic spring
forces and the arrangement of the coils around the magnetic
spring [11], [12], [13], [15], [16]. The optimum coils arrange-
ment depends on the magnetic field distribution, especially
during the magnet movement [17], [18]. The dynamical
simulations to compute 3D or 2D dimensional magnetic
field in magnetic spring require too time-consuming for fast
iterations. To investigate the characteristics of magnetic fields
in many real applications is important to require measure-
ments or simulations and guarantee low time-consuming.
For fast analysis of distribution of the magnetic field is
considered the machine learning including neural network.
The prediction of magnetic field value at a random point in
space from a few point measurements was performed using a
generative adversarial network structure linear compared to
conventional methods such as linear interpolation, splines,
and biharmonic equations [19]. In [20] the feed-forward
neural networks were used to estimate electric field intensity
and magnetic flux density for different overhead transmission
line configurations allowing to reduce time for optimization.
Machine learning in the field of magnetism can reduce
the computational load and support the characterization of
magnetic field measurements [21], [22], [23]. The authors
have proposed the design and analysis of the magnetic
spring and vibration generator, measurements of magnetic
flux density conducted on the magnetic spring prototype, and

the deep learning model for the prediction of the magnetic
flux density in the magnetic spring excited by the vibration
generator. The open-loop prediction predicts the next time
step of a sequence of magnetic flux densities using only
the input data of magnetic flux densities of magnetic spring,
voltages and frequencies of vibration generator. The average
RMSEs over all test observations for magnetic density of
lower, middle and upper sensors are respectively 4.58 %,
0.75 % and 4.67 %. In this type of applications, high and fast
predictive accuracy and low errors are achieved.

The model-based prediction of the magnetic flux density
can support the characterization and optimization of the
magnetic spring, which in turn could enhance the usefulness
of such devices in energy harvesting applications.

This paper is organized as follows: in Section II, the
magnetic spring and vibration generator are briefly described,
and the measurements of magnetic flux density are analyzed
in Section III. The deep learning method is introduced and
modelled in Section IV. Conclusions are summarized in
Section VI.

A. MAIN CONTRIBUTIONS
This study will contribute to the growing development and
optimization of magnetic spring energy harvesting system.
The model-based prediction of the magnetic flux density can
support the characterization and optimization of the magnetic
spring, which in turn could enhance the usefulness of such
devices in energy harvesting applications. More particularly,
the main contributions are summarized as follows:

• The paper proposes the design and analysis of the
magnetic spring and vibration generator.

• In the first step measurements of magnetic flux density
have been conducted on the magnetic spring prototype.

• The time-domain magnetic density flux signal was
analyzed using low-pass Butterworth filter.

• The prediction method based on long short-term mem-
ory (LSTM) networks for magnetic flux density is
proposed.

• The deep learning model for the prediction of the
magnetic flux density in the magnetic spring excited by
the vibration generator was achieved.

• The open-loop prediction predicts the next time step of a
sequence of magnetic flux densities using just the input
data such as the magnetic flux densities of magnetic
spring, voltages and frequencies of vibration generator.

This paper is organized as follows: in Section II, the
magnetic spring and vibration generator are briefly described,
and the measurements of magnetic flux density are analyzed
in Section III. The deep learning method is introduced and
modelled in Section IV. Discussion and conclusions are
summarized in Section V and VI, respectively.

II. DESIGN AND MODELING
A. LABORATORY STAND
Laboratory stand was developed at the laboratory of the
Department of Mechatronics, the Silesian University of
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FIGURE 1. Laboratory stand for measurement of the magnetic flux density in the magnetic spring.

FIGURE 2. Vibration generator, magnetic spring and the Hall-effect
sensors.

Technology, Gliwice, Poland in order to measure the
dynamical changes in the magnetic flux density of the
vibrating magnetic spring (Fig. 1). It was equipped for
the conducted measurements by the instruments such as:
vibration generator, magnetic spring, Hall-effect sensors
CYSJ362 A, function generator Agilent Keysight 33210A,
Power Amplifier FPA2000-30W, Multichannel Power Sup-
plies TWINTEX TP-30102 and MSO2024 Tektronix Mixed
Signal Oscilloscope.

The vibration generator is controlled and powered by
the signal from the function generator Agilent Keysight
33120A amplified by the Power Amplifier FPA2000-30W.
The magnetic spring is mounted on the vibration generator
as shown in Fig. 2.

The movement of the magnetic spring is induced by the
vibration generated by the vibration generator. The three
Hall-effect sensors CYSJ362 A are supplied by Multichannel
Power Supplies TWINTEX TP-30102. The measurement of
the output voltage for theHall-effect sensors are conducted by
means of theMSO2024 TektronixMixed Signal Oscilloscope
with the sample cycle 1.6 µs.

FIGURE 3. Hall-effect sensor mounted on the magnetic spring.

1) VIBRATION GENERATOR
Electromagnetic vibration generators are used in printing
and packaging technology, as well as in the pharmaceutical
industry, generate oscillating vibrations. The vibration gen-
erator manufactured in the laboratory generates mechanical
vibration and consists of the ring permanent magnet between
two steel fastening rings, the rod with the coil and the
magnetic steel circuit enclosed in the aluminum housing. The
two membranes are placed on the bottom and top part of
the housing. Alternating voltage of the specified frequency
applied to the coil, causes the movement of the rod and the
membranes for the same frequency.

The ring permanent magnet is a sintered ferrite magnet
(F30) with a height of 12 mm, an outer diameter of 80 mm
and an inner diameter of 40 mm. The most important mag-
netic, physical and technical characteristics of commercially
available magnet materials are stated by the manufacturer
([24]) as follows:

• Coercivity HcB min. 175 kA/m
• Coercivity HcJ min. 180 kA/m
• Energy product (BHmax) min. 26 kJ/m3
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TABLE 1. Coefficients of force polynomial.

• Remanence Br 0.37 T
• Density ρ 4.5 g/cm3

The fastening rings have the inner and outer diameter
matched with the ring magnet and a height of 7mm for the top
fastening ring and 10 mm for the bottom one. The cylindrical
coil is made of copper wire with a diameter of 0.3 mm and
a length of 32.5 mm has 280 number of turns, a height of
17.5 cm, an outer and inner diameter of 35 mm and 39 mm
respectively.

2) MAGNETIC SPRING
The magnetic spring is settled on top of the vibration
generator and is moved by vibration as shown in the Fig. 2.
It consists of three cylindrical neodymium magnets that are
assembled in a cylindrical polyamide casing at the laboratory.
Themagnets are axially aligned and set up to repel each other.
The two external magnets are fixed to the screw element
of the housing, allowing the position to be determined
before the performing measurement. The middle magnet can
freely levitate between the fixed magnets. The magnetic and
physical properties of the neodymiummagnets N38 (NdFeB)
are given by the producer [25] as follows:

• Coercivity HcB min. 899 kA/m
• Coercivity HcJ min. 955 kA/m
• Energy product (BHmax) 286–302 kJ/m3

• Remanence Br 1.21–1.25 T
• Density ρ 7.5 g/cm3.
The outer magnets have diameters and heights of 5 mm,

and the middle magnet has diameter of 10 mm and a height
of 3 mm. The spacing between top and bottom magnets is
11 mm.
The repulsive force of the magnets is the spring force

and depends on their magnetic properties and the distance
between the magnets. Thus the spring force of the magnetic
spring is non-linear and depends on the position of the middle
magnet. The approximation relation of the measured spring
force of the magnetic spring is described in (1) by 9th degree
polynomial.

Fm =

9∑
n=1

knzn (1)

where kn is the nth coefficient of polynomial and z is the
displacement of the middle magnet. The coefficients are
given in the Table 1.

3) HALL-EFFECT SENSOR
Magnetic sensors have been used for the detection of
magnetic flux density in the magnetic device. For the purpose
of detecting the presence and magnitude of a magnetic field,
three Hall-effect sensors CYSJ362 A made of mono-crystal

gallium arsenide (GaAs) semiconductor material group III-V
have been mounted on the magnetic spring’s casing in
proximity of the upper, middle, and lower magnets (Fig. 3).
The Hall-effect sensors are connected between printed

circuit board, capacitors of 4.7µF and 100 nF, voltage supply
sets to 10.4 V and current sets to 0.05 A. The magnetic flux
density is proportional to the output voltage detected by the
Hall-effect sensors, affected by the temperature and supply
voltage [26]. The magnetic flux density at the temperature of
20 ◦C and for the supply voltage of 10 V can be calculated
from (2).

B =
1

3.13333
(Vo − Voffset ) (2)

where Vo is the measured output voltage, Voffset is the offset
voltage.

III. MEASUREMENTS
A. MAGNETIC FLUX DENSITY MEASUREMENT
The magnetic flux density distribution in magnetic spring
depends on amplitude and frequency of vibrating source. The
magnetic flux density change is crucial for energy generation
of the magnetic spring.

Magnetic flux density measurements in the magnetic
spring were carried out to set six input voltages Vin equal
to 1 V , 2 V , 3 V , 4 V , 5 V and 6 V and frequencies f
from 0 to 120Hz using an Agilent Keysight 33120A function
generator connected to the vibration generator.

Output voltage of the sensors measured with theMSO2024
Tektronix Oscilloscope was further converted to the magnetic
flux density by (2). The time-domain magnetic density flux
signals were low-pass filtered using the Butterworth filter.
The 2nd order filter was designed for the data sampled with
the frequency fs set to 62.5 kHz and for the cutoff frequency
fcut set to 2 kHz. The transmittance of the designed filter is
given in (3).

H (s) =
9.96 × 10−5s2 + 1.99 × 10−4s+ 9.96 × 10−5

s2 − 1.97s+ 0.97
(3)

B. MAGNETIC FLUX DENSITY IN MAGNETIC SPRING
1) MAGNETIC SPRING RESONANCE FREQUENCY
The magnetic flux density measurements results in time
series detected by the lower, middle and upper sensors for
each voltages set on the function generator Vin are shown
respectively in Fig. 4 (a), Fig. 4 (b), Fig. 4 (c) at a frequency
of 85 Hz. This frequency is considered the main resonance
frequency of the magnetic spring, emphasizing the behavior
of a magnetic spring in terms of the physical phenomena that
occurs when the magnet is subjected to external vibration
that corresponds its natural frequency. In the conducted
measurement tests, two resonance frequency of the magnetic
spring were confirmed not only at 85 Hz but also at 110 Hz.
The first one is due to the linear movement of the middle
magnet in magnetic spring [27]. It is derived specifically by
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the following equation (4):

fr =

√
k1
mm

(4)

where mm is the mass of the middle magnet, k1 is the
1st coefficient of polynomial reported in (1). The second
frequency is a result of the rotation of the middle magnet
during the movement as reported in [27], [28], and [29].

The resonance frequency of a magnetic spring plays
an important role for industrial applications in the energy
harvesting from environmental vibrations i.e. wind, tidal
waves, vehicles, and human motions, and from industrial
machinery vibrations. The magnetic spring can be used as the
clamping mechanism in the electromagnetic energy harvester
in order to work at the resonance frequency for the highest
output power.

2) MAGNETIC FLUX DENSITY RESULTS
In Fig. 4 (a) the measured values of the magnetic flux density
detected by the lower sensor in time series for each voltages
set on the function generator Vin are varying in the range of
149 mT and 157 mT . In Fig. 4(b) the measured values of the
magnetic flux detected by the middle sensor are in the range
from 145 mT to 151 mT . In Fig. 4(c) the measured values
of the magnetic flux detected by the upper sensor are in the
range from 130 mT to 142 mT .
Due to the movement of the middle magnet, the amplitude

of the magnetic flux density detected by the lower sensor on
the magnetic spring is higher than the magnetic flux density
detected by middle and upper sensors. The average position
of the middle magnet is closer to the lower magnet because
of the gravitational force, which results in the increase of the
magnetic field near lower sensor.

The maximum value of the magnetic flux density, near
156 mT , is detected by the lower sensor for the 1 V, caused
by the middle magnet proximity. In Fig. 4 (a) and (b) the
measured magnetic flux densities detected by the lower
and middle sensors for the 3 V and 4 V are lower than
magnetic flux density for the other voltages, caused by the
demagnetization of the magnetic spring. For the voltages
of 3, 5 and 6 V there is significant rise in the magnetic
flux density amplitude caused by the higher amplitude of the
middle magnet movement for the resonance frequencies of
the magnetic spring (85 Hz). The values of the magnetic flux
density detected by the upper sensor in time series for each
voltages set on the function generator Vin are similar for each
frequency (Fig. 4(c)). For the voltages from 2 V to 6 V values
vary from 138 mT to 142 mT . For 1 V magnetic flux density
value is lower (130 mT - 132 mT ), due to the low amplitude
of the external vibration of magnetic spring.

IV. METHODS
A. DEEP-LEARNING
Machine learning algorithms are considered data-driven with
data originated from measurements or simulations. The deep

FIGURE 4. Magnetic flux density detected for the frequency of 85 Hz by
(a) the lower sensor, (b) the middle sensor and (c) the upper sensor.

learning is the mapping of input data to the output domain
inspired to the biological neural network structure. A neural
network consists of multiple parameter layers that can be
trained to extract higher-level features. During the process
of optimization, the parameters are updated to minimize the
difference between a given output and the predicted value
based on the input dataset. Deep learning performs efficiently
complex computations on vast amounts of data using specific
structures and functions. In particular it focuses on using
more complex neural networks to recognize the relationships
between different inputs by observing hidden data structures.
Recurrent neural networks (RNNs) include long short-term
memory networks (LSTM). Due to their ability to understand
long-term connections between data time steps. A long
short-term memory network is a type of recurrent neural
network (RNN) frequently used to process, analyze, predict
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and classify sequential time-series data. The LSTM models
were developed to introduce memory or cell states into the
network. In this case, the cell state is considered as a container
in which the information can be added, removed and stored
over the time. The complex LSTM network structure has
different cell blocks connected in series. Each LSTM cell
consists of three gate blocks that control its state (input gate,
forget gate and output gate). The LSTM gates make small
changes to the information flowing through the network by
multiplying, deleting, and adding from memory cells. A gate
is a classical neural network consisting of weights, biases,
and activation functions. Amemory cell is controlled by three
gates (Fig. 5):

• The forget gate controls and removes useless infor-
mation from memory cells. The two input variables
applied to the gate are: ht−1 that is the hidden state
vector from the previous cell, and xt is the input vector
at the particular time. The same inputs are multiplied
by the weight matrices (W i and followed by the bias
bf ). Following this, the binary sigmoid function (σ ) is
applied to the resultant as described in (5). In particular,
if the output value for a memory state is ‘‘0’’, the
information is forgotten; if the output value is ‘‘1’’ the
information is kept for future use.

f t = σ (W i · [ht−1, xt ] + bf ) (5)

• The input gate controls and updates the addition of
information to the cell states. First, the information is
adjusted by the sigmoid function. This function acts as a
filter for all inputs ht−1 and xt . Then, a vector is created
containing all possible values of the input, using a tan
hyperbolic function tanh that gives an output from -1
to +1. The equations for the input gate vector and for
the new cell state vector are described in (6) and in (7),
respectively.

it = σ (W i · [ht−1, xt ] + bi) (6)

Ĉ t = tanh(W c · [ht−1, xt ] + bc) (7)

where tanh is the activation function, W i is weight
matrices of input gate, bi is bias matrices of input gate,
W c is weight matrices of new cell state, bc is bias
matrices of new cell state.
The current cell state is result of the Hadamard
multiplication of the forget gate and previous cell state
C t−1 and the input gate and new cell state, shown in (8).

C t = f t . ∗ C t−1 + it . ∗ Ĉ t (8)

where the operator .∗ defines the Hadamard multiplica-
tion or element-wise.

• The output gate is used to control which useful
information from the current hidden state is considered
as output. First, a vector is created after applying tanh
function to the memory cell. Then, the filter of sigmoid
function can regulate the inputs ht−1 and xt . At last,
the values of the vector and the regulated values are

FIGURE 5. LSTM architecture.

multiplied to be sent as an output and also to the hidden
state of the next cell. The equation for the output gate
vector is (9).

ot = σ (Wo · [ht−1, xt ] + bo) (9)

where Wo is weight matrices of output gate, bo is bias
matrices of output gate.

B. RESULTS AND PREDICTIONS OF MAGNETIC FLUX
DENSITY BASED ON LSTM MODEL
The open-loop prediction predicts the next time step of a
sequence of magnetic flux densities using only the input data.
The magnetic flux historical dataset is divided into training,
verification and test dataset to verify the performance of
LSTMmodel. The value of magnetic flux density is predicted
for time step t of the sequence using data collected at time
steps 1 to t − 1 (Fig. 5). The artificial neural network for
learning architecture, in the form of a Long Short-Term
Memory (LSTM) network is particularly well suited for time
series of magnetic flux density in the magnetic spring. The
inputs of neural network LSTM are considered the magnetic
flux density, the frequency and voltage. The output is the
magnetic flux density at 150 time step forward.

The neural network LSTM designer has the sequence Input
Layer with input Size of 3.

The number of hidden units that refers to the dimensional-
ity is 140. The state activation function that controls the flow
of information and gradients is ‘tanh’(hyperbolic tangent),
and gate activation function is a ‘sigmoid’.

A fully connected Layer, that takes the inputs from the
feature analysis and applies weights to predict the correct
label, has input Size of 140 and output Size of 140.

The specify training options have included the Adam
optimization and the train for 50 epochs. The observations
for training used in the neural network are about 70% and the
rest for testing/validation.
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FIGURE 6. Tests of sequences for the prediction of magnetic flux density
conducted for (a)lower sensor(b) middle sensor (c) upper sensor.

The current and previous sequences data input of neural
network LSTM network (magnetic flux densities, voltages
and frequencies) and the predicted values are shown in the
Fig.6(a), Fig.6(b) and Fig.6(c). The forecast time series data
using long short-term memory network were obtained in
Deep Network Designer implemented in Matlab. For each
prediction, use the previous prediction as the input to the
function. The test of the current and previous sequences
of neural network LSTM (magnetic flux densities, voltages
and frequencies) and the predicted values are shown in the
Fig.6(a), Fig.6(b) and Fig.6(c). To evaluate the accuracy
for each test sequence, the root mean square error (RMSE)
was calculated between the predictions and the target. The
average RMSEs over all test observations for magnetic
density of lower, middle and upper sensors are respectively

FIGURE 7. Error histogram of magnetic flux density conducted for
(a) lower sensor(b) middle sensor (c) upper sensor.

0.0458, 0.0075 and 0.0467. The errors are very low for each
sequences indicating the greater accuracy as shown in the
histograms Fig.7(a),Fig.7(b),Fig.7(c).

V. DISCUSSION
The magnetic flux density distributions are usually deter-
mined by the Finite Elements Method (FEM) models,
however in the energy harvesting system based on magnetic
spring, the demagnetization of the magnets cannot be
estimated with high performance. In [29] the 2D FEMmodel
of magnetic spring on the vibration generator exhibits an
error of magnetic flux density of 20% compared to the
measurements conducted in the laboratory. In addition the
dynamical simulation of the magnetic field distribution and
the magnetic spring movement induced by the external
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vibration requires complex, time-consuming calculations,
hence making troublesome the model development of the
inertial system. On the other hand the lower computation time
in the analysis of the magnetic flux density can be achieved
by LSTM network model. The magnetic flux density can be
predicted without the definition of the mechanical parameters
of the magnetic spring and vibration generator. LSTM can
overcome short-term memory problems, non linearity and
demagnetization effectively. In LSTM prediction the average
RMSEs over all test observations for magnetic density is
4.6 %. Thus, the accuracy of the LSTM neural network can
be considered a good solution for prediction of magnetic
density with low error, fast training of dataset and superior
performance, which is especially useful in the optimization
process of the device.

VI. CONCLUSION
The neural network LSTM has been developed for the
magnetic flux density predictions of magnetic spring excited
by the vibration generator. Experimental measurement tests
of magnetic flux density have been conducted in labo-
ratory in order to determine the magnetic distribution of
magnetic spring. The predictive model based on LSTM
is fast and accurate. It can be useful and profitable for
characterization and optimization of magnetic spring in the
energy harvesting applications in order to achieve highest
power generated by the spring or highest efficiency of such
generator.

In the future work this computational model can be
extended for various combination of the magnets in magnetic
spring for the analysis and control of the resonance frequency.
Hence, in the system design could be included and developed
the real-time control hardware through a microcontroller and
system-design platform.
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