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ABSTRACT This perspective paper introduces a novel framework for container orchestration called
CODECO. The CODECO orchestration framework relies on a data-network-computing approach to define
the best infrastructure that can support the operation of next-generation Internet applications across a
mobile, heterogeneous Edge-Cloud continuum. The selection of such an infrastructure is aligned with target
performance profiles defined by the user, such as resilience or greenness. CODECO proposes to rely on
decentralized Artificial Intelligence approaches to provide the most suitable infrastructure to an application
deployment, considering infrastructural challenges, such as intermittent connectivity and node failure.
This paper explains the current CODECO framework and gives insight into operational use-cases where
CODECO is being deployed, as relevant examples of application for such a framework. Recent developments
in the creation of the open-source CODECO framework are described and explained, allowing the use of the
framework by the research community. The paper then provides a thorough analysis of CODECO’s features
in comparison with existing orchestration frameworks, explaining the benefits introduced with this dynamic
orchestration approach.

INDEX TERMS Edge-cloud, orchestration, Kubernetes, AI/ML, heterogeneous networks, data
observability.
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I. INTRODUCTION
Next generation Internet applications, particularly those
related to the Internet of Things (IoT), are increasingly
adopting micro-service architectures. These applications
consist of multiple containerized micro-services, often based
on Docker,1 allowing them to be deployed across the Edge-
Cloud Continuum. This deployment approach provides new
opportunities to explore services with reduced latency and
optimized energy consumption.

With the increased use of Edge computing [1], [2],
approximately 40% of IoT data is already being captured,
stored, processed and partially analyzed at the Edge in
various vertical domains such as Manufacturing, Energy, and
Health. Processing data at the Edge requires a new design
paradigm for the Edge-Cloud continuum to address service
decentralization, mobility, large-scale dense environments,
and multi-tenant support across heterogeneous technologies.
Initiatives such as Gaia-X2 [3] and the International Data
Spaces Association (IDSA)3 [4] address the abstraction and
interconnection of different data spaces at a service level to
shape the design of the Edge-Cloud continuum.

However, flexible and intelligent cross-layer adaptation of
the entire infrastructure is essential for supporting the next
generation of IoT smart services. This adaptation requires
examining the infrastructure from a computing, network,
and data observability perspective. Today, such infrastructure
is addressed only from a computing perspective. A cross-
layer approach that can adapt the entire data-computing-
network infrastructure to the needs of applications and users,
is essential for handling large volumes of data across a mobile
and heterogeneous edge-cloud continuum. Data issues, such
as compliance with local and regional regulations, further
complicate the picture. To effectively use the exchanged data,
different domains require a higher degree of articulation,
which requires a secure and interoperable end-to-end data
workflow with monitoring, and adaptability across the
far Edge and Cloud. Supporting continuous architectural
adaptation and making real-time decisions about where data
is computed and stored is also a critical aspect to handle.

Addressing these challenges requires the development
of solutions capable of automating the management of
applications (setup and run-time) across the Edge-Cloud
continuum. Currently, container orchestrators [5], with
Kubernetes (K8s)4 as the de-facto container orchestration
solution, support application deployment and reduce human
intervention during application setup and run-time. However,
their effective operation across a heterogeneous and mobile
Edge-Cloud environment requires adaptation, as they were
primarily designed for Cloud-based deployments.

In this context, this perspective paper describes a
novel, context-aware and cognitive decentralized container

1https://www.docker.com/
2https://gaia-x.eu/
3https://internationaldataspaces.org
4https://kubernetes.io/

orchestration framework that is currently under development
in theHorizon Europe projectCOgnitiveDecentralized Edge-
Cloud Orchestration (CODECO).5

The work described in this paper aims at providing a
perspective on the CODECO concept and advocate a need
of such an orchestration framework in the context of next
generation Cloud-Edge-IoT (CEI) environments. CODECO
is in an early stage of development and will only be fully
concluded as a framework by the end of 2025. A first
complete release of CODECO is expected in June 2024.

This paper focuses on the presentation and discussion
of the CODECO framework. It includes the following
contributions:

• describes use-cases that require flexible and dynamic
orchestration across Edge-Cloud.

• Presents the novel Edge-Cloud CODECO containerized
application orchestration framework, software-based,
describing its functional components and operational
workflows.

• Defines, via the CODECO experimentation framework,
operational guidelines to deploying and testing flexible
orchestration in existing operational environments.

• Provides the research community with an explanation
on the developed open-source software, in particular
regarding the early-release6 of CODECO components
and tools, such as the integration of context-awareness
into the Edge-Cloud orchestration; decentralized learn-
ing approaches that can be tested via the provided code;
network probing mechanisms.

• Provides the research community with the experi-
mentation approach under development in CODECO,
which includes the integration of CODECO into the
international experimental testbed EdgeNet.7

• Provides a thorough comparison of CODECO against
other existing orchestration frameworks thus examining
different orchestration features, and challenges.

The remainder of this paper is organized as follows.
Section II provides terminology and background on K8s,
to assist the reader in better understanding the principles
behind the design of the CODECO framework. Section III
discusses use-cases where this type of container framework
is expected to be applied. Section IV describes the CODECO
framework and its sub-components, while Section VII
presents existing challenges of orchestration across Edge to
Cloud, and how CODECO aims to answer such challenges.
Section VIII gives insight on how the CODECO open-
source framework can be used for performing experiments.
Section IX describes efforts similar to this work, namely,
other orchestration frameworks, explaining key contribu-
tions from our work. The paper concludes in Section X,

5https://he-codeco.eu
6the first CODECO open-source toolkit is to be released in June

2024 via its public Eclipse repository, https://gitlab.eclipse.org/eclipse-
research-labs/codeco-project. The current code represents an early-release
which is regularly updated

7https://www.edge-net.org/
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summarising current benefits of the CODECO approach,
its main features, and future work, derived from existing
challenges.

II. BACKGROUND AND TERMINOLOGY
This section summarizes the basics of the overall K8s
operation, and provides a subset of notions and termoinology
related to dynamic container orchestration [6] to help the
reader obtain a quicker grasp of the proposed CODECO
architecture. A full set of definitions is available in CODECO
Deliverable D9 [7].

An application is considered to consist of multiple micro-
services that can run autonomously based on container
technologies, such as Docker. This is called a containerized
micro-service, or containerized application. Application
workload refers to the containerized micro-services, namely,
the binary system, data, and state, that is, a set of global
variables defined in the micro-services and required at run-
time. Thus, a containerized application consists of one or
more containerized micro-services. These micro-services are
connected to each other via specific connection policies.
Different application micro-services can be deployed on dif-
ferent nodes, i.e., different cyber-physical systems (including
virtual machines). To scale the application, allowing it tomeet
specific requirements such as bounded latency, it is possible
to consider migration strategies, e.g., transparent replication
or offloading, also known as relocation. The applications
supported in this process can be stateless or stateful. Stateless
applications do not require data storage to work. An example
is a Web search. Stateful applications maintain the state on
clusters, and require that the state (data, application status)
be kept and eventually discovered.

Furthermore, the Edge-Cloud definitions in this paper,
including the notions of far Edge and near Edge, follow
the line of thought being driven in the European initiatives
EUCEI8 and its precursor EU-IoT and Next Generation IoT
(NGIoT)9 and, the vision for smart, decentralized Edge-Cloud
environments for IoT applications [8].
As defined in K8s, a container is a package with general

application settings (workload, state, data) to allow an
application to run independently and logically within a pod.
A pod is a logical wrapper entity for containers to run on a
K8s cluster. This logical wrapper ‘‘holds’’ a group of one or
more containers with shared storage and network resources,
and a common namespace that provides a definition for
running containers. Thus, a pod is the unit of replication
in a cluster. A (K8s) cluster corresponds to the logical
environment in which pods run in a way that has been
orchestrated by a human operator (the user).

The high-level operation of K8s is illustrated in Figure 1.
A K8s cluster consists of multiple worker nodes, where
pods are scheduled, and a master node, which corresponds
to the K8s control plane. K8s nodes run in Edge-Cloud

8https://eucloudedgeiot.eu/
9https://ngiot.eu/

FIGURE 1. High-level perspective of the K8s architecture, 1 cluster,
1 master and 2 worker nodes. User DEV represents a developer wanting
to deploy an application in a specific environment. K8s considers that
environment to be relataed with available computational nodes only,
networking resources are not managed by K8s. Users represent the K8s
users. The figure is supported by the description provided in section II.

nodes, i.e., cyber-physical systems. It should be highlighted
that the K8s architecture considers that clusters holding a
single master node are extremely vulnerable to failures.
Therefore, an architecture involving at least three master
nodes is typically considered. For the sake of simplification,
this description considers a simple cluster with a single
master node.

The master nodes (K8s control plane) store configuration
and data and manage worker nodes and pods in a cluster.
For this, the master nodes integrate etcd, a key-value
internal database, which keeps the configuration of a cluster,
is based on the Raft consensus protocol [9], and which
stores/manages, among other K8s resources, the K8s Custom
Resource Definitions (CRDs), the API server (K8s API or
kube-apiserver), scheduler, and controller-manager. TheK8s
API is the control plane front-end component.

The controller is a control plane component (control loop)
that runs processes that continuously check the state of the
cluster and compare it to the desired state in etcd, and then
make or request changes if required. The controller usually
performs re-scheduling based on actions provided by the API
server, but it can also execute the action itself. For example,
the controller can scale the nodes in a cluster. The desired
state of a cluster is defined by a user via the API server.
In CODECO, a user can be either i) an application developer
(user DEV) who wants to deploy an application across the
Edge-Cloud; or ii) a K8s infrastructure manager (user MGR)
who wants to automate the configuration, deployment, and
management of clusters.

In K8s, the API server receives the cluster configuration
and application requirements from the user and stores them in
a K8s format (Custom Resource Definitions, CRDs10), based
on YAML [10], in etcd. CRDs provide a definition of Custom
Resources (CRs), listing all the configuration available to
users.

10https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28
/#customresourcedefinition-v1-apiextensions-k8s-io
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A K8s operator (a combination of CRs and a custom
controller) is a software extension that provides support for
packaging, deploying, and managing K8s resources. The
operator configuration is provided to the user in a CRD;
therefore, the operator is associated with a CRD/CR. The
operator monitors the CR and performs resource-specific
actions to ensure that the current state matches the desired
state in that resource.

A scheduler (in the case of K8s, kube-scheduler; in the
case of CODECO, a new scheduler, SWM-scheduler) handles
the pod-to-node matching decisions, so that kubelet on the
worker nodes can then execute the pods. Kubelet is the entry
point to/from the K8s control plane.

For the matching, K8s relies on a filtering and scoring
approach. In a first phase (filtering), the scheduler checks
which nodes can satisfy the scheduling requirements. These
nodes are called feasible nodes. In a second phase (scoring),
the scheduler ranks the feasible nodes for the ‘‘best’’ pod
deployment, by calculating scheduling priorities, also defined
in the desired state.

The Edge-Cloud applications are therefore orchestrated
via multiple clusters, where an Edge environment, or an
Edge-Cloud environment can be within a single cluster (e.g.,
if under the operation of a same service provider) or within
multiple clusters (e.g., across multi-domain environments).
It is important to highlight that an Edge node is different from
a K8s node. A K8s node may or may not reside on an Edge
node.

III. THE NEED: CODECO USE-CASES
CODECO is being deployed on six innovative use-cases
in four different European competitiveness markets: Smart
Cities, Energy, Manufacturing and Smart Buildings. In this
section, a summary of such use-cases is presented for the
sake of clarity. A detailed explanation of each use-case,
including equipment, technologies, stages and timeline of
development is available in the CODECO report D8 [11].
A summarized version detailing pre-conditions, triggers,
deployment and performance KPIs is publicly available via
a report from the Alliance for IoT and Edge Computing
Innovation (AIOTI)11 [12].

A. P1: SMART MONITORING OF PUBLIC
INFRASTRUCTURE
The overall objective of P1 is to improve traffic flow
and pedestrian safety in the city of Göttingen and to
contribute to the strengthening of the existing Smart City
concept through the implementation of a perimeter road
monitoring and analysis system. This system consists of
two parts: traffic monitoring at the city Edge and pedestrian
distribution monitoring in the city center. By collecting and
analyzing valuable data on traffic and pedestrian behavior
at the Edge, this use-case aims to optimize management,
reduce congestion and improve overall pedestrian safety and

11https://www.aioti.eu

comfort, while also providing valuable insights for urban
planning.

P1 is setting up two specific zones in Göttingen: the
city periphery, where there is a high volume of vehicular
traffic, and the city center, where pedestrian activity is most
concentrated. In a first phase of operation, these two areas
will be considered as a single cluster (together with the Cloud
server(s) operated by the city and by CODECO).

The periphery of the city is being equipped with a
combination of thermal cameras, computing units,LiDARs,
and communication units. This will enable the real-time
collection and analysis of traffic data, tracking vehicle counts
and congestion levels. This information can be used to
optimize traffic flow, reduce bottlenecks, and improve overall
traffic efficiency.

The collected data is relevant to improve pedestrian
safety, to manage crowd flow and to notify urban planning
initiatives. The back-end data center can receive real-time
processing results at the Edge and visualize them to the
public.

This pilot scenario, combining technological advancement
and data-driven decision-making, is the first step in trans-
forming Göttingen into a truly smart city, improving the
quality of life for its residents and visitors alike.

Edge nodes, co-located with the cameras, represent K8s
worker nodes; the control plane is expected to reside
in the Cloud. Therefore, in the context of this use-case,
CODECO is being set up to orchestrate (reallocate) resources
across Edge-based environments to support the degree of
control decentralization. The overall goal of this use-case
is to improve traffic flow, pedestrian safety and the smart
city concept in Göttingen by implementing a road/street
monitoring and analysis system.

In this use-case, the advantages that CODECO expects to
bring are:

• Scalability and Resilience: CODECO facilitates sys-
tem scalability and resilience by enabling each location
with an Edge device and sensors to act as a worker node
within the K8s system. This distributed architecture
supports independent computation and data processing
while ensuring connectivity with the broader network.
It effectively handles growing data volumes, traffic
demands, and scales to satisfy requirements.

• Efficient Data Pre-processing and Storage: The
CODECO framework enables orchestration for local
data aggregation, improving data processing and storage
efficiency. It achieves context-aware placement of appli-
cation workloads across different Edge nodes deployed
in the city.

• Automated Network Management and Adaptation:
CODECO automates the setup of interconnections for
Edge-Cloud operations, reducing manual efforts and
time invested in network configuration and mainte-
nance. This streamlines the implementation of a traffic
and pedestrian monitoring system, particularly when
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integrating various network environments (e.g., wireless
and cellular), resulting in operational simplicity and
reduced complexity.

• optimization and Valuable Insights: Through the
collection and analysis of data on traffic and pedes-
trian behavior, this use-case aims to optimize traffic
management, alleviate congestion, and enhance pedes-
trian safety and comfort. The CODECO framework
employs data-computing-network orchestration across
Edge-Cloud resources, contributing to improved user
Quality of Experience (QoE).

B. P2: VEHICULAR DIGITAL TWIN FOR SAFE URBAN
MOBILITY
P2 uses the CODECO framework to support a Vehicular
Digital Twin aimed at improving the safety of Vulnerable
Road Users (VRUs) in urban environments. Any mobility-
focused Digital Twin requires the comprehensive deployment
of ultra-reliable, low-latency services around the domain it
supports. From Vehicle to Everything (V2X) communication
capabilities to Computer Vision (CV) detectors capable of
tracking all moving parts within the mobility environment.
For this reason, the current use-case relies on V2X Roadside
Units (RSUs) and cameras to collect all the necessary
information to track vehicles and pedestrians, and then feed
it to the vehicle’s Digital Twin, which will detect and
warn of dangerous situations or behaviors. The deployment
and scalability of this service presents challenges on the
infrastructure side, where the information needs to be
processed as close as possible to the V2X nodes and low
latency communication is required. This, in turn, means
keeping track of all the moving parts at all times. The pilot
scenario focuses on the mobility environment of the interior
and adjacent street of the UPC Campus Nord12 in Barcelona.
This environment offers an interesting balance between
walkable pedestrian areas with bicycle lanes and car lanes
on the adjacent street. It includes a mix of different modes
of transport, with VRUs playing a central role. However,
VRUs can find themselves in dangerous situations when
sharing space with cars. This scenario provides an ideal
testing ground due to its size, allowing the examination of
multiple areas and their respective control measures. It also
provides a diverse representation of all modes of transport
commonly found in urban environments. As a result, this
scenario provides the perfect setting to assess and address
the challenges associated with different modes of transport to
ensure the safety and efficiency of urban transport networks.

In this use-case, the advantages that CODECO expects to
bring are:

• Ultra-Reliable Low-Latency Services: The provision
of ultra-reliable, low-latency services is essential for
this use-case, given the need for real-time tracking and
communication between V2X nodes and CV detectors.
CODECO overcomes the challenges associated with

12https://www.upc.edu/campusnord/ca

infrastructure deployment and ensures that information
is processed as close to the V2X nodes as possible,
thereby minimizing latency and enabling efficient and
responsive communication.

• Security and Transparent Cluster Setup: CODECO
ensures the security of the communication between
the different nodes in the system at the network layer
and also at the data space layer (privacy preservation),
focusing on resource efficiency from a data-computing-
network perspective, increasing the resilience of the
system and the integrity and confidentiality of the data
transmitted within the system.

• Optimal workload placement via context-aware
Edge selection: CODECO relies on context awareness
to support an optimal selection of Edge nodes based
on specific constraints (e.g., application constraints).
Specific components monitor the status of the infras-
tructure. CODECO’s ML-based orchestration engine
supports a long-term analysis based on feedback from
the scheduler component.

• Scheduling and Workload Migration: CODECO
handles the scheduling and workload migration of
applicationmodules based on vehicle or pedestrian char-
acteristics. This ensures that information is processed
within the appropriate constraints, thereby optimizing
system performance and efficiency.

C. P3: MEDIA DELIVERY STREAMING ACROSS
DECENTRALIZED EDGES
P3 focuses on the smart and efficient distribution of media
content (e.g., video streaming, gaming, Augmented Real-
ity/Extended reality (AR/ER) across a multi-domain, multi-
cluster Edge-Cloud. The use-case leverages a combined
optimization of both connectivity (from the underlying
transport network) and computational resources (supporting
MDS streamers and distribution logic). P3 promotes a
tighter computational/networking integration and optimizes
the overall resource usage while achieving a good level of
QoE. The use-case focuses on an interaction between aMedia
Delivery System (MDS), via CODECO, where a specific
CODECO component, NetMA (rf. to section IV) relies on a
decentralized concept of the IETF ALTO protocol to expose
capabilities (e.g., topological information together with
associated metrics, available resources, or functions) that
promote joint adaptation. CODECO is used to support smart
Edge selection taking into consideration both computational
and network-awareness, as well as user preferences. The aim
of this use-case is to enable a smart and efficient distribution
of media content across a multi-domain and multi-cluster
Edge-Cloud environment to ensure a high level of QoE for
users.
In this use-case, the advantages that CODECO expects to

bring are:

• Orchestration: The CODECO framework enables the
selection of the most appropriate Edge facility based on
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specific constraints on both the Edge computing (CPU,
RAM, and storage) and network (latency, bandwidth)
sides. By leveraging CODECO’s capabilities, the system
canmake optimal resource allocation decisions to ensure
the efficient delivery of media content.

• Cognitive Approach and Resource optimization:
CODECO promotes a cognitive approach that facilitates
the joint articulation of data, computation and network
adaptation. It exposes functionality as a service to
support optimal resource usage decisions, improving the
performance and overall efficiency of media content
distribution.

D. P4: COLLECTIVE DEMAND SIDE MANAGEMENT IN
DECENTRALIZED GRIDS
The proposed use-case for the distributed energy man-
agement system focuses on the implementation of a
decentralized active demand response management system
for the decarbonization of buildings. It aims to optimize
energy use, improve sustainability and increase the resilience
of buildings by integrating renewable energy sources and
enabling intelligent demand response actions. The use-
case also emphasizes the joint orchestration of computing
and networking resources to ensure efficient coordination
and management of energy-consuming devices and network
infrastructure within buildings. It focuses on achieving a
holistic view of data across the CEI continuum, enabling
the comprehensive monitoring, analysis and replication of
energy-related data. The CODECO framework leverages the
power of K8s to build a distributed energy management sys-
tem. By integrating worker nodes (which correspond to Edge
nodes in this use-case), P4 aims to achieve efficient resource
utilization, scalability, resilience and adaptability in energy
management operations, integrating the energy-related IoT
systems and computing requirements. With CODECO, the
following benefits are expected to be achieved:

• Automated Configuration and Cognitive Edge-
Cloud Management: The CODECO framework
enables the automated configuration and cognitive man-
agement of Edge and Cloud resources. In the context of
the use-case, this means that the CODECO framework
can dynamically allocate and optimize resources based
on demand response requirements, real-time energy
data, grid conditions, and consumer preferences. The
CODECO automated and cognitive approach ensures
the efficient and intelligent management of resources,
leading to optimized energy usage and improved
sustainability.

• Efficient Data Collection and Analysis: CODECO’s
MDM component (rf. to section IV) provides tools
for the efficient collection, analysis and processing
of energy consumption data and relevant contextual
information. By leveraging MDM capabilities, the use-
case can effectively monitor and analyze energy-related
data across the CEI continuum. This comprehensive

view of the data enables informed decision-making and
proactive management of energy-consuming devices.

• Resource optimization for Real-Time Demand
Response: CODECO provides the capabilities to
optimize the allocation of computing resources. In the
use-case, CODECO can be used to allocate resources
for real-time demand response decisions. This ensures
effective load management and energy optimization
by allocating resources in a way that maximizes the
efficiency of demand response actions.

• Holistic View and Comprehensive Monitoring: The
CODECO framework enables a holistic view of data
across the CEI continuum. By integrating data from
different sources and devices, the use-case can compre-
hensively monitor energy consumption, grid conditions
and other relevant factors. This comprehensive monitor-
ing enables a better understanding of energy patterns,
facilitates data-driven decision-making, and supports
the replication and analysis of energy-related data for
further optimization.

E. P5: DECENTRALIZED CONTROL OF AGVS OVER
WIRELESS
Currently, there is an increasing need to consider Automated
Mobile Robots (AMRs), such as Automated Guided Vehicles
(AGVs). While current AGV fleets are based on pre-defined
task assignments and pre-defined paths, there is an urgent
need to provide a more flexible control to support fleets
with a larger number of AGVs. On the other hand, it is
important to support the adaptation of heavy ML-based
processes to contrained Edge nodes (AGVs in the use-
case). Furthermore, the integration of wireless technologies
such as Wi-Fi6 and 5G to support a decentralized and
semi-autonomous control of AGVs brings challenges to
these use-cases, as the application deployment across an
AGV fleet needs to take into consideration aspects such as
interference and intermittent connectivity. CODECO as an
orchestration framework is applied in this use-case to assist
in an optimized deployment of the applications required to
sustain a decentralized behavior in the AGV fleet, with the
aim of achieving better energy efficiency and a more resilient
infrastructure. The use-case explores AGVs being assigned
tasks to handle, and potential failures in the fleet, allowing
AGVs (with the support of CODECO) to react in a semi-
autonomous manner.

The AGVs carry various micro-services (dockerized), such
as publish/subscribe communication services; path tracking
services. AGVs are considered as K8s worker nodes, whereas
the control plane will reside on either static or mobile nodes.
AGV micro-services are managed via CODECO, where the
CODECO components will be placed over the control and
data plane of K8s. In this use-case, the advantages that
CODECO expects to bring are:

• FlexibleControl andTaskAssignment: TheCODECO
Framework provides a flexible control system for AGV
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fleets, allowing dynamic micro-service assignment
and adaptation across the available mobile nodes.
By achieving a higher level of autonomy, the deployed
application workload can increase overall efficiency and
reduce operating costs.

• Integration of Wireless Technologies: The use-case
explores the use of network-awareness to perform the
distribution ofmicro-services. It takes into consideration
wireless networking aspects such as signal strength,
and applies these metrics to the ranking of available
nodes to deploy the application. CODECO provides
the necessary adaptive capabilities to ensure reli-
able communication despite potential interference and
failures.

• Federated Clusters and Flexibility: The ACM com-
ponent of CODECO supports the setup of single and
federated clusters, allowing for better coordination and
reduced signalling overhead. This flexibility in cluster
configuration enables efficient management of AGVs
across different locations. The use-case can leverage
CODECO’s ACM capabilities to optimize resource
allocation, reduce latency, and energy consumption in
AGV fleets.

• Real-time Metadata and ML-based Orchestration:
CODECO provides real-time metadata to support ML-
based orchestration. This capability allows for efficient
and intelligent decision-making based on the current
state of AGVs and the factory environment.

• Context Modelling and Edge Selection: CODECO
supports contextmodelling based on data (user, network,
computing). This aggregated context is used to best
select suitable nodes to perform the required operations
in the fleet, e.g., build a map, perform navigation, or take
over tasks assigned to other AGVs.

• Scheduling and Workload Migration with Inter-
mittent Connectivity: CODECO supports scheduling
and workload migration in the presence of intermittent
connectivity. AGVs in a wireless environment may
face intermittent connectivity, and CODECO provides
mechanisms to handle such situations, thereby ensuring
the smooth operation of AGV systems.

F. P6: AUTOMATED CROWNSTONE APPLICATION
DEPLOYMENT FOR SMART BUILDINGS
CODECOP6 focuses on novelmechanisms for the automated
deployments of Smart Facilities (e.g., buildings, offices) by
considering applications on the Crownstone Platform.13

Crownstones are small IoT devices containing a BTLE
MCU, a relais, a dimmer circuit and the ability to measure
current and tension with a high sample rate of 5kHz. This
enables the firmware on the device to provide accurate
insight in the behavior of the grid as well as the potentially
connected fixture or appliance. Possible anomalies can be
detected swiftly and acted upon. Crownstone is intended

13https://crownstone.rocks/

to be encapsulated behind wall sockets, switches, and light
fixtures, so is generally not visible. The memory and CPU
capabilities allow additional functionality to be installed on
the Crownstone in the form of a microapp. These microapps
run in a sandbox, are capable of connecting to another
device using communication technologies such as BTLE
or I2C, and can then be used as an extension of the
functionality of the Crownstone (e.g., a PIR sensor or a
door lock). The use-case focuses on the deployment and
management of these microapps, as they can be many and
varied.

In this context, an application is defined as a collection
of related functionalities realized by means of a set of
interconnected application components which can run either
in the Cloud, on the Crownstone Hub, or inside a Crownstone
Node. The key issue we will address is how the CODECO
technologies can help with automated deployment ofmultiple
applications on the Crownstone platform, both in single clus-
ter situations (where multiple Crownstone Hubs form a single
manageable entity with a single user base), and in multi-
cluster situations (where multiple Crownstone Hubs form
multiple manageable entities with different but potentially
overlapping user bases).

The main advantages of the CODECO framework are:

• Efficient Management of Single and Multi-Cluster
Situations: The use-case addresses both single cluster
situations, where multiple Crownstone Hubs form a
single manageable entity with a single user base, and
multi-cluster situations, where multiple Crownstone
Hubs form multiple manageable entities with different
user bases. CODECO facilitates the efficient manage-
ment of these situations. It enables the management
and coordination of resources, applications, and user
bases in a scalable and flexible manner. This allows for
effective management of deployments across different
clusters, ensuring optimized performance and user
experience.

• Real-time Metadata Management: CODECO plays
a crucial role in this use-case. It provides real-time
metadata that supports the deployment and management
of smart office/smart building applications. CODECO
collects, analyzes, and processes relevant metadata,
including application-related and contextual data. This
enables intelligent decision-making and optimization
during the deployment process, ensuring efficient
resource utilization and enhanced application perfor-
mance.

• Streamlined Application Management: CODECO
streamlines the management of interconnected appli-
cation components. The framework provides a unified
approach for managing applications across multiple
environments, simplifying deployment, monitoring and
maintenance processes. This streamlining of application
management improves efficiency, reduces complexity
and improves the overall user experience.
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IV. CODECO FRAMEWORK OVERVIEW
CODECO and its components, represented in Figure 2, form
a software-based container orchestration framework that is
interoperable with K8s. CODECO aims to support a next
generation of container orchestrators that can adapt and learn,
developing an appropriate response and adaptation to the
diverse requirements coming from the data, the application,
the system, the network, and the end-user. To the user,
CODECOhas a single interface based on the CODECOACM
component. ACM handles the operations required to support
an application deployment across far Edge-Cloud, consider-
ing the input provided by the user (application requirements,
user requirements defined in terms of networking, computing,
data). ACM installs the CODECO components and the
respective integration points between users and applications,
where the user in CODECO is an application developer
(user DEV) or a cluster manager(user MGR). ACM takes
care of the overall CODECO configuration, the acquisition
of new nodes, and the interaction with non-K8s systems.
Furthermore, ACM relies on Prometheus14 and integrates
a CODECO monitoring framework, currently focused on
infrastructure monitoring (data, network, computing) based
on application requirements and still under development.
Therefore, ACM is co-located with the control plane of the
K8s (master nodes).

The CODECO MDM component provides data workflow
observability to the other CODECO components, treating
data as an integral part of the application workload, and
integrating data observability perspectives from different
categories, for example, application, system, and network
perspectives, at different points in the CODECO operational
workflow.

SWM handles the scheduling and re-scheduling of the
application workload, based on the CODECO Application
Model (supported by ACM and provided by the user during
application setup), based on the novel data-computing-
network approach proposed by CODECO. The currently
available approach for handling placement decisions relies
on a solver which in the future is expected to provide
an optimal match between application requirements and
available resources (computational, network, data). SWM is
also a control plane component, co-located with ACM and
the K8s control plane, in master nodes.

PDLC is at the heart of CODECO orchestration. Based on
the infrastructure data collected by ACM (via Prometheus),
NetMA andMDM, PDLChas two functions. First, it provides
data-computing-network node costs (aggregated node costs)
based on specific target performance profiles selected by the
user (e.g., optimizing the overall infrastructure for resilience).
This implies that the notion of a node in the infrastructure
embodies network, data, and computing-awareness. Second,
it provides an estimate of overall system stability based on
privacy-preserving decentralized learning approaches. PDLC

14https://prometheus.io/

is currently envisioned to run on both master and worker
nodes of K8s.

NetMA provides network-awareness to CODECO and
handles secure connectivity across pods. For this purpose,
NetMA exposes networking parameters that are relevant
for reaching a close-to-optimal workload placement. For
connectivity, NetMA handles the Software Defined Network
(SDN)-to-K8s interaction via the L2S-M open-source solu-
tion. Its sub-component Network State Management handles
network monitoring, and also receives network forecasting
provided by PDLC.

The monitoring of the overall infrastructure from different
perspectives is supported by different CODECO compo-
nents: NetMAmonitors the networking infrastructure, MDM
monitors the data workflow, and ACM monitors the system
(computational nodes) infrastructure. Before giving insight
into each component, the next section provides an explanation
of the overall operation of CODECO.

V. OPERATIONAL WORKFLOW EXAMPLES
A. CREATING AN APPLICATION DEPLOYMENT
DEV is a user (application developer) deploying an
application consisting of multiple micro-services (multiple
containers) across the far Edge to the Cloud. DEV downloads
CODECO from the CODECO Eclipse GitLab and follows
the instructions to set up ACM. ACM performs cluster sizing
based on the CODECO Application Model (CAM), a YAML
file accessible by user DEV via the ACM dashboard during
application deployment setup. In this file, the user DEV
defines aspects such as the desired Quality of Service (QoS),
Quality of Experience (QoE), or other desired performance
levels for CODECO, based on specific questions provided
in the ACM dashboard. The current attributes considered in
the CODECO CAM are available via the report [13]. Based
on the specific parameters (representing the application
requirements), ACM builds the CODECO CAM and makes
it available to all CODECO components.

ACM also handles the complete K8s setup (e.g., names-
pace, databases, secrets) and makes the information available
to other K8s components as needed. For example, metadata
information, schema, can be passed to MDM (rf. to Figure 2,
I-ACM-MDM-2). Application requirements derived from the
CODECO Application Model, e.g., dedicated CPU, required
bandwidth, are made available to SWM (rf. to Figure 2,
I-ACM-SWM-1) and to PDLC (rf. to Figure 2, I-ACM-
PDLC-1), for instance.

The exposure of requirements and application/user infor-
mation also triggers the operation of each CODECO compo-
nent. PDLC defines the processes for activating the sensing
and (decentralized learning) processes for the cluster. SWM
makes a request to PDLC to obtain the initial weights to be
considered for scheduling optimization (I-PDLC-SWM-1).
NetMA triggers the definition of the network overlay when it
receives the initial deployment from SWM (I-SWM-NET-1).

After activation, PDLC periodically obtains, via available
Custom Resources (CR)/Custom Resource Definitions (CRD)
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FIGURE 2. The CODECO framework and its software based components. Each component, described in section IV, is being deployed as a set of
containerized micro-services. ACM, SWM reside on the control plane.

(I-ACM-PDLC-1,2), metadata provided by the components
monitoring the data-computing-network infrastructure, i.e.,
MDM (data observability metrics), ACM (user aspects and
application constrains via the CODECOApplication Model),
NetMA (network metrics). Then, PDLC assigns suitable
nodes a combined data-network-computing cost based on the
user selected target profiles, and stores the output on a PDLC
CRD, making it available to other components such as ACM
and SWM, which may trigger adjustments to the initial setup
process.

In parallel, the three components begin monitoring differ-
ent metrics. NetMA captures network metrics at the node,
link, and path levels, from an overlay and underlay network
perspective. This information is then exposed via specific
CRs that are accessible to all components and used by PDLC
and ACM. Similarly, MDM captures data aspects (e.g., data
compliance), generates a knowledge graph and provides the
output as an MDM CR. ACM captures user preferences and
eventually behavior, which may be useful for adapting the
overall K8s infrastructure at a later stage.

B. CODECO SUPPORT DURING CLUSTER RUN-TIME
Once the setup is complete, CODECO enters the cluster
management phase (application run-time support), targeting
user MGR. During this phase, the proposed application
(CODECO application workload) has been set up and
is running on several containers (1 cluster), 1 or more
pods per worker node. PDLC periodically receives data
from MDM (I-MDM-PDLC-1); from NetMA and ACM
(I-ACM-PDLC-1) and feedback from SWM regarding the
placement of the application workload (I-SWM-PDLC-1).
Based on this, PDLC periodically evaluates the proposed
system performance targets (e.g., greenness, service latency)
provided by Bob during application setup, and provides a cost
combination per infrastructure element via a CR (I-PDLC-
ACM-2). If there is a need for cross-layer redistribution of
the application workload, this step triggers a request from
ACM to all CODECO components. In this case, PDLC passes
a behavior estimate to SWM (I-PDLC-SWM-2) via a specific

CR; SWM starts the workload placement process. Once
the process is complete, SWM passes feedback to PDLC
(I-SWM-PDLC-1). This will not be an explicit interface;
instead, feedback will be provided via specific SWM CRs
(currently ApplicationGroup, Application, AssignmentPlan).
ACM handles the status back to user MGR, based on the
Prometheus CODECO monitoring architecture.

VI. CODECO COMPONENTS
A. ACM: AUTOMATIC CONFIGURATION MANAGER
The CODECO ACM represented in Figure 2 is based on
the Open Cluster Management (OCM)15 community-driven
project which is the upstream project for Red Hat Advanced
Cluster Management.16 In CODECO, its operation considers
three main aspects that address the integration of CODECO
across the entire Edge-Cloud infrastructure:

• Integration points between users and applications.
Mechanisms for users (e.g., user DEV) to control
and change the configuration of applications. A key
component in this context is the CODECO Application
Model (CAM), explained later in this section.

• CODECO configuration. A user request during appli-
cation deployment setup or application run-time implies
the activation and eventual configuration of CODECO
components.

• Cluster/federated cluster configuration. The user in
this case (e.g., user MGR) handles the K8s infrastruc-
ture. A specific change in the CODECO configuration
may imply the need to reinstall or reconfigure a cluster.

The current ACM sub-components are:
• OCM is used to enable end-to-end visibility and
control (i.e., control-plane functionality) across K8s-
based clusters. OCM will be used to provide the main
ACM functionality, and it will be extended to provide
support and visibility of the newly added CODECO
components.

15https://open-cluster-management.io/
16https://www.redhat.com/en/technologies/management/advanced-

cluster-management
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• Monitoring. Different CODECO components (ACM,
NetMA, MDM) collect parameters that will be used
to assist in a more flexible schedule, computing,
network, and data awareness. The CODECOmonitoring
architecture interfaces with Prometheus via ACM.

• Automated configuration via Knative and Ansible.
We will use Knative when we need scalable stateless
functions that can be easily scaled-in and -out upon
load change and Ansible to support deployment man-
agement. This is usually a requirement for many stream
processing and event-driven functions.

• Control plane for independent/isolated clusters.
There are multiple open-source technologies handling
this problem (e.g., KCP ) and CODECO’s choice
is yet to be decided. Here, the aim is to consider
mobile environments where intermittent connectivity
may prevent the registration of a cluster to the OCM
Hub.

Since ACM is the integration point towards the user as rep-
resented in 3, the user can install the CODECO framework by
simply installing the CODECO meta-operator, codecoapp-
operator17 where this process triggers the installation of
the CODECO framework on the cluster to be managed and
configured. Also, there may be the explicit need to export
more information from the CODECO system to the cluster
control-plane and towards the users, which is also performed
by ACM.

An additional relevant aspect addressed by ACM is the
CODECO Application Model (CAM) [7]. CAM is a model
for QoS/QoE requirements of an application, provided by
user DEV during the setup of the application, covering
requirements from a user, application, data, and network
perspective. An example of CAM management by ACM
is provided in Figure VI-A. The CAM description is
semantic (YAML) and defines QoS/QoE requirements with
different levels of granularity, e.g., application, micro-service
(container), and pods.

B. MDM: META-DATA MANAGER
The CODECO MDM component18 (rf. to Figure 2) collects,
links and enriches metadata related to the applications to
be deployed across Edge-Cloud. This metadata helps to
better characterize the application deployment in the Edge-
Cloud. MDM is therefore a CODECO component that acts
as a gateway between the data world (data workflow) and
the K8s infrastructure (computing). MDM is based on the
metadata management principles established by the IBM
Pathfinder [14].

MDM catalogue information includes attributes and
properties such as data source, semantic description, classifi-
cation, identification; data structure (e.g., data type, schema);
application-specific information (e.g., data analysis, curation

17https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/acm
18https://gitlab.eclipse.org/eclipse-research-labs/codeco-

project/metadata-manager-mdm

aspects); network-specific information (e.g., access latency,
bandwidth). The catalogue is continuously populated based
on a pull model as new datasets are created. Therefore, it is
populated by other CODECO components.MDMkeeps track
of the metadata and provides a common platform where
all metadata (multi-cluster) can be shared across multiple
domains. MDM also interacts with other catalogues and
provides a starting point for interfacing with the Gaia-X
service catalogue composition model and architecture to
ensure compliance and wider use.

An MDM connector interfaces with a native data system
or CRD and pushes metadata into a knowledge graph using
the native (internal) MDM API. By adding new connectors
or extending the graph model, the system can be extended
to collect any metadata required. MDMmaterializes (subsets
of) the event queue in the knowledge graph to meet the needs
of other CODECO components.

MDM integrates three subcomponents: i) MDMController
API, which implements the REST APIs that allow metadata
to be pushed into the graph database and the graph to be
queried; ii) graph database, which stores the metadata graph;
iii) connectors, which collect metadata and push it into the
graph database using the MDM Controller APIs.

The MDM Controller provides APIs for other CODECO
components to query the metadata graph and for MDM
connectors to provide metadata. The MDMController is thus
a required subcomponent for all scenarios where metadata
analysis is required for the CODECO use-case. A selected set
of MDM connectors, depending on the use-case, will provide
metadata that, through this subcomponent, will allow other
CODECO components, such as PDLC, to obtain summarized
information about the systems and data in the form of
parameters for models that provide the best scheduling for
a given workload.

The MDM graph database component is the back-
end repository of the MDM component. The metadata
events from all MDM connectors are consolidated in this
component, allowing other components to gain insight into
the distributed system from a single pane of glass. It is of
course possible to request information by directly querying
the database using cypher, but other than during development
or exploration of the metadata, the MDM component is
designed to provide this functionality via the MDM API.

MDM connectors send metadata to MDM in the form
of events. Events are structured JSON documents. An event
contains the following elements: i) the event type, either
‘‘insert’’ or ‘‘delete’’; an identifier that uniquely identifies the
connector that issued the event; a timestamp; the payload, i.e.,
the metadata.

Metadata is transmitted as entities and relationships. MDM
imposes a basic structure on both entities and relationships
to ensure that metadata can be stored as a graph. Entities
must have a globally unique identifier and a type. It is the
job of the connector to assign these. In addition, entities
contain any number of attributes. The mandatory elements
of a relationship are source and target entity identifiers and
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FIGURE 3. The CODECO component ACM, described in section VI-A, is the single point of entrance to the user, and sets the
other CODECO components.

a type. These relationships do not have any attributes. MDM
does not define or enforce a static data model. Instead, the
graph data model is defined by the structure of the entities
and relationships inserted into MDM.

C. SWM: SCHEDULING AND WORKLOAD MIGRATION
The CODECOSWMcomponent19 handles the initial deploy-
ment, monitoring and potential migration of application
workloads within a single cluster and across multi-cluster
environments. This means supporting the efficient placement
of applications and their containers across the Edge-Cloud,
derived from the information provided by PDLC (e.g.,
device and node availability, container centrality, and network
characteristics). For example, SWM handles the ‘‘best’’
placement (based on context-aware indicators) for the
containerized components of an application to be deployed in
a cluster, considering the dynamic properties of the available
infrastructure, including physical/virtual machines as well
as network nodes and links. Furthermore, this placement
is dynamically adaptable, which implies achieving efficient
(low latency, lower power consumption, data sensitivity,
and QoE) migration of containerized micro-services of an
application, including their state, across Edge and Cloud,
derived from the information provided by PDLC (device and
node availability; container centrality, network aspects).

SWM resides on the control plane of K8s. It extends
the K8s resource model by some CRs and uses the K8s

19https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/
scheduling-and-workload-migration-swm

controller pattern to implement controllers for these resources
as represented in Figure 5.

SWM consists of two subcomponents: The QoS Sched-
uler and the Workload Placement Solver. Interaction with
these subcomponents is done via K8s CRs. The main
interface between the QoS Scheduler and the Workload
Placement Solver is a gRPC interface described via Protobuf.

The QoS scheduler is a custom scheduler that is built
using the K8s scheduling framework. It runs as a pod in the
K8s cluster, and it registers as scheduler to the K8s control
plane. It implements the so-called scheduling plugins for
certain phases of the K8s scheduling life cycle. While the
K8s standard scheduler schedules each pod individually, one
of the specific mechanisms of the QoS Scheduler is that it
decides on the placement of all pods of an ApplicationGroup
at once. This is required to consider dependencies between
the pods (e.g., communication relations and QoS), and to
treat the pod placement as a graph problem, rather than
a sequential, linear problem. The deployment of the pods
within an ApplicationGroup is held back, until the placement
decision is taken, and all communication resources have been
confirmed (if applicable). The SWM QoS model consists
of two parts: the SWM Application Model (SAM) and
the SWM Infrastructure Model (SIM). SAM describes the
QoS/QoE requirements of an application in specific way that
is interpreted by SWM, derived from the global CAM in
CODECO. SIM currently describes the hardware entities that
form the execution environment for the applications. It con-
sists of computing and network infrastructure, particularly
computing nodes, network nodes, and network links. The
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FIGURE 4. Example for a potential definition of the CODECO Application Model (CAM). The CAM, explained in section VI-A, comprises application and
infrastructure requirements provided by the user during the setup of an application deployment. It also provides status to the user about the K8s
infrastructure and about the application workload.

attributes of SIM express the resources and capabilities of the
infrastructure.

The Workload Placement Solver is implemented as a
gRPC service that handles placement requests. With the
request, the client (usually the QoS Scheduler) passes the so-
called QoS model as Protocol Buffers (protobuf) messages.

An example of the SWM operation based on Figure 5 is
as follows. Via ACM, the user DEV describes the application
QoS/QoE requirements (YAML file(s) CAM). SWM relies
on this file and translates it into SAM and SIM to create a
description of the desired deployment, considering the CRs
ApplicationGroup and Application (including workloads,
channels and all relevant attributes). Once the minimum
number of Applications that are part of the ApplicationGroup
have been created, the ApplicationGroup custom controller
collects all the information required for placement (SWM
QoS Model). The SAM includes the CRs Applications,
Workloads, Interfaces. The SIM is compiled by retriev-
ing information from the associated infrastructure custom
resources: Node, Endpoint, NetworkLink, NetworkNode,
NetworkPath. The ApplicationGroup CR calls the Workload
Placement Solver and passes the QoS model. The Workload
Placement Solver determines a placement for the application

workloads, taking into account all constraints and (if it is
an optimization solver) optimized according to the defined
objective. The result is returned and placed in the CR
AssignmentPlan.

Then a pod is created for each Workload that could be
placed, and the preferred node for the pod is set according
to the placement decision. However, the deployment of the
pods is still delayed. For each Channel between Workloads
that could be placed, a CR Channel is created. Channels
between workloads placed on the same node are marked as
‘‘loopback channels’’ (they do not require connections over
the network).

For all other channels, the relevant network controller
(which monitors the creation of the channel) will react
accordingly. Depending on the network technology and
implementation of the network controller, a response could be
to monitor the occupied bandwidth for the channel and/or to
reserve/establish an end-to-end channel through the network.
In any case, the success or failure to establish an end-
to-end channel must be reported via the state of the CR
channel.Once all channels of the ApplicationGroup are in
the state ‘‘ACKNOWLEDGED’’, the deployment of the
pods of the ApplicationGroup will be initiated. K8s will

VOLUME 12, 2024 79989



R. C. Sofia et al.: Framework for Cognitive, Decentralized Container Orchestration

FIGURE 5. Representation of the CODECO SWM component Custom Resources, from the user and from the infrastructure (network, compute)
perspective. The CODECO SWM component is explained in section VI-C.

FIGURE 6. Internal architecture and interactions between the PDLC
subcomponents and other CODECO components.

deploy the pods, resulting in the download and launch of
the corresponding Containers in the selected Nodes, and the
Applications will become operational.

D. PDLC: PRIVACY-AWARE DECENTRALIZED LEARNING
AND CONTEXT AWARENESS
PDLC20 is the heart of the CODECO cognitive orchestration
and currently consists of two sub-components: PDLC-
CA (Context-awareness) and PDLC-DL (privacy preserving
Decentralized Learning). The PDLC sub-components pro-
vided in the CODECO GitLab public repository and their
interactions with other PDLC components are shown in
Figure 6.

PDLC-CA is responsible for the integration of context-
awareness into the CODECO framework. The sub-
component obtains data from other components (e.g.,
network metrics from NetMA; user metrics from ACM),
pre-processes such data (PDLC-DP) and generates context-
awareness based on a specific performance profile

20https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy -
preserving-decentralised-learning-and-context-awareness-pdlc

(PDLC-PP) requested by the user, e.g., optimal greeness of
the overall system. Specific parameters and categories of
metrics to be considered are available in prior work [6], [7],
and are illustrated in Figure 7.

For instance, ACM obtains application and user behav-
ior/preferences during the setup of an application deployment
via CAM. MDM can tag events that relate to data observabil-
ity, e.g., if a dataset is not updated within a specified time,
or if a dataset grows to exceed a specified size, a trigger can
be generated to schedule application to handle the condition.
NetMA collects network metrics via ALTO to assist in a
better definition of the infrastructure, beyond the usual view
of resources provided in K8s. The pre-processed datasets
are then made available to the context-aware performance
profiling block of the sub-component PDLC-CA, named as
PDLC-PP. This micro-service performs a combination of the
received data sets based on pre-configured heuristics that
aim at providing a measure of performance, for a specific
performance efficiency profile. For instance, assuming a user
wants to optimize the system for greenness, then this block
would select and combine weighted context datasets (e.g.,
hop count, energy consumption) in accordance with a specific
function (e.g., product of hop count and energy consumption).

Hence, this micro-service is being developed to provide
support to other plugins in K8s (towards kube-scheduler,
I-PDLC-ACM-2) and to provide an aggregated result to
SWM (I-PDLC-SWM-1). PDLC-CA can be tested via the
initial version that creates an aggregate perspective on the
infrastructure greenness and resilience.21

21https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-
preserving-decentralised-learning-and-context-awareness-pdlc/context-
awareness/pdlc-pp
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FIGURE 7. Categories of context-aware parameters being used in CODECO. Data observability parameters are provided by component MDM; application
parameters are provided by ACM, based on Prometheus and Kubernetes resources. Network metrics are provided by NetMA. User preferences are
provided by the user during application setup via the CAM. System parameters are provided by the CODECO internal components, such as NetMA, PDLC,
and ACM.

PDLC-DL goes a step further in adding intelligence
to the CODECO framework by using the collected raw
data and generated context information by PDLC-CA to
train decentralized learning models to provide forecasts
and predictions about the future behavior of infrastructure
nodes and deployed applications, providing this forecasting
results to SWM as a cost-based recommendation of suitable
nodes for different applications. Currently, the following
decentralized learning approaches are being analyzed in
PDLC-DL. Proofs-of-concept are available to the reader via
the CODECO Eclipse GitLab.22

1) Reinforced learning (RL) is being used to provide
suitable node recommendations, with the objective of
balancing different metrics usage (e.g., CPU, RAM,
bandwidth, energy).

2) Graph Neural Network Models (GNNs) are being
applied to perform exhaustion prediction for the values
of the monitored metrics of a cluster node.

1) NODE RECOMMENDATIONS BASED ON RL
PDLC is exploring RL to provide CODECO with a way to
consider the different proposed metrics (computing, network,
data) to achieve a fair environment in the sense that resources
are kept at their lowest values, while the number of pods
being allocated is kept at a maximum. The importance
assigned to these two objectives can be balanced with two
weights that largely depend on the use case at hand. The

22https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/
privacy-preserving-decentralised-learning-and-context-awareness-pdlc/
decentralised-learning/model-selection-and-training

existing code provides the reader with the possibility of
exploring two RL algorithms, Deep Queue Learning (DQN)
and Proximal Policy Optimization (PPO). The model has
been developed with a clear objective in mind, that being the
ability to easily expand the model in the future with PDLC-
CA parameters and make it use-case adaptive. Furthermore,
it serves as a foundation for future expansion to multi-agent
implementation.

In the current release, the state of the system at a time
instance t consists of the following elements:

• {Ct (n) | ∀n}: the set of the used CPU cores C of each
system node n at time instance t .

• {Mt (n) | ∀n}: the set of the used memory M of each
system node n at time instance t .

• (Cp,Mp): the requested processing power and memory
size of the next pod to allocate p.

Each time an allocation request is received, an allocation
of the pod p to a node n is suggested. Pods that are already
allocated can be suggested a reallocation or can retain the
current allocation if it is still optimal. Furthermore, the model
uses a ‘fake’ node that holds all the pods in the system
that cannot be allocated at instance t . This fake node is not
taken into account when calculating the system’s workload
as provided in Eq. 1.

To model the reward function of the RL agent, we included
two components:

• A workload balancing component Wt defined in Eq. 1:
calculated as the standard deviation of the workloads
of all system nodes Wt (n). We calculated the workload
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of a node n at instance t by summing the used CPU
Ct (n) and RAM Mt (n) of the node, normalized against
the node’s maximum CPU and RAM, C(n) and M (n)
respectively. We introduced two weights wc and wm to
take into account the relative importance of the CPU
and RAM usage in calculating this workload in order to
accommodate for different use cases where more CPU-
intensive or RAM-intensive tasks need to be allocated.

Wt = σ (Wt (n) | ∀ n)

Wt (n) = (
Ct (n)
C(n)

× wc) + (
Mt (n)
M (n)

× wm)

where wc + wm = 1 (1)

• An encouragement component et calculated as the
number of allocated pods normalized against the total
number of pods pending to be allocated at instance
t . We introduced this component to encourage the
RL agent to allocate as many pods as possible while
respecting the workload balancing introduced by the
first component. This would avoid issues with the agent
learning not to allocate any pods, as doing so would
achieve optimal balancing between nodes at 0% of
resources consumed.

Combining these two components, we arrive at the reward
function rt defined in Eq. 2. Note that since the RL agent
aims to maximize the obtained reward, we multiplied the
workload balancing component by −1. This multiplication
effectively means that the agent now aims at minimizing
the standard deviation of workloads, thus achieving a higher
workload balance. In the future, this functionwill be extended
to include other parameters from the CODECO Application
Model (Fig. VI-A) and parameter weighting will need to be
studied and optimized thoroughly per use case.

rt = −1 ∗Wt + et (2)

2) RESOURCE MONITORING ESTIMATION BASED ON GNN
The current proof-of-concept23 integrates testing performed
with two GNN models, a Spatio-Temporal Graph Neural
Network (STGNN) [15] and an Attention-Temporal Graph
Convolution Network (A3T-GCN) [16].

These two GNN models can provide predictions for the
monitored metrics of a cluster’s nodes. Both models take as
input historical time series data of each node (e.g., CPU or
memory usage) as well as information about the topology of
the cluster, so that they can take into account the spatial as
well as the temporal dependencies of the nodes and provide
predictions about the above parameters in future time steps.
These predictions will be fed as input features to the RL
models of PDLC-DL to improve their performance and help
them to provide an improved pod allocation plan to SWM.
In addition, the predicted parameters can be fed as input to the

23https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/privacy-
preserving-decentralised-learning-and-context-awareness-pdlc/
decentralised-learning/model-selection-and-training/-/tree/main/ICOM-
GNNs?ref_type=heads

ACM component to provide insight into the future resource
usage of the nodes and allow SWM to make informed
decisions and trigger adjustments to the initial setup.

The STGNN can predict future values of nodes’ metrics
based on historical observations, by modelling both spatial
and temporal dependencies among nodes. The nodes’ topol-
ogy is mapped into a graph structure and the model consists
of a Graph Convolution Layer and a Recurrent Neural
Network layer. The Graph Convolution Layer applies graph
convolution to the input to get the nodes’ representations
over time, so that for each time step, a node’s representation
is informed by its neighbours’ representations. The Graph
Convolution is computed as in (3).

hl+1
i = σ (bl +

∑
j∈N (i)

1
cij
hljW

l) (3)

where N (i) is the set of neighbors of node i, cij is the
product of the square root of node degrees (i.e., cij =
√

|N (i)|
√

|N (j)|), and σ is an activation function.
The nodes’ representations are computed by multiplying

the input features by the node’s own weight and then
each node’s updated value is calculated by aggregating the
neighbors’ representations and then multiplying the results
by the node’s weight. The output of the layer is computed
by combining the nodes representations. Based on the input,
the graph convolution layer produces new tensor that captures
the representations of nodes over time. To process the nodes’
representations over time, a Recurrent Neural Network layer
is utilized, in this case a Long Short-Term Memory (LSTM)
layer.

Regarding A3T-GCN, this model is an extension of the
Temporal Graph Convolutional Network (T-GCN) model and
additionally uses an attention mechanism. T-GCN uses a
GCN for the spatial aggregation, in order to capture the
topological structure of the data and a Gated Recurrent Unit
(GRU), in order to capture the temporal features using the
time series with spatial features. The T-GCN model takes as
input n historical time series data to obtain n hidden states (h)
that cover spatiotemporal information: ht−n, . . . , ht−1, ht .
ht is calculated as ht = ut ∗ ht−1 + (1 − ut ) ∗ ct ,

where ut at time t is the update gate, meaning the factor that
controls the degree to which the previous status is brought
into the current status and ct is the memory content stored
at time t. ut is defined as ut = σ (Wu[f (A,Xt ), ht−1] + bu),
where f (A,Xt ) represents the graph convolution process,
with A being the adjacency matrix (graph) and Xt being the
input features at time t, and W,b represent the weights and
deviations of the training process respectively. Additionally,
ct is calculated as ct = tanh(Wc[f (A,Xt ), rt ∗ ht−1] + bc),
where rt corresponds to the reset gate, which is used to control
the degree of ignoring the previous status, and is calculated
as rt = σ (Wr [f (A,Xt ), ht−1] + br ).
Moreover, an attention mechanism is utilized, in order to

re-weight the influence of historical values and to capture the
data variation trends. The hidden states are given as input to
the attention model and the weight at−n, . . . , at−n,at of each
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hidden state is calculated by the softmax function, using a
multilayer perception. A weighted sum is used to calculate
the context vector that captures the variation information
and for the output, the forecasting results go through a fully
connected layer.

Furthermore, PDLC-DL will use MLOps techniques to
deploy these ML models and guarantee that they efficiently
receive data from other components and output a multi-
objective estimation. The steps in the pipeline will include
the processes needed for the (re)-training of the decentralised
models. Once the learning process is complete, the CODECO
MLOps pipeline will proceed with deploying the trained
models to their target environment/ proper Edge nodes.
This involves packaging the models, integrating them into
the target system, and monitoring their performance and
behavior. Model monitoring will help in detecting anoma-
lies, ensuring model fairness and accuracy, and triggering
retraining or updating of models, when necessary, which
leads to a completely self-training and self-healing Edge-
Cloud continuum.

E. NETMA: NETWORK MANAGEMENT AND ADAPTATION
NetMA24 is an advanced network management and adap-
tation solution designed to streamline the configuration
of interconnections, enhancing the flexibility of Edge-
Cloud operations. It effectively addresses the integration
of inter-networking control, catering to diverse network
environments, including fixed, wireless, and cellular net-
works that are anticipated to be managed by CODECO.
Within CODECO, NetMA handles critical aspects such
as network softwarization, semantic interoperability, secure
data exchange, predictive behavior, and integrated network
capability exposure through standard-based mechanisms and
K8s APIs. Furthermore, AI/ML techniques are employed to
give insights from network events, facilitating closed-loop
automation and adaptive control. In the area of network
softwarization, NetMA focuses on providing Function-as-a-
Service (FaaS) to the Edge and automating network resource
management to meet specialized service requirements.
It actively promotes the integration of diverse networking
domains and extends the physical reach of computing
facilities, ensuring seamless semantic compatibility among
internetworking services. In NetMA, network exposure
handles the exposure of CODECO networking metrics
to other CODECO components (e.g., ACM, SWM). The
exposure will be handled periodically and may also be
handled on-demand. Internal NetMA components, such as
the Secure Connectivity component will also request specific
data from this component.

The network exposure module is expected to provide state
information at a link level, state information at a path level.
Examples of parameters considered in NetMA are provided
in Table 1.

24https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/
network-management -and-adaptation-netma

TABLE 1. Minimum subset of network metrics expected to be made
available by NetMA.

The network state management subcomponent compo-
nent focuses on monitoring network data using a network
performance probe. The probe is designed to measure the
proposed network metrics (rf. to Table 1.

The NetMA MEC Enablement brings the possibility to
integrate data derived from far Edge devices and non-K8s
systems, by providing an integration with the ETSI Multi-
Access Edge Computing (MEC) APIs.

An example usage scenario is as follows. User DEV
requests via the CODECO ACM the installation of a
distributed application containing multiple micro-services
across the Edge-Cloud continuum. The request includes
information about the MEC APIs that the application wants
to use. CODECO provides an optimal operating environment
(cluster, multi-cluster) for the application to run, placing
the different micro-services across the far Edge-near Edge
Cloud. CODECO allows the micro-services running on the
far Edge to use the requested MEC APIs that exist on the
MEC platforms on specific near Edge nodes.

One such example is the use of the MEC Location API
by a streaming service to perform resource reallocation (e.g.,
channel bandwidth) to mobile users, depending on their
mobility state, to relieve an overloaded antenna. This can
be done by reducing the resolution and thus the bandwidth
provided to mobile users evaluating the service on a mobile
node, e.g., a car.

The NetMA secure connectivity subcomponent serves as
the primary connectivity mechanism within the context of the
project, and is based on L2S-M [17]. In short, L2S-M enables
the creation and management of virtual networks in micro-
services-based K8s platforms, allowing workloads (or as they
are commonly referred, pods) to have secure and isolated
link-layer networks. L2S-M achieves this virtual networking
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model through a set of Programmable Link Layer Switches
(PLS) distributed across the platform, which form an overlay
network relying on IP tunnelling mechanisms (specifically,
using Virtual Extensible Local Area Networks (VxLANS).
This overlay of programmable link-layer switches serves as
the basis for creating virtual networks using Software Defined
Networking (SDN).

To support the fully programmable aspect of the overlay,
L2S-M uses an SDN controller to inject the traffic rules
into each of the switches, facilitating the implementation
of distributed traffic engineering mechanisms across the
programmable data plane. For example, priority mechanisms
could be implemented in certain services that are sensitive
to specific network requirements, e.g., latency. Figure 8
provides a representation on the current design of the NetMA
secure connectivity.

This design considers a new module that has been
incorporated into L2S-M to address the first of the above lines
(i.e. collecting performance overlay information), referred to
as L2S-M Performance Measurements (LPM). This module
is designed to flexibly and automatically collect performance
metrics of the connectivity provided by L2S-M within
a single K8s cluster. To achieve this, LPM performs a
comprehensive network performance profiling of the overlay
network, taking into account various network performance
metrics (e.g., available bandwidth, end-to-end delay, etc.).
LPM then facilitates the publication of the collected metrics
via its LPM Collector component and a dedicated HTTP
endpoint within the cluster. All details of the development of
LPM are carefully documented in the CODECO repository.25

The operation represented is as follows:

1) L2S-M collects different overlay network performance
metrics through the LPMmodule (single cluster overlay
information). This information is necessary for the
internal operations of L2S-M, as well as to provide it
to the SWM component.

2) The sCCO discovers the overlay network topology
leveraging the L2S-M SDN controller and receives the
performance metrics from the LPM Collector.

3) Then, the sCCO uses its plugins to expose relevant
information to other CODECO components in the form
of CRs. In particular, the overlay network topology, and
its performance metrics are provided to the SWM to
determine the network path selections.

4) In addition, the sCCO processes and handles requests
(in the form of CRs) from other CODECO components.
For instance, the SWM requests the creation of a virtual
network to connect two different pods. The request
specifies the network path to be used and QoS demands
through the appropriate CRs.

5) To create the network path, the sCCO installs at
every PLS involved (through its control network) the
appropriate traffic-flow rules using its SDN controller.

25https://gitlab.eclipse.org/eclipse-research-labs/codeco-project/
network-management-and-adaptation-netma/secure-connectivity

6) The sCCO confirms the creation of the network path and
the QoS demands. Eventual QoS situations (e.g., link-
congestion) are notified to SWM using the appropriate
CR.

VII. ORCHESTRATION CHALLENGES AND CODECO
ANSWERS
The overall aim of CODECO is to contribute to a smoother
and more flexible support of services across the Edge-
Cloud continuum via the creation of a novel, cognitive
Edge-Cloud management framework. The focus is on a
smarter management of highly distributed environments
based on heterogeneous networks and integrating mobile,
resource-constrained devices. This section goes over themain
challenges detected with container orchestrators, and how
CODECO answers such challenges.

A. AUTOMATED EDGE CONFIGURATION AND
CONTEXT-AWARE MANAGEMENT
K8s and similar orchestrators base their management opera-
tions on a set of scripts/playbooks defining/running the steps
required to achieve a given desired status, be it infrastructure
or application configurations. More recently, with the K8s
and operators’ trend, this is being replaced by a declarative
model, where the desired status is defined and then a set
of controllers oversees all the required actions to make the
real status match the intended one. This is already a common
pattern in K8s or OpenShift environments. There are different
tools available to write operators and enhance the K8s APIs
with them. But there is still a need for multiple clusters,
as well as for cooperation/synchronization between them.
To increase the degree of automation CODECO integrates
via its component ACM novel automated management
mechanisms capable of supporting the setup and application
runtime workflow in a way that integrates adaptation of the
infrastructure and node resources reducing human interven-
tion. To bring a holistic approach where the infrastructure
integrates computational, networking and data observability
resources, CODECO introduces the CODECO Application
Model (CAM). The CAM is a model based on YAML that
captures application and user requirements from a node,
network and computational perspective during the applica-
tion setup. This is essential to allow CODECO to define an
optimal and flexible architecture for a specific application
and its interconnectedmicro-services. Additionally, the CAM
provides the end-user with status information about the
infrastructure and the application status, based on information
monitored by CODECO components.

B. LACK OF CONTEXT-AWARENESS AND LIMITED VIEW
OF THE INFRASTRUCTURE
Adaptive processes in the context of Edge-Cloud envi-
ronments supporting heterogeneous mobile devices require
context-awareness. Context can be derived from different
indicators, e.g., application goals and requirements; node and
network resources; surrounding environment aspects (e.g.,
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FIGURE 8. Example of secure connectivity provided by NetMA considering a single cluster deployment. NetMA and its secure connectivity approach are
described in section VI-E.

location, nearby nodes, etc.). The integration of context-
awareness into the network and applications to allow for
adaptation has been so far handled in an ad-hoc way,
often associated to the specific service to be provided.
This adaptive process requires distributed behaviour learning
and inference techniques that can support decentralization
across Edge-Cloud while preserving the privacy of the
raw training data. Relevant in this context is the analysis
and proposal for hybrid FL that addresses the Edge-Cloud
continuum as a multi-layer, cluster-based structure. Current
orchestrators miss a holistic perspective of the application
(and its micro-services) to be deployed and managed. It also
requires a detailed perspective of the overall infrastructure
which relates with data, computational and networking.
In contrast, orchestrators focus on the computational aspects
only. A flexible management requires the integration of
more knowledge on the application, infrastructure, as well
as situation/environment. However, by integrating more
knowledge, the complexity of selecting an optimal graph to
deploy or re-deploy the application workload. To address this
complexity, CODECO proposes to consider a specific set of
data, network, compute metrics that are suficient to capture
the overall infrastructure status from a network perspective,
data observability perspective and computational perspective,
so beyond the current orchestration approach. To reduce the
complexity of injecting a heavy list of parameters directly
into the scheduling process, CODECO considers a meta-data

aggregation approach (component PDLC) which provides
nodes with a cost associated with optimization target profiles
proposed by the user, for instance, greenness, resilience. This
data aggregation considers data observability, network, and
computational metrics monitored by CODECO components,
or already available in the K8s ecosystem.

C. CROSS-LAYER ADAPTIVE WORKLOAD MIGRATION
K8s scheduling approach focus on the optimization of the
infrastructure from a computational perspective. K8s today
supports aspects such as autoscaling or load-balancing. In the
context of the CODECO SWM component CODECO is
advancing the scheduling via a novel approach for graph
optimization, which considers the infrastructure as a set of
computational, networking, and data workflow resources.
Moreover, the monitored metrics in CODECO together with
AI/ML are used in the component PDLC to provide SWM
with additional information on the stability of the overall
infrastructure. PDLC is studying different AI/ML approaches
and in particular approaches focusing on federated clusters
(decentralised AI), to assist in providing the CODECO
scheduler (or any scheduler capable of accepting new
metrics) in making a weighted (informed) decision about
the placement. This analysis took into consideration AI/ML
approaches capable of providing privacy preservation aspects
- however, this aspect will become more relevant in federated
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cluster environments, which is a future aspect to be developed
in CODECO.

D. AI APPLICATION IN ORCHESTRATION
Adaptive processes in the context of Edge-Cloud envi-
ronments supporting heterogeneous mobile devices benefit
from the application of AI. Moreover, considering that
the infrastructure is mobile, any adaptive process needs to
integrate a way to handle distributed behaviour learning
and inference techniques that can support decentralization
across Edge-Cloud while preserving the privacy of the raw
training data. Relevant in this context is the application of
Federated Learning (FL) in Fog computing, and hybrid FL
that addresses the Edge-Cloud continuum as a multi-layer,
cluster-based structure. Split Learning (SplitNN) is a more
recent distributed and private deep learning technique that
can be used across edge-cloud devices while improving in
terms of scalability and minimizing the need to share raw
data directly. Another relevant learning techniques regards
Swarm Learning, an immensely powerful technological
concept for industrial applications that involve cyber-physical
systems, as it can provide flexibility in learning based on
the interaction of IT systems, CPS systems and humans.
It refers to the deployment and use of specialized AI solutions
that mimic the decision making of swarms i.e., solutions
that synthesize solutions from decentralized self-organized
agents that operate autonomously based on local information.
This decentralized operation of swarm intelligence systems
obviates the need for centralizing knowledge, thus offering
speed, scalability, and potential for devising optimal solu-
tions. These properties are highly desirable in the case of
deployment reconfiguration scenarios, where new optimized
workflows must be devised over a new or altered configura-
tion of human workers and cyber-physical systems. Swarm
intelligence has been used in many different production
scenarios in the manufacturing context (e.g., production
scheduling) with machines and cyber-physical systems
playing the role of swarms (or ‘‘modules’’) in different
granularities. Recently the H2020 MAS4I project which has
devised a multi-agent architecture that enables interoperabil-
ity and collaboration towards realizing autonomous modular
production and human assistance. CODECO goes beyond the
state of the art by proposing to rely on decentralised AI/ML
approaches, such as SplitNN, GNN and Swarm Learning,
in considering a cross-layer approach involving parame-
ters collected from the network, application requirements,
data models and meta-data compliance aspects and user
behaviour. CODECOwill support the automated deployment
and orchestration of Edge-based services, via the support of
elastic models which will be exploited both for the initial
setup and for runtime adaptations, while also demonstrating
the merits of the swarm intelligence concept for modular
and reconfigurable allocation of resources in a cloud/edge
environment, towards optimization in complex scenarios
where resource allocation develops on both Cloud software
and Edge cyber-physical systems. Specifically, CODECO

will design and implement decentralized agents that will
directly map to the resource management components of
the CODECO Cloud-Edge infrastructure. These modules
will be enhanced with decentralized decision support algo-
rithms that consider local information only, while being
able to contribute to the global optimization through their
participation in the swarm network. To this end, appropriate
swarm algorithms (e.g., Ant Colony Optimization) are being
be explored. Leveraging the self-organizing nature of the
swarms and standardized interfaces to Cloud-Edge devices
the project will significantly accelerate the (decentralized)
optimization of cognitive Cloud reconfiguration use-cases
(e.g., optimization of resource allocation in heterogeneous
Cloud-Edge scenarios). The automated adaptation provided
by CODECO will be developed in the component integrating
Context-awareness, Decentralised Learning, and Inference.
A summary of the CEI technology enablers handled in
CODECO is provided in Table 2.

VIII. EXPERIMENTING WITH CODECO
This section covers current efforts concerning experimen-
tation in CODECO. The section provides input into the
CODECO data generator and describes the progress made
so far in enabling the integration of CODECO in EdgeNet,
as well as the initial efforts to explore the EdgeNet
intrinsic features that are relevant to our project and how
they can potentially be leveraged to accommodate external
experimenters. In addition to EdgeNet, CODECO expects to
consider additional experimental infrastructures including a
CODECO shared facility (public Cloud based); CODECO
partners’ testbeds, as well as the open SLICES26 and
CloudLab27 testbeds.

A. CODECO EXPERIMENTATION APPROACH
Figure 9 illustrates the novel CODECO experimentation
system and its basic workflow [18]. This system is based
on K8s CRDs and customized operators, so the involved
controllers do not communicate directly. Instead, they watch
the changes of particular custom resources and respond to
these updates. The main components of the system are the
Experiment and the Infrastructure Controllers.

The Experiment Controller receives the definition of an
experiment in YAML format, which includes details such as
the number of replications, benchmarks to execute, parame-
ters of the requested resources, and the application to run in
CODECO. Its first step is to communicate with customized
Infrastructure Controllers that act as drivers for heteroge-
neous infrastructures. These controllers communicate with
the Experiment Controller via a uniform interface and receive
specific resource demands, such as the number of servers for
masters and workers of a particular type. They then act upon
these requests by communicatingwith the infrastructures they
are responsible for, using technology-specific interfaces to
allocate resources and return their configurations, including

26https://portal.slices-sc.eu
27https://cloudlab.us
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TABLE 2. Adaptive CEI technology enablers and answers from CODECO.

IPs and hostnames. All access credentials and SSH keys are
exchanged using Kubernetes secrets.

An equivalent process is followed by an EdgeNet Infras-
tructure Controller that allocates resources in the EdgeNet
infrastructure. For example, it can deploy service consumers
globally that participate in the benchmarking. Furthermore,
we also support the automated installation of our own

EdgeNet instantiation as part of the experiment definition.28

Our next plans include experimenting with multi-cluster
EdgeNet installations, such as between regular and CODECO

28https://gitlab.eclipse.org/eclipse-research-labs/codeco
-project/experimentation-framework-and-demonstrations/Edgenet-
framework
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FIGURE 9. The CODECO experimentation framework, described in section VIII-A., and its approach to support experimentation in large-scale
environments, e.g., EdgeNet, SLICES, Cloudlab, or dedicated shared cloud testing environments.

EdgeNet deployments, based on the recently introduced
federation capabilities of EdgeNet software.

With the resource allocation in place, the Experiment
Controller can now form an application definition and
pass it to the CODECO ACM. During the application’s
operation, other CODECO components, such as PDLC, and
MDM, communicate or produce measurements, which are
then retrieved from the Experiment Controller. After the
completion of the application or the experiment, the Exper-
iment Controller consolidates all the inputs and provides
the experiment output in YAML format. This output is
then passed to the Results Visualization component, which
produces graphs for visualization purposes and generates the
output in PDF format.

B. THE CODECO DATA GENERATOR
A major problem in the Edge-Cloud continuum resource
orchestration domain is the limited amount of data (or
lack thereof) prior to application deployment and execution.
To address this issue, a synthetic data generator29 has been
implemented. Overall, the CODECO Data Generator (DG)
mimics the process of the cross-layer data collection from
the CODECO components (ACM, MDM, NetMA), and as
output results in a consistent data format for further analysis.
In order to evaluate the functionality of the DG, a custom
application (sample) is employed, operating within a default

29https://gitlab.eclipse.org/eclipse-research-labs/codeco-project
/experimentation-framework-and-demonstrations/data-generators-and-
datasets/synthetic-data-generator

FIGURE 10. The CODECO data generator provides synthetic K8s
infrastructure data, based on the CODECO metrics concept and on the
resource models for the CODECO monitoring components (ACM, MDM,
NetMA).

cross-architecture K8s cluster to generate the necessary
data. DG integrates two components. The DG Collector
gathers values for already defined metrics for which no more
calculations are needed, based on the cross-layer attributes
provided in the CODECOD11 report [13]. Currently, metrics
that are already available in K8s/Prometheus are fed to the
data generator, as Prometheus is the basis for the CODECO
monitoring aspects and it constitutes a well-suitedmonitoring
solution for Edge-Cloud orchestration. TheDGSynthesizer is
capable of handling composite metrics that cannot be directly
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TABLE 3. Comparison of CODECO with related Edge-Cloud orchestration
frameworks.

acquired via the CODECO monitoring architecture. For
instance, features such as data freshness (healthiness of the
node based on data freshness) may not be directly retrievable
from other components. This component will further be
explored in alignment with the data aggregation aspects
under development in the CODECO PDLC (PDLC-CA)
component. Figure 10 provides an overview on how the DG
acts interacts other CODECO components.

IX. RELATED WORK
This section reviews previous work on Edge-Cloud orches-
tration frameworks, summarizes their functionalities, and
compares them with our proposed framework. Table 3 lists
the reviewed frameworks and highlights their capabilities
with respect to five functionality categories: 1) Auto-
mated Configuration (AC), 2) Dynamic Scheduling and
Workload Migration (DSWM), 3) Context-Awareness and
Decentralized Learning (CA-DL), 4) Network Management
and Adaptation (NMA), and 5) Metadata Management
(MDM). For further reading on Edge-Cloud orchestration
frameworks, we refer the reader to surveys such as [19], [20],
[21], [22], and [23].

As can be seen from Table 3, none of the studied
frameworks addresses all of the identified feature categories.
Furthermore, the majority of the studied frameworks focus
on single-cluster orchestration, with only a few explicitly
addressing multi-cluster and multi-Cloud scenarios [24],
[26], [38], [52]. In-cluster distributed and decentralized
solutions are more common [29], [30], [31], [34], [37], [40],

[46]. However, the most ubiquitous setup we found consists
of single-cluster centralized orchestration.

In contrast, the CODECO framework considers all five
feature categories, from automated configuration to network
management and adaptation. The integration of cross-layer
context awareness and decentralized learning is particularly
novel in CODECO, as is the inclusion of a metadata
management layer, which is only considered in a handful
of previous works. Furthermore, CODECO follows a decen-
tralized operating paradigm, utilizing decentralized learning
and decision making, and its design also considers use
in federated cluster scenarios. The following subsections
provide a more detailed comparison between CODECO and
previous work in each of these categories.

A. AUTOMATED CONFIGURATION
Several works have addressed the issue of automated
application configuration, deployment and customization
in different ways in the reviewed literature. For example,
DECIDE proposes a manager component that provides a
test environment to simulate different infrastructure and
application deployment scenarios [27]. On the other hand,
CHARIOT includes a custom language to model configura-
tion information as a set of constraints and a finite look-ahead
algorithm to compute the optimal configuration settings [37],
while LeSO manages the deployment of micro-services as
sub-slices at the Edge [33].

Other frameworks have taken approaches that are coupled
with specific container orchestration tools, such as K8s.
In this sense, Sophos extends the K8s control plane
with a controller that periodically updates the application
configuration graph with the set of inter-pod affinity rules
between the application micro-services [25]. On the other
hand, MiCADO-Edge automatically deploys complex sets of
interconnected micro-services using KubeEdge,30 an open-
source orchestrator that extends Kubernetes clusters to non-
Cloud workers [24]. Examples of other Edge-oriented K8s
automation facilities include Knative31 for rapid event-driven
scalability and serverless deployment, KCP32 for multi-
cluster solutions designed for Edge-Cloud deployments, and
Flotta33 to meet the stringent requirements of even more
constrained environments such as the far Edge.

Despite recent advances in multi-cluster, Edge-focused
automated configuration systems, most approaches only
partially address the challenges posed by the Edge-Cloud
continuum, such as providing seamless end-to-end con-
nectivity, handling device and communication protocol
heterogeneity, and effectively dealing with scalability and
elasticity issues.

CODECO aims to provide robust provisioning, configura-
tion and synchronization mechanisms specifically designed

30https://kubeEdge.io/en
31https://knative.dev
32https://github.com/kcp-dev/kcp
33https://project-flotta.io
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for federated cluster environments spanning the Edge-
Cloud continuum. It will do this by building on several
existing technologies (e.g., OCM, Flotta, KCP, Knative)
and extending their capabilities to efficiently support multi-
clustering and resource management at the Edge. In addition,
CODECO aims to explicitly cover novel Cloud-to-Edge use-
cases, addressing a variety of challenges not previously
considered in a single framework. To evaluate the ability of
the CODECO framework to address the specific requirements
of such use-cases, the technical advances provided by
CODECO, including ACM performance, will be extensively
evaluated in real-world experiments.

B. ADAPTIVE SCHEDULING AND WORKLOAD MIGRATION
CODECO provides adaptive scheduling, workload orches-
tration and migration via the SWM component, which
specifically addresses synchronization issues in multi-cluster
environments.

Existing scheduling and workload migration mechanisms
address synchronization issues in single-cluster environ-
ments, focusing on specific aspects [53]. For example,
the Intel Telemetry Aware Scheduler (TAS) [54] supports
telemetry-aware scheduling and intelligent workload place-
ment in Kubernetes, enforcing a user-defined telemetry pol-
icy based on computing node health metrics. The lightweight
Kubernetes-based Event DrivenAutoscaler (KEDA)34 allows
pods to be invoked based on external events, extending the
native autoscaling capabilities of K8s. KubeSphere35 is a
well-known scheduling mechanism in hybrid multi-Clouds
that dispatches tasks to connected K8s clusters based on
custom policies and fairness goals, eliminating the need to
hold tasks for later scheduling [55].

Current scheduling solutions are also limited by the lack
of network awareness in scheduling decisions [56]. The
K8s network-aware scheduler plugin addresses this issue by
enabling latency- and bandwidth-aware pod scheduling that
considers both the application and infrastructure network
topology. It establishes network weights between regions and
zones to reduce latency. However, the scheduler has known
limitations, including the lack of a dedicated controller
(such as the network-topology-controller project36) to handle
bandwidth allocation and update network weights based on
real-time latency measurements. It also introduces a custom
plugin that cannot be combined with other plugins accessing
the same extension point, potentially leading to blocking
decisions and deadlocks in sequential pod scheduling. As of
now, Seamless Computing is based on a comprehensive
QoS model [57] that considers application requirements and
infrastructure capabilities (computing, storage, network) to
optimize the deployment of distributed applications across
the Edge-Cloud.

34https://keda.sh
35https://www.kubesphere.io
36https://github.com/jpedro1992/network-topology-controller

When considering federated clusters, additional challenges
need to be addressed. Multi-cluster systems currently lack
concrete co-scheduling mechanisms, and only recently have
new synchronization mechanisms been proposed. These
include the K8s Sigs co-scheduling plugin37 (which is in beta
status), Admiralty,38 the k8s-spark-scheduler39 (no longer
maintained), and recent research efforts such as RLSK [44]
and Twine [58].
CODECO extends the notion of seamless computing [59]

through advanced scheduling, workload orchestration, and
migration, particularly in federated clusters. It incorporates
different categories of data (data-computing-network) and
context-awareness into the scheduling loop. For the network-
awareness integration, CODECO follows the network-aware
scheduler probing proposal for bandwidth and latency as
a starting point [60]. It integrates the estimation provided
by PDLC (ML/DL decentralized, on-demand approach) to
enable well-informed scheduling and migration decisions.
Finally, it supports workload migration in challenging cases,
such as highly heterogeneous environments with cluster-
specific requirements, mobile networks with intermittent
connectivity, and scenarios with mobile far Edge nodes that
require automated remote reconfiguration of computing and
data processing modules.

C. CONTEXT-AWARENESS AND DECENTRALIZED
LEARNING
In dynamic and heterogeneous CEI environments, the use
of context information in the orchestration decisions faces
significant challenges, such as limited indicators, diverse
interconnected devices and data types, and resource con-
straints [61]. The most common context-aware approaches in
orchestration frameworks have been network and resource-
aware [25], [45], [49] and application-aware [35], whereas
additional context indicators have been proposed in [61].
For more detailed discussions, multiple surveys have been
elaborated on the status of integrating context-awareness
into the Edge-Cloud continuum [8], [62], [63]. It is relevant
to highlight the recent effort of the EUCloudEdgeIoT
(EUCEI)40 initiative in creating a reference architecture for
the Edge-Cloud continuum, based on input and efforts under
development in European projects, in association with topics
such as cognitive computing, meta-OS, swarm computing.
In CODECO, which is one of the projects contributing to
the creation of the EUCEI reference architecture, the main
differentiator is the use of combined sensing approaches
to integrate context (combined heuristics derived from
network, data observability and computing metrics regularly
monitored by CODECO), thus increasing flexibility by
considering a cross-layer metrics approach, while at the same

37https://github.com/kubernetes-sigs/scheduler-
plugins/tree/master/pkg/coscheduling

38https://github.com/admiraltyio/admiralty
39https://github.com/palantir/k8s-spark-scheduler
40https://eucloudedgeiot.eu/
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time providing a way that can support scalability, assuming
the use of different metrics.

However, the integration of context into the orchestration
process based on data aggregation is not a trivial process.
The optimal placement optimization would require working
with all of the feasible combinations of metrics in different
categories (data, network, computing), which from a time
and processing complexity perspective is not suitable for the
real-time operation required in the Edge-Cloud. Moreover,
different situations may require different approaches to
handle the combined context data aggregation. For instance,
in mobile scenarios the relevancy of networking metric
variations is more relevant that in scenarios where nodes are
static.

AI/ML approaches are therefore crucial to assist in
balancing the system performance, and understanding if
the proposed combined context-awareness can be beneficial
across different scenarios.

In the adaptive provisioning process, reconfiguration has
been studied to improve orchestration decisions. Several
techniques have been proposed [27], [32], [47], [48], with
the most common being reinforcement learning (RL) [44],
[50], [51]. Distributed behavioral learning and inference
techniques that can support decentralization across the Edge
Cloud while preserving the privacy of the raw training data,
such as Federated Learning and Decentralized Learning,
have also been considered [46], [52]. The benefits of
applying decentralized learning include reduced latency and
bandwidth consumption, distributed and asymmetric model
training, enhanced security/privacy, and efficient computa-
tional load distribution at the Edge. Several related literature
provides more details about the challenges, opportunities,
and benefits of applying distributed learning in Edge-Cloud
environments [64], [65], [66].
CODECO’s PDLC component supports a variety of cross-

layer input parameters, elastic models adaptable to context
changes, and joint orchestration of data, computing, and
network resources. The variety of parameters collected
and their integration into aggregated performance metrics
distinguishes CODECO from previous work focused on
either the network or application layer. In addition, PDLC
includes a decentralized learning framework that exploits
the collected input parameters and focuses on: 1) adaptive
processes that consider the requirements and restrictions
of all CODECO components, 2) cross-layer intelligence
without the need to share raw data between different nodes
and clusters, and 3) privacy-preserving intelligence across
the Edge-Cloud continuum, complementing existing works
[46], [52].

D. CROSS-LAYER NETWORK MANAGEMENT AND
ADAPTATION
CODECO proposes the NetMA component to handle the
K8s underlay network for application deployments across
the Edge-Cloud continuum, providing: (i) network connec-
tivity and communication using K8s Container Network

Interface (CNI) plugins; (ii) interconnection of diverse Edge-
Cloud environments and across federated clusters; (iii)
exposure/provisioning of network information towards other
CODECO components based on the ALTO protocol; and (iv)
integration of AI/ML techniques to predict network behavior.

Cluster networking is based on the K8s CNI plugins
that provide overlay or underlay networking capabilities for
pod communication. Several plugins are available, including
Calico,41 Flannel,42 Weave,43 Cilium,44 Canal45 Antrea,46

Kube-OVN,47 OVN-K,48 and Multus,49 which implement
different network models (i.e., overlay, underlay or hybrid),
use different tunneling options (e.g., VXLAN, IPsec, GRE,
or Geneve), and offer additional features, such as multi-
casting, encryption, IPv6, IPVS/LVS, bridging and eBPF.
A number of performance comparisons, e.g., [67], document
that Flannel and Weave produce the lowest overhead, while
Calico, Cilium, and OVN offer advanced features at the
expense of overhead.

Other solutions, such as Skupper50 and Submariner,51

implement direct networking capabilities between K8s
clusters. Skupper provides bi-directional communication
and service discovery between clusters, while Submariner
provides secure connections, unified IP address spaces, and
network routing between clusters. They also support service
meshes such as Istio52 and Consul.53 Service meshes are
based on ‘‘sidecar’’ proxies and control service-to-service
communications, handle network traffic and enforce policies
between those services.

In addition, a critical problem is the lack of sufficient
knowledge about the underlying network infrastructure.
The Application-Layer Traffic Optimization (ALTO) [68]
protocol provides a standardized framework for exposing
network information, such as network topology and link
bandwidth, to components and applications. ALTO uses key
abstractions known as network and cost maps.

CODECO plans to use the OVN-K networking plugin,
which is also used by Microshift, a lightweight K8s
distribution. The plugin is built on top of the OVN networking
backend and provides an overlay-based implementation using
the Geneve protocol. It also provides K8s-specific APIs
for efficient management of network traffic. In addition,
we also consider the Link-Layer Secure connectivity for
micro-service platforms (L2S-M)54 as a starting point. L2S-

41https://github.com/projectcalico/calico
42https://github.com/flannel-io/flannel
43https://github.com/weaveworks/weave
44https://github.com/cilium/cilium
45https://github.com/projectcalico/canal
46https://github.com/antrea-io/antrea
47https://github.com/kubeovn/kube-ovn
48https://github.com/ovn-org/ovn-kubernetes
49https://github.com/k8snetworkplumbingwg/multus-cni
50https://skupper.io
51https://submariner.io
52https://istio.io
53https://github.com/hashicorp/consul-k8s
54https://github.com/Networks-it-uc3m/L2S-M
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M is a Kubernetes operator that enables virtual networking
using an SDN-based data plane. It allows the creation
of network paths based on different algorithms, such as
reactive, metric-based, or geographic-based approaches [69].
NetMA aims to automate the interconnection of diverse
Edge-Cloud environments, including wireless, cellular, and
fixed networks, by providing automated handling of the
interconnection process. In addition, it will expose network
information such as topology and link bandwidth through
extensions to the ALTO protocol. Finally, NetMA will
leverageAI/ML techniques to predict the behavior of network
KPIs and facilitate real-time adjustments.

E. METADATA MANAGEMENT
Very few orchestration frameworks in the reviewed litera-
ture explicitly address the issue of metadata management.
DECIDE proposes a central repository to store infrastructure
and application metadata as well as monitoring data.
as well as monitoring data [27]. Similarly, the CHARIOT
architecture includes a data storage layer that provides a
generic and unified system state, extended with replication
to avoid single points of failure [37]. A different approach
is taken by CTOSO, which exposes the metadata collected
by IoT devices as services in the uplink transmission to the
Cloud via MEC servers [43].

Outside of the realm of orchestration frameworks, novel
metadata management concepts such as data mesh [70] and
data fabric [71], [72] have recently emerged to mitigate
the problems of inflexibility to changing requirements and
scalability of traditional storage solutions such as data ware-
houses and data lakes. They operate in a distributed manner,
processing data locally and publishing it to centralized
metadata catalogues, and can provide critical support for
heterogeneous data from distributed environments and across
clusters and different organizations. In addition, advanced
Cloud service catalogues, such as Gaia-X [4], provide secure
data sharing at scale based on real-time data observability
with connectors to local distributed data systems, providing
significant privacy, scalability, and performance benefits by
collecting only metadata centrally, not data.

CODECO aims to advance metadata management in
orchestration frameworks beyond the state of the art by
leveraging data mesh and data fabric concepts to address
the management challenges associated with security, privacy,
regulation, and decision making based on cross-layer data
collected from various distributed components. This is
achieved via the MDM component, which includes a real-
time updated graph that captures diverse and extensible
sources of metadata (i.e., an enterprise data map). MDM
provides an extensible connector model where multiple
connectors can report information about the same data set.
Connectors can also integrate directly with data stores to
discover existing records and data structure, or interface
with systems that analyze records to automatically determine
data characteristics (e.g., quality, sensitivity). CODECO

connectors can be deployed across the CEI continuum,
supporting orchestration decisions at the multi-cluster level
and addressing data issues (performance, compliance).

X. CONCLUSION, IMPACT OF CEI EMERGING TRENDS,
AND FUTURE RESEARCH DIRECTIONS
This paper presents the CODECO orchestration framework,
which is being developed to support the deployment of
applications across Edge-Cloud in a way that can truly
embrace the notion of IoT infrastructure, considering three
axes: computing, network, and data observability. The paper
presents use-cases that explain the benefits CODECO can
bring to various competitiveness sectors such as manufactur-
ing, smart cities, mobility, and energy. It then presents the
current CODECO framework and its components.
Based on the description of CODECO and a thorough
comparison with related work, the CODECO enhancements
can be summarized as follows:

• Automated configuration, focusing on supporting
application setup and application run-time across Edge-
Cloud, by considering computing, network, and data
observability aspects.

• Data as a resource. CODECO addresses data as a
resource in the sense that available snapshots from the
overall Edge-Cloud infrastructure, integrating different
perspectives (application, user, system, data, network) at
different instants of the CODECO operational workflow
can be provided to different CODECO components,
to assist in preventing, during placement of applications,
aspects such as lack of data compliance.

• Dynamic scheduling and workload migration.
CODECO builds on the concept of seamless computing
integrating QoS models that consider data-network-
computation requirements to provide a best match
between applications and available infrastructure
(nodes, their computational and data properties, as well
as network nodes and links), and to schedule and re-
schedule application workloads across single cluster and
federated cluster environments, considering application
and user requirements.

• Context-awareness and privacy preserving decen-
tralized learning. CODECO relies on context-
awareness to be able to achieve a joint data-network-
computing orchestration, and on privacy-preserving
decentralized learning and inference to best support
readjustment of aspects such as the processing capabil-
ity, computational resources, networking resources and
interconnections in real-time.

• Infrastructure adaptation based on a cross-layer
data-computing-network approach. CODECO pro-
vides exposure of networking metadata via the ALTO
protocol [73], and assists in adapting not just com-
putational (node resources) but also the networking
infrastructure interconnecting such nodes, via an OSI
Layer 2 encapsulation approach.
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As has been referred throughout the paper, there is
an ongoing evolution and convergence of IoT, Edge and
Cloud technologies to meet the increasing demands of next
generation IoT applications across different sectors. A key
initiative in this context is EUCEI, which is providing a way
for emerging trends to converge, and for different solutions
and projects to adapt by defining taxonomy, steps, and
models towards a reference CEI architecture [73]. Different
projects, such as CODECO, are currently contributing to the
development of this architecture, and therefore aligning with
the emerging CEI trends in an agile way.

Although ambitious, CODECO currently provides a set
of open-source tools that allow the research community to
further explore the proposed concepts and embrace the idea
of flexible, cross-layered, and cognitive orchestration.

The deployment of a framework such as CODECO is
not trivial and poses significant challenges to the overall
flexible Cloud-Edge-IoT orchestration, in particular consid-
ering multi-tenant, federated environments. This is currently
the next step in the CODECO research development, which
brings several challenges that can guide future research.

First and foremost, it is essential to define an appli-
cation abstraction model that can be easily adapted and
translated into the orchestration engine as a set of appli-
cation requirements. This is currently embodied in the
CAM concept in CODECO, which needs to be further
refined in order to bring application requirements into the
different CODECO components. Moreover, in federated
environments, the CAMmodel will regularly get information
from CODECO components across different clusters. This
requires a semantic hierarchical design that can scale across
hundreds of clusters, and eventually involving thousands of
heterogeneous nodes. A second challenge is the integration
of privacy-preserving decentralized learning in a mobile and
heterogeneous Edge-Cloud environment. While for a single
cluster operation, federated learning patterns are suitable,
when addressing federated cluster environments, the need
for a decentralized AI/ML pattern increases. Swarm learning
may be relevant in this context; however, the use of Ledger
technologies brings significant weight which may not be
compatible with the operation of CODECO across far Edge
to Cloud. These aspects are currently being analyzed in
the CODECO PDLC component. A third challenge relates
to the use of a more complex set of metrics at different
levels of the OSI layer model (data observability, computing,
network), with their regular monitoring and injection into the
CODECO components. The different metrics have different
polling periods; changes must be regularly monitored and
communicated to the different CODECO components. This is
currently under the supervision of the CODECO monitoring
architecture, which is part of the ACM. In addition, the
more parameters that are taken into account, the higher
the complexity associated with the optimization of the
application workload placement. CODECO addresses this
situation by considering methods to combine metrics based
on specific target profiles specified by the user, e.g.,

energy efficiency, resilience. By considering the combination
of metrics (currently in PDLC), it is possible to reduce
the weight of the overall placement optimization process
(supported by SWM). On the other hand, the combination of
metrics may reduce the fine-grained tuning of the placement.
Therefore, it is important to analyze different approaches to
combine metrics based on specific target profiles in future
work. A fourth challenge relates with the approach followed
in SWM to place the application workload. SWM relies on
a solver. The convergence times in federated environments
need to be tested, and an analysis on the waiting times of
the solver to deploy workloads needs to be analysed under
different conditions.
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