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ABSTRACT The exponential growth of intrusions on networked systems inspires new research directions
on developing artificial intelligence (AI) techniques for intrusion detection systems (IDS). In this context,
several AI techniques have been leveraged for automating network intrusion detection tasks. However, each
AI model has unique strengths points and weaknesses, and one may be better than the other depending on
the dataset, which might aggravate which model to choose. Thus, combining these AI models can improve
their use of generalization and application in network intrusion detection tasks. In this paper, we aim to fill
such a gap by evaluating diverse ensemble methods for network intrusion detection systems. In particular,
we build a two-level ensemble learning framework for evaluating such ensemble learningmethods in network
intrusion detection tasks. In the first level of our framework, we load the input dataset, train the base
learners and ensemble methods, and generate the evaluation metrics. This level also produces new datasets
(needed to train the second level) based on both prediction probabilities of base and ensemble models
used in the first level. The second level of the framework consists of loading the datasets generated from
the first level, training the ensemble methods, and generating the evaluation metrics. Our framework also
considers feature selection for both levels. In particular, we perform XAI-based feature selection in the
first level and Information Gain-based feature selection in the second level. We present results for several
ensemble model combinations in our two-level framework (i.e., 24 methods), including different bagging,
stacking, and boosting methods on several base learners (e.g., decision trees, support vector machines, deep
neural networks, and others). We evaluate our framework on three network intrusion datasets with different
characteristics (RoEduNet-SIMARGL2021, NSL-KDD, and CICIDS-2017). We also categorize AI models
according to their performances on our evaluation metrics. Our evaluation shows that it is beneficial to
perform two-level learning for most setups considered in this work. We also release our source codes for the
community to access as a baseline two-level ensemble learning framework for network intrusion detection.

INDEX TERMS Intrusion detection systems, ensemble learning, network security, two-level learning,
feature selection, machine learning, NSL-KDD, CICIDS-2017, RoEduNet-SIMARGL2021.

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaojie Su .

I. INTRODUCTION
IntrusionDetection Systems (IDS) aim to detect unauthorized
use, misuse, and abuse of computer networks by insiders and
external attackers [1], [2], [3]. Traditional IDS rely on the
assumption that intruders’ behavior will markedly differ from

83830

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-8007-754X
https://orcid.org/0009-0003-8597-4647
https://orcid.org/0000-0002-9554-9260
https://orcid.org/0000-0003-1802-0264


O. Arreche et al.: Two-Level Ensemble Learning Framework for Enhancing Network IDS

legitimate users, making unauthorized actions detectable. The
advancement of Artificial Intelligence (AI) has spurred the
development of fully automated IDS [4], [5], utilizing AI
techniques such as neural networks [6], [7], support vector
machines [8], [9], decision trees [10], [11], naive bayes [12],
[13], and random forest [14], [15].
However, most AI methods, except decision forest, are

base learning models that do not combine decisions for IDS
management [16], [17]. These models often suffer from
high false positive rates, with large companies receiving
thousands of security alerts daily [18], and high false negative
rates, which pose risks in safety-critical network applications
[19]. Previous studies typically focused on the classification
accuracy of individual AI algorithms without harnessing
the collective strength of these diverse techniques. This has
highlighted the urgent need to utilize ensemble learning
methods to enhance IDS effectiveness [20], [21], [22].
To address this aforementioned issue of base learners,

recent studies have explored ensemble learning across
various AI models for IDS [20], [23], [24], [25], [26], [27],
[28], [29], [30], [31], [32], [33], [34], [35]. Particularly, some
focused on anomaly detection [25], [26], [27], [29], [30],
[32], [33], classifying normal and anomalous traffic, while
others develop multiclass frameworks for various network
intrusions [23], [24], [28], [31], [34], [35]. These works
utilize methods such as Boosting, Stacking, and Baggingwith
base models including Decision Trees, SVMs, and Neural
Networks, while using accuracy, precision, recall, F1, and
false positive rates to assess its quality. Furthermore, some
works used benchmark datasets (e.g., NSL-KDD) [25], [29],
[30], [34], and others test on real networks (e.g., Palo Alto)
[32] and in real-time [26]. However, there is a lack of
comprehensive evaluation across a broad range of AImethods
and datasets, limiting the generalizability of these studies.

This paper aims to fill such a gap in evaluating diverse
ensemble methods for network intrusion detection systems.
We build a two-level (Level 00 and Level 01) ensemble
learning framework for evaluating such ensemble learning
methods in network intrusion detection based on the prior
works [20], [23], [24], [25], [26], [27], [28], [29], [30],
[31], [32], [33], [34], [35] that delineate several ensemble
learning approaches. Our work distinguishes itself by inte-
grating prediction probabilities and predicted classes into the
ensemble learning methods at Level 01 of our framework,
inspired by previous research [24]. We also conduct feature
selection at both levels: XAI-based at Level 00 [36] and using
Information Gain at Level 01 [37], assessing the efficacy
compared to using all features.

We evaluate our framework on three network intrusion
datasets with different characteristics. The first dataset is
the recent RoEduNet-SIMARGL2021 dataset [38] collected
from the SIMARGL project (supported by the European
Union).1 It contains realistic network traffic with features

1To the best of our knowledge, no prior work applied ensemble learning
methods for this recent dataset, as discussed in the related work section.

from live traffic, which makes the dataset highly usable for
network intrusion detection systems. The second dataset is
CICIDS-2017 [39], a benchmark intrusion detection dataset
created by the Canadian Institute for Cybersecurity at the
University of Brunswick in 2017 with different attack
profiles. The final one is the widely recognized NSL-
KDD [40] benchmark dataset.

Our evaluation indicates that two-level learning is advan-
tageous for the NSL-KDD dataset, as the top results from
Level 01 outperform those from Level 00. Specifically,
eight models at Level 01 (Table 8) show higher F1 scores
than the best model at Level 00 (Table 6). Conversely, for
the RoEduNet-SIMARGL2021 dataset, it is preferable to
remain at Level 00 due to negligible performance gains at
Level 01, although seven weaker base learner models do
show potential improvements. For the CICIDS-2017 dataset,
17 out of 21 models demonstrate better outcomes when
comparing the top results of Level 01 (Table 15) with
those of Level 00 (Table 14). We also conduct a False
Positive Rate (FPR) experiment to compare Levels 01 and
00. The best results were achieved using Level 01 with
All Features and Probabilities. Notably, the CAT, LGBM,
Bag_LGBM, and XGB models excelled in FPR across
all datasets, with NSL-KDD showing the most significant
improvement–reducing FPR from 5% to 1% between the best
base learner in Level 00 and the top method in Level 01. The
other datasets also showed improvements, albeit to a lesser
extent. Additionally, we performed a statistical analysis using
the Wilcoxon signed-rank test on various models across the
three datasets, confirming the statistical significance of most
of our models (Section VI-E).
This research moves towards bridging the gap in applying

ensemble learning methods to network IDS by extensively
evaluating and comparing different metrics crucial for
network security in AI models, such as accuracy, precision,
recall, F1, FPR, and runtime. Our framework enhances the
use of ensemble learning in network intrusion detection
systems, contributing significantly to advancements in this
crucial network security research area.

Summary of Contributions: We summarize below our
main contributions.

• We propose a two-level framework for ensemble
learning for network intrusion detection tasks. Our
framework uses two levels of learning for evaluating
different metrics for network intrusion detection.

• We evaluate our framework on three popular network
intrusion detection datasets, which are the CICIDS-2017
and NSL-KDD benchmark datasets, and the real-world
RoEduNet-SIMARGL2021 dataset.

• We evaluate our framework under 21 AI models (base
learners and ensemble methods) for Level 00, and 24 AI
models (ensemble methods) for Level 01.

• We compare the performance of different ensemble
learning methods and different base learners under
feature selection.
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• We release our source codes for the community to access
it as a baseline two-level ensemble learning framework
for network intrusion detection and to build on it with
new datasets and models.2

II. RELATED WORK
A. EXISTING EFFORTS IN LEVERAGING ENSEMBLE
LEARNING FOR IDS
The survey [20] provides an overview of IDS from 2009 to
2020, emphasizing the development of ensemble systems like
Stacking, Bagging, Boosting, and voting. It reviews the state
of the art in ensemble models, examining a variety of datasets
such as CICIDS-2017, KDD’99, NSL-KDD, Kyoto 2006+,
andAWID, andmodels like NN, SVM,DT, Fuzzy Clustering,
and RBF. The study’s main contribution is a detailed analysis
that encourages exploring new ensemble methods, offering
valuable insights for future IDS research. Hence, we divided
this section into two groups: Binary and Multiclassification.

1) ENSEMBLE LEARNING FOR BINARY CLASSIFICATION
ANOMALY DETECTION APPROACHES
The article [25] introduces an anomaly detection frame-
work using datasets like CICIDS-2017, UNSW-NB15, and
KDD’99, applying feature selection via the Chi-square
method, and leveraging base models such as Gaussian Naive
Bayes, Logistic Regression, and Decision Tree. Predictions
are generated using a Stochastic Gradient Descent ensemble
model. This study highlights the use of stacking to enhance
IDS performance across various datasets, though it notes
limitations such as data imbalance, suggesting that data
augmentation could help in solving this imbalance limitation.
Additionally, the work [29] presents an ensemble framework
for binary anomaly classification in IDS, utilizing NSL-KDD
and UNSW-NB15 datasets with models like Random Forest,
AdaBoost, XGBoost, and Gradient Boosting Decision Tree,
using soft voting for results integration. This method aims
to increase cyber-attack detection accuracy and reduce
false alarms. Similarly, the work [30] applies ensemble
techniques like Majority Voting alongside LR (Logistic
Regression), DT (Decision Tree), NB (Naive Bayes),
NN (Neural Network), and SVM to NSL-KDD, UNSW-
NB15, and CICIDS2017, achieving superior performance.
It suggests the need for new, especially real-world, datasets
and unsupervised learning methods. Another study [32]
implements its framework on the Palo Alto network log and
NSL-KDD, UNSW-NB15 datasets, using weighted voting
with SVM, Autoencoder, and Random Forest for anomaly
detection, highlighting real-world application benefits but
noting scalability and limited voting method efficiency.

In the IoT context, the article [33] introduces an anomaly
detection framework using the TON-IoT dataset with base
models including Random Forests, Decision Trees, Logistic
Regression, and K-Nearest Neighbors. These are integrated

2The URL for our source codes is:
https://github.com/ogarreche/Ensemble_Learning_2_Levels_IDS

using ensemble methods like stacking and voting to improve
attack detection. However, its limitations include not testing
the framework on other datasets and not exploring other
ensemble methods like bagging and averaging. Another
study, [26], presents an online anomaly detection system for
network intrusion using ensemble Autoencoders, focusing on
real-time applications. Additionally, the article [27] addresses
overfitting in ensemble learning for small binary classifi-
cation datasets, using models like Random Forest, Naive
Bayes, and Logistic Regressor. It features a model selection
procedure to find the best model for specific instances,
with the main drawback being the high computational cost
from cross-validation. This approach also explores pruning
to combat overfitting, though its effectiveness varies across
different datasets and models.

2) ENSEMBLE LEARNING FOR MULTICLASS CLASSIFICATION
APPROACHES
Several studies have applied ensemble learning to multiclass
IDS. The work [23] introduces a novel approach using
stacking on TensorFlow models (CNN, DNN, RNN, LSTM)
across datasets like CICIDS-2017 and ToN_IoT, using class
predictions to train a subsequent DNN,marking its innovation
from using class probabilities. The main limitations include
no real IoT testing, reliance on a single ensemble method,
and high resource use on IoT devices. Another significant
study, [24], introduces the GTCS (Game Theory and Cyber
Security) dataset to address benchmark dataset flaws and uses
the Weka toolkit for adaptive ensemble learning with feature
selection via Information Gain, applying J48, MLP, and IBK
models withmajority voting. Challenges here include the lack
of real-world testing and a limited range of AI models.

Additionally, [28] combines Linear Genetic Programming
(LGP), Adaptive Neural Fuzzy Inference System (ANFIS),
and RF for higher accuracy and lower false alarms but faces
challenges in optimal weight assignment for weighted voting
and lacks broad testing across datasets. Meanwhile, [34]
employs bagging with Naïve Bayes, PART, and Adaptive
Boosting on the KDD’99 dataset, using voting and bootstrap-
ping but remains untested on newer datasets.

Moreover, the prior work [31] develops the MFFSEM
(Multi-Dimensional Feature Fusion and Stacking Ensemble
Mechanism) method, blending feature fusion with stacking
ensemble learning for better accuracy and applying it to
multiple datasets using DT and RF as base models, yet
struggles with real-world deployment and limited ensemble
methods. Lastly, [35] leverages CVM (Core VectorMachine),
an SVM variant, achieving high accuracies and faster
performance with a focus on weighted voting, yet it lacks
validation on modern datasets and traditional ensemble
methods comparison.

B. CONTRIBUTION OF THIS WORK
We list our specific contributions in four main points.
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TABLE 1. A comparison between different aspects of our own work and prior relevant works on ensemble learning for network intrusion detection
(including methods for ensemble learning, datasets, and AI models).

1) Generalizability: In Level 00, we apply 21 Machine
learning algorithms (e.g., Table 6) within the sce-
narios of using feature selection or not. In Level
01, we use the datasets generated in Level 00 and
apply 21 ML algorithms plus three other methods
(i.e., Voting, Averaging, and Weighted Averaging) (as
shown in Table 8). The process is done considering
all features and feature selection and considering Level
00’s predicted classes (e.g., Table 16) and Level 00’s
predicted probabilities (e.g., Table 15). Moreover, this
process is applied to three datasets (i.e., RoEduNet-
SIMARGL2021, CICIDS-2017, and NSL-KDD). These
extensive experiments improve the generalizability of
our framework.

2) Extensive Evaluation: The extensiveness of our work
is seen when we compared the number of experiments
performed in the works of Table 1 and the number

of experiments performed in this work. In numbers,
our results’ tables show 126 evaluations for Level
00 (Tables 14, 10, 6), 288 evaluations for Level 01
(Tables 16, 15, 11, 12, 7, 8), and 252 evaluations for FPR
(Tables 18, and 19).

3) Expanded Insights: In this paper, we compare our
experiments in many layers, Level 00 versus Level
01, Feature Selection against no Feature Selection, and
using predicted probabilities against class predictions.
Such comparisons allowed us to extract different
behaviors for FPR, accuracy, precision, recall, F1, and
runtime performance. Such results are displayed in
Table 21, which shows the best setup and models in
different scenarios.

4) Framework Flexibility: The framework’s conception
has its core in modularity and flexibility. It allows
users to adapt it to other datasets. Also, it has options
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for feature selection and class prediction or predicted
probabilities. Also, differently from other works, the
differentiation of Level 00 and Level 01 does not trans-
late directly to Base Learners and Ensemble Learning
because we also apply ensemble learning methods to
Level 00. A more accurate definition is that we use the
ML methods directly to the three datasets in Level 00.
Meanwhile, in Level 01, we apply the samemodels, plus
voting and averaging, to the newly generated datasets,
which is an innovation compared to other related works
(shown in Table 1). Moreover, we open-sourced the
codes to the community.

III. THE PROBLEM STATEMENT
We now provide the main preliminaries for network intrusion
detection, the challenges of AI, the need for ensemble
learning, and the challenges in evaluating such methods when
applied to network intrusion detection.

A. NETWORK INTRUSION TYPES
There are several common network intrusion types. In our
work, we consider the main network attacks in the common
MITRE ATT&CK framework [41]. Thus, the network traffic
can be divided into the following categories:

Normal traffic: is the regular traffic collected from the
network.

PortScan (PS) / Network Service Discovery [MITRE
ATT&CK ID: T1046]: It is an intrusion in which the attacker
aims to make recognizance of the victim’s computer. It is
often used as the first step of an attack to search for vulnerable
points and possible entrance ports. The functionality is to
send a connection solicitation to the victim without ever
finalizing the connection. However, for this attack, the
solicitations are sent to various ports and the ones that send a
message back are mapped as possible entrance points [42].
Denial of Service (DoS) / Network Denial of Service

[MITRE ATT&CK ID: T1498]: It is a type of attack
where the objective is to render the target unavailable for the
network. One popular example of such an attack is where the
attacker keeps sending solicitations to connect with a server.
However, when the server accepts the solicitation and sends
an acknowledgment to the origin expecting its response it
never receives a response. As a result, the memory for these
open communications is left open and fully consumed until
the server becomes unavailable. We refer to [37] and [38] for
detailed classes of DoS attacks.

Brute Force [MITRE ATT&CK ID: T1110]: It is an
attack in which all password possibilities are attempted by
the intruder to break into the victim’s network. This attack is
often paired with the knowledge of the most commonly used
passwords. It can become effective in cases in which a user
has a weak or a common easy-guessing password [37].
Web Attack / Initial Access [MITRE ATT&CK ID:

TA0001, T1659, T1189]: It is a class of attacks performed
via the web in which the attacker exploits web vulnerabilities.
For example, an attacker may gain access to the application’s

underlying instance or container by exploiting a public-facing
application, using a software bug, misconfiguration, or glitch.
The web attack can also include attacks such as the Drive-by
Compromise [43], however, web attacks (e.g., SQLi, XSS)
typically do not provide initial access to a remote server [41].
Infiltration / Initial Access [MITRE ATT&CK ID:

TA0001]: This attack occurs when someone tries to get initial
access to a system or application. Such a class of attacks
consists of a myriad of techniques as targeted spearphishing
and exploiting weaknesses on public-facing web servers. The
foothold gained by this attack can range from a simple change
of password to continued access through valid accounts and
external remote services.

Botnet / Compromise Infrastructure [MITREATT&CK
ID: T1584.005, T1059, T1036, T1070]: It is an automated
class of attacks which is performed by hijacked devices
executed remotely by the attacker in which scripts (bots)
mimic human behavior and duplicate it [44]. This scripted
technique allows scalability and easy deployment making it
an ideal tool to touch multiple attack points simultaneously.
Thus, Botnet is a very common network attack type.

Probe Attack/ Network Scanning or Surveillance
[MITRE ATT&CK ID: T1595]: Probe attacks are often
the preliminary stage of a more comprehensive attack. These
attacks involve scanning a network to gather information or
find known vulnerabilities [45]. An attacker with a map of
machines and services that are available on a network can use
this information to look for exploits.We emphasize that while
port scanning is a form of probe attack, not all probe attacks
are port scans. Some might target specific vulnerabilities or
use different methods. Examples include ping sweeps [46],
and DNS zone transfers [47].

Remote to Local Attack (R2L) [MITRE ATT&CK ID:
TA0001, T1110, T1078]: R2L is a class of attacks in which
an attacker (who can send packets to a machine over a
network but does not have an account on that machine) gains
unprivileged access as a user of that machine (i.e., initial
access). Once the attacker has user-level access, they may
attempt to escalate privileges to gain control over the entire
system (i.e., U2R attack).

User to Root Attack (U2R) [MITRE ATT&CK ID:
TA0004, T1078]: User to Root attack is a type of exploit in
which the attacker starts by accessing an unprivileged user
account on the system (via sniffing passwords, a dictionary
attack, or social engineering) to exploit some vulnerability
to gain root access to the system. This can be extremely
detrimental as it can allow the attacker to manipulate the
system as a root user or an administrator. Note that R2L is
a necessary preliminary for Privilege Escalation (i.e., U2R).

B. INTRUSION DETECTION SYSTEMS
The increasing sophistication of network attacks poses a
significant threat to critical infrastructure across various
sectors [48], [49]. Consequently, IDS plays a crucial role in
safeguarding computer network systems against malicious
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activities, whether initiated by internal users or external
infiltrators [50]. Traditional IDS designs typically rely on the
assumption that an intruder’s behavior will deviate noticeably
from that of a legitimate user, making many unauthorized
actions detectable [51]. With recent advancements in AI over
the past decade, this design paradigm has paved the way
for the development of AI models capable of automatically
detecting network intrusions [52].

C. SHORTCOMINGS OF BASE LEARNER MODELS
Although AI models have significantly automated intrusion
detection, their inherent complexity poses limitations due to
the intricate nature of their learning and decision-making
processes. This complexity makes it challenging for a single
model to fully comprehend the nuances of datasets, leading
to difficulties in learning specific subsets and achieving
satisfactory metrics for certain results. This challenge is
prevalent across various AI models, including Decision Trees
(DT), K-nearest neighbors (KNN), Support Vector Machines
(SVM), Deep Neural Networks (DNN), and others. Despite
their high predictive accuracy in Intrusion Detection Systems
(IDS), there remains a gap in achieving better accuracy,
precision, recall, and F1 scores, especially in the event of
errors or attacks (including high false positive rate for some
of these AI models [18] and high false negative rate for
some other AI models [19]). This issue is particularly critical
in safety-sensitive applications such as network security
through IDS. Consequently, there is a growing motivation to
improve performance and expand the usage of AI models
in the context of IDS. This has motivated the pressing
need to leverage different ensemble learning methods
for enhancing IDS via combining different base learner
models [20], [21], [22].

D. MAIN BENEFITS OF POPULAR ENSEMBLE METHODS
Recall that base learners or individual models have unique
strengths points and weaknesses, and depending on the
application or task, one may be better than the other,
which might aggravate which model to choose. Machine
learning algorithms have unique underlying mechanics. For
instance, KNN, which relies on clustering similar data
around centroids, is sensitive to the number of clusters (i.e.,
K ), class outliers, and irrelevant features. Moreover, it is
computationally expensive. Another example is Deep Neural
Networks (DNN). Usually, they need large volumes of data
and might be time-resource intensive, besides being sensitive
to perturbations in the input data. Regression techniques
(e.g., Logistic Regression) are simple to apply and explain.
However, it often fails to capture complex relationships (i.e.,
higher-order polynomials). As a last example, Decision Trees
are fast to train, though they can oversimplify problems and
lead to overfitting. Hence, combining these AI models can
improve their use generalization, and application in network
intrusion detection tasks by combining their strengths and
diluting their weaknesses.

FIGURE 1. A high-level overview of our two-level ensemble learning
framework for network intrusion detection.

Ensemble Learning is the field that explores this concept
of combining the strengths of different base learners. Famous
ensemble techniques are Bagging, Boosting, and Stacking.
Bagging is a technique that creates a subset of the datasets
through bootstrapping (i.e., data sampling with replacement)
and inserts them into different instances of amachine learning
model, training them in parallel (i.e., independently) and
combining their outputs. The goal of Bagging is to reduce
overfitting and improve generalization. In a different light, the
Boosting technique considers training different instances of
the same model sequentially, aiming to correct mistakes from
the previous one by assigning higher weights (i.e., emphasis)
to misclassified data points, avoiding the same mistakes.
Meanwhile, the Stacking method usually refers to training
base learners (i.e., part of our Level 00 in our framework)
and using their predictions to train a meta-model (i.e., our
Level 01 in our framework). It allows the usage of a myriad
of base learners, capitalizing on their uniqueness to achieve
the complex behavior between features and prediction.

In our work, we explore these different types of ensemble
learning models in our two-level learning framework and
compare the performances of these methods (on both levels in
our framework) with just using the base models for network
intrusion detection tasks. We perform such comparisons for
three different datasets with different characteristics to get a
deeper understanding of our proposed framework.

IV. FRAMEWORK
The main goal of this work is to provide an ensemble learning
pipeline that derives improved result metrics for each dataset.
Our framework can help in choosing efficient methods that
help security analysts better identify invasions and classify
attacks on the network traffic to prevent intrusions under their
management. The components of our framework are detailed
below in a high-level overview in Figure 1, and a low-level
overview in Figure 2.

A. HIGH-LEVEL ENSEMBLE LEARNING PIPELINE
COMPONENTS
Figure 1 shows two major areas (i.e., Level 00 and Level
01) divided by a horizontal line, indicated by the blocks on
the left-handed side in a vertical position. The diagram is
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FIGURE 2. A low-level overview of our Ensemble Learning framework for
network intrusion detection. It considers a diverse set of AI models and
network intrusion datasets.

read from bottom to top, analogous to a pyramid that starts
by building a strong foundation and then grows vertically
with stacking, and its vertical layout is due to the ensemble
learning methods applied in this work.

1) BLOCKS OF LEVEL 00
Level 00 contains all the blocks to its right (i.e., original
dataset, all features, feature selection, base models, ensemble
models, and result metrics). The elements’ description is as
follows. The ‘‘original dataset’’ block is the input dataset
we are experimenting on (i.e., in our context, it can be
CICIDS-2017, NSL-KDD, and RoEduNet-SIMARGL2021).
Next, the framework forks into two scope possibilities (i.e.,
using all features available in the dataset or a selected
subset of the features), which are the blocks named ‘‘All
features’’ and ‘‘Feature Selection.’’ After collecting the
network traffic data, our framework feeds such data into
different black-box AI models, where these models detect
intrusions and normal traffic via constructing a multi-class
classification problem. In this classification problem, each
class represents one possible network intrusion (e.g., denial
of service, port-scanning, and brute force attacks). In this
context, the blocks ‘‘Base models’’ and ‘‘Ensemble mod-
els’’ refer to the models used (i.e., ADA, Bagging-ADA,
RF, Bagging-RF, DT, Bagging-DT, KNN, Bagging-KNN,
MLP, Bagging-MLP, CAT, Bagging-CAT, LR, Bagging-LR,
LGBM, Bagging-LGBM, Bagging-Combination, DNN, and
XGB). See Section V and Appendix A for more details.
Finally, the block ‘‘Result metrics’’ is the evaluation method
consisting of main evaluation metrics which are Accuracy,
Recall, Precision, F1, and runtime.

2) BLOCKS OF LEVEL 01
Level 01 contains all the blocks to its right (i.e., Classes
Dataset, Probabilities Dataset, All features, Feature Selec-
tion, Base models, Ensemble models, and Result metrics).
The elements are the same as Level 00, but the datasets
are different (those generated from Level 00). Note that
there is an arrow connecting Level 00 to Level 01. Such

an arrow represents the creation of new datasets based on
Level 00. These datasets use the base models (i.e., ADA,
LGBM, CAT, XGB, DNN, MLP, RF, LR, and DT) and their
predicted classes in the ‘‘Classes Dataset’’ case or predictions
probabilities in the ‘‘Probabilities Dataset’’ case. Then, there
is a second split, creating four new datasets. This split is
due to the framework using or not using feature selection in
Level 00 (e.g., see Table 22 for the top features used in the
case of feature selection for each dataset). As a side note,
the idea of using the actual classes instead of the prediction
probabilities is inspired by the paper [23] in which they
achieved better results using the method. Another difference
in decision-making in Level 01 is that feature selection
in Level 01 (e.g., stacking) is based on choosing which
predictions or classes the user wants to use from the available
models (i.e., ADA, LGBM, CAT, XGB, DNN, MLP, RF, LR,
and DT) instead of the original features from the original
dataset in Level 00.

B. LOW-LEVEL ENSEMBLE LEARNING PIPELINE
COMPONENTS
We now explain the Low-Level Ensemble Learning Pipeline
Components (shown in Figure 2). The reader may follow
the arrows in the block diagram to facilitate its readability.
Each arrow type has a color code: black refers to processes
in Level 00, orange relates to processes in Level 01, and the
green arrow marks the transition from Level 00 to Level 01.
Each block group has sub-groups that indicate that they are
a set or included in the context of the outer block. Also, note
that some blocks have different colors for easy identification
(e.g., the base models are gray). These blocks seen before
may appear in another context (i.e., inside other blocks). For
example, note that base models (gray) appear as a small gray
block inside stacking. First, we explain the components in
Level 00 and then those of Level 01.

1) NETWORK INTRUSION DATASETS - LEVEL 00
The first component in our pipeline is loading a network
intrusion dataset from the database as a starting point.
In our work, we use three popular network intrusion detec-
tion datasets, which are RoEduNet-SIMARGL2021 [38],
CICIDS-2017 [39], and NSL-KDD [40] datasets. For more
information on the datasets, see Section V and Table 5b.

2) NETWORK INTRUSION DATASETS - LEVEL 01
The datasets in Level 01 have their origin from the models
results in Level 00 (i.e., ADA, LGBM, CAT, XGB, DNN,
MLP, RF, LR, and DT), and their size is the test size from
Level 00 (i.e., 30% of the size used in Level 00). There are
four categories for such datasets in Level 01, as explained
below.

• Probabilities and All Features: AI models generate
prediction results probabilities before deciding the
outcome, which indicates how certain it is on a given
result. We extract the class probability corresponding to
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its correct label from the original test dataset to create a
new one. Hence, each column of this new dataset (i.e.,
features) corresponds to the model used in Level 00, and
it has a value range from 0 to 1 corresponding to the
prediction probability of that model. Also, all features
are used in Level 00 to generate this dataset.

• Probabilities and Feature Selection: It is similar to
the above first dataset, but with one distinction where
the models in Level 00 use feature selection (i.e., top
features instead of all of the features).

• Classes and All Features: In this scenario, the informa-
tion used to create the dataset is the prediction itself (e.g.,
if there are three classes, zero, one, or two, these will be
the values present in the dataset feature columns). Also,
all features are used in Level 00 to generate this dataset.

• Classes and Feature Selection: It is similar to the
‘‘Classes and All features’’ above, but with the differ-
ence that the models in Level 00 use the feature selection
process.

Having explained the datasets used for both levels, we next
explain the feature selection process performed at each level.

3) FEATURE SELECTION - LEVEL 00
The best eight features used in Level 00 originate from
our previous work [36] that analyzes feature selection in
different scenarios. The best result from such work is using
the Feature Selection based on a SHAP XAI method. In that
work, we extracted feature importance lists using SHAP
for each model analyzed (e.g., ADA, LGBM, RF, KNN,
MLP, DNN, and SVM), and we combined the lists using
frequency analysis to generate a common feature importance
list across all AI models. The results showed that this
approach yielded better results than classic feature selection
methods (e.g., information gain, chi-square, and others)
for the three datasets (RoEduNet-SIMARGL2021, CICIDS-
2017, and NSL-KDD) considered in this current work.

4) FEATURE SELECTION - LEVEL 01
For Level 01, which uses the newly generated datasets,
we opted for using Information Gain as our method to obtain
the top five most influential features when applying feature
selection for two reasons. First, information gain is a well-
established, easy-to-implement, quick, and renownedmethod
that measures how much of gained information after splitting
the dataset for each feature, diminishing the entropy by each
iteration. Second, we do not haveXAI-based feature selection
for Level 01 since our prior work [36] considered feature
importance for basemodels and did not consider the two-level
learning process in this current work.

Having explained the feature selection process for both
levels, we next detail our model space.

5) BASE LEARNERS AI MODELS - LEVEL 00
Once the dataset preprocessing is complete, we split it (i.e.,
70% training and 30% testing) before training the AI models.

For this component, we have built six popular AI classifica-
tion models: Decision Tree (DT), Logistic Regression (LR),
deep neural network (DNN), multi-layer perceptron (MLP),
k-nearest neighbors (KNN), and support vector machine
(SVM). Each model requires specific parameters to ensure
the best possible performance (see Section V).

6) ENSEMBLE LEARNERS AI MODELS - LEVEL 00
We also use Boosting and Bagging techniques to check the
performance of ensemble learning in Level 00, following
the same pipeline of performing splitting of the data with a
split of 70% for the training while leaving the unseen 30%
for testing purposes. For this component, we have built four
popular Boosting techniques which are:

• LightGBM (LGBM)
• adaptive boosting (AdaBoost)
• eXtreme Gradient Boosting (XGB)
• CatBoosting (CAT)

Bagging Variants: Furthermore, we used 10 Bagging varia-
tions which are:

• Random Forest (RF)
• Bagging with RF
• Combination of different learners (DT, KNN, MLP, LR,
SVM, ADA, DNN, MLP, XGB) in a single bagging
algorithm

• Bagging of boosting algorithms (ADA, CAT, LGBM)
• Bagging of base learners (DT, KNN, MLP, LR, SVM)
Each model requires specific parameters to ensure the best

possible performance (see Section V for details).

7) ENSEMBLE LEARNERS AI MODELS - LEVEL 01
We also use Boosting and Bagging techniques to check the
performance of ensemble learning in Level 01, following the
same pipeline of performing splitting of the data with a split
of 70% for the training while leaving the unseen 30% for
testing purposes. For this component, we have built the same
four popular Boosting techniques used in Level 00, which
are LightGBM (LGBM), adaptive boosting (AdaBoost),
eXtreme Gradient Boosting (XGB), and CatBoosting (CAT).
Bagging Variants of Level 01: We used 10 Bagging

variations:
• Random Forest (RF)
• Bagging with RF
• Combination of different learners (DT, KNN, LR, SVM,
ADA, DNN, MLP, XGB) in a single bagging algorithm

• Bagging of boosting algorithms (ADA, CAT, LGBM)
• Bagging of base learners (DT, KNN, MLP, LR, SVM)
Stacking on Level 01:Arguably, every model in Level 01 is

a stacking method variant for Level 00. Since stacking uses
the predictions of base learners as input for a meta-model,
it implies that every model of Level 01 is a meta-model.
For this work, we considered the following nine methods as
stacking:

• Simple Stacking (Voting, Averaging, and Weighted
Average).
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TABLE 2. Description of main features for RoEduNet-SIMARGL2021
dataset [53].

TABLE 3. Description of the main features for the CICIDS-2017
dataset [54].

• Stacking with all base models (DT, KNN, LR, SVM,
DNN, MLP).

• Combination of different learners (DT, KNN, LR, SVM,
ADA, DNN, MLP, XGB) in a single bagging algorithm.

• Bagging of boosting algorithms (ADA, CAT, LGBM).
• Bagging of base learners (DT, KNN, MLP, LR, SVM).
Each model requires specific parameters to ensure the best

possible performance (see Section V).

8) RESULT METRICS - LEVEL 00|01
As the result metrics for both levels, we use the five
performance indicators: Accuracy, Precision, Recall, F1,
FPR, and runtime. We then group all results for analysis and
comparison.

9) AI MODELS SELECTION CRITERIA
The AI models considered in this work were chosen for the
following reasons. The first reason is that they are ubiquitous
in many similar works that focus on IDS (e.g., [37], [38],
[40]). The second reason is to study the effect of XAI-based
feature selection on the performances of AI models in IDS,
which enables us to compare our methods with prior works on
the three considered datasets [37], [38], [40]. In this manner,
we can help keep consistency with the literature in IDS
when comparing different models paired with the two-level
ensemble learning techniques considered in our current
work.

TABLE 4. Description of main features for the NSL-KDD dataset [40].

C. TOP INTRUSION FEATURES LIST AND USAGE IN
ENSEMBLE LEARNING
We now show the full list of the top network intrusion
features along with their explanations for the three studied
datasets since we use those frequently throughout the rest of
the paper. In particular, Tables 2-4 show the description for
each feature in RoEduNet-SIMARGL2021, CICIDS-2017,
and NSL-KDD network intrusion datasets, respectively.
We emphasize that we will utilize such features in evaluating
the ensemble learning methods on the three datasets in our
evaluation (Section V).
Remark: In our article, Tables 2-4 provide a description of

the key features for the RoEduNet-SIMARGL2021, CICIDS-
2017, and NSL-KDD datasets, respectively. These tables are
intended to highlight some of the key features from each
dataset for clarity and context. However, we did indeed utilize
all the features listed in Table 5b in our initial experiments.
This comprehensive approach allowed us to fully leverage the
datasets for our analysis of network intrusion detection. It is
important to note that Table 5b summarizes the overall scope
of each dataset, including the number of features. The feature
selection used in evaluation experiments of our two-level
ensemble learning framework was tailored to the objectives
of those specific analyses. This selective usage of features
was based on their importance and relevance to the specific
experiment being conducted.

V. FOUNDATIONS OF EVALUATION
We next show our detailed evaluation. Our evaluation aims to
answer the following research questions:

• What are the best base models for a given dataset?
• Which ensemble method has the best performance for a
given dataset?
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TABLE 5. Summary and statistics of the three network intrusion datasets
used in this work, including the size of the dataset, number of attack
types (labels), number of intrusion features, and distribution of samples
among attack types.

• What are the performances of the evaluated methods
in our two-level framework in terms of Accuracy,
Precision, Recall, FPR, F1, and runtime?

• Which ensemblemethods andAImodels are statistically
significant?

• What are the limitations and strengths of ensemble
learning methods when applied to network intrusion
detection?

• What are the main insights from the evaluation experi-
ments on each dataset?

Before showing our detailed evaluation results, we first
detail the experimental setup in this section.

A. DATASET DESCRIPTION
RoEduNet-SIMARGL2021 Dataset [38]: This dataset
originates from the SIMARGL project, a collaborative effort
supported by the European Union through the Horizon pro-
gram, in partnership with the Romanian Education Network
(RoEduNet). It comprises authentic network traffic data,
including features derived from real-time traffic analysis.
The dataset is structured following a data schema resembling
Netflow [55], a network protocol developed by CISCO for
capturing and monitoring network flows.

CICIDS-2017 Dataset [39]: This dataset serves as a
benchmark for intrusion detection and was developed by
the Canadian Institute for Cybersecurity at the University
of Brunswick in 2017. It encompasses six distinct attack
profiles, encompassing activities such as brute force, heart-
bleed, botnet, DoS, portscan, web attack, and infiltration
attack. To create a realistic context, the dataset incorporates
background traffic generated through a B-Profile system [56],
which extracts various user behaviors based on network
protocols.

NSL-KDD Dataset [40]: This dataset represents an
improved version designed to address inherent issues found in
the older KDD dataset [57]. It was jointly developed through
collaboration between the University of New Brunswick and
the National Research Council of Canada. This dataset incor-
porates a blend of network traffic data, featuring a mixture
of various attack types and normal instances. It adheres to
a structured data schema, with features extracted from raw
traffic data, rendering it a valuable resource for assessing
intrusion detection techniques. For our research purposes,

we employ the KDDTrain+ subset for model training and the
KDDTest+ subset for testing and evaluation [58].

Summary and Statistics of the Datasets: Having
explained the three datasets, Table 5a shows the size of each
dataset, the number of attack types (labels), and the number
of intrusion features.

B. EXPERIMENTAL SETUP
Computing Resources: For the executed experiments,
we used a high-performance computer (HPC) that has four
NVIDIA A100 GPUs, 64 GPU-accelerated nodes (each
with 256 GB of memory), and a single 64-core AMD
EPYC 7713 processor (2.0 GHz and 225-watt) reaching a
maximum performance of approximately 7 petaFLOPs. This
supercomputer is designed to aid researchers in advanced AI
and machine learning tasks [59].
Coding Tools: To make use of several open-source tools

and to have our implementation as open-source, we chose
the Python programming language along with different AI
toolboxes (including Keras and ScikitLearn). We also used
other toolboxes (including Pandas and Matplotlib).

AIModels:We detail now the used AImodels in our work.
(i) Base Learners:By pairing six popular AI classification

algorithms as base learners (which are deep neural network
(DNN) [7], k-nearest neighbor (KNN) [60], support vector
machine (SVM) [8], multi-layer perceptron (MLP) [61],
Decision Tree (DT) [62], Logistic Regression (LR) [63]),
we evaluate AI methods and different components of our
proposed two-level framework for IDS.

(i) Ensemble Methods: Regarding the ensemble tech-
niques used in our framework, the Boosting techniques are
Cat Boosting (CAT) [64], light gradient-boosting machine
(LGBM) [65], AdaBoost (ADA) [66], and Extreme-Gradient-
Boosting (XGBoost) [67]. Also, we apply Bagging tech-
niques (i.e., using different instances of the same model),
which includes Random Forest (RF) [15] and the models
mentioned before (i.e., DT, KNN, MLP, LGBM, CAT, LR,
SVM, ADA, and RF). Besides, we created a Bagging
method [68] training different models (i.e., LR, CAT, DNN,
SVM, ADA, LGBM, RF, and XGB) in parallel instead of
different instances of the same model. Moreover, in stacking,
we use all the previous models with the addition of
Voting [69], Averaging [70], and Weighted Averaging.

Hyperparameters: We provide our main hyperparameter
choices for each AI model and each ensemble method used
in our work in Appendix A.

Having provided the main experimental setup, we next
detail our evaluation results and findings.

VI. EVALUATION RESULTS
A. NSL-KDD ANALYSIS
1) MAIN RESULTS OF LEVEL 00
Table 6 shows similar accuracy, precision, recall, and F1
scores for Level 00 using the NSL-KDD dataset. The
left-hand side of the table (Table 6) presents the results
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TABLE 6. NSL-KDD Level 00: organized by F1 (highest to lowest) when all features are used (i.e., left-hand side). We observe that Bag_DT achieved the
best scores overall, followed by KNN. However, when feature selection is applied (i.e., right-hand side). We observe that Bag_DT achieved the best scores
overall, followed by KNN.

when all features of the dataset are utilized, and the
right-hand side details the outcomes using the top eight
features (shown in Table 22). The use of all features yields
slightly higher values for precision, recall, and F1 scores,
indicating better overall performance. Notably, the top three
performing models, which include Bagging with Decision
Trees, KNN, and Bagging with KNN (one base learner and
two ensemble methods: Bag_DT and Bag_knn), demonstrate
this advantage. Conversely, the models showing the weakest
performance are consistent across both setups, namely DNN,
Bagging with Random Forest, and ADA. Therefore, using all
features of the NSL-KDD dataset proves beneficial, though
there is still potential for further improvements by enhancing
the performance of ensemble models in Level 01.

2) MAIN RESULTS OF LEVEL 01
Recall that Level 01 refers to the application of base learners
and ensemble models to four generated datasets from Level
00. These datasets are based on the models’ probability
predictions and predicted classes for each sample in Level
00 as follows: The first dataset includes the predicted
probabilities for each model in Level 00 using all features.
The second dataset contains the predicted probabilities using
the top eight features (as per Table 22). Similarly, the third and
fourth datasets include the predicted classes using all features
and the top eight features, respectively.

Tables 7 and 8 display the results of Level 01 for
the four configurations previously mentioned. There are
two primary comparisons of interest: one among all Level
01 tables, and the other between Level 00 and Level
01 results. Comparing all Level 01 tables by the F1 score, the
highest performance is observed in Table 8, which considers
probabilities using all features. This is followed by the same
table considering probabilities with feature selection, and
then Table 7 with classes using all features, and finally, the
same table with feature selection. The results suggest that for
the NSL-KDD dataset, models perform better when utilizing
prediction probabilities rather than predicted classes, with a
further preference for using all features to achieve optimal
results. Themost effectivemodels across these configurations
include Bagging_LGBM, LGBM, and Bagging_DT, with an
exception noted for all features in Table 7.

3) COMPARISON OF LEVEL 01 AND LEVEL 00
The comparison between Level 00 and Level 01 provides
a clear advantage for Level 01, indicating that stacking
significantly enhances model performance for the NSL-KDD
dataset. Specifically, when evaluating performance using all
features and prediction probabilities from Level 01 (Table 7),
eight models–including Bagging-LGBM, LGBM, Bagging-
DT, XGB, CAT, and MLP–outperform the best model from
Level 00 (Table 6, which features Bagging-DT). The highest
F1 scores from Table 7 reach 0.995, compared to 0.937 from
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TABLE 7. NSL-KDD Level 01: organized by F1 (highest to lowest). The input dataset from Level 00 is predicted classes and all features on the left-hand
side (DT achieved the best scores overall) and predicted classes and feature selection on the right hand side (Bag_lgbm achieved the best scores overall).

TABLE 8. NSL-KDD Level 01: organized by F1 (highest to lowest). The input dataset from Level 00 is prediction probabilities and all features on the
left-hand side, and prediction probabilities and feature selection on the right-hand side. In both cases, DT achieved the best scores overall.
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TABLE 9. NSL-KDD timetable in seconds showing how long each model takes in training and testing combined. Overall, the best results are from RF,
Average, and Weighted Average. On the other hand, the worst models in terms of runtime are Bag_KNN, Bag_LGBM, and Bag_MLP.

the best result in Table 6. Additionally, in the scenario
with feature selection and prediction probabilities (Table 8),
models such as XGB and Bagging_DT also exhibit F1 scores
surpassing 0.937. These findings confirm that, for the NSL-
KDD dataset, utilizing prediction probabilities rather than
predicted classes in Level 01 leads to superior outcomes.

4) RUNTIME PERFORMANCE
Another consideration is the time added for getting better
predictions. Table 9 displays the time in seconds for
each model in each level variant in our work. This
table is important because one can check how long it
takes to obtain a better result. Considering the NSL-
KDD dataset, recall that the best result came from the
Bagging_LGBM ensemble method, and the second best
came from LGBM. Both models are from the case with
all features and prediction probabilities (Table 8) for Level
01. However, when considering the time it takes to run
both models, Table 9 shows that LGBM (0.789 seconds) is
quicker than Bagging_LGBM (2173.16 seconds) by roughly
2172 seconds. Overall, the best runtime results are from RF,
Average, andWeighted Average. On the other hand, the worst
models in terms of runtime are Bag_KNN, Bag_LGBM,
and Bag_MLP. From this analysis, the choice between the
best models (by the security analyst) is problem-dependent
which depends on time, accuracy, precision, recall,
and F1.

We next show the main evaluation results for the
RoEduNet-SIMARGL2021 dataset.

B. ROEDUNET-SIMARGL2021 ANALYSIS
1) MAIN RESULTS OF LEVEL 00
Table 10 display similar accuracy, precision, recall, and F1
scores for Level 00 using the RoEduNet-SIMARGL2021
dataset. The table elucidates the results from experiments
using all features, as well as those using the top eight features
(according to Table 22). The complete feature set yields
slightly higher values for precision, recall, and F1 scores,
leading to better overall performance. Notably, the top three
models (e.g., Bagging_DT, DT, and LGBM), comprising
two base learners and one ensemble method, perform best.
Conversely, the weakest performances are consistent across
both feature sets, including models such as Bagging_ADA,
Bagging_LR, Bagging_SVM, and ADA. Despite achieving
near-perfect metrics of 0.999 in many models, we proceeded
to analyze the impact of using Level 01 variants with the
RoEduNet-SIMARGL2021 dataset to determine if perfor-
mance could be enhanced or compromised.

2) MAIN RESULTS OF LEVEL 01
Tables 11 and 12 showcase the main results of Level 01 for
the RoEduNet-SIMARGL2021 dataset, reflecting the four
configurations previously mentioned. The analysis involves
two primary comparisons: one among all Level 01 tables,
and another between the results of Level 00 and Level
01. Initially, when assessing all Level 01 tables by the F1
score, the highest results are observed in Table 12, which
accounts for prediction probabilities using all features. This
is followed by prediction probabilities with feature selection,
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TABLE 10. RoEduNet-SIMARGL2021 Level 00: organized by F1 (highest to lowest) with all features used (left-hand side). Note that DT, Bag_DT, LGBM, CAT,
Bag_CAT, RF, Bag_Comb, Bag_RF, and Bag_lgbm) yield the best performance metrics. In the case of Feature Selection(right-hand side) Bag_DT, DT, LGBM,
CAT, Bag_CAT, Bag_LGBM, KNN, and Bag_KNN have the best performance metrics.

TABLE 11. RoEduNet-SIMARGL2021 Level 01: organized by F1 (highest to lowest). The input dataset from Level 00 is predicted classes and all features on
the left-hand side. We note that the majority of models yield identical performances for this setup. On the right-hand side, the input dataset from Level
00 is predicted classes and feature selection. We observe that all models perform very well except ADA, and Bag_ADA.

predicted classes with all features, and classes with feature
selection (all in Table 11). Hence, models demonstrate
better performance when utilizing probabilities rather than

class predictions, with minimal difference between using
all features versus selected features. The top performers
across these configurations include Bagging_LGBM and
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TABLE 12. RoEduNet-SIMARGL2021 Level 01: organized by F1 (highest to lowest). The input dataset from Level 00 is prediction probabilities and all
features on the left-hand side. Here, all models performed very well except the Avg and Weigted_Avg methods. On the right-hand side, the input dataset
from Level 00 is predicted probabilities and feature selection. We observe that all models perform very well except ADA, and Bag_ADA.

LGBM, although many models exhibit nearly perfect per-
formance. Notably, ensemble learning methods generally
outperform base learners, as evident from the data in
Tables 11 and 12.

3) COMPARISON OF LEVEL 01 AND LEVEL 00
Regarding the comparison between Level 00 and Level 01,
the results indicate that stacking may be unnecessary, as the
outcomes from Level 01 mirror those from the best con-
figurations of Level 00 for the RoEduNet-SIMARGL2021
dataset. To better assess the impact of stacking, we analyzed
improvements across all models: seven out of sixteen models
showed better performance in the best configuration of Level
01 (Table 12) compared to Level 00 (Table 10). However,
only three out of sixteen models improved in the second-
best Level 01 configuration compared to the best Level
00 setup. Although the tables containing predicted classes
from Level 01 (Table 11) indicate enhanced performance
for some models, they also show diminished results for
others. Consequently, the majority of base learners do
not substantially benefit from the transition to Level 01.
In summary, it is advisable to maintain the analysis at Level
00, as there is no significant advantage to progressing to Level
01 with this dataset.

4) RUNTIME PERFORMANCE
We next show the runtime amount for each model. Table 13
shows the time in seconds for each model in each level

variant. Considering the RoEduNet-SIMARGL2021 dataset,
it is best to consider the result from Level 00 since it
achieved the best results. Therefore, among the models with
a 0.999 score in all metrics (i.e., DT, Bagging_DT, LGBM,
CAT, Bagging_CAT, RF, Bagging_Comb, and Bagging_RF),
it is wise to choose the quickest, which is RF with roughly
9 seconds followed by LGBM with 27 seconds. The slowest
model is the Bagging_comb with a duration of 40 minutes.
Also, note that this dataset is large (e.g., approximately
30 million samples), and we limited the number of samples
to 6 million for our experiments using random sampling.

C. CICIDS-2017 ANALYSIS
1) MAIN RESULTS OF LEVEL 00
Tables 14 present the accuracy, precision, recall, and F1
scores for Level 00 using the CICIDS-2017 dataset, detailing
experiments with all features and the top eight features
(according to Table 22). The complete feature set delivers
slightly higher precision, recall, and F1 scores, indicating
better overall performance. The top performing models
include Bagging_DT, DT, and Bagging_LGBM, with a mix
of base and ensemble methods showing strong results.
Conversely, models such as Bagging_ADA, DNN, SVM,
and ADA underperform in both setups. Given that nine
models have an F1 score below 0.9, there is clearly
potential for improvement. Thus, we proceeded to analyze
the performance of ensemble models at Level 01 to determine
their effectiveness with this dataset.
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TABLE 13. RoEduNet-SIMARGL2021 timetable in seconds, how long each model takes in training and testing combined.

TABLE 14. CICIDS-2017 Level 00: organized by F1 (highest to lowest) and all features are used (left hand side). We note that 13 models have an F-1 score
higher than 0.9 while 8 models have an F-1 score lower than 0.9 for this setup. In the case of feature selection (right hand side), we note that 12 models
have an F-1 score higher than 0.9 while 9 models have an F-1 score lower than 0.9 for this setup.

2) MAIN RESULTS OF LEVEL 01
Tables 16 and 15 showcase the main results of Level 01 for
the CICIDS-2017 dataset, comparing two configurations: one
using all features and another using the top eight features.

The analysis involves two primary comparisons: one among
all Level 01 tables, and another between the results of Level
00 and Level 01. The highest F1 scores are observed in
Table 15, which considers prediction probabilities with all
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TABLE 15. CICIDS-2017 Level 01: organized by F1, highest to lowest. On the left-hand side, the input dataset from Level 00 is predicted probabilities, and
all features are considered. This setup gives the best results for the CICIDS-2017 dataset. On the right-hand side, the input dataset from Level 00 is
predicted probabilities, and feature selection is considered. This setup gives the second-best results for the CICIDS-2017 dataset.

features, followed by the same table using feature selection.
The results from Table 16 with feature selection and all
features show that models perform better when utilizing
probabilities rather than class predictions, with minimal
difference between using all features versus selected features
for achieving the best results. The top performers across
these configurations include Bagging_LGBM, LGBM,XGB,
and Bagging_DT, with several other models like DT, CAT,
and Bagging_CAT also displaying near-perfect performance.
Notably, ensemble learning methods generally outperform
base learners, as evidenced by the data in Tables 16
and 15.

3) COMPARISON OF LEVEL 01 AND LEVEL 00
Regarding the comparison between Level 00 and Level 01 for
the CICIDS-2017 dataset, the results indicate that stacking at
Level 01 is beneficial, as it generally outperforms Level 00.
Specifically, 17 out of 21 models show improvement in the
best configuration of Level 01 (Table 15) compared to the best
of Level 00 (Table 14), and all models show improvement
in the second-best configuration of Level 01. Additionally,
the results from Table 16, which focus on predicted classes,
demonstrate better performance for some models compared
to their counterparts at Level 00, although a fewmodels do not
perform as well. The analysis supports the recommendation
to employ Level 01 ensemble learning strategies for this
dataset, as most models exhibit a notable performance gain.

4) RUNTIME PERFORMANCE
We next show the runtime amount for each model for the
CICIDS-2017 dataset. Table 17 shows the time in seconds for
each model in each level variant. Considering the CICIDS-
2017 dataset, it is best to consider the result from Level
00 and Level 01 (i.e., probabilities and all features) since
it achieved the best results. Therefore, among the Level
00 models with the 0.997 score in F1 metrics (i.e., DT,
Bagging_DT, and Bagging_LGBM), it is wise to choose the
quickest, which is DT with roughly one minute followed by
Bagging_DT with around seven minutes. The slowest model
is the Bagging_KNN, with a duration of nine hours and
20 minutes approximately. Regarding Level 01 Probabilities
and all features among the Level 01 models with the
1.000 score in all metrics (i.e., XGB, Bagging_DT, LGBM,
andBagging_LGBM), it is wise to choose the quickest, which
is Bagging_DT with roughly one and a half minute. The
slowest model is the LGBM, with a duration of 15 minutes.
As a side note, this dataset is large (e.g., approximately
3 million samples with 78 features). Thus, the time analysis
gives insight into the runtime complexity of each model
considered here.

D. FALSE POSITIVE RATE (FPR)
We next display the results for False Positive Rates
for our two-level framework for the three considered
datasets.
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TABLE 16. CICIDS-2017 Level 01: organized by F1 (highest to lowest). On the left-hand side, the input dataset from Level 00 is predicted classes, and all
features are considered. On the right-hand side, the input dataset from Level 00 is predicted classes, and feature selection is applied.

TABLE 17. CICIDS-2017 timetable in seconds, how long each model takes in training and testing combined.

(i) FPRComparison among Level 00: Feature Selection
vs. All Features: We begin by analyzing the False Positive

Rate (FPR) for Level 00, comparing both configurations:
using all features and feature selection. The FPR results,
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TABLE 18. False Positive Rates (%) - Level 00 all features. We notice that the effectiveness of feature selection may vary depending on the specific
network intrusion dataset and model configuration.

TABLE 19. False Positive Rates (%) - Level 01 Prediction Probabilities. Level 01 yields lower FPR compared to Level 00 for most cases for all of the three
datasets considered in our work.

presented in Tables 18 for all features and feature selection,
vary across datasets. For the NSL-KDD dataset, feature
selection resulted in a decreased FPR for 7 out of 21 models,
indicating that it is beneficial for a minority of models.
In contrast, for the CICIDS-2017 dataset, 11 out of 21 models
showed a decrease in FPR with feature selection, suggesting
a more substantial benefit. Similarly, for the RoEduNet-
SIMARGL2021 dataset, 8 out of 21 models experienced

a reduction in FPR due to feature selection. These results
imply that the effectiveness of feature selection may vary
depending on the specific network intrusion dataset and
model configuration.

(ii) FPR Comparison among Level 01: Feature Selec-
tion vs. All Features: The FPR tables for Level 01, both
with all features and feature selection, exhibit variable
impacts across datasets, as shown in Table 19. For the
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NSL-KDD dataset, feature selection reduced the FPR for
14 out of 21 models, underscoring its utility. In the
CICIDS-2017 dataset, feature selection was beneficial for
10 out of 21 models due to a decreased FPR. However,
for the RoEduNet-SIMARGL2021 dataset, only 2 out of
21 models saw a reduction in FPR with feature selection,
suggesting limited effectiveness. Given these results, the
general recommendation for Level 01 is not to apply feature
selection, aligning with earlier recommendations based on
F1 scores. This consistency confirms the strategy’s relevance
across different evaluation metrics considered in our work.

(iii) FPR Comparison between Level 00 and Level 01:
a. All Features: For CICIDS-2017, 16 out of 21 models

benefit from going to Level 01 (i.e., they have lower FPR).
For NSL-KDD, 8 out of 21 models benefit from going to
level 01. For RoEduNet-SIMARGL2021, 19 out of 21models
benefit from going to Level 01.

b. Feature Selection: For CICIDS-2017, 18 out of
21 models benefit from going to Level 01. For NSL-KDD,
15 out of 21 models benefit from going to level 01 For
RoEduNet-SIMARGL2021, 16 out of 21models benefit from
going to Level 01.

FPR Summary: The best setup based on FPR results
is to stay at Level 00 - All features for the NSL-KDD.
For CICIDS-2017, it is Level 01 - All probabilities and all
features, followed closely by Level 01 - Feature Selection.
For RoEduNet-SIMARGL2021, the best setup is Level 01 -
All probabilities and all features. Thus, overall, it is clear that
our two-level framework provides a gain in false positive rates
compared to just applying Level 00.

E. STATISTICAL ANALYSIS
1) STATISTICAL ANALYSIS
We next provide statistical analysis to validate our findings.
Hence, we chose to apply the non-parametric Wilcoxon
signed-rank statistical test to the three datasets used in this
work. The rationale behind our choice is that our datasets do
not have a normal distribution. For our statistical analysis,
we pick 12 models (i.e., SVM, RF, DNN, LGBM, MLP,
KNN, LR, DT, CAT, XGB, bag_DT, and ADA) that include
the models with the best results overall and other relevant
models. Considering 12 models, it will generate 66 p-values
for each pair combination of models for each dataset (i.e.,
66 rows in Table 20). Then, we apply the significance test
using k-fold cross-validation and the accuracy scores for each
model. This gives the full process to generate model pairs that
will be used for statistical analysis.

The result of the above process generates two samples,
one for each model (for the two models being compared
against each other). Later, we applied the Wilcoxon test to
obtain the difference between both samples. If they differ
from each other in a significant way, one can imply that there
is significant evidence that one model is more accurate than
the other. The algorithm ranks which differences have the
highest absolute difference value. Finally, we check whether

the calculated p-values are lower than 0.05 (significance
level) to reject the null hypothesis (i.e., there is no difference
in the performance of the two models being compared). Our
statistical analysis results are shown in Table 20.

2) MAIN INSIGHTS
Considering the three datasets, Table 20 shows that most
pair models reject the null hypothesis (p < 0.05). Therefore,
there is evidence that one model performs better than the
other in most cases. Thus, we can separate the tests into
two groups: The group with statistical significance (i.e.,
p < 0.05), and the group that does not have statistical
significance (p > 0.05). We can further divide the first group
into two subgroups by analyzing the medians of their array
of accuracy scores of the estimator for each run of the
cross-validation method. The first subgroup, indeed, has a
model that is performing better (i.e., one model has a higher
median than the other one). For this case, we highlighted
the best model in bold in Table 20. However, for the second
subgroup (i.e., both models display the same median), we
cannot know which is better. In this case, we highlighted
both models in bold in Table 20. Although the majority
of methods are significant (i.e., SVM, RF, DNN, LGBM,
MLP, KNN, LR, DT, CAT, XGB, bag_DT, and ADA), the
following pair methods for the CICIDS-2017 are not: SVM-
LGBM, RF-LGBM, LGBM-MLP, LGBM-KNN, LGBM-
LR, LR-ADA (i.e., 6 out of 66). In contrast, DNN, KNN, DT,
bag_DT, CAT, and XGB are significant for all comparisons.
When analyzing the RoEduNet-SIMARGL2021 dataset, the
following pair methods are non-significant: SVM-LR, RF-
KNN, RF-DT, LGBM-KNN, LGBM-DT, LGBM-Bag_DT,
MLP-LR, KNN-DT, KNN-Bag_DT, DT-CAT, DT-Bag_DT,
bag_DT-CAT (i.e., 12 out of 66). In contrast, DNN, ADA,
and XGB are significant for all comparisons. Lastly, for the
NSL-KDD, the only non-significant pair method is SVM-
LGBM (i.e., one out of 66). Therefore, RF, DNN, MLP,
KNN, LR,DT, CAT,XGB, bag_DT, andADAare statistically
significant for all comparisons. Across all datasets, XGB and
DNN are always significant.

F. GAINS OF OUR FRAMEWORK - DATASET-WISE
Next, we break the quantitative gains down by each
dataset.

1) NSL-KDD
By implementing the Level 01 Probabilities - All Features,
and comparing the best model in Level 00 to the best model
in Level 01, we have an enhancement in its Precision from
0.952 to 0.996, its Recall from 0.924 to 0.995, and its F1
from 0.937 to 0.995. Also, it decreased its FPR from 2.142 %
(best in level 00) to 1.002% in Level 01. On the other
hand, considering the best base learner model in Level 00,
it enhanced its Accuracy from 0.991 to 0.996, its Precision
from 0.957 to 0.996, its Recall from 0.907 to 0.995, and its F1
from 0.929 to 0.995. Also, it decreased its FPR from 5.829 %
to 1.002%.
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TABLE 20. The pairwise statistical test results between every pair of AI models by Wilcoxon signed rank test. Statistically better method (p < 0.05) shown
in bold (both marked bold if there is significance and the median of the accuracies are the same while only one is marked bold if there is significance
and one model has a higher median). On the left, the CICIDS-2017 dataset is shown. In the middle, the RoEduNet-SIMARGL2021 dataset is shown. On the
right, the NSL-KDD dataset is shown. For all datasets, our method is predominantly statistically significant with a few exceptions where p > 0.05. Across
all datasets, XGB and DNN are always statistically significant.

2) CICIDS-2017
By implementing the Level 01 Probabilities - All Features,
comparing the best model in Level 00 to the best model in
Level 01, enhanced its Accuracy from 0.999 to 1.000, its
Precision from 0.995 to 1.000, its Recall from 0.999 to 1.000,
and its F1 from 0.997 to 1.000. Also, it decreased its FPR
from 0.460 % (best in Level 00) to 0.002% in Level 01.
On the other hand, considering the best model in Level 00 is
also a base learner to the best ensemble learning method,
it enhanced its Accuracy from 0.999 to 1.000, enhanced its

Precision from 0.995 to 1.000, its Recall from 0.999 to 1.000,
and its F1 from 0.999 to 1.000. Also, it decreased its FPR
from 0.460 % to 0.002%. The overlap in results is due to DT
being among the best models for Level 00.

3) ROEDUNET-SIMARGL2021
By implementing the Level 01 Probabilities - All Features,
comparing the best model in Level 00 to the best model in
Level 01, enhanced its Accuracy from 0.999 to 1.000, its
Precision from 0.999 to 1.000, its Recall from 0.999 to 1.000,
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TABLE 21. The summary of all results in this work. Our framework provides higher performance metrics and lower FPR.

and its F1 from 0.999 to 1.000. Also, it decreased its FPR
from 0.001 % (best in level 00) to 0.000% in Level 01. On the
other hand, considering the best base learner model in Level
00 to the best ensemble learning method, it enhanced its
Accuracy from 0.999 to 1.000, enhanced its Precision from
0.995 to 1.000, its Recall from 0.997 to 1.000, and its F1 from
0.997 to 1.000. Also, it decreased its FPR from 0.001 % to
0.000 %. Again, we emphasize that the overlap in results is
due to DT being among the best models for Level 00.

Overall, our extensive evaluation has shown the prospec-
tive benefits of our proposed two-level ensemble learning
framework, detailing each metric for each dataset considered
in this work.

VII. LIMITATIONS, DISCUSSION, AND FUTURE
DIRECTIONS
A. DISCUSSION
1) IMPORTANCE OF OUR TWO-LEVEL FRAMEWORK
In today’s world of exponential information growth, it is
natural that network attacks will become more frequent
(e.g., see the recent study by the Center for Strategic &
International Studies (CSIS) [71]). Although IDS has evolved
throughout the years, security analysts are responsible for
double-checking possible attack occurrences in this fast-
paced environment. Therefore, having an accurate framework
for intrusion detection systems can help solve such a problem
by having fewer FPR instances to analyze and focus on the
crucial traffic data. Our framework presented in this work

helps to reduce the FPR and to increase performance (in terms
of accuracy, recall, precision, and F1) in intrusion detection
systems thoroughly, which is a key point to deploy them for
network security.

2) SUMMARY OF FINDINGS
All the results in this paper are summarized in Table 21.
It answers the questions the reader might have. Which AI
model is the best, or is it context-dependent?; Is the two-level
framework beneficial after all?; Is it viable? Table 21 shows
three crucial points (i.e., Metrics used, FPR, and Runtime) in
analyzing the framework.

a: PERFORMANCE METRICS
The first takes into consideration the metrics (i.e., Accuracy,
Precision, Recall, and F1) used to analyze all possible setups
(i.e., Level 00 All features, Level 00 Feature selection,
Level 01 Classes - All features, Level 01 Classes -
Feature Selection, Level 01 Probabilities - All features, and
Level 01 Probabilities - Feature Selection). Overall, the
best results (i.e., higher metrics) are achieved when using
Level 01 Probabilities - All features and the best models are
XGB, LGBM, Bag_DT, and Bag_LGBM.

b: FALSE POSITIVE RATE
The second part is analyzing which setup provided the lower
FPR. The results show that, once more Level 01 Probabil-
ities - All features provided the lowest FPR overall. The
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models with the lowest FPR are CAT, LGBM, XGB, and
Bag_LGBM.

c: RUNTIME
The third part consists of analyzing the runtime of the
21 models (plus voting, averaging, and weighted averaging)
used. Table 21 divides them by the fastest models (runtime
< 10 min), slowest models (runtime > 100 min), and average
models (10 min < runtime < 100 min). To fit models in each
one of the three categories, the model runtime analysis has
to be valid for all Level variants (i.e., Level 00 All features,
Level 00 Feature selection, Level 01 Classes - All features,
Level 01 Classes - Feature Selection, Level 01 Probabilities -
All features, and Level 01 Probabilities - Feature Selection).
In other words, if at least one of the variants has a runtime
higher than the requisite, the model will fall in the next
slower category. From this analysis, the following models are
the overall fastest ones: RF, DT, CAT, LR, Bag_rf, ADA,
XGB, Bag_DT, Bag_CAT, SVM, Avg, Weighed Avg, and
Voting. The following have an average runtime: KNN, MLP,
Bag_LR, and LGBM. The Slowest models are Bag_KNN,
Bag_MLP, Bag_Comb, and Bag_LGBM.

d: BEST MODELS
When overlapping these results (performance metrics, FPR,
and Runtime) in Table 21, we can extract the best models
overall, which areXGB andBag_DT, followed by LGBMdue
to a slower runtime. These models were the best in achieving
themetrics proposed in this work, and they achieved their best
performance using the Level 01 Probabilities - All features
setup. These suggestions are viable since the time added to its
head time is kept under a few minutes when using the fastest
models.

3) INSIGHTS ABOUT BOOSTING TECHNIQUES
It is interesting that the best techniques in Table 21
are all boosting techniques (except ADA). This shows
its importance in enhancing AI-based intrusion detection
models, particularly using two-level ensemble learning. This
might be an indication that Boosting techniques are a good
fit for the ensemble in Level 01 of our framework (or other
stacking methods). This might be due to the correlation
between the way that boosting works (learning from past
mistakes) and the relationship between the probabilities and
classes. This shows the suitability of using boosting in Level
01 in our two-level framework for IDS.

4) DECISION TREE CONSIDERATION
The results show that Decision Tree is one of the best
models for all three datasets, and the only base model to rival
ensemble methods in Level 00. However, it is most likely to
lack generality when applied in different scenarios due to its
tendency to overfit and bias [72]. Therefore, checking the
next best base learner performances reassures the relevance
of using ensemble learning for improving the metrics. As an

example, for CICIDS-2017, the best base learner excluding
DT is KNN which achieved an Accuracy of 0.992, Precision
of 0.979, Recall of 0.994, and F1 of 0.986. For RoEduNet-
SIMARGL2021, the next best base learner is KNN which
achieved an Accuracy of 0.998, Precision of 0.998, Recall of
0.998, and F1 of 0.998. For NSL-KDD, KNN performs better
than DT, however, this dataset has characteristics that make it
less prone to over-fitting.

5) BENEFITS OF OUR TWO-LEVEL FRAMEWORK
Our two-level framework offers flexibility in the way it
is built. Differently from previous works, it goes beyond
applying ensemble learning techniques directly to the
datasets, it uses the predictions obtained to generate four
new meta-datasets based on classes and prediction proba-
bilities which is applied to all the models used in Level
00 and ensemble learning techniques. This setup provides
an extensive evaluation of the three datasets used, among
them the RoEduNet-SIMARGL2021 which is considered
real-world and not yet evaluated in this context from the
literature gathered to the best of our knowledge. Moreover,
it permits the use of feature selection techniques at both
levels, enriching the pool of results and insights gathered.
Moreover, this work presents an extensive evaluation that is
not present in other works, we analyze 21 models/ensemble
methods in 6 different setups (two Level 00 setups and four
Level 01 setups) in three different datasets, generating results
for Accuracy, Precision, Recall, F1, Runtime, False Positive
Rates, and a Statistical Significance test. Plus, we achieve
perfect and near-perfect results for a few models considering
the FPR and the F1 score, both metrics are particularly crucial
for IDS. This is because security analysts, stakeholders,
and users need to do everything in their power to identify
a possible threat accurately and as fastest as possible as
undetected attacks can cause significant damage.

We also want to stress that we took the extra step and
made the codes open source. The way they are built is to
be easily expandable to use with other datasets and further
analysis. As a side note, we want to express that when we say
Framework, we are specifically meaning that our program is
an end-to-end solution delineated by our low-level framework
(Figure 2) that starts at the datasets, then processing all the
inner work and extracting the results. However, it is not a
deployable solution for production since it is not extensively
tested or validated by an auditory company, but instead,
a proof of concept of the benefits of using our proposed
framework and a crucial stepping-stone in enhancing the field
of AI-based network IDS.

B. LIMITATIONS
1) DATASET ANALYSIS AND BIAS
The experiments allow us to extract a few interesting
conclusions about the datasets used. First, we conclude
that the models in our framework achieved better overall
gains in Level 01 for NSL-KDD when compared to
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CICIDS-2017, and RoEduNet-SIMARGL2021. Each one
of these datasets has unique characteristics. For instance,
RoEduNet-SIMARGL2021 has almost 30 Million data
points with roughly 20 feature columns, and CICIDS-2017
has almost 2 Million data points but roughly 70 feature
columns 5. This explains the perspective of why it can
become heavy on the models increasing their runtime for
these datasets. Another implication is the amount of data
and the number of classes present, three prediction classes
for RoEduNet-SIMARGL2021 and seven for CICIDS-2017.
In the case of RoEduNet-SIMARGL2021, the AI models
seem to learn its patterns easily with due to its huge size
and only three prediction classes. However, the CICIDS-
2017 has seven prediction classes, and the models seem to
adapt well and achieve high scores without much issue. The
reason behind it might be its high unbalanced number of data
points between classes 5 (four classes combined represent
less than 1% of the whole dataset). Differently, NSL-KDD
represents a more heterogeneous dataset with overall fewer
samples than the other two and with better balance among
classes. It could be the reason behind the more plausible
metrics for NSL-KDD in contrast to the other two datasets.
This limitation indicates the need for new testing in future
work with different datasets or uncalibrated models to expand
benchmarking and testing for our two-level framework.

2) BAGGING METHOD EFFICACY FOR SOME VARIANTS
Another insight is that bagging efficacy and viability are
dependent. For instance, most experiments in this paper
show that bag_KNN and bag_MLP showed almost identical
results compared to their single counterparts, which indicates
that is not worth performing bagging with the following
models (KNN, MLP, SVM, LR) due to the added time
and little improvement offered. Also, the same happened
when bagging other ensemble methods (e.g., RF, ADA, CAT,
LGBM) except decision tree (Bagging_DT). Also, RF itself is
a Bagging method that is also fast. The reason behind it might
be related to the quality of the datasets used, which did not
offer much room for improving the metrics, and the already
good performance of base models and ensemble learning
methods.

3) TIME PERFORMANCE VARIATIONS AMONG ENSEMBLE
METHODS AND AI MODELS
Table 21 shows the summary of Tables 17, 13, and 9. In other
words, a simplified version divides the models into three
categories (i.e., fast, average, and slow). As expected, some
ensemble techniques (such as Bag_knn and Bag_mlp) require
great amounts of time, while tree-based and regression
models tend to be faster, including RF, DT, and LR.
By delving further into the model’s behavior, there are a few
interesting behaviors, such as the huge runtime drop (e.g.,
some drops are 20X-30X) for KNN, MLP, SVM, DNN, and
its variants when applied to Level 01 in contrast to Level 00.
This behavior can be due to the new dataset size (30% its
original size) when transitioning from Level 00 to Level 01,

its reduced number of column features, and learning from the
features (e.g., the information might be laid out in a simpler
way to learn, given the model’s inner works).

Another interesting relationship in the runtime tables
(Tables 17, 13, and 9) is regarding the Boosting methods. All
boosting methods, but LGBM, have a faster runtime in Level
01when compared to Level 00. The reason is probably similar
to KNN, MLP, and SVM. However, the LGBM case might be
related to the model parameters.

Overall, the models vary from a few milliseconds to many
hours. Among the 21 models, 13 models are in the fastest
category (under 10 minutes), four models are in the average
category (10 - 100 minutes), and four models are in the
slowest category (over 100 minutes). Since 17 models are not
in the slowest category, the scenario is beneficial for ensemble
model combinations without adding excessive headtime.

C. FUTURE DIRECTIONS
We believe this work is a stepping-stone towards an enhanced
AI-based IDS. However, there are future experiments and
implementations to further enhance our framework. One
is to expand our framework to other datasets, other AI
models, and more ensemble methods to create an even
more comprehensive framework and extract more insights.
Another improvement is to find other problems to further
validate the benefits of the framework stacking Levels. One
other fruitful direction of future research is considering
multi-level ensemble learning (i.e., using Level 02 or even
Level 03). Moreover, another research direction is to do
more experimentation with more feature selection methods.
Furthermore, exploring the application of XAI frameworks
to generate explanations for the ensemble methods is one
feasible future direction for related research. Finally, one
ultimate goal of improvement includes implementation in
real-time and validations with security experts and analysts
to gather valuable insights and improvements.

VIII. CONCLUSION
The objective of security intrusion detection tools is to
prevent intrusions, with AI offering automation potential
in these tools. The increasing occurrence of intrusions
in networked systems has prompted research into AI
techniques for intrusion detection systems (IDS). Different
AI models have been utilized for automating network
intrusion detection tasks, each with its own merits and
drawbacks. However, choosing the most appropriate model
for a specific dataset can be difficult. To overcome this
challenge, combining multiple AI models can improve their
overall effectiveness and suitability for network intrusion
detection.

This paper aims to bridge this gap by evaluating diverse
ensemble methods for IDS. Specifically, we introduced a
two-level ensemble learning framework for assessing these
methods in network intrusion detection tasks. In the first
level, we trained base learners and ensemble methods,
generating evaluation metrics and new datasets for the
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second level. The second level involved training ensemble
methods on the datasets generated in the first level and
producing evaluation metrics. Additionally, feature selection
has been considered for both levels, utilizing explainable
AI (XAI) and Information Gain-based techniques. Results
have been presented for 24 ensemble model combinations
in our framework, employing various bagging, stacking,
and boosting methods on different base learners. Evaluation
has been conducted on three network intrusion datasets
with varying characteristics. Our analysis has categorized
AI models based on their performance metrics (accuracy,
precision, recall, and F1), statistical analysis, runtime, and
false positive rates, demonstrating the benefits of two-level
learning across most setups.

Furthermore, we provide our source codes to the com-
munity, offering a baseline two-level ensemble learning
framework for network intrusion detection and building on
it with new models and datasets. Moreover, we provided
insights related to the best models for each dataset, and
common and different behaviors among them that are
related to their performance and results. We then provided
an in-depth discussion about our main findings and main
benefits of our framework. We believe that this study
marks progress in bridging the divide in utilizing ensemble
learning methods for network intrusion detection systems.
It achieves this by conducting comprehensive evaluations and
comparisons of various metrics to assess the effectiveness of
these ensemble methods. Future research directions include
testing our framework with other datasets and more ensemble
methods, considering multi-level ensemble learning, and
exploring the application of XAI frameworks to generate
explanations for the ensemble methods.

APPENDIX A
AI MODELS AND HYPER-PARAMETERS
We now provide the hyperparameters of our different AI
models considered in this work.

A. AI MODELS AND HYPERPARAMETERS DETAILS
1) BASE MODELS
First, we lay the main details of base models, which are given
as follows.

a: DEEP NEURAL NETWORK (DNN)
The first classifier is a deep neural network (DNN). The
architecture of this classifier consists of an input layer
with the count of neurons corresponding to the used
number of features, and the rectified linear unit (ReLU)
activation function. This is followed by a dropout layer
with the dropout set at 0.01, a hidden layer with a size of
16 neurons, and the ReLU activation function. The setup
closes with a ‘‘softmax’’. The loss function was set to
the ‘‘categorical_crossentropy’’ method, while the chosen
optimization algorithm was adaptive momentum (ADAM).

Eleven epochs were needed to train the model with a batch
size of 1024.

b: RANDOM FOREST (RF)
The next classifier used to detect malicious samples in
the network traffic was the RandomForest (RF). The
hyperparameters we used for this classifier are as follows:
n_estimators (a parameter that signifies number of trees used)
was set to the value of 100, the maximum tree depth was set
to the value of 10, the minimum number of samples required
to separate internal node was set to the value of 2, and the rest
were used as provided by default.

c: ADABOOST (ADA)
The next classifier used in this study was AdaBoost. The
parameter configuration for this classifier is as follows: the
maximum number of estimators at which boosting will be
completed was set to a value of 50, the weight applied to each
classifier in each boosting iteration was set to a value of 1, and
the base estimator from which the boosted ensemble is built
was set to Decision_Tree_Classifier.

d: LOGISTIC REGRESSION (LR)
The next classifier is Logistic Regression. The parameter
configuration for this classifier is as follows: default.

e: DECISION TREE (DT)
The next classifier is Decision Tree. The parameter configu-
ration for this classifier is as follows: default.

f: K-NEAREST NEIGHBOUR (KNN)
We also used the KNN classifier. For this study, we usedKNN
in its default hyperparameters as follows: the ‘n’ neighbors
value was set to five, all weights were uniform, and the search
algorithm was set to ‘auto’.

g: SUPPORT VECTOR MACHINE (SVM)
We also used the SVM classifier. The parameter config-
uration for this classifier is as follows: Kernel is set to
‘linear’, gamma to 0.5, the probability is set to ‘True’, and
regularization is set to 0.5.

h: MULTI-LAYER PERCEPTRON (MLP)
The next used classifier was MLP. We used the same setup as
DNN for this classifier.

2) ENSEMBLE METHODS
Second, we lay out the main details of ensemble methods.

a: LIGHTGBM (LGBM)
The next used classifier was LightGBM. We used it
in its default hyper-parameters as follows: the n_splits
was set to 10, n_repeats was set to 3, error_score was
set to ‘raise’, n_jobs set to 1, and scoring was set to
‘accuracy’.
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TABLE 22. List of top significant features by baselines. The works [37] and [38] are used for RoEduNet-SIMARGL2021, CICIDS-2017, respectively. [38] is
also used for the NSL-KDD dataset.

b: EXTREME GRADIENT BOOST (XGB)
The next classifier is XGB. The parameter configuration for
this classifier is as follows: The number of iterations is set
to 100, weight is set to 1, depth is set to 3, learning rate to
0.1, loss function to multi: softmax, and custom metric to
mlogloss.

c: CATBOOST (CAT)
The next classifier used in this study was Catboost. The
parameter configuration for this classifier is as follows: The
number of iterations is set to 100, the depth is set to 6, the
learning rate is set to 0.1, and the loss function is set to
MultiClass with the custom metric set to Accuracy.

d: VOTING
The next classifier is Voting. This method is a simple stacking
method that checks each model decision in Level 01 and
reaches its decision by frequency analysis.

e: AVERAGE
The next classifier is Average. This method is a simple
stacking method that checks each model decision in Level
01 and averages its decision to decide its outcome.

f: WEIGHED AVERAGE
The next classifier is Weighed Average. This method is a
simple stacking method that checks each model decision in
Level 01 and averages its decision to decide its outcome, but
each model has a different weight based on its importance.

g: BAGGING
The next classifier set is a class of ensemble methods called
Bagging. This method divides the dataset into subsets with
replacements, and these different subsets are the input data to
the models used. Then the outcomes are combined to reach
a combined decision. We applied Bagging for level 00 and
level 01.

h: STACKING
The next classifier set is a class of ensemble methods called
Stacking. This method stacks the models’ decisions from

Level 00 and uses their outcomes to create a new dataset.
Then, models and ensemble methods are applied again in
Level 01 to a decision.

B. HYPER-PARAMETER RATIONALE
For this work, we performed hyper-parameter tuning to
maximize the performance of AI-based (or ML-based)
classifiers. The rationale behind the hyper-parameter tuning
in Appendix A is trial and error. Before applying the
post-model XAI techniques in this work, we extensively
trained and tested the same model with different parameters,
checking its performance on a standard set of well-known
metrics to evaluate each AI model for intrusion detection
classification problems. These are accuracy (Acc), precision
(Prec), recall (Rec), and F1-score (F1).

APPENDIX B
LIST OF TOP INTRUSION FEATURES
We show the list of top intrusion features for the three datasets
in Table 22.
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