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ABSTRACT With the continuous advancement of industry 4.0 and intelligent manufacturing, there is a
growing need for automation and intelligence in industrial production processes. Anomaly detection of
industrial product surface images is a key technology in achieving this goal and has thus become a significant
area of research. However, this endeavor still encounters challenges such as scarcity of abnormal samples,
complexities in data labeling, and uncertainties stemming from unknown factors and randomness. To this
end, we propose the Feature Extraction-based for Generative Adversarial Network (FEGAN), aimed at
detecting and precisely localizing surface anomaly in industrial products. FEGAN focuses on the deep
features of an image, and it builds a feature extraction network and an improved generative adversarial
network based on VGG19, respectively. We also jointly determines the anomaly score through the deep
feature space as well as the Euclidean distance in 2D image space to better identify and locate the
anomaly. Furthermore, we introduce a novel Multi-scale Self-Enhancement (M-SE) strategy to bolster the
model’s generalization capabilities. We conducted training and testing on the MVTec and Bottle-Cap public
datasets. A plethora of experimental results indicate that the proposed method outperforms existing methods
significantly in terms of anomaly detection. Additionally, through an evaluation of the model’s localization
accuracy, we demonstrate that FEGAN exhibits certain competitive advantages.

INDEX TERMS Feature extraction, generative adversarial networks, surface anomaly.

I. INTRODUCTION
Ananomaly refers to the presence of abnormal semantic pix-
els on the surface image of a product, which can occur in any
region of any image. Anomaly detection entails identifying
and analyzing data points in datasets that deviate from an
expected pattern. Currently, anomaly detection finds appli-
cations in diverse scenarios, including medical detection [1],
video surveillance [2], [3], financial transaction [4], network
security [5], industrial materials inspection [6], [7], [8], social
network analysis [9], [10], [11], time series analysis [12],
[13], [14], and system fault detection [15].

The associate editor coordinating the review of this manuscript and

approving it for publication was Hengyong Yu .

The inspection of surface anomaly on industrial products
plays a critical role in ensuring product quality and reliability.
It involves a thorough inspection of the product’s exterior
surface to identify any defects, flaws or abnormalities that
may exist. Traditionally, this is mainly done by manual visual
inspection, mechanical contact inspection or assisted by sim-
ple electronic devices. However, in a wide range of practical
applications, the traditional inspection methods suffer from
drawbacks such as slow speed, low precision, large errors,
failing to meet modern manufacturing industry needs for
efficiency, accuracy, and automation. Currently, researchers
are exploring emerging technologies that will enable signif-
icant advancements in anomaly detection and localization.
Industrial product assembly lines are transitioning fromman-
ual to machine intelligence, with breakthroughs occurring in
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FIGURE 1. Visualization of anomaly detection and localization in MVTec.
From left to right are the abnormal image, ground-truth, abnormal
superposition thermal map and positioning image respectively.

machine equipment, manufacturing processes, product devel-
opment, and marketing. As computing power improves and
detection algorithms are optimized, the overall quality control
of the manufacturing industry is gradually improving.

Image anomaly detection, a crucial technique in com-
puter vision, focuses on identifying anomalous regions in
images that deviate from normal patterns. In general, anomaly
detection relies on the power of machine learning and deep
learning. For most methods, a training set containing a large
number of normal images is required for the model to be
trained so that it can learn the contextual semantics and fea-
ture patterns of the normal samples. When exposed to novel
images, the model compares the differences between these
images and normal patterns based on its own experience.
If the error tolerance is exceeded, the model will identify
possible abnormal pixels.

In practical applications, image anomaly detection tech-
niques still face some challenges. Firstly, the definition of
anomaly may vary from one application scenario to another,
thus requiring the design of appropriate algorithms for differ-
ent detection tasks. Second, the available anomaly data are
often scarcer than normal data, which makes model training
more challenging. Third, anomaly patterns are diverse and
highly random. How to accurately detect and locate anomaly
in the context of strong unknowns is a research challenge.

In this work, we aim to solve the anomaly detection
problem on the surface of industrial products, overcome
the dependence on anomaly data labeling, and achieve
anomaly detection under the condition of only normal train-
ing samples. Our research primarily focuses on image feature
extraction, aiming to identify unknown anomalies by dis-
cerning significant differences between normal and abnormal
features. To this end, we propose a GAN anomaly detection
and localization method based on feature extraction. The
method employs a multi-scale self-enhancement approach
to expand the datasets and performs multi-scale feature

matching via dual network construction to detect anomalous
pixels in the image. On the one hand, the Feature Extrac-
tion Network (FEN) captures the substantial features of the
image adhering to the idea of pragmatism. Notably, this
contains normal or abnormal features. On the other hand,
the Improved Generative Adversarial Network (IGAN) is
constructed based on an asymmetric encoder-decoder which
understands only the semantic patterns of normal images.
The network performs the task of normal reconstruction of
abnormal regions under conditions that are insensitive to
the distinction between positive and negative class images.
We utilize the deep feature extraction function of VGG19 to
assist Improved GAN for feature generation and anomaly dis-
crimination, ultimately achieving image-level detection and
pixel-level localization of industrial product surface anomaly.
Fig. 1 shows the detection and localization effect of our
method on MVTec.

In summary, our contributions are as follows:

• We propose a deep learning method based on fea-
ture extraction, FEGAN, which is specially used for
anomaly detection and location of industrial product
surfaces. It mainly consists of feature extraction net-
work and improved generative adversarial network.

• We propose a novel multi-scale self-enhancement
method (M-SE) for approximating real anomalies.
This further improves the robustness of the network.
It copies a multi-scale area of a certain area proportion
from the original image and then randomly overlays
it on the original image. We control the intensity by
setting the area enhancement ratio.

• We jointly determine anomaly from different levels by
constructing dual networks. Specifically, in order to
make the network focus on deep features and semantic
content, we specially designed a novel exception score.
It defines the exception criterion from the deep feature
space and image space.

• The validity of our proposed model is illustrated by
extensive experimental validation and ablation analy-
ses. Excellent performance is shown on both MVTec
and Bottle-Cap, two challenging datasets.

II. RELATED WORKS
In the recent literature on anomaly detection, generative
adversarial networks [16], [17] and autoencoders [18], [19],
[20] have been extensively utilized as deep learning models
in various methodologies. Generative adversarial networks
strive to mimic real images by continually enhancing their
ability to differentiate between genuine and counterfeit
images. This adversarial training mechanism contributes
to enhancing the model’s generalization capacity. Autoen-
coders learn to efficiently represent images by extracting
features and compressing data. Additionally, convolutional
neural networks are frequently employed by researchers
to construct models based on a reconstruction-based
approach.
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A. RECONSTRUCTION-BASED APPROACH
Defect-GAN [21] follows the Image-to-Image translation
network and relies only on normal samples to execute auto-
mated anomaly synthesis tasks. The network performs two-
stage step-by-step learning through a defacement process and
a recovery process, enabling flexible control over the location
and category of generated anomaly. Experiments confirm
Defect-GAN’s capability to synthesize diverse anomaly with
a considerable degree of fidelity, thereby enhancing the net-
work’s performance in anomaly detection on concrete bridge
surfaces. DRAEM [22] restores anomalous regions featuring
semantically meaningful anomaly through a reconstruction
sub-network, and then connects the outputs of the recon-
structive sub-network with the input images and feeds them
into a discriminative sub-network with skip-connections.
Niu et al. [23] proposed a controllable anomaly image
generation method concerning region and intensity. They
constructed anomaly direction vectors in the potential space
based on feature continuity on both sides of the anomaly
boundary to control anomaly intensity. Moreover, the model
is guided to focus on the anomalous region through construc-
tion of anomalous attention loss. Gao et al. [24] employ GAN
to generate reconstruction of low-quality images with masks,
subsequently utilizing the VGG16 network for anomaly iden-
tification. Yan et al. [25] propose a semantic context-based
anomaly detection network called SCADN. Notably, this
network randomly overlays the input image with strip masks
of different scales, widths, and orientations, followed by
network reconstruction. OGNet [26] constructs a two-stage
training task and uses the discriminator to measure the
reconstruction quality of the image. It is worth mention-
ing that OGNet treats as an enhanced anomaly image.
RIAD [27] transforms anomaly detection into an image
recovery problem by randomly removing sub-regions in the
image and then performing recovery reconstruction based on
the neighborhood. Sabokrou et al. [28] proposed R and D
networks to enhance the framework’s performance through
adversarial training while augmenting original data and sup-
pressing anomalous data. Skip-GANomaly [29] introduces
skip-connections to preserve both global and local features.
However, the computational complexity of the model is high
and relies heavily on the quantity and quality of training data.

B. EMBEDDING-BASED APPROACH
This approach assumes that a sample as abnormal if its
features significantly deviate from the normal feature dis-
tribution. PaDim [30] relies on a pre-trained CNN feature
extractor to obtain a probabilistic representation of a nor-
mal image through a multivariate Gaussian distribution.
Yang et al. [31] introduce normal memory samples and
anomalous samples to assist in MemSeg learning, utilizing
spatial attention and multiscale feature fusion modules in
the model. MemSeg demonstrates high accuracy in anomaly
detection tasks and exhibits a robust inference advantage with
a processing speed of 0.0319 seconds per image. SPADE [32]

performed anomaly detection by aligning the test image with
the retrieved normal image and segmentation. The method
relies on the K nearest neighbors of the pixel-level feature
pyramid. Patch SVDD [33] extends the traditional support
vector data description method to the patch level for anomaly
detection and segmentation. Bergmann et al. [34]propose a
ST detection framework by comparing the differences in
sample embedding between the teacher network and the stu-
dent network, as well as the anomalous sample embedding
differences to identify anomalous samples in the data.

III. PROPOSED METHOD
In this section, we will begin by providing an overview of the
overall model and its staged process. Subsequently, we will
delve into the feature extraction network and the improved
generative adversarial network separately. Finally, we will
present additional details of this method.

A. FEGAN
Figure 2 demonstrates our proposed network framework and
algorithm flow. Overall, the model mainly consists of a Fea-
ture Extraction Network (FEN) and an Improved Generative
Adversarial Network (IGAN). The FEN adopts the structure
of VGG19 [35] following pre-training on ImageNet [36].
It serves the purpose of extracting high-level feature repre-
sentations, including overall shape and contextual semantics,
from an image. On the other hand, the IGAN consists of a
generator and a discriminator, where the generator consists
of an encoder and a decoder. Here the encoder is also used as
a feature encoding network.

The training phase, depicted by the green solid line in
Fig. 2. The network receives only normal image samples as
input. Normal images without data enhancement are fed into
the pre-trained VGG19 for extracting depth features. Sub-
sequently, the enhanced normal image is processed through
M-SE image enhancement before being fed into the generator
for sample reconstruction. In the next step, the reconstructed
images, along with the original normal images, are then
inputted into the discriminator for adversarial training.

Theoretically, the FEN is able to extract the essential fea-
tures for all types of images, both normal and abnormal.
However, the feature encoding network, having been trained
only on normal image features, theoretically reconstructs
abnormal images as normal ones after self-enhancement.
Consequently, the feature loss and content loss between the
two types of images should be substantial.

The test phase, represented by the red solid line in Fig. 2,
operates differently depending on whether a normal or abnor-
mal image is inputted. For normal images, the depth feature
residuals of FEN and the feature encoder are minimal, result-
ing in a reconstructed image similar to the original. Therefore,
the output anomaly score falls below the anomaly thresh-
old. Conversely, for abnormal image inputs, FEN extracts
abnormal features, which differ significantly from the normal
features extracted by the encoder. This leads to an output
anomaly score surpassing the anomaly threshold. Finally,
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FIGURE 2. Network structure of FEGAN. The training flow is shown as green solid line. The testing flow is
shown as the red solid line. The green dashed line shows the composition of the loss function.

in the dotted box section, we show the anomaly score. Based
on this, the anomaly detection heatmap is output and anomaly
segmentation is achieved by binarization.

B. FEATURE EXTRACTION NETWORK
In order to utilize image depth features for anomaly detection,
inspired by Yang et al. [37], we construct a feature extraction
network based on VGG19. This network can effectively cap-
ture high-level feature representations, encompassing both
normal and abnormal features, for any input image.

Overall, VGG19 uses a five-segment convolution structure.
And three fully connected segments and softmax layers are
attached to it. In detail, the VGG19 contains a total of 19 lay-
ers, which are sixteen convolutional layers and three fully
connected layers. In terms of parameter settings, the VGG19
network uses the 3 × 3 convolution kernel as well as 2 × 2
the max-pooling layer. This reduces the number of network
parameters while preventing model overfitting. Finally, three
FC layers are used to output the class probabilities of the
images.

In the convolution process, the first convolution block
includes two conv layers and a max-pooling layer, primar-
ily tasked with extracting low-level features like color and
texture from the image. This lays the groundwork for sub-
sequent image tasks such as feature extraction. The second
convolution block mirrors the structure of the former, aiming
to continue extracting basic image features while enhancing
the network’s capability to extract higher-level features. The
subsequent two convolution blocks further build upon the first
two, extracting intermediate-level features such as texture
combinations and local shapes. Finally, the last convolution
block focuses on extracting high-level key features such as
overall shape and contextual semantics. As the number of
convolution layers increases, the depth and complexity of the
network also increases, gradually achieving abstract feature
extraction of the image. This hierarchical extraction substan-
tially improves the network performance.

Since VGG19 was pretrained on the large ImageNet
datasets, the network demonstrates good generality for
normal/abnormal feature extraction. It’s worth noting that
FEGAN only utilizes features extracted from the fifth convo-
lution block. The FEN offers a robust representation of deep
features for network training, which is indicative of anomaly
detection and localization.

C. IMPROVED GENERATIVE ADVERSARIAL NETWORK
Improved Generative Adversarial Network (IGAN) signif-
icantly enhance the extraction of key image features. The
feature encoding network within IGAN plays a pivotal role
in determining the quality of subsequent synthetic images,
forming the foundation for anomaly detection tasks.

The generator (G) is introduced first. It comprises a feature
encoding network and a decoder, aiming to extract deep con-
volution features before reconstructing them. The structure
of the feature encoding network closely resembles that of
VGG19, but in our model, we replace max-pooling with
average-pooling. This change is inspired by literature [37]
and ensures that the network retains more comprehensive
information, crucial for anomaly detection and segmentation.
This is because max-pooling only retains the maximum value
in the convolution kernel region and ignores other parts of
the information, which may cause the network to lose certain
anomalous region information, thus affecting the segmenta-
tion performance of the network. Additionally, we discard
the fully connected layer in VGG19. FEGAN capitalizes on
the deep feature extraction prowess of VGG19, enabling the
capture of complex and abstract surface image details. After
encoding features, the decoder reconstructs feature vectors
into the original image space, albeit in a lower dimensionality.

The encoding-decoding process of the generator adopts an
asymmetric structure consisting of five convolutional blocks
and one deconvolution block, respectively. These blocks
achieve deep feature extraction through multiple iterations
of convolution. Specifically, the attributes of the input image
are 256 × 256 of a three-channel colour image. The size of
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the convolution kernel is 3 × 3. The size of the transposed
convolution kernel is 4 × 4. The image is reconstructed back
to RGB image by transpose convolution.

During the training, the generator learns to represent only
normal industrial product surface images, aiming to restore
them to their original state after passing through the feature
encoding network. In the testing phase, due to its training on
normal images exclusively, the generator tends to reconstruct
images with anomaly as normal ones, resulting in a noticeable
disparity.

The role of the generator focuses on extracting the normal
features of the image. Firstly, it lays the foundation for the
reconstruction of the decoder and facilitates the subsequent
calculation of content loss. Secondly, it is used to calculate
the feature loss in conjunction with the feature extractor to
facilitate model training.

The discriminator (D), another vital GAN component,
opposes the generator by distinguishing between real dataset
images and fake generator images. It guides the generator in
adversarial learning, improving image reconstruction quality
while enhancing its own discriminative ability.

D. MULTI-SCALE SELF-ENHANCEMENT
In this work, we only have normal samples available for
reference. At the same time, there is a big difficulty in
the collection of real anomaly. Recognizing this limitation,
we aim to enhance the robustness of FEGAN by introducing
enhancement mechanism. We found that most of the cur-
rent enhancement methods [25], [27], [38] cover part of the
region with masks or images such as squares, rectangles,
and stripes. Their enhancement of the image follows a logic
of uniformly using squares, rectangles, or stripes. However,
the appearance of anomaly is often irregular and random.
Therefore, we propose a novel method called Multi-scale
Self-Enhancement (M-SE).

M-SE takes into account the randomness and irregularity
of anomaly appearing on the surface of a product. The core
concept involves copying a certain area proportion of the
multi-scale region from the original image, and then paste
it to an arbitrary position of the original image. There are
several features of M-SE that are worth paying attention to:
firstly, we stipulate that the copying proportion is controlled
by the area. For example, specifying that the copied area is
30% of the original image means that it is randomly sampled
from 30% of the area and randomly pasted. This is due to the
uncertainty of the anomaly. Here, the size of the sampling area
is equal to the sum of the enhanced areas. Secondly, we adopt
multi-scale anomaly enhancement, allowing for variability
in the length and width of the enhanced region. This has
the advantage of being closer to the real anomaly. Thirdly,
we constrain the area of a single patch to occupy no more
than 1% of the original image, encouraging FEGAN to focus
on detecting tiny abnormalities. The visual effect of M-SE is
depicted in Fig. 3.

The M-SE strategy utilizes the normal image itself as the
enhancement object and randomly alters its color attributes.

FIGURE 3. Schematic diagram of Multi-scale Self-Enhancement. The
method takes patches of any aspect ratio from its own image and inserts
them into the original image after adding colour dithering.

This approach offers several advantages. On the one hand,
it expands the size of the training dataset, meeting themodel’s
requirement for a large and diverse dataset. On the other hand,
it diminishes FEGAN’ s reliance on specific attributes within
the training dataset.

E. TRAINING OBJECTIVES
The loss function is used to measure the gap between the real
data and the predicted data, which is theorized to have a large
loss value between normal and abnormal images. To motivate
the network training, we designed feature loss, content loss
and adversarial loss. The details of each will be developed
below.
Feature Loss: In order to force the feature extraction net-

work and the encoding network to align high-level semantic
information in the hidden space, we introduce feature loss
to focus on sample pixel similarity and feature space consis-
tency. Lfea describes the L2 distance between the fifth feature
module θ∗(x) of the VGG19 network and the corresponding
position of the fifth feature module θ(x) of the encoding
network in G. We improve the quality and diversity of the
generated images during training by minimizing, making the
reconstructed images closer to the image patterns of the real
datasets. In the testing, since the abnormal features behave
differently from the normal ones, the Lfea should have larger
values. The feature loss is defined as shown in the following
equation:

Lfea = E
x∼px

||θ∗(x) − θ (x̃)||2 (1)

x̃ = (1 − M) ⊙ x+M⊙xM−SE (2)

where x denotes the original input image. x̃ denotes the
image after M-SE enhancement strategy. xM−SE is a patch
image in the x input image region of the patch image that
performs M-SE. M represents the mask of M-SE. ⊙ repre-
sents element-by-element multiplication.
Content Loss: The above feature loss focuses on extracting

the deeper features of the image. To improve FEGAN’ s
focus on the overall content features of the image and tomain-
tain the stylistic consistency between the generated image
and the original image, we use the content loss to measure
the difference between the two in terms of image content,
including information such as low-level pixels and high-
level semantics. By minimizing Lcon, our network is able
to produce more interpretable visual representations that are
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consistent in terms of colour, texture, shape, and structure.
The reconstructed images tend to be more natural and realis-
tic. During the testing, since the anomalous images possess
different content representation modes, the Lcon should have
a larger value. The content loss formula can be expressed as
follows:

Lcon = E
x∼px

||x − G(x̃)||1 (3)

Adversarial Loss: Considering content consistency while
avoiding problems such as pattern collapse. Adversarial loss
is a key element of GAN network for adversarial game
training, and is also a core component of the loss function,
which is directly related to the dynamic learning process of
the network. During the training, the Ladv pushes generator
to explore more potential spaces. The adversarial loss is
calculated as follows:

Ladv = E
x∼px

[logD(x)] + E
x∼px

[log(1 − D(G(x̃)))] (4)

In summary, the overall loss of our network is shown
in Eq. (5), where λfea, λcon and λadv are the weighting
parameters.

Ltotal = λfeaLfea + λconLcon + λadvLadv (5)

F. ANOMALY SCORE
In order to better evaluate the image quality and assist the net-
work to perform the anomaly detection task, we deliberately
define the anomaly score by combining the feature space and
image space. From the feature point of view, theoretically
the depth features of abnormal image and normal image
should have a big gap because of their essential differences.
Therefore, the distance between the fifth feature module of
the extraction network and the coding network is calculated
as Fi,j(x). From the perspective of image, there should be
a large gap between the reconstructed image and the input
abnormal image due to different distribution modes, so the
L2 distance between the two is calculated to obtain Ri,j(x).

Fi,j(x) = ||θ∗
i,j(x) − θi,j(x)||2 (6)

Ri,j(x) = ||x − G(x̃)||2 (7)

where x is the input image. x̃ is the enhanced image. (i, j)
denotes the feature location. When calculating the anomaly
score, Fi,j(x) needs to be scaled to the same resolution as the
reconstructed image.

In addition, we define pixel-level anomaly scores for
accurately performing the anomaly localization task Si,j(x).
Eq. (8) integrates the feature space with the image space in
a substantial gap. We use the weighted sum of Fi,j(x) and
Ri,j(x) as the basis for anomaly determination. Where λ is
the weighting parameter.

Si,j(x) = λF i,j(x) + (1 − λ )Ri,j(x) (8)

In order to standardize the data distribution and improve
the model stability, we specially normalize the defined excep-
tion scores Si,j(x). FEGAN uniformly converts the data into

the normalized interval of [0, 1], eliminating the scale dif-
ference between the data for easy model processing and
understanding. The normalization is calculated as follows:

Si,j(x)′ =
Si,j(x) − min(Si,j(x))

max(Si,j(x)) − min(Si,j(x))
(9)

Of these, themax(·) andmin(·) denote taking themaximum
and minimum values, respectively.

For image-level anomaly detection, we take the maximum
value of the pixel-level anomaly fraction Si,j(x) as the crite-
rion of anomaly determination. The formula is shown below:

S(x) = max
i,j

Si,j(x) (10)

IV. EXPERIMENTS
In this section, we provide detailed explanations regarding
the datasets utilized in the algorithm, the evaluation met-
rics employed, and the experimental setup. Furthermore,
we present the final experimental results both quantitatively
and qualitatively, accompanied by a focused data analysis.
Finally, we demonstrate the effectiveness of the algorithm by
comparing it with similar methods for the task at hand.

A. DATASETS
To assess the robustness of the proposed method, we choose
two challenging datasets, which are MVTec [20] and
Bottle-Cap [38].

FIGURE 4. Schematic diagram of a portion of the MVTec dataset. The
figure shows normal and abnormal images for the 15 classes and the
anomalies are labeled with red boxes.

MVTec is a comprehensive anomaly detection dataset
designed to simulate real industrial inspection scenarios.
It comprises a total of 5354 high-resolution color images.
Notably, MVTec covers a wide range of anomaly types,
including structural anomaly, morphological anomaly, tex-
ture anomaly, and color anomaly, among others. An addi-
tional advantage of MVTec is its provision of pixel-level
labeling of anomaly, which greatly facilitates subsequent
experiments. Examples of images from the MVTec are
depicted in Fig. 4.

The Bottle-Cap is an industrial vision inspection data set
specifically designed for classification and identification,
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TABLE 1. Comparison of image-level anomaly detection performance (AUC-ROC) based on the MVTec AD dataset. The reported results for the first three
methods are from the literature [34], and the results for ST-m and DFR are from the literature [30]. Data underlined and bolded in the table are the
optimal values for each type of test result.

FIGURE 5. Example of a sample of Bottle-Cap. The figure contains
anomalies such as deformation, dents, and crushing, and the anomalies
are labeled with red boxes.

and each part of it contains carefully labeled images. The
Bottle-Cap dataset comprises over 1100 high-resolution color
images of bottle caps obtained from real production lines.
Unlike MVTec, Bottle-Cap is a specialized dataset focused
solely on a single class of images. However, despite its
narrower scope, Bottle-Cap encompasses seven distinct real
anomalies. A partial example of images from the Bottle-Cap
is illustrated in Fig. 5.

B. IMPLEMENTATION DETAILS
In this work, we utilize the PyTorch deep learning framework
to construct our model. The hardware environment comprises
an Intel i7-12700 and NVIDIA 3090 24GB GPU, while the
system operates on Windows 10. The images are scaled to
a resolution of 256×256 and the color mode is RGB. The
algorithm is trained on normal samples only, using the Adam
optimizer with an initial learning rate of 2×10−4 and the
weight decay of 1×10−5. The weight parameters of loss
function Ltotal are chosen as λfea = 30, λcon = 30, λadv = 1.

λ = 0.6 for anomaly score Si,j(x). Training epoch is set to 200
and batch size is 16.

To effectively assess the performance of our method
against similar approaches, we employ the AUC-ROC eval-
uation metric [39]. AUC-ROC is commonly used to evaluate
the performance of both image-level and pixel-level anomaly
detection tasks, providing insights into the algorithm’s
strengths and weaknesses.

Furthermore, we employ the Intersection over Union (IoU)
as a secondary evaluation metric to measure the accuracy
of the algorithm’s localization. IoU quantifies the degree of
overlap between the predicted anomalous areas and the true
anomalous areas. Higher IoU values indicate closer align-
ment between the prediction and ground truth. Specifically,
an IoU of 1 signifies complete overlap, while an IoU of
0 indicates no intersection between the predicted and ground
truth anomalous regions.

C. EXPERIMENTAL RESULTS
To quantitatively analyze the detection and segmentation
performance of the FEGAN on the MVTec and Bottle-
Cap, we compare the proposed method with seven alter-
native methods, namely GeoTrans [40], GANomaly [41],
ITAE [42], DAGAN [43], ST-m [34], DFR [44], and
SCGAN [38]. The anomaly detection results are presented
in Table 1.
Image-level AUC-ROC is measured per image. As indi-

cated in Table 1, our proposed algorithm achieves the
highest overall average AUC-ROC compared to the afore-
mentioned methods, with a margin of 2.7 percentage points
higher than SCGAN. GeoTrans and GANomaly exhibit
inferior performance, likely due to their limitations in extract-
ing high-level features from complex images. Specifically,
FEGAN demonstrates the best performance for image-level
anomaly detection in 7 out of 15 classes. Although it falls
short of achieving the optimal performance in classes such as
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TABLE 2. Comparison of pixel-level anomaly detection performance (AUC-ROC) based on MVTec AD dataset. The data of AE-ssim and AnoGAN are from
literature [12]. The data results of the remaining methods are from the literature [30]. Data underlined and bolded in the table are the optimal
values for each type of test result.

TABLE 3. Comparison of anomaly segmentation performance (IoU) based on MVTec AD dataset. The reported results of the comparison methods are
taken from the literature [30]. Data underlined and bolded in the table are the optimal values for each type of test result.

Bottle, Hazelnut, Toothbrush, Tile, and Wood, its AUC-ROC
value exceeds 0.98, indicating relatively robust model perfor-
mance. Conversely, performance in classes such as Capsule,
Screw, and Carpet shows room for improvement, reflect-
ing the model’s lesser sensitivity to subtle anomaly under
image-level detection conditions. Notably, ITAE, DAGAN,
and SCGAN achieve 100% AUC-ROC in Screw and Tooth-
brush classes, suggesting their proficiency in detecting more
detailed object class images, an area where our method
requires enhancement.

Pixel-level AUC is determined for each individual pixel.
To comprehensively evaluate the model’s classification abil-
ity in local regions, FEGAN is compared with AE-ssim [19],
AnoGAN [17], VAE-grad [45], SPADE [32], ST-m, and DFR
for pixel-level performance. The experimental results from
Table 2 reveal that FEGAN attains an average AUC of 0.982
and excels in performance across five object classes and three
texture classes, outperforming the state-of-the-art method

by 1.7 percentage points. AnoGAN suffers from a signifi-
cant drawback, as it requires constant optimization of latent
variables, resulting in the poorest performance on MVTec.
SPADE achieves the second-best detection performance with
0.965. Although ST-m ranks third, it delivers the best perfor-
mance across 5 classes.

To assess the accuracy of FEGAN in anomaly localiza-
tion on industrial product surface images, we compared the
model’s anomaly segmentation performance with five alter-
native methods: AE-ssim, PatchSVDD [33], ST-m, DFR, and
DFC [37]. Table 3 provides detailed IoU experimental results
for each method on the MVTec.

As shown in the table, FEGAN achieves the highest overall
average IoU value of 0.399, surpassing DFC by 0.076. This
indicates that the anomalous regions predicted by the model
exhibit the greatest overlap with the real regions, resulting
in more accurate anomaly localization. Across the 15 classes
of the MVTec, FEGAN achieves optimal performance in
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TABLE 4. Performance comparison of anomaly detection and segmentation based on Bottle-Cap dataset. The data for the first five methods are from the
literature [30]. The data underlined and bolded in the table are the optimal values for each type of test result.

FIGURE 6. Anomaly localization results of FEGAN on object classes of MVTec. It is divided into two parts, top and
bottom, and each part has four rows, which are the original anomaly image, the real binarized anomaly image, the
anomaly heat map, and the anomaly segmentation map.

10 classes. It can accurately identify and locate abnormal
areas. Compared to the other five methods, FEGAN demon-
strates superior adaptability in anomaly localization.

In order to evaluate the generalization ability of the
proposed model, we compare image-level AUC-ROC, pixel-
level AUC-ROC, and IoU performance on the Bottle-Cap
respectively. As shown in Table 4, the model demonstrates
superior anomaly classification performance on Bottle-Cap,
achieving image-level and pixel-level AUC-ROC scores of
0.956 and 0.979, respectively, which are the highest among
the six methods evaluated. However, due to the dataset’s
overall low lighting conditions and the model’s decreased
performance under such conditions, as well as its sensitiv-
ity to large changes in anomaly sizes or complex anomaly
shapes, FEGAN ranks second to DFC in anomaly local-
ization. FEGAN achieves an IoU value of 0.231, which
is 0.058 lower compared to DFC.

Overall, FEGAN demonstrates strong performance in
anomaly detection classification on both datasets, show-
casing its ability to classify anomaly at both image
and pixel levels by evaluating AUC-ROC at different

granularities. While the model excels in anomaly local-
ization on the MVTec dataset, its performance is slightly
suboptimal on Bottle-Cap. These experiments provide
quantitative evidence of the FEGAN’ s robustness and
adaptability for anomaly detection and localization tasks
across diverse objects represented in multi-category
datasets.

To provide a more intuitive understanding of anomaly
localization, we present a qualitative discussion below. Fig.6
illustrates the anomaly localization results for 10 object
classes in the MVTec. We selected two images from each
class, featuring larger and smaller anomaly, respectively,
for analysis. In the anomaly heat map, colors range from
blue to red to indicate low to high anomaly likelihood. The
green area in the anomaly segmentation map represents the
model’s localization area, while the red stroke delineates the
actual anomaly boundary. As observed in the figure, FEGAN
accurately identifies corresponding regions for anomaly of
varying sizes in objects such as metal nuts, lenses, cables,
toothbrushes, pills, etc. The heat map approximates the sur-
face anomaly localization compared to real anomaly regions,

76162 VOLUME 12, 2024



F.-Y. Fan et al.: FEGAN: A Feature Extraction Based Approach

FIGURE 7. Anomaly localization results of FEGAN on texture classes of MVTec.The first line is the abnormal image. The second line is the
ground truth. The third line shows the abnormal heat map. The last line gives the anomaly location map.

FIGURE 8. Partial anomaly localization results of the model on Bottle-Cap.The first line is the abnormal image. The second line is the
ground truth. The third line shows the abnormal heat map. The last line gives the anomaly location map.

while the segmentation map precisely delineates the anomaly
regions.

After extensive experimental validation, our model demon-
strates strong localization capabilities. Fig. 7 showcases the
model’s localization outcomes for five distinct image types
encompassing various texture features in MVTec. Notably,
the fourth row presents finely detailed anomaly segmenta-
tion maps, offering clear delineation of the specific anomaly
locations and their area ranges. The experiments reveal the
model’s robustness in identifying anomaly such as stains,
scratches, and lines, showcasing a certain level of accu-
racy and indication in anomaly localization across different
regions.

The qualitative discussion of the Bottle-Cap is unfolded
below, and Fig. 8 visualizes some of the localization results.
As depicted, the localization task aims to precisely pinpoint
abnormal categories. The green areas denoting localization in
the fourth row show significant alignment with the actual red
boundaries, although some errors persist, indicating room for
enhancement in localization performance.

After the above discussion on the visualization of abnor-
mality segmentation, the specific location of the abnormality
on the product surface ismarked intuitively. By examining the
abnormality segmentation map, one can effectively discern
information regarding the size, shape, and quantity of abnor-
malities, aiding in their identification, classification, and
positioning in the actual production line. Experimentation
reveals that our method outputs highly coincident results with
the actual anomaly locations and exhibits robustness across
various detection targets. This capability offers a more accu-
rate and reliable reference for quality inspection of industrial
surface images in real-world scenarios.

D. RELATED DISCUSSION
In the preceding section, our proposed model demonstrates
outstanding performance. However, upon comprehensive
analysis of qualitative and quantitative results, we have iden-
tified some challenges that require attention and further
investigation. These issues are outlined below:
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i) FEGAN exhibits strong performance in certain cate-
gories but performs poorly in others. This discrepancy may
stem from the algorithm’s inability to generalize effectively
across objects with varying appearances, textures, or shapes.
Given the diverse feature distributions and anomaly patterns
in the real world, greater adaptability and robustness are
essential for successful anomaly detection.

ii) Our algorithm relies on key feature representations
to differentiate between normal and abnormal samples.
However, our analysis reveals that FEGAN’s fine feature
extraction in categories such as bottles, capsules, and screws
is insufficient. In future research, we plan to explore effective
feature fusion strategies to enhance the network’s capability
in representing features.

iii) Anomaly definitions may vary across different image
categories. In our study, FEGAN employs a uniform anomaly
metric, which may introduce limitations and ambiguities.
To address this, we intend to tailor anomaly definitions for
specific classes and utilize appropriate algorithm parameters
to improve performance.

Furthermore, we need to consider the generalization abil-
ity of our method across diverse industrial environments.
Our approach forces the model to adequately learn key fea-
tures of normal patterns in images by training normal data.
In order to improve the robustness of the network in practical
applications, M-SE data enhancement technology is used to
simulate various possible anomalymodes.We believe that the
abnormal patterns in the images have a common feature of
‘‘mutation’’. In this work, we deliberately selected MVTec,
a specialized dataset covering 15 categories, considering
the complexity of anomaly detection of industrial products.
In addition, we also selected the Bottle-Cap dataset, which
is very common in the detection. After being verified on a
wide range of classes, the proposed method shows optimal
and sub-optimal performance inmost classes. This shows that
ourmethod has a certain degree ofmulti-scenario adaptability
and can maintain a high generalization ability across differ-
ent product types. Nevertheless, we still support continuous
learning and model updates. We will target new research
objects and fine-tune the model parameters to adapt them to
new application scenarios.

Lastly, it is important to acknowledge the computa-
tional resource and hardware limitations associated with
our approach during actual operation. We conducted tests
on devices with limited computing power, and FEGAN’s
inference speed was found to be slow under these condi-
tions. However, on high-performance computing devices, our
model can perform inference quickly and handle larger-scale
image data effectively. Therefore, we recommend deploying
FEGAN on high-performance GPU devices for optimal per-
formance and scalability in real-world applications.

V. ABLATION STUDY
We conducted three ablation experiments to examine the
influence of various factors on the model’s performance.
Firstly, we delved into the impact of the weighting parameters

used in the method on both detection and localization. Sec-
ondly, we scrutinized the effectiveness of the M-SE. Lastly,
we assessed the effects of different components and configu-
rations on the experimental outcomes.

A. HYPERPARAMETERS
This section discusses the effects of different hyperparam-
eters on the model performance to illustrate the scientific
reliability of the weighting parameters. The hyperparame-
ters in the loss function represent the importance of each
component, and the calculation formula is shown in Eq. (5).
This section discusses the values of the parameters from
the range of 1 to 90, as shown in Fig. 9, with λfea and
λcon parameter values increase, the AUC-ROC of the model
first increases sharply and then decreases gradually; as the
λadv parameter values increase, the AUC-ROC of the model
decreases steeply from about 0.95 to 0.63 and then rises
oscillating. The experiment shows that the λfea, λcon and λadv
network performance is optimal when 30, 30, and 1 are taken,
respectively.

FIGURE 9. Network performance of the loss function hyperparameters
under different values.

In addition, the parameters of the anomaly scores are
equally critical to performance and are calculated as shown in
Eq. (8). This section discusses the parameter λ values in the
range of 0.1 to 0.9. As seen in Fig. 10, the difference between
image-level and pixel-level detection performance is not very
large, and the model localization performance is correlated
with the detection performance. The experiment shows that
when λ = 0.6, the detection and localization performance of
the model is optimal for quantitative analysis.

B. ENHANCEMENT METHODS
M-SE plays a crucial role in our approach. Since the intensity
of M-SE is controlled by the area ratio, the experimental
effects of FEGAN under different enhancement conditions
are discussed below. We examined the impact of different
enhancement conditions on FEGAN’s performance through
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TABLE 5. Quantitative results of FEGAN under enhanced conditions with various area ratios. Data underlined and bolded in the table indicate optimal
values.

FIGURE 10. Effect of different weighting parameters on model detection
and localization. Demonstrates the effect on image-level AUC-ROC,
pixel-level AUC-ROC and IoU at different values.

experiments. Specifically, we conducted experiments with
eight different area proportion ranging from 1% to 100%.
In Table 5, area = 1% signifies that only one patch enhances
the image, while area = 100% means that the entire image
is sampled, resulting in extensive coverage by the enhanced
patches. It’s important to note that we allowed repeated over-
lays of multiple patches to avoid full coverage of the original
image.

The results in Table 5 reveal that the network achieves its
best image-level AUC-ROC and IoU values at area = 20%
for M-SE. Although the optimal performance is not attained
in pixel-level detection, its performance is very close to the
results obtained with area = 10%. After thorough considera-
tion, we selected area = 20% as the conditional attribute of
M-SE. Additionally, when the AREA of M-SE is set to 1%
or 100%, FEGAN’ s detection and localization performance
suffers. This indicates that both too small and too large an area
intensity for the self-enhancement strategy are detrimental
to our work. Too little intensity weakens the enhancement
effect, while too much intensity masks the overall image
features.Therefore, we should be careful about the choice of
area strength.

To visualize the enhancement effect of M-SE at different
area intensities, we have illustrated some images in Fig. 11.
This figure showcases the impact ofM-SE implementation on
both texture and object classes. As depicted, the enhancement
area expands as the percentage of copied area increases.
Particularly, when area = 20%, the M-SE strategy notably
enhances the model quality.

To assess the impact of various image enhancement
strategies on the overall performance of the model, this
section conducts experiments using different enhancement

TABLE 6. Effect of different enhancement strategies on experimental
results. Data underlined and bolded in the table indicate optimal values.

methods. Table 6 presents the experimental results of five
image enhancement techniques employed in the models dis-
cussed in this part. Cutout [46] randomly overlays only black
pixel patches in the image. Cutout(colour) superimposes
colors on top of the former. RIAD [27] divides the image
into a grid of rectangular regions of size K × K pixels and
non-intersecting each other, and forms an image mask by
removing part of the pixel regions in the image. SCADN [25]
achieves the removal of some regions from normal samples
by generating striped masks with different scales in vertical
and horizontal directions.

From Table 6, it’s evident that Cutout and Cutout (colour)
yield poor performance in surface anomaly detection and
localization. RIAD contributes to improved model perfor-
mance, achieving over 80% AUC-ROC at different grain
sizes. SCADN achieves suboptimal performance in both
detection and localization. Conversely, FEGAN enhanced
by M-SE outperforms the aforementioned methods across
all performance metrics, indicating that M-SE can accu-
rately detect and localize anomaly, effectively enhancing the
model’s sensitivity.

In summary, it appears that M-SE effectively highlights
simulated anomaly in the image. FEGAN notably enhances
the visual effect and reconstruction quality of the image by
learning specific anomalous properties. Through extensive
training with enhanced images, FEGAN enhances the ability
to identify and locate anomaly. In addition, M-SE strategy is
simple and efficient, which is suitable for large-scale image
training tasks. Experiments demonstrate the reliability of
M-SE in this context.

C. MODEL COMPONENTS AND LOSS FUNCTION
In order to comprehensively assess the impact of each
component in our proposed FEGAN model on its overall
performance, we conducted experiments using various con-
trol variables to elucidate the importance of each component.
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FIGURE 11. Enhancement effect of M-SE under various area ratio conditions.

TABLE 7. Quantitative results of FEGAN under enhanced conditions with various area ratios. Data underlined and bolded in the table indicate optimal
values.

FIGURE 12. Visualization results under different experimental conditions.
The first row is the lens image having the same anomaly, the second row
is the binarized image of the real anomaly, the third row is the anomaly
detection heat map, and the fourth row is the anomaly segmentation
image.

As depicted in Table 7, the first row represents the base-
line model, utilizing only the generator and content loss for
training. The results are relatively unsatisfactory, reflecting
the limited feature extraction capability and generalization
of the model. In the second row, the addition of M-SE sig-
nificantly enhances the model’s performance. Moving to the
third row, the inclusion of a discriminator along with dis-
criminative loss further improves the model’s feature learning
ability through adversarial training, resulting in a pixel-level
AUC-ROC of 0.815. In the fourth row, FEN is integrated
to extract deep image features based on the baseline model
with image enhancement. While this model achieves basic
anomaly classification and pixel localization, its accuracy

requires further enhancement. The last row incorporates all
aforementioned components with content loss, adversarial
loss, and feature loss as optimization objectives. Experimen-
tal results indicate that our model exhibits high accuracy,
with each component significantly contributing to its overall
performance.

To visually demonstrate the impact of anomaly localiza-
tion under various model structures, we selected identical
anomaly images to illustrate the five cases outlined in Table 6.
Moving from left to right in Fig. 10, the anomaly predic-
tion region of the model progressively approaches the red
boundary of the real anomaly. This sequential depiction
effectively illustrates how each component contributes pos-
itively to the model’s prediction accuracy, leading to gradual
improvement.

VI. CONCLUSION
In this paper, we propose FEGAN, a novel anomaly detection
and localization method for surface anomaly in indus-
trial products. We have built a feature extraction network
(FEN) and an improved generative adversarial network
(IGAN). By combining deep features and image features,
FEGAN detects anomaly effectively. Additionally, we pro-
pose a multi-scale image self-enhancement (M-SE) method
to enhance the model’s robustness and accuracy. Experi-
mental results demonstrate that our method achieves optimal
AUC performance on both the MVTec and Bottle-Cap
datasets, while also exhibiting reliable anomaly localization
capabilities.
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In our future research, we aim to explore two key areas.
Firstly, we plan to enhance anomaly localization by guid-
ing the model to focus specifically on anomalous regions
in the image. This involves designing and implementing an
anomaly attention mechanism to further refine the segmenta-
tion of anomaly. Secondly, we aim to improve the efficiency
of real-time anomaly detection and localization for indus-
trial products. Additionally, we will focus on expanding the
practical application scenarios of our method to address the
complex needs of industrial production.
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