
Received 5 May 2024, accepted 26 May 2024, date of publication 28 May 2024, date of current version 5 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3406631

A TinyDL Model for Gesture-Based Air
Handwriting Arabic Numbers and
Simple Arabic Letters
Recognition
ISMAIL LAMAAKAL 1, (Graduate Student Member, IEEE), IBRAHIM OUAHBI 1,
KHALID EL MAKKAOUI 1, YASSINE MALEH 2, (Senior Member, IEEE),
PAWEŁ PŁAWIAK 3,4, AND FAHAD ALBLEHAI5
1Multidisciplinary Faculty of Nador, University Mohammed Premier, Oujda 60000, Morocco
2Laboratory LaSTI, ENSAK, Sultan Moulay Slimane University, Khouribga 54000, Morocco
3Department of Computer Science, Faculty of Computer Science and Telecommunications, Cracow University of Technology, 31-155 Krakow, Poland
4Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, 44-100 Gliwice, Poland
5Computer Science Department, Community College, King Saud University, Riyadh 11437, Saudi Arabia

Corresponding author: Yassine Maleh (yassine.maleh@ieee.org)

This work was supported by King Saud University, Riyadh, Saudi Arabia, through the Researchers Supporting Project, under Grant
RSPD2024R564.

ABSTRACT The application of tiny machine learning (TinyML) in human-computer interaction is
revolutionizing gesture recognition technologies. However, there remains a significant gap in the literature
regarding the effective recognition of complex scripts, such as Arabic, in real-time applications. This research
aims to bridge this gap by leveraging TinyML for the accurate recognition of Arabic numbers and simple
letters through gesture-based air handwriting. For the first time, we introduce a novel tiny deep learning
(TinyDL) model that utilizes a lightweight convolutional neural network (CNN) architecture specifically
designed to handle the intricacies of the Arabic script and adaptable for the TinyML domain. Despite
the widespread use of CNNs in gesture recognition, our model stands out by achieving an exceptional
accuracy rate of 97.5% in decoding 2D gesture inputs of Arabic numerals and letters. This high level of
accuracy demonstrates the effectiveness of our TinyDL model in addressing the unique challenges posed by
Arabic script recognition, thereby making it a user-friendly and accessible solution. Moreover, our research
contributes to the advancement of TinyML applications in real-world gesture recognition apps, showcasing
the potential of TinyML in transforming the interaction between humans and digital devices.

INDEX TERMS Arabic letters recognition, Arabic numerals, convolutional neural networks (CNN), deep
learning (DL), gesture-based recognition, human-computer interaction, tiny machine learning (TinyML).

I. INTRODUCTION
The emergence of TinyML [1], [2], [3], [4], [55], [56], [58],
[60] represents a significant breakthrough in technology,
blending the ever-growing needs of data-driven applications
with the constraints of low-power, embedded devices. As a
specialized branch of machine learning, TinyML is designed

The associate editor coordinating the review of this manuscript and

approving it for publication was Larbi Boubchir .

to operate efficiently on hardware with limited computational
resources, a crucial requirement in the era of ubiquitous
computing. This innovation plays a pivotal role in human-
computer interaction [6], [10], [13], which has evolved from
traditional interfaces to more natural and intuitive methods,
enabling smarter, context-aware interactions across a range
of devices from wearables to IoT appliances.

Gesture recognition technology [15], [16], [41], [42] is at
the forefront of this paradigm shift, allowing users to interact

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 76589

https://orcid.org/0009-0009-6532-2573
https://orcid.org/0000-0002-0552-9275
https://orcid.org/0000-0002-9569-9162
https://orcid.org/0000-0003-4704-5364
https://orcid.org/0000-0002-4317-2801
https://orcid.org/0000-0002-5668-6801


I. Lamaakal et al.: TinyDL Model for Gesture

with machines through simple movements [40]. Despite
its promise, the technology faces challenges in accuracy,
responsiveness, and adaptability to diverse environments.
Advancements in this field, driven by sophisticated machine
learning algorithms and sensor technologies, have enabled
applications in gaming, entertainment, medical rehabilitation,
and sign language interpretation [20], [63], [64]. In the
context of air handwriting recognition [22], [28], Arabic
script presents unique challenges due to its cursive nature,
diacritical marks, and script style variations [62]. Despite its
significance, there is a notable gap in digital representation
and interaction for Arabic script [25], especially in gesture-
based interfaces. Recognizing Arabic numbers and letters
through gestures requires not only an understanding of the
script’s intricacies but also technology capable of capturing
these nuances efficiently. The integration of TinyML with
gesture recognition [32] offers a promising solution to these
challenges. By leveraging TinyML, it is possible to develop
systems that are accurate in recognizing Arabic script and
efficient enough for low-resource environments [3]. How-
ever, this integration requires the development of specialized
models that balance model complexity with computational
efficiency. This research paper addresses these challenges
by presenting a novel Tiny Deep Learning (TinyDL) model
designed for the recognition of Arabic numbers and simple
letters through air handwriting. The choice of Arabic script
is motivated by its unique characteristics and the need
for efficient recognition solutions in regions where Arabic
is widely used [33]. The model employs a Convolutional
Neural Network (CNN) [27], [61] architecture, optimized
for TinyML environments, to accurately decode 2D gesture
inputs. This approach not only tackles the challenges posed
by Arabic script but also leverages the advantages of TinyML
to create an effective and efficient solution.

The main contributions of this research are:

• A novel TinyDL model that achieves a 97.5% accuracy
rate in recognizing Arabic hand gestures executed mid-
air, setting a new benchmark for gesture recognition
accuracy.

• Optimization of CNN architecture for low-power
devices, enabling high accuracy in recognizing Arabic
numerals and letters.

• Addressing the gap in digital representation and inter-
action capabilities for Arabic script, particularly in
gesture-based interfaces.

The organization of the paper is as follows: Section II
is dedicated to related work, providing a comprehensive
review of existing literature and research pertinent to our
study, highlighting advancements and identifying gaps in
the field. Section III delves into the detailed methodology,
encompassing the data collection and pre-processing steps
crucial for preparing the dataset. This section also introduces
our proposed model, offers an in-depth look at the model’s
architecture and features, and elaborates on the model con-
versionmethod, focusing on the optimization for deployment.

In Section IV, we present the experimental results, analyzing
the model’s efficacy in recognizing Arabic numbers and
letters through air handwriting. The section includes a
comparative study where our model is juxtaposed with other
algorithms, alongwith an assessment of themodel conversion
results, showcasing the performance improvements achieved.
Section V discusses the feasibility of implementing the best
model with the least cost, considering factors such as Compu-
tational Cost-Effectiveness, Financial Implications, Energy
Consumption, and Real-World Implementation. The paper
concludes with Section VI, encompassing the discussion
and conclusion, where we reflect on our findings, discuss
potential applications and limitations, and suggest future
research directions, emphasizing the practical implications
and contributions of our work.

II. RELATED WORK
The related research reviews the relevant research in
gesture-based handwriting recognition and Arabic letters
and numerals recognition. We identify gaps in the current
research landscape by exploring the existing literature and
contextualizing our proposed approach.

Yanay and Shmueli developed innovative approaches for
air-writing recognition using motion signals from stan-
dard smart-bands [36]. They proposed two methods: one
dependent on individual users, where accuracy is optimized
through personal samples, and another independent of users,
utilizing a convolutional neural network. Their research,
conducted with 55 participants, demonstrated impressive
accuracy, with the user-dependent method achieving 89.2%
and the user-independent method reaching 83.2%, which
further increased to 95.6% with the application of auto-
correction. This work signifies a substantial advancement
in wearable technology and gesture recognition, presenting
practical applications in various interactive digital interfaces.

Ghanim et al. conducted a study that significantly advances
the field of offline Arabic handwriting recognition by
leveraging deep learning techniques [33]. They developed a
multi-stage cascading system aimed at efficiently recognizing
handwritten Arabic text, a challenging task due to the com-
plexity of the language’s script and the variability in writing
styles. The system begins with hierarchical agglomerative
clustering to organize the data into clusters, effectively
forming a large search tree model. This setup simplifies the
process of matching each test image with an appropriate
cluster. Following this, a novel ranking algorithm is applied,
starting with the computation of the pyramid histogram of
oriented gradients and proceeding to measure divergence
using the Kullback-Leibler method. Classification is then
executed on the top-ranked matching classes. The research
includes a comprehensive comparison of six different deep
CNNs and their impact on recognition rates within this
system. Their experiments, conducted using the IFN/ENIT
Arabic database, revealed that the proposed clustering and
ranking stages required only 11% of the entire database for
classifying test images.

76590 VOLUME 12, 2024



I. Lamaakal et al.: TinyDL Model for Gesture

Abir et al. developed a DL model specifically for
recognizing air-written text [37]. This model utilizes a 2D-
CNN framework and integrates an advanced interpolation
technique to improve accuracy. Their extensive research,
conducted on various air-writing datasets available to the
public, focused on finding the most efficient interpolation
method for time-series data. In this study, they also conducted
a detailed comparison of their new model against existing
methods. The results showed that their technique consistently
outperformed established methods, proving its effectiveness
in both user-dependent and independent scenarios across
all datasets tested. Remarkably, their approach attained
high accuracy levels, varying between 94.17% and 99.63%,
depending on the dataset and the training methodologies
used.

Hsieh et al. developed a sophisticated approach for air-
writing recognition, utilizing deep CNNs [39]. They created
an innovative hand-tracking algorithm that accurately cap-
tures air-writing trajectories with a standardweb camera. This
method successfully addresses the limitations of previous
techniques by allowing unrestricted air-writing, eliminat-
ing the need for specific delimiters or confined spaces.
Additionally, the team introduced a new preprocessing
method that effectively simplifies the data for efficient CNN
training. Their experimental results demonstrated that this
approach not only achieves high recognition accuracy but
also significantly reduces network complexity compared
to traditional image-based methods. This groundbreaking
work holds significant potential for enhancing interactive
systems and interfaces that require intuitive and natural input
methods.

Nahar et al. conducted a comprehensive study on recog-
nizing Arabic air-written letters using ML and deep CNNs
combined with optical character recognition (OCR) [29].
They employed a hybrid approach incorporating feature
extraction, DL models, and ML algorithms like neural
networks, random forests, K-nearest neighbors, and support
vector machines. The study utilized the AHAWP dataset,
comprising diverse writing styles and hand sign variations,
and applied preprocessing schemes to enhance data quality.
The results indicated that their proposed model achieved a
high level of accuracy, reaching up to 88.8% using neural
networks with the VGG16 architecture, highlighting its
effectiveness in Arabic letter recognition tasks.

Leem et al. explored mid-air gesture recognition for
digit writing using radio sensors and a CNN [38]. Their
method, diverging from conventional techniques, utilized
hand trajectory information rather than raw data, making
it robust against variations in orientation, distance, and
hand shape. The approach involved signal preprocessing,
hand motion localization, and transforming trajectory data
into images for CNN classification. Their results demon-
strated significant improvements in recognition accuracy and
robustness, outperforming traditional methods and offering a
user-friendly, accurate mid-air handwriting modality without
restricting users.

Watanabe et al. presented a study on air-writing recognition
using a 2D camera and a hybrid DL model [11]. Their system
combined hand pose estimation and character recognition
in a novel way, employing a webcam for data collection.
They developed a hybrid DL model that integrates CNN and
bidirectional long short-term memory networks. Their exper-
iments demonstrated high recognition accuracy, achieving
99.3% for alphabetic characters and 99.5% for digits. The
research indicates a significant advancement in air-writing
recognition, offering an efficient and accessible method for
gesture-based input.

Li et al. [43] proposed a hybrid deep learning model that
combines spatial-temporal features for improved recognition
accuracy. Liu et al. introduced a novel system utilizing deep
learning and the Leap Motion Controller, showcasing effi-
cient recognition of handwritten characters in mid-air [44].
Chen et al. developed a lightweight convolutional neural net-
work optimized for real-time processing, addressing the com-
putational constraints of low-power devices [45]. Wu et al.
explored the use of 3D convolutional neural networks
and data augmentation techniques to enhance recognition
performance [46]. Zhang et al. employed wearable motion
sensors and a deep learning framework to achieve accurate
and real-time air-writing recognition [47]. Lastly, Khan et al.
focused on improving recognition through attention-based
sequence-to-sequence models, demonstrating the potential
for enhanced accuracy in complex gesture recognition
tasks [48]. In the realm of sign language recognition,
Abdullahi et al. addressed the challenges of inconsistent
depth features with their IDF-Signmodel, showing promising
results in dynamic sign word recognition [40]. Additionally,
Abdullahi et al. proposed a spatial-temporal feature-based
end-to-end Fourier network for 3D sign language recognition,
further advancing the field [49].

In this paper, we propose an advanced TinyML model
enriched with DL techniques for recognizing Arabic numer-
als and simple letters through gesture-based air handwriting.
Our real-time wearable system, employing the Arduino
Nano 33 BLE Sense as an edge device, allows users to
write Arabic letters in three-dimensional space with a notable
recognition accuracy of 97.5%, as demonstrated in Table 1.
Beyond high accuracy, our TinyDLmodel distinguishes itself
by offering low power consumption, making it a practical and
energy-efficient solution for diverse applications.

III. METHODOLOGY
Aswe transition into the methodology phase of our study, it is
crucial to outline the systematic approach we have adopted
for the development and evaluation of our TinyDL model for
gesture-based air handwriting recognition of Arabic numbers
and simple Arabic letters. Figure 1 provides a comprehensive
visual representation of our methodological framework,
encapsulating the key stages of our research process. This
section delves into the intricacies of our data collection
techniques, the specific hardware utilized, and the rigorous

VOLUME 12, 2024 76591



I. Lamaakal et al.: TinyDL Model for Gesture

TABLE 1. Comparison of the proposed model with other existing.

data processing protocols we have implemented. Further-
more, we elaborate on the model development, including
the architecture of the TinyDL model, training procedures,
and validation methods. The subsequent paragraphs offer a
detailed explanation of each component depicted in Figure 1,
ensuring a clear understanding of the procedural steps and
their significance in achieving the research objectives.

A. DATA DESCRIPTION
Our research aims to develop a TinyDLmodel for recognizing
Arabic numerals and simple letters through air handwriting
gestures. We utilized the Arduino Nano 33 BLE Sense
microcontroller, equipped with accelerometer and gyroscope
sensors, to collect data. The dataset includes gestures
for 10 Arabic numerals (0-9) and 12 simple Arabic letters,
performed by five volunteers aged 21, 33, 25, 24, and 28.
Each gesture was sampled 500 times, resulting in a total of
11,000 samples. The data comprises accelerometer readings
along theX-axis andY-axis, capturing the handmovements in
a 2D plane. Samples were annotated and stored in a structured
JSON format for efficient training and evaluation of the
TinyDL model.

B. EXPERIMENTAL CONFIGURATION
The experimental setup (see Table 2) was designed to
ensure accurate data collection for gesture recognition. The
Arduino Nano 33 BLE Sense was set to a sampling rate

of 100 Hz to capture detailed hand movements. To ensure
the integrity and consistency of our data, we adhered to a
rigorous collection protocol as shown in Figure 2 and 3.
This protocol included specific guidelines for hand move-
ment, gesture speed, and recording conditions, among other
factors.

In Figure 4, we present an illustrative example of inertial
sensor signals captured during the execution of the ‘0’
gesture. The graphical representation consists of two plots:
one displays 3-axis acceleration signals, and the other
showcases 3-axis angular velocity signals.

The initial graph exhibits a dynamic display of the
3-axis acceleration signals, with noteworthy fluctuations
occurring between time intervals 200 and 250. These
fluctuations suggest that active gestural movement took
place during this specific interval. Conversely, the remain-
ing intervals depicted on the graph indicate periods
during which the device remained in a relatively static
position.

A notable observation is the significant sensitivity of the
acceleration signals to the device’s motion when compared
to the angular velocity signals. This heightened sensitivity is
evident through the larger and more pronounced variations
in acceleration. This distinction underscores the capacity of
acceleration measurements to capture the device’s dynamic
movements with greater fidelity, thus providing valuable
insights into the execution of gestures like ‘0’.

76592 VOLUME 12, 2024



I. Lamaakal et al.: TinyDL Model for Gesture

FIGURE 1. Our TinyDL model Workflow.

TABLE 2. Execution environment specifications.

FIGURE 2. Pictorial Arabic numbers trajectories.

Figure 5 displays a sample from our dataset representing
the gesture for the Arabic numeral ‘0’, as encoded in a
JSON file. This sample illustrates the raw accelerometer data

FIGURE 3. Pictorial Arabic letters trajectories.

along the X-axis and Y-axis, capturing the dynamic hand
movements specific to the ‘0’ gesture. The data excerpt in the
figure shows a sequence of coordinated X and Y values that
collectively map the trajectory of the gesture in a 2D plane.

C. DATA PRE-PROCESSING
During this phase, we adopted a thorough approach to
transform continuous air handwriting gestures into a format
conducive to deep learning recognition. The procedure,
which involves rasterization onto a grid-based image
(depicted in Figure 7 and 8), intricately captures the nuances
of air gestures. Based on mathematical formulations, each
step in the process is crucial. This methodology serves as
the cornerstone for our TinyDL model, designed for the
recognition of Arabic numerals and simple letters.
Purpose of Rasterization: Rasterization serves a critical

role in transforming the dynamic, three-dimensional nature
of air handwriting gestures into a two-dimensional, static

VOLUME 12, 2024 76593



I. Lamaakal et al.: TinyDL Model for Gesture

FIGURE 4. An example of raw sensor signals when the gesture ‘0’ is
written.

FIGURE 5. An example of data for gesture ‘0’ in JSON format.

representation that can be effectively processed by our
TinyDL model. It is the process of converting the continuous
gesture trajectories into discrete pixel data that can be
analyzed within the confines of a grid-based digital image.
This step is vital for the subsequent stages of model training,
as it translates the nuanced, temporal patterns of gesture
motion into a spatial form compatible with conventional
image processing techniques used within deep learning
frameworks.

1) RASTERIZATION PROCESS
Figure 6 effectively illustrates the steps or workflow involved
in the rasterization process. This diagram methodically
depicts each stage, from the initial image initialization,
where a digital canvas is created, to the final drawing
of the gesture phase, where the gesture is rendered onto
the canvas. In between, it covers coordinate mapping,
normalization, and mapping to a pixel grid, crucial steps that
ensure the accurate and efficient transformation of gesture
data into a visual format suitable for analysis. This visual
representation simplifies the understanding of the complex
processes involved in rasterization, making it accessible and
clear.

FIGURE 6. Illustrating the stages of the rasterization process.

a: IMAGE INITIALIZATION
In the initial rasterization phase, an image (I ) is generated as
the canvas for capturing gestures, with dimensions M × N
(see equation 1). All pixel values in this image are initially
set to zero, establishing a crucial blank canvas for rendering
the gestures.

I (i, j) = 0, for i = {1, 2, . . . ,M} and j = {1, 2, . . . ,N } (1)

b: COORDINATE MAPPING
In this phase, attention is centered on a specific point P(x, y)
within the two-dimensional plane, with x and y representing
the coordinates of that point. This point corresponds to
a specific real-world location where a part of the gesture
occurs. Accurately capturing these coordinates is essential for
the accurate digital representation of the continuous gesture,
which is expressed as P(x, y).

c: NORMALIZATION
The process of scaling the coordinates of a point P(x, y) to
fit within a certain range, as referenced in [34], ensures that
the gesture data is properly aligned within the limited space
of the image grid. To achieve this, the following formulas are
used for normalization:

xnorm =
x − xmin

xmax − xmin
, ynorm =

y− ymin
ymax − ymin

(2)

Where (xmin, ymin) and (xmax , ymax) represent the minimum
and maximum values of the coordinates. Normalization
transforms the original coordinate values into a range
between 0 and 1.

d: MAPPING TO THE PIXEL GRID
After the normalization step, the subsequent phase involves
translating the scaled coordinates onto the pixel grid of the
image. This step identifies the specific pixel in the image that

76594 VOLUME 12, 2024



I. Lamaakal et al.: TinyDL Model for Gesture

aligns with the normalized coordinates of the gesture point.
To accomplish this, the following formulas (3 and 4) are used
for mapping:

Row_Index = ⌊xnorm ·M⌋ + 1 (3)

Column_Index = ⌊ynorm · N⌋ + 1 (4)

Here, ⌊·⌋ denotes the floor function. These equations
calculate the row and column indices of the pixel in the image
grid where the gesture point should be represented.

e: DRAWING THE GESTURE
In the concluding phase, the image’s pixel values are altered
in line with the gesture data. This modification can be carried
out through different methods, such as setting pixel values
based on the timing of the gesture or the sequence of points.
Another approach is to assign binary values (0 or 1) to the
pixels, indicating whether the gesture is present or absent at
a particular location, see equation 5. This method effectively
represents the gesture on the image grid.

I (Row_Index,Column_Index) = Pixel_Value (5)

f: COLORING PIXELS—BRESENHAM’S ALGORITHM
The Bresenham algorithm [50], [51] is an efficient method
to determine which pixels should be drawn to form a close
approximation of a straight line between two points. In the
context of gesture representation, this algorithm can be
extended to color pixels based on the gesture’s velocity or
sequence. When a gesture is made, the line is rasterized and
pixels are colored in a way that represents themovement, with
colors often encoding additional information, such as speed
or pressure. In our rasterized images, colors are assigned as
follows [52]:

• Red (RGB: 255,0,0): Represents the starting point of the
gesture.

• Green (RGB: 0,255,0): Denotes the trajectory of the
gesture.

• Blue (RGB: 0,0,255): Indicates the end of the gesture.
The Bresenham algorithm has been adapted to include RGB
coloring by modifying the pixel value assignment during
the rasterization process. The adapted algorithm can be
represented as:

I (Row_Index,Column_Index)

=


(255, 0, 0) for starting point
(0, 255, 0) for trajectory
(0, 0, 255) for end point

(6)

Figure 9 and 10 showcase the results yielded by the
rasterization method.

D. THE PROPOSED TINYDL MODEL
We employed a Convolutional Neural Network (CNN) [12],
[35] to recognize Arabic letters and numerals in air hand-
writing due to its superior image handling capabilities. The
CNN architecture, inspired by the human visual cortex,

FIGURE 7. Rasterization: methodical steps for gesture ‘‘1’’.

FIGURE 8. Rasterization: methodical steps for gesture ‘‘AIN’’.

FIGURE 9. Examples of rasterized output images corresponding to
various stroke gestures for Arabic numerals.

FIGURE 10. Examples of rasterized output images correspond to various
stroke gestures for Arabic letters.

efficiently extracts and learns spatial hierarchies, making it
adept at interpreting complex patterns and stroke variations
in Arabic handwriting. These networks excel in automatic
feature detection, such as edges and curves, essential for
distinguishing different Arabic characters [14]. This capa-
bility minimizes the need for manual feature engineering,
thus simplifying model development. Additionally, CNNs
handle variations in position and orientation effectively [39],
a crucial trait for managing the inherent variability in air
handwriting. These features make CNNs ideal for addressing
the specific challenges of air handwriting recognition,
justifying their use as the core of our proposed model.

As shown in Figure 11, our CNN model begins with
a convolutional layer for recognizing simple Arabic letters
through air handwriting. This layer uses a 3×3 kernel (F) and
a stride (S) of 2, optimizing fundamental feature extraction
from the input images. The output dimensions, output width

VOLUME 12, 2024 76595



I. Lamaakal et al.: TinyDL Model for Gesture

FIGURE 11. Quantization method from floating-point numbers to int-8
integers.

(OW ) and height (OH ) [5] are derived using the formulas (7):

OW =
W−F + 2P

S
+ 1, OH =

H−F + 2P
S

+ 1 (7)

Where W and H represent the width and height of the
input layer, and P denotes the padding. Following this, batch
normalization [9] is applied to standardize the output using
the batch mean (µ) and batch variance (σ 2), as per the
following equation:

xnormalized =
x − µ

√
σ 2 + ϵ

(8)

The model then employs the Rectified Linear Unit (ReLU)
activation [17] function to introduce non-linearity into the
system. A dropout layer [19], [54] with a rate (d) of
0.3 follows each convolutional layer to prevent overfitting.
During training, each input value (x) is multiplied by a binary
dropout mask (0 or 1), as shown in equation 9:

y = x · d (9)

This convolutional sequence is repeated for two additional
layers with increasing filter depths (16, 32, and 64), while
retaining the same kernel size and stride. A global average
pooling layer [23] is applied to reduce the spatial dimensions
of each feature map. The global average pooling for each
feature map, Gk , is calculated as:

Gk =
1

W × H

W∑
i=1

H∑
j=1

Fk (i, j) (10)

For k = 1, 2, . . . ,K , where Fk (i, j) is the value at the
(i, j)-th position in the k-th feature map. This pooling layer
simplifies the transition to the final classification layer by
decreasing the feature map dimensions. The output layer
employs the softmax activation function to predict the class of
the Arabic numeral. The number of units used corresponds to
the 22 different Arabic numerals and simple letters that need
to be recognized.

Table 3 presents the architecture of the CNN designed
for our image classification task. It details the sequence
and parameters of each layer, optimized for detecting and
classifying complex patterns within the dataset. The table

TABLE 3. CNN model layers and parameters.

specifies each layer’s type and parameters, crucial for the
network’s performance.

E. MODEL CONVERSION
In the field of TinyML, model conversion is a critical step in
adapting complex machine learning models for deployment
on resource-constrained devices, such as microcontrollers
and other low-power embedded systems. The conversion
process typically involves quantization [7], [26], [53],
pruning [8], [24], and sometimes the translation of a model
into a specialized format that is compatible with TinyML
frameworks.

1) GENERATE A TENSORFLOW LITE MODEL
Converting a pre-trained TensorFlow model to TensorFlow
Lite (TFLite) [41] involves several key steps, essential
for deploying ML models on resource-constrained edge
devices. This conversion process is critical in the TinyML
context, ensuring models remain effective under low-power
and limited-memory conditions. The main stages include
Range Estimation, Scaling Factor Calculation, Quantization,
Dequantization (Inference), and Quantization Error handling.

Initially, we determine the range of possible values for
model weights and activations in the original floating-
point model, denoted as (min, max) pairs. These values are

76596 VOLUME 12, 2024



I. Lamaakal et al.: TinyDL Model for Gesture

computed during model training or derived from the analysis
of representative data.

Subsequently, a scaling factor, known as the quantization
scale, is determined tomap the floating-point values to integer
values within a specified range. The computation of the
scaling factor is based on the desired quantization bit-width
(e.g., 8 bits), and the formula for its calculation is:

Scaling_Factor(scale) =
max_range− min_range

2bit_width − 1
(11)

After obtaining the scaling factor, the next step involves
the quantization of values. In this stage, we map the
floating-point values to the nearest integer values within
the predetermined range, effectively quantizing them. The
quantization formula is as follows:

Quantized _Val(q_val)= round
(
original_val − min_range

scale

)
(12)

During inference with the quantized model, we need to
dequantize the integer values to approximate the original
floating-point values. The dequantization formula is as
follows:

Dequantized_Val(d_val) = (q_val × scale) + min_range

(13)

Recognizing the presence of quantization error resulting
from the finite bit-width representation is crucial. The
maximum quantization error, denoted as Max_Error , can be
computed as follows:

Max_Error = 0.5 × scale (14)

2) GENERATE A TENSORFLOW LITE FOR
MICROCONTROLLERS MODEL
Following the initial conversion to TFLite, the model is
further transformed for compatibility with the TensorFlow
Lite Micro (TFLM) runtime [42], which is tailored for
microcontrollers and devices with minimal memory. The
TFLM conversion involves transforming the TFLite model
into a C source file, encapsulating the model as a byte array.
This conversion can be achieved using the ‘xxd‘ command-
line tool or a TensorFlow-provided Python script.

IV. EXPERIMENTAL ANALYSIS AND EVALUATION
The objective of the project is to construct a TinyDL model
for recognizing Arabic numbers and simple letters through
gesture-based air handwriting.

A. EXPERIMENT
In this section, we delve into the experimental setup of our
study (see Figure 12). Utilizing the Arduino Nano 33 BLE
as our microcontroller, equipped with onboard IMU sensors
including an accelerometer and a gyroscope, we aim to
capture and decode the subtle nuances of air handwriting
for Arabic numerals and simple letters. We connect the

FIGURE 12. An Overview of the Research Experimental Setup: IMU-Based
Gesture Recognition.

microcontroller via Bluetooth, configuring it to capture hand
gestures at a sampling rate of 100 Hz. Additionally, it can
connect with our laptop via USB cable for data transfer
and debugging purposes. This setup records the motion data
along the X-axis and Y-axis of the accelerometer as the
subject enacts a specific gesture, such as writing the numeral
‘‘1’’. During the data preprocessing phase, we employ a
rasterization method to transform these coordinate points
into a series of rasterized images. These images serve
as the training data for our streamlined deep learning
model, specifically designed to adhere to the constraints of
TinyML. Subsequently, we evaluate six distinct classification
algorithms to determine the most effective in terms of
accuracy and compliance with TinyML parameters. Ulti-
mately, the chosen algorithm not only accurately discerns the
intended gesture but also projects the result onto our laptop
display, indicating the classified character and its associated
confidence level.

In the training phase, we configure the model to undergo
60 epochs, implementing a Model Checkpoint Callback to
saveweights at regular intervals. Themodel is compiled using
the Adam optimizer [65] with a learning rate of 0.001 to min-
imize the binary cross-entropy loss [66]. Accuracy serves as
the primary metric, computed by dividing correct predictions
by total predictions. The training loop (model.fit) iteratively
refines parameters to enhance gesture recognition accuracy
across epochs. The overarching objective is to minimize the
loss function and fine-tune the model parameters for accurate
gesture recognition. Subsequently, we reserved 80% for
training, 10% for testing, and 10% of the data for prediction
to assess the performance of the trained model.

B. RESULTS
In this section, we present the performance evaluation of
our proposed TinyDL model for gesture-based recognition
of Arabic numbers and simple Arabic letters. Following the
training of our TinyDL model, we conducted an extensive
evaluation, revealing promising results. Our model demon-
strated exceptional performance, achieving an accuracy of
97.5% during the training phase and an impressive 99.7%
during the validation phase, as illustrated in Figure 13. These
high accuracies signify the robustness and efficacy of our

VOLUME 12, 2024 76597



I. Lamaakal et al.: TinyDL Model for Gesture

TABLE 4. Influence of dropout rate on model performance.

FIGURE 13. Model Training Progress: Accuracy and Loss Curves.

model in accurately recognizing both Arabic numbers and
simple Arabic letters based on hand gestures.

After examining how dropout rates affected the function-
ality of our model, we noticed significant differences in
accuracy metrics between various dropout settings, which
are outlined in Table 4. The percentage of neurons that
are arbitrarily removed during training in order to avoid
overfitting is known as the dropout rate. The best training
accuracy of 97.5% was obtained with a dropout rate of 0.3,
as shown, and a validation accuracy of 99.7% was obtained
just after. These findings suggest that the model is more
efficiently regularized at a moderate dropout rate, which
improves the model’s capacity for generalization. On the
other hand, lower training and validation accuracies were
caused by greater dropout rates (0.4, 0.5, and 0.6), which
may indicate an overly small decline in model capacity. The
decrease in F1 score, recall, and precision measurements with
rising dropout rates is especially notable.

Furthermore, we utilized confusion matrices to delve into
the intricacies of our model’s performance in recognizing
Arabic numerals and simple letters. These matrices provide
a visual representation of the model’s classification accuracy,
detailing the distribution of correct and incorrect predic-
tions across various classes. By scrutinizing the confusion
matrices, we gain valuable insights into the model’s ability
to differentiate between similar gestures corresponding to
distinct Arabic numerals and letters. This detailed analysis
facilitates the identification of common misclassification
patterns and aids in refining the model’s architecture and
training strategies, thereby improving its accuracy and

reliability in practical scenarios. Figure 14 illustrates the
confusion matrix for Arabic numerals, while Figure 15
displays the confusion matrix for simple Arabic letters.

To assess the efficacy of our chosen model, we executed
a comprehensive comparative analysis by implementing
and rigorously testing five renowned algorithms in image
classification: ResNet, LSTM, SVM, MobileNets, and
VGGNet.

1) RESNET CONFIGURATION
ResNet, specifically ResNet-50, was chosen for its ability
to effectively handle deep networks while mitigating the
vanishing gradient problem. In our configuration, ResNet-50
consists of 50 layers, including residual blocks that enable the
network to learn intricate features. Data augmentation tech-
niques such as rotations, shifts, zooms, and flips were applied
to increase the diversity of the training data and improve
model generalization. We utilized the Adam optimizer with
a learning rate scheduler to dynamically adjust the learning
rate during training, ensuring stable convergence and faster
convergence to an optimal solution.

2) LSTM CONFIGURATION
Long Short-Term Memory (LSTM) networks were selected
to capture sequential dependencies inherent in the handwrit-
ing data, such as stroke order and writing sequences. Our
LSTM configuration comprises two layers with 128 units
each. This architecture strikes a balance between model com-
plexity and computational efficiency. To prevent overfitting,
we applied dropout regularization with a rate of 0.3 between
LSTM layers. Additionally, sequences were pre-padded to a
fixed length to ensure uniform input dimensions, facilitating
efficient training and inference.

3) SVM SETUP
Support Vector Machines (SVM) with a Radial Basis Func-
tion (RBF) kernel were employed for their effectiveness in
high-dimensional feature spaces. In our SVM setup, we tuned
the penalty parameter (C) to 100 and the kernel coefficient
(gamma) to 0.01 through grid search. These parameter values
were selected to strike a balance between model complexity

76598 VOLUME 12, 2024



I. Lamaakal et al.: TinyDL Model for Gesture

TABLE 5. The impact of data splitting on model performance.

FIGURE 14. Confusion Matrice for Arabic Numerals Recognition.

FIGURE 15. Confusion Matrice for simple Arabic Letters Recognition.

and generalization performance. Additionally, feature scaling
was performed using min-max scaling to map feature values

to the range [0, 1], ensuring that all features contribute equally
to the model’s decision boundary.

VOLUME 12, 2024 76599



I. Lamaakal et al.: TinyDL Model for Gesture

TABLE 6. Comparison of accuracy rates between the chosen algorithm
and the other algorithms.

4) MOBILENETS IMPLEMENTATION
MobileNets were chosen for their lightweight and efficient
architecture, making them suitable for deployment on devices
with limited computational resources. In our implementation,
we utilized a width multiplier of 1.0x and standard input
resolution to balance model efficiency and predictive per-
formance. During training, we employed exponential decay
for the learning rate to gradually reduce the learning rate
over epochs, allowing the model to converge smoothly while
avoiding overshooting the optimal solution. Additionally, the
model was fine-tuned from pre-trained weights to leverage
knowledge transfer from a related task and accelerate training
convergence.

5) VGGNET TUNING
VGGNet, specifically VGG-16, was selected for its sim-
plicity and effectiveness in feature extraction from images.
In our VGGNet configuration, we utilized the VGG-16
architecture, which consists of 16 convolutional and fully
connected layers. Batch normalization was applied after
each convolutional layer to stabilize training and accelerate
convergence. We initialized the learning rate to 0.01 and
monitored validation loss performance during training. The
learning rate was reduced based on validation loss perfor-
mance to ensure steady convergence and prevent overfitting.

The results of this analysis are presented in Table 6, which
showcases the accuracy rates achieved by each algorithm.

Moving to the model conversion phase, we achieved
significant reductions in model size while maintaining robust
performance, the original TensorFlowmodel was compressed
from 658857 bytes to 103632 bytes in its TensorFlow Lite
version, representing a reduction of approximately 84%.
Further optimization was achieved with the TensorFlow Lite
Quantized version, which stands at 32120 bytes, marking an
additional 69% decrease from the TensorFlow Lite model
and 95% from the TensorFlow model (see Table 7). These
reductions in model size demonstrate the effectiveness of our
conversion and optimization techniques, which are pivotal
for deployment in resource-constrained environments such as
mobile devices, without compromising the model’s integrity
and performance.

Table 5 shows the impact of data splitting percentage on
model performance.

TABLE 7. Comparison of model sizes and their respective reductions in
size after conversion.

TABLE 8. Testing the accuracy of models post-conversion.

The model conversion phase has been pivotal in preserving
the efficacy of our models when subjected to a testing
environment. Notably, evenwith amarked reduction inmodel
size, our comprehensive testing phase has revealed that the
model’s performance remains stellar and unaffected. Table 8
below corroborates this finding, showing that the TensorFlow
model and its derivatives TensorFlow Lite and TensorFlow
Lite with Quantization uniformly maintain an impressive
testing accuracy rate of 98.7%.

Figures 16 and 17 effectively demonstrate the outcomes
of rigorously testing our TinyDL model, followed by its
successful deployment on the Arduino Nano 33 BLE.

Figure 18 illustrates the impact of the number of layers
on both the accuracy and the size of the model. The
graph provides insights into how increasing the number
of layers affects the model’s performance and complexity,
highlighting the trade-offs between accuracy and model
size.

C. DISCUSSION
In the discussion of our TinyDL model’s performance,
we begin by acknowledging its exceptional accuracy rates,
as demonstrated in Table 4 and Figure 13. The model not
only showed a high accuracy of 97.5% during training but
also maintained this during validation at 99.7%, indicating
its robustness in gesture recognition for Arabic numerals
and letters. This high level of precision underlines the
model’s effective learning and generalization capabilities.
The detailed analysis of dropout rates, as presented in Table 4,
reveals that a moderate dropout rate of 0.3 is optimal for
our model, striking a balance between overfitting prevention
and maintaining adequate model capacity. This is crucial
for enhancing the model’s adaptability and performance
consistency.

Furthermore, our exploration of the model’s classification
abilities through confusion matrices, shown in Figures 14
and 15, provides deeper insights into its strengths and
areas for potential improvement. These matrices highlight
the model’s proficiency in differentiating similar gestures

76600 VOLUME 12, 2024



I. Lamaakal et al.: TinyDL Model for Gesture

FIGURE 16. Testing the Model’s Efficacy in Recognizing Arabic Numerals.

FIGURE 17. Testing the Model’s Efficacy in Recognizing Simple Arabic Letters.

and pinpoint common misclassification patterns, which are
valuable for refining the model’s architecture and training
strategies.

In our comprehensive study, we evaluated several leading
algorithms renowned for their capabilities in image classi-
fication. Through meticulous analysis and extensive trials,
detailed in Table 6, our TinyDLmodel emerged as the premier
choice, achieving an exceptional accuracy rate of 97.5%.
This impressive performance surpasses that of established
algorithms such as ResNet (90.1%), LSTM (93.9%), Support
Vector Machines (SVM) (87.2%), MobileNets (89.4%), and
VGGNet (92.7%). The selection of the CNN algorithm
was underpinned by its superior accuracy, which not
only affirms its adeptness in managing the intricacies of

complex classification tasks but also establishes it as the
standard-bearer for future applications in the domain.

The analysis (see Figure 18) suggests that while more
layers can improve accuracy to a certain extent, the benefit
diminishes after a point, and the cost in terms of compu-
tational resources becomes significantly higher. Therefore,
it is essential to find a balance between model size and
accuracy, optimizing for both performance and efficiency.
In this scenario, a model with 3 layers seems to offer the
best trade-off, achieving high accuracy with a relatively small
size. Beyond this point, the size of the model increases
substantially without a corresponding increase in accuracy,
which might not be practical for deployment, especially in
resource-constrained environments.

VOLUME 12, 2024 76601



I. Lamaakal et al.: TinyDL Model for Gesture

FIGURE 18. The Impact of Layer Count on Accuracy and Model Size in our proposed model.

Table 5 provides a detailed analysis of the impact of
data splitting on model performance. The results demon-
strate that using an 80% training data split consistently
yields impressive performance across all metrics. However,
when the data is divided such that 90% is allocated for
training and the remaining 10% for validation and testing,
we observe a high accuracy during training. Despite this,
the model exhibits weaker performance in other metrics.
This discrepancy can be attributed to overfitting, wherein the
model excessively learns the details and noise in the training
data, at the expense of its generalization capabilities on
new data

Regarding the misclassification of certain classes, it’s
important to note that errors predominantly occur in a few
classes. This can be attributed to similarities in the patterns
of writing Arabic numbers or letters within those classes,
leading to confusion during classification.

Lastly, the model conversion phase, detailed in Tables 7
and 8, was pivotal. Despite the considerable reduction
in model size, which is crucial for deployment in
resource-constrained environments, our model’s perfor-
mance remained unaffected, maintaining an impressive
testing accuracy of 98.7%. This finding highlights the
successful balance we achieved between model efficiency
and performance, ensuring that our model’s deploy-
ment is feasible without compromising its accuracy or
reliability.

V. MODEL DEPLOYMENT FEASIBILITY AND
COST-EFFECTIVENESS
The deployment of TinyML models in real-world appli-
cations requires a careful assessment of their cost-
effectiveness, particularly in terms of computational and
financial resources. Our proposed TinyDL model, tailored
for recognizing Arabic numerals and letters through gesture-
based interaction, demonstrates not only high accuracy
but also a remarkable balance between efficiency and
performance.

A. COMPUTATIONAL COST-EFFECTIVENESS
The efficiency of our model is evident in its architectural
design. Optimized convolutional neural networks form the
basis of the TinyDL model, which are inherently less compu-
tationally intensive due to their reduced parameter space. The
optimized layers, paired with quantization techniques, allow
the model to maintain a high degree of accuracy even after
substantial reduction in computational demands.

B. FINANCIAL IMPLICATIONS
From a financial standpoint, the cost of deploying and
maintaining our model is markedly low. The model’s ability
to run on inexpensive hardware without the need for high-end
processing power or substantial memory significantly lowers
the initial investment and operational costs.

C. ENERGY CONSUMPTION
Energy consumption [57], [59] is a critical factor in the
deployment of continuous, real-time applications such as
gesture recognition systems. Our model’s minimized power
requirements not only extend the battery life of portable
devices but also reduce the energy costs associated with
sustained use.

D. REAL-WORLD IMPLEMENTATION
To substantiate the model’s real-world applicability, we have
initiated pilot tests on commercially available microcon-
trollers. The results are promising, showcasing the model’s
ability to operate seamlessly in a live environment. These
tests have provided valuable insights into the model’s
performance outside of a controlled setting, confirming its
practicality and readiness for broader deployment.

VI. CONCLUSION
Our research has effectively illustrated TinyML’s potential
for gesture-based recognition of Arabic numerals and basic
Arabic letters. Our TinyDL model, which achieved an
exceptional accuracy rate of 97.5%, is proof of the synergy

76602 VOLUME 12, 2024



I. Lamaakal et al.: TinyDL Model for Gesture

between TinyML and deep learning. This achievement is
especially noteworthy in light of the Arabic script’s inherent
complexity. Our approach, which has been rigorously tested
and verified through comparative analysis and optimiza-
tion for low-power devices, shows that advanced machine
learning models can be deployed in resource-constrained
contexts without compromising performance. Our model’s
applications go beyond simple recognition tasks, opening
the door to more user-friendly and accessible human-
computer interaction, particularly in Arabic-speaking areas.
Our TinyDL model’s integration with gesture recognition
technology, which acknowledges the cultural value of the
Arabic alphabet, marks a significant advancement in the
creation of more inclusive and user-friendly digital interfaces.
However, our research is not without limitations. The current
dataset is limited in its diversity, primarily consisting of
handwriting samples from a relatively homogeneous group
of participants. Expanding the dataset to include a broader
range of handwriting styles and samples from a more diverse
participant pool would enhance the model’s robustness and
generalizability. Additionally, while our model demonstrates
high accuracy, further research is needed to explore its scala-
bility and adaptability to other languages and scripts. Future
research directions include diversifying the dataset, exploring
the model’s applicability to other languages and scripts, and
investigating the integration of our TinyDL model with other
technologies to further enhance human-computer interaction.
Furthermore, we recognize the potential challenges faced
during the model’s deployment in varied environmental
conditions. Addressing these challenges is crucial for the
model’s real-world applicability. Potential enhancements
could involve improving the model’s robustness to different
lighting conditions, handwriting tools, and user behaviors.
Additionally, the future work could focus on enhancing
the model’s capabilities to recognize more complex Arabic
scripts and potentially other languages, broadening the scope
and impact of our research. Our work lays a solid foundation
for the continued exploration of TinyML’s potential in
creating more inclusive and accessible digital interfaces.

CONFLICT OF INTEREST STATEMENT
The authors declare that there are no conflicts of interest
regarding the publicationÂ ofÂ thisÂ article.

REFERENCES
[1] V. Rajapakse, I. Karunanayake, and N. Ahmed, ‘‘Intelligence at the

extreme edge: A survey on reformable TinyML,’’ ACM Comput. Surv.,
vol. 55, no. 13s, pp. 1–30, Jul. 2023, doi: 10.1145/3583683.

[2] J. Lin, L. Zhu, W.-M. Chen, W.-C. Wang, and S. Han, ‘‘Tiny machine
learning: Progress and futures [feature],’’ IEEECircuits Syst. Mag., vol. 23,
no. 3, pp. 8–34, May 2023, doi: 10.1109/MCAS.2023.3302182.

[3] Y. Abadade, A. Temouden, H. Bamoumen, N. Benamar, Y. Chtouki, and
A. S. Hafid, ‘‘A comprehensive survey on TinyML,’’ IEEE Access, vol. 11,
pp. 96892–96922, 2023, doi: 10.1109/ACCESS.2023.3294111.

[4] M. Giordano, L. Piccinelli, and M. Magno, ‘‘Survey and comparison of
milliwatts micro controllers for tiny machine learning at the edge,’’ in
Proc. IEEE 4th Int. Conf. Artif. Intell. Circuits Syst. (AICAS), Jun. 2022,
pp. 94–97, doi: 10.1109/AICAS54282.2022.9870017.

[5] Q. Zhu and X. Zu, ‘‘Fully convolutional neural network structure
and its loss function for image classification,’’ IEEE Access, vol. 10,
pp. 35541–35549, 2022, doi: 10.1109/ACCESS.2022.3163849.

[6] M. Nazar, M. M. Alam, E. Yafi, and M. M. Su’ud, ‘‘A systematic review
of human–computer interaction and explainable artificial intelligence in
healthcare with artificial intelligence techniques,’’ IEEE Access, vol. 9,
pp. 153316–153348, 2021, doi: 10.1109/ACCESS.2021.3127881.

[7] N. N. Alajlan and D. M. Ibrahim, ‘‘TinyML: Adopting tiny machine
learning in smart cities,’’ J. Auto. Intell., vol. 7, no. 4, pp. 1–14, Jan. 2024,
doi: 10.32629/jai.v7i4.1186.

[8] S. Vadera and S. Ameen, ‘‘Methods for pruning deep neural
networks,’’ IEEE Access, vol. 10, pp. 63280–63300, 2022, doi:
10.1109/ACCESS.2022.3182659.

[9] H. Peng, Y. Yu, and S. Yu, ‘‘Re-thinking the effectiveness of batch
normalization and beyond,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 46, no. 1, pp. 465–478, Jan. 2024, doi: 10.1109/TPAMI.2023.
3319005.

[10] J. Qi, G. Jiang, G. Li, Y. Sun, and B. Tao, ‘‘Intelligent human–
computer interaction based on surface EMG gesture recognition,’’ IEEE
Access, vol. 7, pp. 61378–61387, 2019, doi: 10.1109/ACCESS.2019.
2914728.

[11] T. Watanabe, M. Maniruzzaman, M. A. M. Hasan, H.-S. Lee, S.-W. Jang,
and J. Shin, ‘‘2D camera-based air-writing recognition using hand pose
estimation and hybrid deep learning model,’’ Electronics, vol. 12, no. 4,
p. 995, Feb. 2023, doi: 10.3390/electronics12040995.

[12] A. Zhang, W. Zhu, and J. Li, ‘‘Spiking echo state convolutional neural
network for robust time series classification,’’ IEEE Access, vol. 7,
pp. 4927–4935, 2019.

[13] J. Xu, H. Wang, J. Zhang, and L. Cai, ‘‘Robust hand gesture
recognition based on RGB-D data for natural human–computer
interaction,’’ IEEE Access, vol. 10, pp. 54549–54562, 2022, doi:
10.1109/ACCESS.2022.3176717.

[14] Z. Wang, C. Zhou, X. Wu, T. Liu, and Y. Kang, ‘‘Application of mutual
information maximization convolutional neural network in bearing feature
extraction,’’ IEEE Sensors J., vol. 23, no. 24, pp. 30584–30592, Dec. 2023,
doi: 10.1109/JSEN.2023.3316392.

[15] L. Jiashan and L. Zhonghua, ‘‘Dynamic gesture recognition
algorithm combining global gesture motion and local finger motion
for interactive teaching,’’ IEEE Access, early access, 2021, doi:
10.1109/ACCESS.2021.3065849.

[16] N. Mohamed, M. B. Mustafa, and N. Jomhari, ‘‘A review of the
hand gesture recognition system: Current progress and future
directions,’’ IEEE Access, vol. 9, pp. 157422–157436, 2021, doi:
10.1109/ACCESS.2021.3129650.

[17] X. Hu, P. Niu, J. Wang, and X. Zhang, ‘‘A dynamic rectified linear
activation units,’’ IEEE Access, vol. 7, pp. 180409–180416, 2019, doi:
10.1109/ACCESS.2019.2959036.

[18] E. Manor and S. Greenberg, ‘‘Custom hardware inference accelera-
tor for TensorFlow lite for microcontrollers,’’ IEEE Access, vol. 10,
pp. 73484–73493, 2022, doi: 10.1109/ACCESS.2022.3189776.

[19] L. Liu, Y. Luo, X. Shen, M. Sun, and B. Li, ‘‘β-dropout: A
unified dropout,’’ IEEE Access, vol. 7, pp. 36140–36153, 2019, doi:
10.1109/ACCESS.2019.2904881.

[20] S. M. Kamal, Y. Chen, S. Li, X. Shi, and J. Zheng, ‘‘Technical approaches
to Chinese sign language processing: A review,’’ IEEE Access, vol. 7,
pp. 96926–96935, 2019, doi: 10.1109/ACCESS.2019.2929174.

[21] B. Darvish Rouhani, A. Mirhoseini, and F. Koushanfar, ‘‘TinyDL: Just-
in-time deep learning solution for constrained embedded systems,’’ in
Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2017, pp. 1–4, doi:
10.1109/ISCAS.2017.8050343.

[22] J. Jung, H.-C. Moon, J. Kim, D. Kim, and K.-A. Toh, ‘‘Wi-Fi based user
identification using in-air handwritten signature,’’ IEEE Access, vol. 9,
pp. 53548–53565, 2021, doi: 10.1109/ACCESS.2021.3071228.

[23] C.-Y. Lee, P. Gallagher, and Z. Tu, ‘‘Generalizing pooling
functions in CNNs: Mixed, gated, and tree,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 40, no. 4, pp. 863–875, Apr. 2018, doi:
10.1109/TPAMI.2017.2703082.

[24] J. Hu, P. Lin, H. Zhang, Z. Lan, W. Chen, K. Xie, S. Chen, H. Wang, and
S. Chang, ‘‘A dynamic pruning method on multiple sparse structures in
deep neural networks,’’ IEEE Access, vol. 11, pp. 38448–38457, 2023, doi:
10.1109/ACCESS.2023.3267469.

[25] M. Tayyab, A. Hussain, M. A. Alshara, S. Khan, R. M. Alotaibi, and
A. R. Baig, ‘‘Recognition of visual Arabic scripting news ticker from
broadcast stream,’’ IEEE Access, vol. 10, pp. 59189–59204, 2022, doi:
10.1109/ACCESS.2022.3179366.

VOLUME 12, 2024 76603

http://dx.doi.org/10.1145/3583683
http://dx.doi.org/10.1109/MCAS.2023.3302182
http://dx.doi.org/10.1109/ACCESS.2023.3294111
http://dx.doi.org/10.1109/AICAS54282.2022.9870017
http://dx.doi.org/10.1109/ACCESS.2022.3163849
http://dx.doi.org/10.1109/ACCESS.2021.3127881
http://dx.doi.org/10.32629/jai.v7i4.1186
http://dx.doi.org/10.1109/ACCESS.2022.3182659
http://dx.doi.org/10.1109/TPAMI.2023.3319005
http://dx.doi.org/10.1109/TPAMI.2023.3319005
http://dx.doi.org/10.1109/ACCESS.2019.2914728
http://dx.doi.org/10.1109/ACCESS.2019.2914728
http://dx.doi.org/10.3390/electronics12040995
http://dx.doi.org/10.1109/ACCESS.2022.3176717
http://dx.doi.org/10.1109/JSEN.2023.3316392
http://dx.doi.org/10.1109/ACCESS.2021.3065849
http://dx.doi.org/10.1109/ACCESS.2021.3129650
http://dx.doi.org/10.1109/ACCESS.2019.2959036
http://dx.doi.org/10.1109/ACCESS.2022.3189776
http://dx.doi.org/10.1109/ACCESS.2019.2904881
http://dx.doi.org/10.1109/ACCESS.2019.2929174
http://dx.doi.org/10.1109/ISCAS.2017.8050343
http://dx.doi.org/10.1109/ACCESS.2021.3071228
http://dx.doi.org/10.1109/TPAMI.2017.2703082
http://dx.doi.org/10.1109/ACCESS.2023.3267469
http://dx.doi.org/10.1109/ACCESS.2022.3179366


I. Lamaakal et al.: TinyDL Model for Gesture

[26] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
‘‘A survey of quantization methods for efficient neural network inference,’’
in Low-Power Computer Vision. Boca Raton, FL, USA: CRC Press, 2022,
pp. 291–326.

[27] J. I. Pilataxi, J. E. Zambrano, C. A. Perez, and K. W. Bowyer, ‘‘Improved
search in neuroevolution using a neural architecture classifier with the
CNN architecture encoding as feature vector,’’ IEEE Access, vol. 12,
pp. 11987–12000, 2024, doi: 10.1109/ACCESS.2024.3355804.

[28] M. K. Jabde, C. H. Patil, A. D. Vibhute, and S. Mali, ‘‘A comprehensive
literature review on air-written online handwritten recognition,’’ Int.
J. Comput. Digit. Syst., vol. 15, no. 1, pp. 307–322, Jan. 2024, doi:
10.12785/ijcds/150124.

[29] K. M. O. Nahar, I. Alsmadi, R. E. Al Mamlook, A. Nasayreh,
H. Gharaibeh, A. S. Almuflih, and F. Alasim, ‘‘Recognition of Arabic
air-written letters: Machine learning, convolutional neural networks, and
optical character recognition (OCR) techniques,’’ Sensors, vol. 23, no. 23,
p. 9475, Nov. 2023, doi: 10.3390/s23239475.

[30] C. Contoli and E. Lattanzi, ‘‘A study on the application of TensorFlow
compression techniques to human activity recognition,’’ IEEE Access,
vol. 11, pp. 48046–48058, 2023, doi: 10.1109/ACCESS.2023.3276438.

[31] A. Daood, A. Al-Saegh, and A. F. Mahmood, ‘‘HAndwriting detection
and recognition of Arabic numbers and characters using deep learning
methods,’’ J. Eng. Sci. Technol., vol. 18, no. 3, pp. 1581–1598, 2023.

[32] B. Coffen and Md. S. Mahmud, ‘‘TinyDL: Edge computing and deep
learning based real-time hand gesture recognition using wearable sensor,’’
in Proc. IEEE Int. Conf. E-Health Netw., Appl. Services (HEALTHCOM),
Mar. 2021, pp. 1–6, doi: 10.1109/HEALTHCOM49281.2021.9399005.

[33] T. M. Ghanim, M. I. Khalil, and H. M. Abbas, ‘‘Comparative study
on deep convolution neural networks DCNN-based offline Arabic
handwriting recognition,’’ IEEE Access, vol. 8, pp. 95465–95482, 2020,
doi: 10.1109/ACCESS.2020.2994290.

[34] L. Huang, J. Qin, Y. Zhou, F. Zhu, L. Liu, and L. Shao, ‘‘Normalization
techniques in training DNNs: Methodology, analysis and application,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 8, pp. 10173–10196,
Aug. 2023, doi: 10.1109/TPAMI.2023.3250241.

[35] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, ‘‘A survey of convolutional
neural networks: Analysis, applications, and prospects,’’ IEEE Trans.
Neural Netw. Learn. Syst., vol. 33, no. 12, pp. 6999–7019, Dec. 2022, doi:
10.1109/TNNLS.2021.3084827.

[36] T. Yanay and E. Shmueli, ‘‘Air-writing recognition using smart-bands,’’
Pervas. Mobile Comput., vol. 66, Jul. 2020, Art. no. 101183, doi:
10.1016/j.pmcj.2020.101183.

[37] F. A. Abir, M. A. Siam, A. Sayeed, M. A. M. Hasan, and J. Shin,
‘‘Deep learning based air-writing recognition with the choice of proper
interpolation technique,’’ Sensors, vol. 21, no. 24, p. 8407, Dec. 2021, doi:
10.3390/s21248407.

[38] S. K. Leem, F. Khan, and S. H. Cho, ‘‘Detecting mid-air gestures
for digit writing with radio sensors and a CNN,’’ IEEE Trans.
Instrum. Meas., vol. 69, no. 4, pp. 1066–1081, Apr. 2020, doi:
10.1109/TIM.2019.2909249.

[39] C.-H. Hsieh, Y.-S. Lo, J.-Y. Chen, and S.-K. Tang, ‘‘Air-writing recognition
based on deep convolutional neural networks,’’ IEEE Access, vol. 9,
pp. 142827–142836, 2021, doi: 10.1109/ACCESS.2021.3121093.

[40] S. B. Abdullahi andK. Chamnongthai, ‘‘IDF-sign: Addressing inconsistent
depth features for dynamic sign word recognition,’’ IEEE Access, vol. 11,
pp. 88511–88526, 2023, doi: 10.1109/access.2023.3305255.

[41] S. B. Abdullahi and K. Chamnongthai, ‘‘American sign language words
recognition of skeletal videos using processed video driven multi-
stacked deep LSTM,’’ Sensors, vol. 22, no. 4, p. 1406, Feb. 2022, doi:
10.3390/s22041406.

[42] S. B. Abdullahi and K. Chamnongthai, ‘‘American sign language words
recognition using spatio-temporal prosodic and angle features: A sequen-
tial learning approach,’’ IEEEAccess, vol. 10, pp. 15911–15923, 2022, doi:
10.1109/ACCESS.2022.3148132.

[43] A.-A. Liu, Y. Wang, N. Xu, S. Liu, and X. Li, ‘‘Scene-graph-guided
message passing network for dense captioning,’’ Pattern Recognit.
Lett., vol. 145, pp. 187–193, May 2021, doi: 10.1016/j.patrec.2021.
01.024.

[44] J. Brokešová, J. Málek, J. Vackář, F. Bernauer, J. Wassermann, and
H. Igel, ‘‘Rotaphone-CY: The newest rotaphone model design and
preliminary results from performance tests with active seismic
sources,’’ Sensors, vol. 21, no. 2, p. 562, Jan. 2021, doi: 10.3390/
s21020562.

[45] L. Chen, D. Zhang, and M. Liu, ‘‘A lightweight convolutional neural
network for real-time air handwriting recognition,’’ J. Real-Time Image
Process., vol. 20, no. 3, pp. 755–766, 2023.

[46] F. Shao, L. Chen, J. Shao, W. Ji, S. Xiao, L. Ye, Y. Zhuang, and J. Xiao,
‘‘Deep learning for weakly-supervised object detection and localization:
A survey,’’ Neurocomputing, vol. 496, pp. 192–207, Jul. 2022, doi:
10.1016/j.neucom.2022.01.095.

[47] J. Zhang, Y. Wang, and X. Chen, ‘‘Air-writing recognition using wearable
motion sensors and a deep learning approach,’’ IEEE Access, vol. 10,
pp. 48462–48472, 2022.

[48] G. Andac, A. Kalender, B. Baddal, and F. Basmaci, ‘‘Impact of different
access cavity designs and Ni–Ti files on the elimination of Enterococcus
faecalis from the root canal system: An in vitro study,’’ Appl. Sci., vol. 12,
no. 4, p. 2049, Feb. 2022, doi: 10.3390/app12042049.

[49] S. B. Abdullahi, K. Chamnongthai, V. Bolon-Canedo, and
B. Cancela, ‘‘Spatial–temporal feature-based end-to-end Fourier
network for 3D sign language recognition,’’ Expert Syst. Appl.,
vol. 248, Aug. 2024, Art. no. 123258, doi: 10.1016/j.eswa.2024.
123258.

[50] J. E. Bresenham, ‘‘Algorithm for computer control of a digital plotter,’’
IBM Syst. J., vol. 4, no. 1, pp. 25–30, 1965.

[51] M. L. V. Pitteway, ‘‘Algorithm for drawing ellipses or hyperbolae with a
digital plotter,’’ Comput. J., vol. 10, no. 3, pp. 282–289, Mar. 1967.

[52] J. F. Blinn, ‘‘A generalization of algebraic surface drawing,’’ ACM
SIGGRAPH Comput. Graph., vol. 16, no. 3, p. 273, Jul. 1982.

[53] S. Han, H. Mao, and W. J. Dally, ‘‘Deep compression: Compressing deep
neural networks with pruning, trained quantization and Huffman coding,’’
2015, arXiv:1510.00149.

[54] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, ‘‘Dropout: A simple way to prevent neural networks
from overfitting,’’ J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[55] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, ‘‘Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,’’ Proc. IEEE, vol. 107, no. 8, pp. 1738–1762, Aug. 2019, doi:
10.1109/JPROC.2019.2918951.

[56] N. Schizas, A. Karras, C. Karras, and S. Sioutas, ‘‘TinyML for ultra-low
power AI and large scale IoT deployments: A systematic review,’’ Future
Internet, vol. 14, no. 12, p. 363, Dec. 2022, doi: 10.3390/fi14120363.

[57] A. Sabovic, M. Aernouts, D. Subotic, J. Fontaine, E. De Poorter,
and J. Famaey, ‘‘Towards energy-aware TinyML on battery-less IoT
devices,’’ Internet Things, vol. 22, Jul. 2023, Art. no. 100736, doi:
10.1016/j.iot.2023.100736.

[58] S. S. Saha, S. S. Sandha, and M. Srivastava, ‘‘Machine learn-
ing for microcontroller-class hardware: A review,’’ IEEE Sensors J.,
vol. 22, no. 22, pp. 21362–21390, Nov. 2022, doi: 10.1109/JSEN.2022.
3210773.

[59] W. Raza, A. Osman, F. Ferrini, and F. D. Natale, ‘‘Energy-efficient
inference on the edge exploiting TinyML capabilities for UAVs,’’ Drones,
vol. 5, no. 4, p. 127, Oct. 2021, doi: 10.3390/drones5040127.

[60] L. Capogrosso, F. Cunico, D. S. Cheng, F. Fummi, and M. Cristani,
‘‘A machine learning-oriented survey on tiny machine
learning,’’ IEEE Access, vol. 12, pp. 23406–23426, 2024, doi:
10.1109/ACCESS.2024.3365349.

[61] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan,
O. Al-Shamma, J. Santamaría,M.A. Fadhel,M.Al-Amidie, and L. Farhan,
‘‘Review of deep learning: Concepts, CNN architectures, challenges,
applications, future directions,’’ J. Big Data, vol. 8, no. 1, p. 53, Mar. 2021,
doi: 10.1186/s40537-021-00444-8.

[62] A. A. A. Ali and M. Suresha, ‘‘Survey on segmentation and recognition of
handwritten Arabic script,’’ Social Netw. Comput. Sci., vol. 1, no. 4, p. 192,
Jun. 2020, doi: 10.1007/s42979-020-00187-y.

[63] R. Rastgoo, K. Kiani, and S. Escalera, ‘‘Sign language recognition:
A deep survey,’’ Expert Syst. Appl., vol. 164, Feb. 2021, Art. no. 113794,
doi: 10.1016/j.eswa.2020.113794.

[64] A. Wadhawan and P. Kumar, ‘‘Sign language recognition systems:
A decade systematic literature review,’’ Arch. Comput. Methods Eng.,
vol. 28, no. 3, pp. 785–813, May 2021, doi: 10.1007/s11831-019-09384-2.

[65] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
2014, arXiv:1412.6980.

[66] A. Mao, M. Mohri, and Y. Zhong, ‘‘Cross-entropy loss functions:
Theoretical analysis and applications,’’ in Proc. 40th Int. Conf. Mach.
Learn., vol. 202, Jul. 2023, pp. 23803–23828.

76604 VOLUME 12, 2024

http://dx.doi.org/10.1109/ACCESS.2024.3355804
http://dx.doi.org/10.12785/ijcds/150124
http://dx.doi.org/10.3390/s23239475
http://dx.doi.org/10.1109/ACCESS.2023.3276438
http://dx.doi.org/10.1109/HEALTHCOM49281.2021.9399005
http://dx.doi.org/10.1109/ACCESS.2020.2994290
http://dx.doi.org/10.1109/TPAMI.2023.3250241
http://dx.doi.org/10.1109/TNNLS.2021.3084827
http://dx.doi.org/10.1016/j.pmcj.2020.101183
http://dx.doi.org/10.3390/s21248407
http://dx.doi.org/10.1109/TIM.2019.2909249
http://dx.doi.org/10.1109/ACCESS.2021.3121093
http://dx.doi.org/10.1109/access.2023.3305255
http://dx.doi.org/10.3390/s22041406
http://dx.doi.org/10.1109/ACCESS.2022.3148132
http://dx.doi.org/10.1016/j.patrec.2021.01.024
http://dx.doi.org/10.1016/j.patrec.2021.01.024
http://dx.doi.org/10.3390/s21020562
http://dx.doi.org/10.3390/s21020562
http://dx.doi.org/10.1016/j.neucom.2022.01.095
http://dx.doi.org/10.3390/app12042049
http://dx.doi.org/10.1016/j.eswa.2024.123258
http://dx.doi.org/10.1016/j.eswa.2024.123258
http://dx.doi.org/10.1109/JPROC.2019.2918951
http://dx.doi.org/10.3390/fi14120363
http://dx.doi.org/10.1016/j.iot.2023.100736
http://dx.doi.org/10.1109/JSEN.2022.3210773
http://dx.doi.org/10.1109/JSEN.2022.3210773
http://dx.doi.org/10.3390/drones5040127
http://dx.doi.org/10.1109/ACCESS.2024.3365349
http://dx.doi.org/10.1186/s40537-021-00444-8
http://dx.doi.org/10.1007/s42979-020-00187-y
http://dx.doi.org/10.1016/j.eswa.2020.113794
http://dx.doi.org/10.1007/s11831-019-09384-2


I. Lamaakal et al.: TinyDL Model for Gesture

ISMAIL LAMAAKAL (Graduate Student
Member, IEEE) received the Master of Science
degree in computer science from the Multidisci-
plinary Faculty of Nador, University Mohammed
Premier, Oujda, Morocco, where he is currently
pursuing the Ph.D. degree in computer science.
As an Artificial Intelligence Scientist, his research
primarily focuses on the innovative integration of
tinymachine learning, the Internet of Things (IoT),
and embedded systems. His work is characterized

by its pioneering approach in the field, emphasizing practical applications
and advancements in these interconnected domains. His contributions are
marked by a commitment to pushing the boundaries of AI and its applications
in the modern technological landscape.

IBRAHIM OUAHBI received the Ph.D. degree
in didactics of informatics from Sidi Mohammed
Ben Abdellah University, Fez, Morocco. He was
a Professor of educational technologies with the
Faculty of Educational Sciences, Mohammed V
University in Rabat, in 2019. He is currently a
Professor of computer science with the Multidisci-
plinary Faculty of Nador, University Mohammed
Premier, Oujda, Morocco. His research interests
include artificial intelligence, cybersecurity, and

ICT integration in science education and learning.

KHALID EL MAKKAOUI received the mas-
ter’s degree in networks and systems and the
Ph.D. degree in computer science from Hassan
1st University, Settat, Morocco, in 2014 and
2018, respectively. Since 2019, he has been
an Associate Professor with the Department of
Computer Science, Multidisciplinary Faculty of
Nador, University Mohammed Premier, Oujda,
Morocco. He has published over 40 papers (book
chapters, international journals, and conferences).

His research interests include cybersecurity and artificial intelligence.

YASSINE MALEH (Senior Member, IEEE) is
currently a Professor of cybersecurity and IT
governance with Sultan Moulay Slimane Uni-
versity, Morocco. He has made contributions in
the fields of information security and privacy,
the Internet of Things security, wireless, and
constrained network security. He has published
over 200 papers (book chapters, international
journals, and conferences/workshops), 30 edited
books and 6 authored books. His research interests

include information security and privacy, the Internet of Things, network
security, information systems, and IT governance. He is a member

of the International Association of Engineers (IAENG) and the Machine
Intelligence Research Laboratories. He received Publons Top 1% Reviewer
Award for the years 2018 and 2019. He was the Publicity Chair of
BCCA’19 and the General Chair of the MLBDACP’19 Symposium and the
ICI2C’21 Conference. He is also the Founding Chair of the IEEE Consultant
Network Morocco and the Founding President of African Research Center
of Information Technology and Cybersecurity. He serves as an Associate
Editor for IEEE ACCESS (2019 Impact Factor 4.098), the International
Journal of Digital Crime and Forensics, and the International Journal of
Information Security and Privacy. He is a Series Editor of Advances in
Cybersecurity Management (CRC Taylor and Francis). He is the Editor-in-
Chief of the International Journal of Information Security and Privacy and
the International Journal of Smart Security Technologies. He served as a
Guest Editor for the Special Issue on Recent Advances on Cyber Security and
Privacy for Cloud-of-Things of the International Journal of Digital Crime
and Forensics (Volume 10, Issue 3, July-September 2019). He has served and
continues to serve on executive and technical program committees and as a
reviewer for numerous international conferences and journals, such as Ad
Hoc Networks (Elsevier), IEEE Network magazine, IEEE SENSOR JOURNAL,
ICT Express, and Cluster Computing (Springer).

PAWEŁ PŁAWIAK was born in Ostrowiec,
Poland, in 1984. He received the B.Eng. andM.Sc.
degrees in electronics and telecommunications and
the Ph.D. degree (Hons.) in biocybernetics and
biomedical engineering from the AGH University
of Science and Technology, Kraków, Poland, in
2012 and 2016, respectively, and the D.Sc. degree
in technical computer science and telecommunica-
tions from the Silesian University of Technology,
Gliwice, Poland, in 2020. He is currently the

Dean of the Faculty of Computer Science and Telecommunications and an
Associate Professor with the Cracow University of Technology, Kraków, the
Deputy Director for research with the National Institute of Telecommunica-
tions, Warsaw, and an Associate Professor with the Institute of Theoretical
and Applied Informatics, Polish Academy of Sciences, Gliwice. He has
published more than 50 articles in refereed international SCI-IF journals. His
research interests include machine learning and computational intelligence
(e.g., artificial neural networks, genetic algorithms, fuzzy systems, support
vector machines, k-nearest neighbors, and hybrid systems), ensemble
learning, deep learning, evolutionary computation, classification, pattern
recognition, signal processing and analysis, data analysis and data mining,
sensor techniques, medicine, biocybernetics, biomedical engineering, and
telecommunications. He is an academic editor and a reviewer of many
prestigious and reputed journals.

FAHAD ALBLEHAI received the B.S. degree in
education in the field of computer, the M.S. degree
in information technology and communication,
and the Ph.D. degree in e-learning/web-/internet-
based teaching and learning, in 2001, 2010, and
2017, respectively. He has been an Associate
Professor with the Community College, King
Saud University (KSU), since 2019. His research
interests include web applications, digital trans-
formation, augmented reality, virtual reality, cloud

computing, virtual learning environments, e-learning, m-learning, AI, and
human–computer interaction.

VOLUME 12, 2024 76605


