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ABSTRACT The impact of air transport delays and their propagation has long been studied, mainly from
environmental and mobility viewpoints, using a wide range of data analysis tools and simulations. Less
attention has nevertheless been devoted to how delays create meso-scale structures around each airport.
In this work we tackle this issue by reconstructing functional networks of delay propagation centred at each
airport, and studying their identifiability (i.e. how unique they are) using Deep Learning models. We find
that such delay propagation neighbourhoods are highly unique when they correspond to airports with a high
share of Low Cost Carriers operations; and demonstrate the robustness of these findings for the EU and US
systems, and to different methodological choices. We further discuss some operational implications of this
uniqueness.

INDEX TERMS Air transport, low-cost carriers, delay propagation, functional networks, deep learning.

I. INTRODUCTION
Delays are one of the major topics of research in air transport,
due to their profound implications in the cost-efficiency [1]
and safety of the system [2], and their negative impact
on the environment [3]. To illustrate, the Federal Aviation
Administration estimates that US flight delays cost $22bn
yearly: getting rid of delays would thus allow to pay one
third of the whole national health care system of Spain
(e72.8bn in 2017). Additionally, 1 minute of ground delay
implies between 1 to 4 kg of fuel consumption, one order of
magnitude higher in the case of airborne delays [3]. If some
delays are the unavoidable result of external perturbations,
as e.g. of adverse meteorological events, the same cannot
be said of their propagation, also known as reactionary or
secondary delays. These propagation instances are the result
of the high level of optimisation of the system, and of
the limited resources available to airlines, airports, and air
traffic managers. Not surprising, the appearance of delays
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and their propagation has been studied using a plethora of
complementary approaches, from the analysis of the local
dynamics of individual flights and airports [4], [5], [6]; the
use of large-scale synthetic models [6], [7], [8], [9], [10];
to functional network representations inspired by statistical
physics and neuroscience [11], [12], [13], [14], [15].

One interesting aspect that has recently been raised is how
identifiable [16] delays are, or, in other words, whether it is
possible to identify an airport by only looking at the delays
it experiences [17]. Whenever this is possible, it means that
the evolution of delays throughout different days is similar -
or at least that it is more similar than what observed in
other airports. Most importantly, this also means that delays
are predictable and avoidable - if, for instance, an airport
experiences the same spike in the average delay at a given
hour every day, resources may be deployed to minimise it,
or flights may have to be rescheduled.

If [17] focused on the dynamics of delays at each airport,
here we adopt a more meso-scale approach and evaluate the
identifiability of the structure induced by the propagation
of delays in its neighbourhood. In short, given a target
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airport, we identify the subset of airports to which it strongly
connects, for then recovering how delays have propagated
between them on a daily basis. The result is then a functional
network per day, describing how delays have propagated in
the neighbourhood of the target airport. Networks coming
from pairs of airports are then classified using Deep Learning
models, and specifically Graph Isomorphism Neural Net-
works (GIN) [18]. The accuracy of the classification then
quantifies how unique, or identifiable, those networks are,
and therefore how unique is the structure of the propagation
of delays near those airports.

When the proposed approach is applied to large data sets
of flights of Europe and US, results indicate that these delay
propagation neighbourhoods are generally not identifiable,
possibly due to the high variance in delays across different
days. At the same time, some airports stand out for being
highly unique, e.g. Málaga-Costa del Sol Airport, Alicante-
Elche Miguel Hernández Airport, and London Stansted
Airport in Europe; and San José International Airport, Fort
Lauderdale-Hollywood International Airport, and Chicago
O’Hare International Airport in the US. We demonstrate
that such uniqueness is connected to the share of flights
operated by Low Cost Carriers, and hence how these induce
specific delay propagation patterns. We also show how these
results are independent on several methodological choices,
like the way functional networks are reconstructed and how
the classification is performed.

The remainder of the text starts by introducing the main
methods of the analysis, specifically: the considered data
set (Sec. II-A), the delay network reconstruction process
(Sec. II-B), the Deep Learning model (Sec. II-C), and
the topological metrics used to characterise the networks
(Sec. II-D). We present the main results for the EU system in
Sec. III, discussing how these are generalisable with respect
to the network reconstruction process (Sec. III-C), and how
they are also valid in the case of US (Sec. III-D). We finally
discuss the operational implications of this work and draw
some conclusions in Sec. IV.

II. METHODS
A. DATA SETS
Data about European flights have been extracted from the
EUROCONTROL’s R&D Data Archive, a public repository
of historical flights made available for research purposes and
freely accessible at https://www.eurocontrol.int/dashboard/
rnd-data-archive. It includes information about all commer-
cial flights operating in and over Europe, completed with
flight plans, radar data, and associated airspace structure.
From a temporal point of view, it includes data for four
months (i.e. March, June, September and December) of five
years (2015-2019). Note that data for year 2020 and following
have been discarded, due to the anomalies introduced by
the COVID-19 pandemics. In this study we focused on the
35 largest airports in Europe according to the number of
passengers. Tab. 3 in Appendix reports the full list along with
the corresponding number of landing operations.

For each flight landing at these 35 airports, its delay has
been calculated as the difference between the actual (from
the ATFM-updated flight plan) and the planned (according
to the last filed flight plan) landing times. Afterwards, for
each airport, flights have been grouped according to the
actual landing hour, and the average delay per hour has been
calculated. Subsequently, these time series have been split in
windows of 24 hours, in order to obtain the evolution of the
average hourly delay per airport per day. The result is thus a
total of 744 time series of length 24 per airport.

Similar information has further been obtained for the
35 largest US airports from the Reporting Carrier On-Time
Performance database of the Bureau of Transportation
Statistics, U.S. Department of Transportation, freely acces-
sible at https://www.transtats.bts.gov. This database contains
information about flights operating in US airports, including
departure and arrival time (both scheduled and executed),
and consequently the associated delays. Data here considered
cover years 2015 to 2019 (both included), thus yielding a
larger set of 1, 825 time series per airport. A list of considered
airports is reported in Tab. 4 in Appendix.

B. DELAY PROPAGATION NETWORK RECONSTRUCTION
The previously extracted time series are highly non-
stationary, as delays appear with clear temporal trends -
e.g. seldom in the morning but frequently at midday and
afternoon. As stationarity is a necessary requirement for
detecting instances of delay propagation, we firstly detrended
them using a Z-Score approach. Specifically, given a time
series x(t) (with t ∈ [0, . . . , 23]), its detrended version x ′(t)
is given by:

x ′(t) =
x(t) − µ(t)

σ (t)
, (1)

where µ(t) is the average delay observed at the same hour
and in the same day of the week, and σ (t) the corresponding
standard deviation. In other words, the result is a value
representing how the delay at a given time deviates fromwhat
expected in similar days and hour.

The detection of the propagation of delays between a pair
of airports is usually performed through a functional metric,
i.e. a metric assessing the presence of a synchronisation or
of an information transfer in the corresponding time series.
While many alternatives have been explored in the literature,
including for instance Granger Causality [19] or Transfer
Entropy [20], [21], we are here constrained by the limited
length of the time series (i.e. 24 points); complex and non-
linear metrics, which usually require long time series to yield
reliable results, may not be suitable. Consequently, we here
initially resorted to a simple Pearson’s linear correlation,
which has already successfully been used in detecting delay
propagation [22], [23], [24]; the use of other metrics will
further be explored below.

Given a target airport a, we firstly extract the set
of nairps − 1 airports with which it had the largest number
of flights - or, in other words, the subset of airports with
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which it is most strongly connected. We then reconstruct the
functional network of delay propagation between these nairps
airports (i.e. the target airport a plus its nairps−1 neighbours),
which is fully described by a weighted adjacency matrix
W of size nairps × nairps, where the element wi,j is given
by the absolute value of the linear correlation between the
detrended time series of airports i and j. Finally, links whose
weightw is below a threshold τ are deleted, to avoid including
correlationswith no statistical significance - the optimal value
of τ will be obtained in Sec. III-A. In synthesis, given a
target airport and a day, the result of this processing is a
weighted network describing how synchronised is the delay
evolution, during that day, among its neighbours. A total of
35 × 744 = 26, 040 networks have been extracted for EU;
35 × 1, 825 = 63, 875 networks in the case of US.

C. DEEP LEARNING CLASSIFICATION
Once the delay propagation networks are obtained, we aim
to find whether they have similar structures across different
airports, or, on the other hand, whether they present
consistent differences that allow for their identification. Such
assessment is here performed through a classification task
for each pair of airports, in which a model is trained to
correctly label which airport a given network corresponds to;
the higher the obtained classification score, the higher is the
identifiability of the delay propagation networks under study.

The classification is performed using a Graph Isomor-
phism Neural Network (GIN) [18]. The origin of this type
of neural network can be traced back to the Convolutional
Neural Networks (CNNs) [25], i.e. models capable of
identifying local features and learning patterns through a
structure that includes convolutional layers, pooling layers,
and fully connected layers; and through a back-propagation
training algorithm [25], [26]. For this reason, CNNs are a
well-established model for object recognition and classifi-
cation tasks when the input data have a grid shape, such
as in the case of images [26]. Some situations nevertheless
require representing the data as graphs, as is e.g. the case
for the interactions between the elements of a system. Graph
Neural Networks (GNNs), and Convolutional Graph Neural
Networks (ConvGNNs) in particular, were developed to
address this type of problems, generalising the convolution
operation from a grid to a graph [25].
At their core, GNNs operate through recursive neighbour-

hood aggregations, so that after k iterations each node has
a new representation that captures information about its k
nearest neighbours; and pooling operations, to synthesise a
representation of the entire network. There are many different
variants of GNNs and, as demonstrated in [18], GNNs can
be as powerful as the Weisfeiler-Lehman (WL) test in terms
of graph classification. Such test aims to determine if two
graphs are topologically equivalent, meaning that they have
the same connectivity and differ only by a permutation
of their nodes, and it is a necessary but not sufficient
condition for isomorphism [27]. In [18] an architecture called

Graph Isomorphism Neural Network (GIN) is developed to
reach this limit. GINs are therefore the appropriate tool for
classifying the delay propagation networks since they are able
to capture the concept of isomorphism and have been proven
to be a powerful tool for graph classification tasks [18].
We here leveraged the implementation from the Python
library PyTorch [28], modified to have the desired structure:
three convolutional layers and two linear fully connected
layers, with dimensions of respectively (h, h) and 3h,
with h = 32.
The classification accuracy for a given airport pair is

calculated starting from the corresponding neighbourhood
propagation networks previously obtained (see Sec. II-B),
and by dividing the dataset into ten parts to implement a
k-fold cross-validation technique. Consequently, we iterate
the classification k = 10 times, where, in each iteration,
one different fold corresponds to the test set and the other
nine to the train set. We perform the training and testing
of the GIN model using a batch size of 64 networks,
meaning that the GIN parameters are updated each time it
processes 64 instances. Finally, for each pair of airports,
this whole process is repeated 20 times, to account for the
stochastic nature of the training process; the final score is
obtained as the average accuracy obtained throughout the
200 training/evaluation rounds.

D. TOPOLOGICAL ANALYSIS OF NETWORKS
In order to understand the characteristics of the extracted
delay propagation networks, these have been analysed from
the lens of complex network theory and through a set
of topological metrics, i.e. metrics that describe specific
aspects of their structure. These metrics will further be used
to perform a classification task using a standard Machine
Learning model, in order to evaluate the performance of DL
ones. While many reviews on this topic have been published,
see for instance [29], [30], for the sake of completeness we
here present some basic definitions.

• # links, or the number of links after applying a
threshold τ - the role of this threshold will be discussed
in Sec. III-A.

• Median weights, i.e. median of the weight of links,
here of the absolute value of the correlation coefficient
between the delay time series.

• Assortativity, i.e. propensity of links to connect nodes
of similar degrees [31], i.e. with similar number of
connections. It is calculated as the Pearson’s linear
correlation between the degree of nodes at each end of
each link.

• Transitivity, or the frequency of triangles in the network,
measured as the ratio between the number of closed
triangles and of connected triplets of nodes [32].

• Efficiency, i.e. the normalised sum of the inverse of the
distances between every pair of nodes [33]. This metric
measures how easily information is transmitted in the
network; and, in the case at hand, how easily delays can
propagate.
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• Modularity, a metric representing the tendency of a
network to organise into communities, or groups of
nodes strongly connected between them and loosely
connected to the remainder of the network [34].
Communities have here been obtained using the Louvain
algorithm [35].

• Small-worldness, ratio between the clustering coeffi-
cient and the characteristic path lengths, normalised
according to the values expected in random equivalent
networks [36].

• Network Information Content (NIC), metric assessing
the presence of regular structures in the network; it is
based on an iterative process of merging pairs of nodes,
and on measuring the amount of information lost in the
process [37].

Note that metrics like the transitivity, efficiency and NIC
depend on the number of nodes and of links in the network.
To illustrate, the higher the number of links in a network,
the more probable is to find triangles, independently of the
underlying structure. In order to normalise these metrics and
allow comparisons between networks of different densities,
we resort to a null model composed of random Erdős-
Rényi equivalent networks of the same number of nodes
and links. The original metric is then expressed through
the corresponding Z-Score, defined as: zM = (m −

rM )/σrM , with rM and σrM respectively being the mean and
standard deviation of the metricM calculated on the random
networks - see [38], [39] for further discussions.

III. RESULTS
A. HYPERPARAMETERS’ TUNING
As a prior step to the analysis of the obtained results,
it is necessary to discuss the role of a few hyperparameters
that affect the classification process. The first one is the
size of each sub-network, i.e. nairps. This hyperparameter
controls a balance. On one hand, if the network contains
very few airports, little information is available for the GIN
algorithm to learn the classification, and therefore the yielded
score will be low. On the other hand, in the limit that all
35 airports are included, all sub-networks become the same
and equal to the full propagation network, again preventing
any meaningful learning. A maximum is therefore to be
expected for intermediate values of nairps. A similar dynamics
is to be expected in the case of the threshold τ . A very large
value of this hyperparameter implies that few links, if any,
are included in the final sub-networks. On the other hand,
it may be expected that including all available information,
i.e. for τ = 0 or performing no pruning, should favour the
classification process. This is nevertheless not always the
case: as well known inmachine learning, performing a feature
selection, i.e. deleting those features that convey little or no
information, can help the algorithms to converge faster to a
better solution [40], [41]. In the case at hand, this is equivalent
to deleting those propagation links that are associated to small
correlations, and that may therefore only represent noise.
The third hyperparameter of interest is the number of epochs

nepochs during which the GNN model is trained. Low values
of nepochs may prevent the algorithm to reach a valid solution;
on the other hand, very large values may eventually lead to an
overfitting.

The evolution of the classification score, measured through
the mean accuracy, is reported in Fig. 1 as a function of these
three hyperparameters. For the sake of clarity, we report three
pairs of European airports that havemanually been selected to
represent a variety of scenarios. It can be appreciated that the
best classifications are obtained for nairps ≈ 15 and τ ≈ 0.35,
in agreement with the previous discussion. Regarding nepochs,
values smaller than 102 clearly hinder the classification
process, while the best results are obtained for values larger
than 103. Consequently, the following values will be used
in all subsequent analyses: nairps = 15, τ = 0.35 and
nepochs = 5 · 103.

B. IDENTIFIABILITY OF DELAY PROPAGATION NETWORKS
Once all hyperparameters have been set, it is now possible
to analyse the classification results, and specifically the
accuracy obtained when comparing the delay propagation
neighbourhoods of each pair of airports. While all scores
for the European airports are presented in the left panel of
Fig. 7 in Appendix, for the sake of clarity the box plot of
Fig. 2 depicts the distribution corresponding to each airport;
in other words, it presents an overview of how identifiable are
the delay propagation patterns around a given airport. Highly
heterogeneous behaviours can be observed: while some
airports, as e.g. Málaga-Costa del Sol (LEMG) have delay
propagation neighbourhoods that are easy to identify, many
yield accuracy scores close to 0.5, i.e. compatible with a ran-
dom (or uninformed) classification. In order to simplify the
interpretation of the results, Tab. 1 reports a list of the top-6
European airports in terms of average accuracy; and Tab. 2
the top-10 pairs of European airports which yield the highest
classification score. Additionally, Fig. 8 in Appendix reports
an analysis of the statistical significance of these results.

A simple visual inspection of the top-ranked airports in
Tab. 1 suggests that the identifiability of delay propagation
neighbourhoods is related to low-cost carriers (LCCs). This
is confirmed by the left panel of Fig. 3, reporting a scatter
plot of the mean classification accuracy as a function of the
proportion of flights operated by the four largest LCCs at
each airport. A similar correlation can be observed when
considering the proportion of flights operated by Ryanair, but
not by the following three largest LCCs in Europe (see panels
b-e). This is to be expected, as Ryanair was the first LCC in
Europe in terms of number of operations in the considered
time window, and hence dominates the results.

We further analyse which other factors may affect the
identifiability of the delay propagation neighbourhood of
each airport. The top panels of Fig. 4 focus on the underlying
physical connectivity networks, and specifically report the
average classification accuracy of each pair of airports
as a function of the fraction of common routes in their
neighbourhoods (left panel), and of common destinations
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FIGURE 1. Tuning of the hyperparameters of the classification. The three panels report the evolution of the average accuracy of the
classification as a function of: (left) the number of neighbours nairps composing the sub-networks; (centre) the threshold τ ; and (right)
the number of epochs nepochs. Solid lines depict the evolution of the average classification score for three pairs of airports (see
legends), and transparent bands to the corresponding 10 − 90 percentiles. Unless otherwise stated, nairps = 15, τ = 0.35, and
nepochs = 5, 000.

FIGURE 2. Overview of the classification of European delay propagation networks. Each box plot represents the distribution of the
classification scores obtained between the networks of a given airport (X axis), and each other airport considered in this study. In each
plot, the horizontal line represents the median, the box the interquartile range (IQR), and the whiskers the outliers outside the IQR.
Airports are ordered in decreasing number of passengers, and as reported in Tab. 3.

FIGURE 3. Role of low-cost carriers (LCCs) in the identifiability of delay propagation neighbourhoods. Panel a) reports a scatter plot of
the mean accuracy as a function of the fraction of LCC operations at each airport; panels b) to e) the same information, disaggregated
by the four largest LCCs operating in Europe. The dashed grey lines depict the best linear fit, with the corresponding R2 and p-value
being reported inside each panel.

(right panel). As is to be expected, the more two airports
share common destinations, the more difficult is to identify

them - in the limit that, if two airports exactly share the
same neighbours, their corresponding delay propagation
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TABLE 1. Top-6 European airports with the highest average accuracy, i.e. whose delay propagation neighbourhood is easier to recognise. The right-most
column reports the number of times each airport appears in the list of the 100 pairs of airports with the highest classification score - see also Tab. 2.

TABLE 2. Top-10 pairs of European airports yielding the highest mean accuracy, when classifying their respective neighbourhoods.

neighbourhoods would be identical and it would be impos-
sible to identify them. The bottom panels of the same
figure evaluate the role of the identifiability of individual
airports, i.e. how easy it is to recognise one airport given the
evolution of the average delays of flights there operating -
i.e. the identifiability of delays, as opposed to that of the
delay propagation process. Identifiability values have been
obtained from [17], corresponding to classification tasks
performed using Residual Networks (ResNet) Deep Learning
models [42], [43]. The left bottom panel focuses on the local
identifiability, i.e. how easy it is to identify the pair of airports
under analysis; on the other hand, the right panel focuses on
the neighbourhood (or meso-scale) identifiability, calculated
as the average identifiability of all airports composing the
neighbourhoods of the two airports under analysis. The
identifiability of the central airport of each group is not a
major driver (left panel), as is the average identifiability of
constituting airports (right panel). Note that these results
are to be expected, as here the focus is shifted towards the
propagation of delays, as opposed to their local appearance -
as measured in [17].

C. GENERALISABILITY OF RESULTS: FUNCTIONAL AND
NETWORK METRICS
Some methodological choices made in the previous analyses
may affect the obtained results. Specifically, we have opted
for the use of a linear correlation in the reconstruction of
the functional networks of delay propagation, due to the
limited length of available time series; yet, other metrics
could also provide complementary information. In order to

check this aspect, the top panels of Fig. 5 report the main
results obtained when using Granger Causality (top row)
and Rank Correlation (middle row). From left to right, each
column reports the results of optimising the threshold τ ,
over the same three pairs of airports as in Fig. 1; the
distribution of accuracies for each airport as box plots,
as in Fig. 2; and a scatter plot of the accuracy obtained
when classifying each pair of airports, as a function of the
accuracy obtained with linear correlation. Some interesting
conclusions can be drawn. On one hand, results obtained
using the Granger Causality are not dissimilar from those of
the linear correlation: the same relevant airports are detected,
and only a handful of pairs of airport significantly improve the
corresponding classification score. Therefore, even though
the time series here available were very short, this causality
metric leads to the same conclusions. On the other hand,
the Rank Correlation fails at creating identifiable networks,
for all airports and values of the threshold τ . This suggests
that the identifiability of delay propagation neighbourhoods
is mostly driven by the linear part of the propagation; and
that, when using ametric sensitive to non-linear relationships,
the reconstructed networks are more random - see Fig. 9 in
Appendix for a discussion.

This work further relies on Deep Learning models to
estimate the identifiability of the reconstructed networks; a
pertinent question is whether these are needed, and whether
they introduce some distortion in the results. As a reference,
we have tested the performance of a classical Machine
Learning algorithm, i.e. Random Forests (RFs). These are
based on the concept of Decision Trees, i.e. comprehensive
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FIGURE 4. Additional factors affecting the identifiability of the delay propagation neighbourhoods of each pair of airports. From left
to right, top to bottom, the four panels correspond to: the fraction of common routes; the fraction of common destinations; the local
identifiability, i.e. how unique are the delay profiles of the two airports under study; and the average identifiability of all airports
belonging to each neighbourhood. See main text for further details. The dashed red lines depict the best linear fit, with the
corresponding R2 and p-value being reported inside each panel.

FIGURE 5. Alternative functional metrics and classification models. Top and middle rows report the results for delay propagation networks
reconstructed using respectively Granger Causality (GC) and Rank Correlation (RC); the bottom row, for a classification performed using
Random Forests on topological features extracted from the original networks. From left to right, each row reports the tuning of the
threshold τ ; the distribution of the classification accuracy by airport; and a scatter plot, comparing these classification scores with the one
obtained through linear correlation (LC) and Deep Learning. See main text for interpretations.

tree structures that classify records by sorting them based
on attribute values [44]; and further expand on this idea

by combining a large number of tree predictors, such that
each tree depends on the values of a random vector sampled

VOLUME 12, 2024 75329



S. Gil-Rodrigo, M. Zanin: LCCs Induce Specific and Identifiable Delay Propagation Patterns

FIGURE 6. Identifiability of US delay propagation neighbourhoods. The left panel reports the evolution of the average accuracy of the
classification as a function of the threshold τ , for three pairs of airports. Solid lines depict the average classification score, transparent
bands the corresponding 10 − 90 percentiles. The right panel represents the distribution of the classification scores obtained between
the networks of a given airport (X axis), and all other US airports considered in this study.

independently and with the same distribution for all trees
in the forest [45]. The analysis entails, firstly, extracting a
set of classical topological metrics from each network, i.e.
measures describing some specific aspects of its structure -
see Sec. II-D for the full list, and Fig. 10 in Appendix for an
example involving two airports. Secondly, the corresponding
classification score has been calculated using RFs, trained
and evaluated over those topological features. The results
(bottom row of Fig. 5) indicate that very similar results can
be obtained; using Deep Learning models does not provide
any clear advantage, but also introduces no bias.

D. GENERALISABILITY OF RESULTS: THE CASE OF US
In order to understand if the aforementioned results are
specific to the EU or more general, we have performed
a similar analysis on data representing the dynamics at
US airports. In order to simplify the comparison, we have
maintained the same methodological choices, i.e. the use of
linear correlations and nairps = 15. We have nevertheless
optimised the threshold τ , obtaining that values higher
than what previously used help in the classification, with a
maximum for τ = 0.45 - see left panel of Fig. 6.
The right panel of Fig. 6 further reports the probability

distributions of the identifiability of each airport as box
plots, i.e. akin to Fig. 2 - see also the right panel of Fig. 7
in Appendix for individual values. Classification scores are
in general much lower than in the EU case. The reason
for this cannot be identified at this stage, although the
larger size of the data can be excluded as a cause, see
Fig. 12 in Appendix. Among all neighbourhoods, only three
airports stand out: San José International Airport (SJC),
Fort Lauderdale-Hollywood International Airport (FLL) and
Chicago O’Hare International Airport (ORD). It is worth
noting that these three airports are the headquarters or
handle a large proportion of flights of several low-cost
and ultra low-cost airlines, respectively: Southwest Airlines
(SJC); Allegiant Air, JetBlue and Spirit Airlines (FLL);
and Spirit Airlines (ORD). The importance of such type
of airlines in the identifiability of delay propagation neigh-
bourhoods seems therefore to be confirmed also in the case
of US.

IV. DISCUSSION AND CONCLUSION
In this contribution we have proposed an analysis of the
identifiability (or uniqueness) of the delay propagation
patterns developing in the neighbourhood of a given airport.
This represents an evolution of a previous research work that
assessed the identifiability of delays profiles at individual
airports [17], thus moving the focus from the dynamics of a
single element to the coordinated dynamics of many of them.
From a methodological viewpoint, this has been achieved
by leveraging Deep Learning models, and specifically Graph
Isomorphism Neural Networks (GIN) [18], on functional
networks of delay propagation obtained through linear cor-
relation; yet, results are robust against other methodological
choices - see Fig. 5. To the best of our knowledge, this is the
first instance of a study focusing on how delays propagate in
the neighbourhood of an airport; and one of the few examples
of the use of DL models beyond simple classifications.

Obtained results are highly heterogeneous; while most
airports are not identifiable, a few of them yield very high
classification scores, indicating that the propagation of delays
in their neighbourhoods is highly unique - see Fig. 2. A simple
visual inspection of these airports (Tabs. 1 and 2) suggests
that such uniqueness is related to the predominance of Low
Cost Carriers (LCCs), an intuition that has numerically been
checked in Fig. 3. Additionally, and as it may be expected,
pairs of airports are easier to be identified when their physical
connectivity structure (i.e. the set of destinations they have
access to) is substantially different, see Fig. 4. Finally, the
importance of LCCs is not a peculiarity of the European air
transport system, but also applies to US, see Fig. 6.

LCCs are known to mostly (but not always [46]) operate
routes based on a point-to-point structure [47], [48], [49],
[50], as opposed to the hub-and-spoke networks of traditional
airlines. Such difference in the way flights are scheduled has
a direct impact on delays. On one hand, LCCs contribute
to a reduction of delays at individual airports [51], [52],
i.e. low fares do not necessarily equate low quality of
service. On the other hand, they are more prone to propagate
delays, due both to their business model of quick aircraft
turnarounds [53], and to the lack of hubs, where carriers
havemore available resources and can internalise delays [54].
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TABLE 3. Information on the 35 European airports considered in this study, including their 4-letters ICAO code and the number of flights landed in the
considered time period.

FIGURE 7. Classification scores between all delay propagation sub-networks centred in all pairs of airports in EU (left) and US
(right), obtained using GIN models. Airports are sorted (from left to right, and top to bottom) in increasing order of passengers - see
the full lists in Tabs. 3 and 4.

Results here presented suggest that these differences have a
clear impact in the way delays are propagated: airports with a
high percentage of flights operated by LCCs are embedded

in delay propagation sub-networks that are different and
differentiable from those of airports served by traditional
airlines.
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TABLE 4. Information on the 35 US airports considered in this study, including their 3-letters IATA code and the number of flights landed in the
considered time period.

FIGURE 8. Analysis of the statistical significance. The left panel reports histograms of the distribution of the mean accuracy of the
classification score of each pair of airports, using the real data (blue bars) and a version of the same with labels being randomly
shuffled (orange bars). As is to be expected, in the latter case the accuracy stays around 0.5, thus indicating a random (or
non-informative) classification, and thus the absence of overfitting. The right panel further reports the evolution of the Z-Score of the
accuracy of each pair of airports, calculated against the score obtained in the shuffled case. In other words, this metric reports how
much the obtained score deviates from what obtained in data without any structure. All pairs yielding an accuracy greater than
0.6 also have a Z-Score greater than two, thus indicating that these results are statistically significant.

It is important to note that an identifiable propagation
sub-network is not the same as a different, or isolated,

sub-network of connections. As illustrated in the top right
panel of Fig. 4, airports that share few destinations are
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FIGURE 9. Analysis of networks reconstructed using Rank Correlation (RC). The top panel reports the distribution of the classification
score obtained when delay propagation neighbourhoods of each airports have been classified against randomised version of the same.
The bottom panels depict histograms of the values of eight standard topological metrics, calculated on the delay propagation
neighbourhoods for Palma de Mallorca Airport (LEPA) obtained using Linear Correlation (LC, blue bars) and Rank Correlation (RC,
orange bars). A description of the considered topological metrics can be found in Sec. II-D. It can be appreciated that topological
metrics in the RC case are closer to what expected in random networks, with smaller assortativity, transitivity, modularity and
small-worldness. This is further confirmed by the classification results in the top panel: the obtained networks are very similar to
random ones, hindering the classification task.

FIGURE 10. Topological metrics extracted from delay propagation sub-networks reconstructed using Linear Correlation. Each panel
reports the histogram of a different metric, for all networks extracted from Palma de Mallorca Airport (LEPA, blue bars) and
Málaga-Costa del Sol Airport (LEMG, orange bars), i.e. the pair of airports with the highest identifiability. See Sec. II-D for a description
of the topological metrics. Clear differences can be observed, especially for the number of links, transitivity, and modularity.

naturally easier to be differentiated, but only on average. It is
not difficult to find pairs of airports with almost no common
destinations, and still not being identifiable, suggesting that
these destinations are themselves embedded in common delay
propagation patterns. Similarly, pairs of airports with a high
share of LCC flights are themselves identifiable, see for
instance the case of Palma de Mallorca Airport and Málaga-
Costa del Sol Airport; LCCs thus induce heterogeneous

delay propagation patterns that are different depending on
the considered airport. Finally, the identifiability of the
neighbourhood networks does not strongly depend on the
central airport itself, but is mostly defined by the propagation
patterns between neighbours (see Fig. 11 in Appendix); what
is important is not therefore how delays are generated in the
central airport, but rather how they then propagate between
neighbours.
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FIGURE 11. Impact of the central airport in the classification score. The left panel reports the classification score obtained when the
central airport of each neighbourhood is deleted, including all its connections. In other words, we here analyse whether the central
airport has a major role in the identifiability of the corresponding sub-network; or whether, on the contrary, this is defined by the
connectivity patterns among the neighbours. It can be appreciated that the structure observed here is qualitatively the same as in the
left panel of Fig. 7, thus supporting the latter explanation. The scatter plot in the right panel, comparing the score with (X axis) and
without (Y axis) central node, and specifically the fact that points are clustered along the main diagonal, further confirms the
previous intuition.

FIGURE 12. Impact of the size of the data set. The left panel reports the classification score between all pairs of US airports when
the model is trained and tested on a subset of the original data, comprising a number of randomly selected days equivalent to what
available in the EU case. The scatter plot in the right panel, comparing the accuracy score obtained with the complete and reduced
data sets, excludes the size of the data as a potential reason for the lower identifiability observed in the US case.

The concept here proposed can help improving our
understanding of delays and their propagation. If delays were
the unavoidable consequence of random events in the system,
as e.g. of a technical failure reducing the capacity of an
airport and consequently creating delays, they should appear
as random events themselves. In a way akin to the Efficient
Market Hypothesis in finance [55], the fact that delays can
be forecast (i.e. that they are not completely random) implies
an inefficiency in the system. To illustrate this point with an
trivial example, if flights are always delayed in a specific day
and hour, one may wonder why nothing is done to prevent
that. Additionally, if delays are identifiable, this implies
that they also are predictable - as identifiability requires the
presence of unique and constant patterns in the data. The
question thus becomes, at what level are delays predictable

and/or identifiable? Previous literature has shown that delays
are predictable at the scale of individual flights [56], [57],
[58]; and that they are further predictable and identifiable at
airport level [17]. We here introduce an additional element:
their propagation is also predictable and identifiable at a
supra-airport level.

Major changes in the number of LCCflights operating at an
airport seem to result in different delay propagation patterns
among neighbours. This constitute an indirect effect: the
identifiability does not come from those LCC flights directly,
but rather from how the delays by them generated are further
propagated. From an operational perspective, it highlights the
networked nature of the problem: the delays an airport has
to manage do not only depend on its operations, but also
on the operations of its neighbours. Hence, consequences
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of any change in traffic patterns must be evaluated on a
meso- and macro-scale level. Still, it has also to be noted that
results here presented do not demonstrate causality, but rather
correlations; and that further research is needed to better
understand the mechanisms behind identifiability - including
airport/airspace configurations and air traffic management
procedures.

APPENDIX
See Tables 3 and 4, and Figures 7–12.
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