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ABSTRACT Face detection and recognition play pivotal roles across various domains, spanning from
personal authentication to forensic investigations, surveillance, entertainment, and social media. In our
interconnected world, pinpointing an individual’s identity amidst millions remains a formidable challenge.
While contemporary face recognition techniques now rival or even surpass human accuracy in critical
scenarios like border identity control, they do so at the expense of poor explainability, leaving the underlying
causes of errors largely unresolved. Moreover, they demand substantial computational resources and a
plethora of labeled samples for training. Drawing inspiration from the remarkably efficient human visual
system, particularly in localizing and recognizing faces, holds promise for developing more efficient and
interpretable systems, with high gains in scenarios where misidentification can yield grave consequences.
In this context, we introduce the Uniss-FGD dataset, which captures gaze data from observers presented
with facial images depicting diverse expressions. In view of the potential uses of Uniss-FGD, we propose
two baseline experiments on a subset of the dataset in which we perform a comparative analysis juxtaposing
the attention mechanisms of ViTs, multi-scale handcrafted features, and human observers when viewing
facial images. These preliminary comparisons pave the way to future investigation into the integration of
human attention dynamics into advanced and diverse image analysis frameworks. Beyond the realms of
Computer Science, numerous research disciplines stand to benefit from the rich gaze data encapsulated in
this dataset.

INDEX TERMS Human gazes, vision transformers, handcrafted features, human faces, visual attention.

I. INTRODUCTION
The human gaze efficiently captures the salient aspects of
any scene [1]. Consequently, the field of computer vision
has long been dedicated to studying human gaze behavior to
understand attentive mechanisms and apply them in various
applications [2], [3], [4]. Human fixations data play a crucial
role in understanding the mechanisms of the efficient visual
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system [5]. Various datasets have been curated to collect
data on human gaze behavior across a wide range of stimuli,
encompassing landscapes, objects, animals, human faces,
outdoor scenes, social scenes and more [6].

These datasets are not only valuable within the field of
computer vision but also hold significant interest for other
research domains. In the medical field, human gaze data
can be harnessed for a variety of applications, including
the assessment of the onset or progression of degenera-
tive conditions [7], [8]. In experimental psychology, eye
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TABLE 1. Recent human gaze datasets based on facial stimuli.

movements serve as a powerful tool for investigating various
psychological processes, including language processing,
image processing, auditory processing, memory, social cog-
nition, and decision-making, in an unobtrusive and accurate
manner [9]. In the field of human-machine interaction,
gaze tracking technology proves highly useful for predicting
people’s intentions [10], or for remotely controlling pointers
or vehicles [11], thereby facilitating seamless collaboration
between machines and humans.

Face detection and face recognition are involved in
countless consumer applications and devices characterized by
intelligent, vision-based, human-computer interaction. Deep
learning-based models are the state of the art in face recogni-
tion and they now reach impressive performances even in the
‘‘wild’’, where faces are not captured in a controlled way and
significant variations in pose, illumination, resolution might
occur [16]. However, their performance comes at the price of
massive amount of face data required to train them and a lack
of explainability, so errors are hard to predict and prevent,
which hampers their use in contexts where the consequences
of misclassification are not acceptable, such as in forensics
scenarios or the authentication to access sensitive data. They
also lack built-in scale-invariance, an ability that humans are
able to achieve after a single exposure to a novel object [17].
Deep Learning-based models (DLM) and the latest Vision
Transformer (ViT) models seem to moderately correlate with
human visual attention and, at least for DLMmodels, it seems
that the higher the correlation, the better their performance at
classification tasks [18], [19]. These results, combined with
the fact that the human visual system is very efficient in
detecting salient points and in driving its attention to them,
entice the design ofmachinemodels that exploit human visual
attention. Despite the possible benefits of embedding human
gaze information into machine models for face detection and
recognition, publicly available datasets of human gaze data
on face images are scarce.

With the dataset presented in this paper, named Uniss-
FGD (Facial Gaze Dataset), the authors intend to address this
shortcoming by providing gaze data on good quality images
of faces with three different expressions. The observers freely
viewed each face image for 3 seconds, a time span that
is long enough to study how human attention varies with
expressions, sex of the image subject and sex of the observer.
We use a subset of the presented dataset for a comparative
study between ViT’s attention, a type of handcrafted features

and human attention on face images. Research conducted
to compare machine visual attention with that of humans is
currently limited to Convolutional Neural Networks (CNN)
or general images [18], [20], [21], [22], we contribute to
extend this investigation by analysing ViTs, handcrafted
features and human fixations on face images.

The contributions of this paper are twofold:
1) we introduce Uniss-FGD, a novel and innovative

dataset consisting of human gaze data collected from
20 observers who viewed images of human faces
displaying three different expressions (happy, sad,
neutral).

2) we provide two baseline experiments in which we
evaluate the similarity between human attention and
the Vision Transformer and human attention and
handcrafted features, which are state of the art methods
used in face recognition and face detection.

The paper is structured as follow: In section II, we briefly
survey human gaze datasets present in the literature and
related works; in section III we thoroughly describe the
Uniss-FGD dataset by providing full details on the device
used for data capture, the acquisition process, the data
specifications and the data validation; in section IV we
propose a set of baselines experiments to illustrate the
dataset potential; in section V we presents the results of
the experiments; and in section VI we draw conclusions,
outlining some additional research directions for future
investigations.

II. BACKGROUND
In the last two decades, a considerable number of datasets
related to human gaze have been collected. This underscores
the interest of the scientific community in this type of data.
A comprehensive list of human gaze datasets can be found at
the MIT/Tübingen Saliency Benchmark page [6].

Restricting our attention to face stimuli, in table 1 we
report a summary of the most recent datasets.

In [12], seven subjects viewed 200 images that included
frontal faces and 50 images that did not include faces but were
otherwise identical. This dataset was used to establish that
human faces are very attractive to observers and to test models
of saliency that included face detectors.

Saliency in crowd scenes is the focus of the research in
[13], 16 subjects viewed 500 images representing indoor and
outdoor scenes with diverse crowd densities, from a few faces
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FIGURE 1. Image from the Tobii pro studio eye tracking software settings window, showing a segment of the sequence containing
three stimuli shown to the observers interleaved by black screens. The stimuli, from left to right, are the KDEF images AF09SAS.JPG,
AM14NES.JPG and AM02NES.JPG.

(3-5) to hundreds (up to 268). The images were sourced from
Flickr andGoogle Images. The authors identified key features
that contribute to saliency in crowds and analyzed their roles
with varying crowd densities.

In [14], 450 subjects viewed video clips featuring 8 dif-
ferent actors. The actors were positioned against a green
background, with the point between their eyes aligned with
the center of the screen. In the video clips, the actors moved
their eyes up and down while keeping their head still and
maintaining a neutral facial expression.

In [15], the authors present a dataset that aggregates data
from 23 different studies. All studies allowed for free eye
movements and differed in the age range of participants (7–
80 years). Two studies are based on facial image stimuli:
Face Discrimination (ID 18) and Face Learning (ID 19). Face
Discrimination investigated eye movements during a face
discrimination tasks using 32 faces. Face Learning tested the
effect of aversive associative learning on the exploration of
faces using 8 faces.

With respect with the previously surveyed datasets, our
proposed dataset presents some additional important features:

• The stimuli are based on a large number of high-quality
images of faces with different expressions, acquired
without the presence of other objects or backgrounds.

• A large amount of data is extracted from each acquisition
(see Appendix for a list of available data)

Investigations on the salient areas of images have become a
critical topic in scientific research since Medathati et al. [23]
showed the existence of a strict connection between visual
attention and eye movements.

Switching from humans to machines, in Machine Learning
attention is a mechanism that allow models to learn a relative
importance of their inputs. In simple terms, it allows a
model to focus on certain more informative parts of an
input. Many models have been proposed which employ
attention [24], [25], [26], perhaps the most well known is
the Transformer [27] which computes attention exhaustively
between sub-sections of the input.

In [28] the authors investigate if the self-attention modules
in ViTs have similar effects to human attentive visual
processing. The paper reveals a gap between human visual
attention and the mechanisms implemented in ViT.

In [29], the authors designed a Transformer-based frame-
work for Facial Expression Recognition (FER) based on
Patch-Range-Attention (PRA) module to resolve the criti-
cality of CNN-based methods in learning long-range biases
to improve capacity in FER tasks. ViT is used to extract
the picture patches that are too simple. Four FER datasets
were considered to analyze the three different attention
mechanisms in the proposed algorithm. The dataset shows
disturbing elements that can influence the observer by
shifting attention towards points of the image that cannot be
traced back to the desired task.

In [30], a ViT has been optimized to extract salient features
from images in order to improve speed and scalability of
human activity recognition. The suitability of the proposed
method has been verified in resource-constrained and real-
time environments, but a comparative analysis with human
behavior is missing.

Reference [31] presents the Domain-Adaptive ViT
(DA-ViT) model, which merges human cognitive perspective
to obtain domain generalization. Glance and gaze blocks are
considered to initially capture general information from each
block and subsequently acquire more detailed and focused
information.

In [21] the authors investigate how Convolutional Neural
Networks and Transformers ‘‘look’’ at general images
compared with humans. Through metrics for examining
error-consistency they showed that Transformers are more
consistent with humans than CNNs.

III. Uniss-FGD DATASET
A. STIMULI
Stimuli consisted of facial images from the Karolinska
Directed Emotional Faces (KDEF) [32], [33], [34] database.
The KDEF DB consists of 4900 facial images of 70 individu-
als. Each individual was acquired while mimicing 7 different
emotional expressions. Each one of the expressions was
photographed (twice) from 5 different angles. All subjects
were seated at a distance of approximately three meters
from the camera. The lights were set to cast a soft indirect
light evenly distributed at both sides of the face [34]. For
our stimuli set, we curated a selection of 120 different
images from the frontal images of the expressions ‘‘neutral’’,
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FIGURE 2. Graphical representation of the configuration employed for
the data acquisition process: (A) denotes the observer, positioned in front
of the screen at a distance of 65 cm. (B) represents the Tobii Pro TX300,
which incorporates an eye tracker and an integrated screen. (C) indicates
a workstation connected to the Tobii, with the eye tracker software
running on it.

‘‘happy’’, and ‘‘sad’’ of the first 20 female and the first
20 male individuals in KDEF. A random function was used
to generate a list of the 120 images which was therefore
not ordered neither with respect to the subjects nor to the
expressions. The sequence of faces was shown in the same
order to all observers (see figure 1).

For full reproducibility of the experiments, a thorough
list of the selected images has been made available at
https://github.com/CVLab-Uniss/Uniss-FGD.

B. OBSERVERS
We collected eye gaze data from 20 Italian observers,
10 self-identifying as female and 10 self-identifying as male,
recruited among university students or staff of two different
degree courses. The gender labels of the observers is available
at https://github.com/CVLab-Uniss/Uniss-FGD. They were
verbally informed that their names would not be asked, that
they would be enrolled in the database with a numerical ID
and that the gaze data acquired from them could not lead to
their identity. Only the sex and age of the participants were
asked and associated with their numerical ID. The gathered
data is therefore not classified as ‘‘personal data’’ by the EU
General Data Protection Regulation and participant consent
was not required. 18 of the observers were students from 19 to
24 years of age, 2 of observers were academic staff aged
30 and 50. All participants reported normal or corrected-to-
normal vision. We must highlight that both culture and age
play a role in human attention patterns when viewing faces
[35]. The results obtained by exploiting the provided data
cannot therefore generalize to non westerns subjects nor to
old or very young age people.

C. ACQUISITION SETTING AND PROCEDURE
The acquisitions took place at the University of Sassari, in a
dedicated 8 × 6 x 3.10 m (l x w x h) room equipped with
a chair and a desk, a Tobii Pro TX300 Eye Tracker [36]
connected to a PC running the Tobii Pro Studio Eye Tracking
software [37], and a WiFi internet connection. A graphical
representation of the acquisition set-up is depicted in figure 2.

The Tobii tracker performs a video-based pupil and corneal
reflection eye trackingwith dark and bright pupil illumination
modes. Two cameras capture stereo images of both eyes
for robust, accurate measurement of the eye gaze and eye
position in 3D space, as well as pupils diameter. The sam-
pling frequency is 300Hz. More detailed specifications and
information about data quality can be found in section III-E,
‘‘Technical Validation’’. The acquisition environment, timing
and duration of the experiment were determined based on
recommendations from the ITU-T P.911 [38], in order to
mitigate observer fatigue. Observers sat at 65 cm from the
Tobii eye tracker, a distance equal to 2.5 times the height of
the Tobii monitor.

The observers were informed that they would be shown
a sequence of images of faces and that no particular task
was specified, so they could freely look at the images. Each
face image from the curated set was displyed on screen for
three seconds and interleaved with two seconds of black
screen (figure 1). Each capture session took approximately
10 minutes.

D. DATASET REPOSITORY
The Uniss-FGD dataset is stored in the following public
repository:

• Repository name: CVLab-Uniss
• URL: https://github.com/CVLab-Uniss/Uniss-FGD
In the main directory have been provided:
• a ‘‘readme.md’’ file where users can find all the main
information relating to the indexing and use of the data
contained in the dataset;

• a ‘‘security.md’’ file where users can find all advices
about dissemination and reuse of data;

• a folder called FGD containing the data, that is 120 files
in csv format.

The fixations and saccades contained in the dataset are
extracted from the row gaze data with the Tobii Pro Studio
Eye Tracking software [37]. The acquired data was filtered
by using the software Tobii Studio. In particular, Tobii Studio
uses Stampe stage 2 algorithm [39] to remove noise from the
raw gaze data.

All gaze data in Tobii Studio are mapped into a coordinate
system. There are three available coordinate systems [37]:

• Active Display Coordinate System pixels (ADCSpx):
Data types with the extension ADCSpx provide data
mapped into a 2D coordinate system aligned with the
Active Display Area, which is the Tobii screen area.
The origin of the ‘‘Active Display Coordinate System
pixel’’ (ADCSpx) is at the upper left corner of the Active
Display Area.

• ActiveDisplayCoordinate Systemmillimeters (ADCSmm):
Data types with the extension ADCSmm provide data
mapped into a 3D coordinate system aligned with the
Active Display Area which is the screen area. The origin
of the ‘‘Active Display Coordinate System millimeter’’
(ADCSmm) is at the bottom left corner of the Active
Display Area.
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TABLE 2. Validity codes.

• Media Coordinate System pixels (MCSpx): Data types
with the extension MCSpx provide data mapped into a
2D coordinate system alignedwith themedia. The origin
of the coordinate system is at the top left of the media
shown to the participant being eye tracked.

Each file (one for each of the 120 images showed to the
observers during the test) contains a list of gaze events where
each row is a single gaze event (i.e., fixation or saccade) and
the columns summarise different information, as reported in
Appendix.

E. TECHNICAL VALIDATION
The Tobii Pro TX300 Eye Tracker, with a sampling rate of
300Hz, allows robust tracking and compensation for large
head movements. This ensure a very high precision and
accuracy of the captured data. Regarding the instrument’s
sensitivity, according to the official documentation the mean
accuracy is 0.55◦ while the mean precision 0.13◦ at 65 cm.
Gaze accuracy is the angular average distance from the actual
gaze point to the one measured by the eye tracker, while gaze
precision is the spatial variation between individual gaze sam-
ples. Both are typically measured in degrees of visual angle,
where one degree accuracy corresponds to an average error
of 11 mm on a screen at a distance of 65 cm. These values
have been calculated through extensive tests to measure and
report performance and data quality [40].

In human populations, there exists natural variation in the
shape and geometry of the eyes. To address this variation,
the calibration procedure provided with the eye tracker has
been utilized to optimize the gaze estimation algorithms.
The calibration procedure was supervised by experienced
researches before the recording of each participant. During
calibration, participants are instructed to focus on calibration
targets appearing at multiple locations on the display monitor
where the stimulus is located. The speed of the calibration
was set to medium, a number of nine calibration locations
were selected and and the full screen was used.

The calibration procedure consists of three distinct phases:
(i) Data collection phase: participants are directed to fixate
on a predefined number of targets sequentially displayed on
the screen. (ii) Optimization phase: continuous recalibration
of the distance and distribution between the mapped data
and the actual location of calibration targets to refine the 3D
eye model. The model includes information about shapes,
light refraction and reflection properties of the different
parts of the eyes (e.g., cornea and placement of the fovea)

[37]. (iii) validation phase: New targets are presented to
validate the updated 3D eye model configuration, and data
quality measures are reported. Calibration is performed only
once before data collection begins and does not require
adjustments during recording.

At the end of the calibration procedure, after validation,
if for one or more of the nine calibration locations the
supposed point of gaze was far from the measured point
of gaze, the calibration was repeated. Particular care was
taken for the points in the central area, since face images
were shown at the center of the screen, so common
miscalibrations that tipically occur in the lower area of the
screen did not affect our samples. If the calibration was
repeatedly unsuccessful (i.e., the calibration result ‘‘Not
Enough Calibration Data’’ was displayed), the participant
was checked for any factors that could interfere with pupil
detection (e.g., an infrared light source that is directed at the
eye tracker sensor or the participant’s eyes, dirty or scratched
glasses or droopy eyelids, make-up) before starting a new
calibration procedure.

Since each acquisition took approximately 10 minutes, for
each observer around 500.000 samples have been gathered.
To ensure good quality of the data, samples with low level
of confidence (see discussion below about validity code)
have been excluded. Thus for each observer the number
of valid samples (and excluding samples corresponding to
black screens between the stimuli) is about 104.600, which
amounts to 2.092.341 valid samples for the whole dataset (all
observers on all stimuli).

To estimate the quality of the samples, for each one of them
we considered the Tobii validity code, which estimates the
probability that each one of the two eyes was detected during
that sampling:

• VLC - Validity Left Code - indicates the confidence
level that the left eye has been correctly identified. Code
values are integer number from 0 (high confidence) to 4
(eye not found);

• VRC - Validity Right Code - indicates the confidence
level that the right eye has been correctly identi-
fied. Code values are integer numbers from 0 (high
confidence) to 4 (eye not found).

The validity codes are paired as (VLC,VLR) and can assume
values in the set {(0, 0), (0, 4), (4, 0), (1, 3), (3, 1), (2, 2)}
whose meanings are explained in table 2. The Tobii
automatically discards the (4, 4) pair codes, so samples for
which no eyes were located are not present in the dataset. For
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FIGURE 3. Fixation densities on neutral expression (first row), happy
(second row) and sad (third row) filteres by male observers (left column),
female observers (central column) and all observers (right column). The
KDEF stimuli are AM09NES.JPG (first row), AM09HAS.JPG (second row)
and AM09SAS.JPG (third row).

each observer, the validity code pair of each sample relative
to the simuli (excluding the black screens) was checked.
The cumulative results are reported in the second column of
table 2, as the total number of code pairs and in percentage.
For over 99% of samples both eyes were correctly identified,
which gives a measure of the high quality of the data.

Figures 3 and 4 show some examples of fixation data
visualization:

• Figure 3, first column depicts the density of the
cumulative fixations of all male observers on a face
image from the stimuli set in a neutral expression
(first row), a happy expression (second row) and a sad
expression (third row). The second column is relative to
all female observers and the third on all 20 observers
(male and female).

• Figure 4, first row, shows the fixation sequences of the
same observer over images of the expressions neutral,
happy and sad of the same subject of the stimuli set.
The second row, shows the fixation sequences of three
different observers when looking at the same stimulus.
Notice that the radius of the fixation disk is proportional
to the time the observer fixated that image point.

F. DATA AVAILABILITY AND USABILITY
The authors defined a policy of encouraging free re-use of
its data, both for non-commercial and commercial purposes.
All statistical data, metadata, content of web pages or other

FIGURE 4. First row: fixation paths of the same participant observing
three different emotions of the same KDEF subject (left to right, the KDEF
stimuli are AM14NES.JPG, AM14HAS.JPG and AM14SAS.JPG). Second row:
fixations paths of three different observers on the AF09SAS.JPG image of
the KDEF.

dissemination tools, official publications and other published
documents, can be reused without any payment or written
licence provided that:

• the source is indicated as CVLab-Uniss;
• manuscripts that present work that makes use of the
dataset cite this paper;

• when re-use involves modifications to the data or text,
this must be stated clearly to the end user of the
information.

The distributed csv files were generated from the row gaze
data with the Tobii Pro Studio Eye Tracking software [37].
Data may be extracted from the repository into the target
computing environment with traditional csv import functions.

The Uniss-FGD dataset, given its richness and variety of
eye-tracking data provided (seeAppendix for a complete list),
holds significant potential to contribute to research efforts
in numerous scientific domains. Some possible application
which can benefit from the Uniss-FGD are briefly discussed
below.

By leveraging data on eye movements, including fixation
locations, saccades directions, and gaze duration, it becomes
feasible to instruct a social robot to observe humans in a
natural and human-like manner [41], [42]. This data can
be utilized to train the robot on how to gaze at a person
during verbal interaction, while also responding to various
expressions. The same approach can also be employed for
AI-driven non-player characters (NPCs) that will populate the
Metaverse [43].
In neuroscience, eye-tracking methods and techniques are

extensively employed to unobtrusively investigate alterations
in eye movement or oculomotor problems, which are
considered evidence of neurodegenerative diseases such as
Parkinson’s. This analysis involves examining pupil size, eye
position, fixation duration and locations [7], [44].
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Eye gaze has demonstrated relevance in the security and
privacy domain as well [45]. Eye-tracking data, for instance,
can be utilized for purposes such as authentication, privacy
protection, and gazemonitoring during security-critical tasks.
The eye movement data provided by the Uniss-FGD dataset
is particularly suitable for the development of implicit
authentication algorithms. Research in the field mainly
focuses on assessing unique eye movements, analyzing data
such as fixation density map, angular saccade velocity or
scan-paths, while individuals perform activities with varying
visual stimuli and types [46]. These systems could potentially
be employed in AR/VR headsets equipped with eye-tracking
systems to verify the identity of a human who wishes to
embody an avatar within future immersive digital worlds of
the Metaverse [47], [48].

IV. BASELINE EXPERIMENTS
The dataset’s utility has been validated through baseline
experiments, designed to compare the fixation densities in
Uniss-FGD dataset to two state-of-the-art techniques for face
detection and recognition: Visual Transformers (ViT) and
multi-scale handcrafted features. A selection of 120 images
extracted from the KDEF database (i.e., the ones used to
build the Uniss-FGD dataset) was used to produce the outputs
with the two techniques. The final human fixations, ViT’s
attention maps or multi-scale densities are cropped in an area
around the face, as the extremities are noisy and contain only
background.

A. VISION TRANSFORMERS AND ATTENTION MAP
EXTRACTION
The Transformer, originally designed as a state-of-the-art
architecture for Natural Language Processing, has demon-
strated remarkable efficacy in the computer vision domain,
including tasks such as face recognition [49]. ViTs [50], [51]
are sequence-based models that process input by splitting it
into distinct tokens, which are then embedded. Self-attention
is a key mechanism employed, where the relationships
between token embeddings determine their relative impor-
tance. This entire sequence of token embeddings undergoes
simultaneous processing. The output is aggregated through
feed-forward networks and a non-linearity, forming a single
Encoder. Initially, positional information is incorporated into
the input. For classification tasks, a CLS token can be
added, attending to all tokens and creating a comprehensive
description of the input. However, the quadratic complexity
of attention computations between all inputs limits pixel-level
processing. Therefore, input images are typically tokenized
into patches (e.g., 16× 16 or 32× 32 pixels), which are then
flattened through an embedding layer. It’s noteworthy that
various alternative strategies are explored in the field [52],
[53], [54]. The general architecture of a ViT is illustrated in
figure 5.
The Transformer, like any Machine Learning model,

requires a clearly defined task or goal for it to learn
its representation. We have arbitrarily chosen recognition,

which is a comparable task to the free-viewed human
fixations in Uniss-FGD. Moreover, Transformers are known
for their strong general representative capacity. For example,
BERT trained to reconstruct randomly masked sentences
has been shown to be an excellent sentiment classifier
with only very limited extra training [55]. We believe this
general representative capacity to be key in allowing for
meaningful comparison between the two domains. The main
characteristics of the ViT initially used to maximise the
resolution of the output attention maps are summarised in
table 3.

TABLE 3. ViT setting.

The model is fine-tuned using controlled images from the
Face Recognition Grand Challenge (FRGC) database [56].
During training, faces are tightly cropped based on the dis-
tance between the eyes to minimize background interference
while preserving facial details and maintaining roughly equal
scale. Despite the small dataset size, the aim is to focus the
Transformer’s internal representation to extract meaningful
attention maps. The images for a single identity are randomly
split into 90% for training and 10% for validation. A batch
size of 16, a learning rate of 1e−4, and a weight decay of
0.01 are employed. Cross Entropy loss is utilized with the
AdamW optimizer. The model achieves perfect classification
convergence within 15 epochs on an RTX 3090 paired with
an Intel Core i9-10980xe.

Attention maps are extracted with Attention Rollout [57].
This technique not only considers the attention at the final
layer, but also the attention as it flows through the model.
Additionally, each Transformer layer has multiple attention
heads, we elect to average the attention across these. Finally,
we only consider attention flowing to theCLS token. The final
attention maps have a resolution of 24 × 24.

B. MULTI-SCALE HANDCRAFTED FEATURES
In order to extract significant handcrafted features we
apply the well-known scale-space theory developed by
Lindeberg [58]. Indeed, it was shown that persistent points
that characterize some kind of visual information like a face
naturally emerge at different scale levels [59], with no need
to pre-determine the number of features or the spatial scales
that better represent the image information in a bottom down
fashion.

Given an image, a Gaussian scale-space representation is
defined to be a map:

L(x, y; σ ) =

∫
(u,v)∈R2

f (x − u, y− v)g(u, v; σ )dudv (1)
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FIGURE 5. Attention extraction from a ViT.

where g(u, v; σ ) =
1

2π t e
−(u2+y2)/2σ is the Gaussian kernel

of variance σ , which represents the scale parameter. Starting
from this representation, given a scale σ , Lindeberg defines
four spacial differential operators based on theHessianmatrix
HL of L, each leading to a particular type of feature points.
Among the operators we chose the Laplacian, defined as:

∇
2L = L2xx + L2yy = λ1 + λ2 (2)

where λ1 and λ2 are the eigenvalues of the Hessian matrix,
or the principal curvatures of L(, , σ ).

Extrema of ∇
2L correspond to dark or bright blobs,

according to whether the Hessian is positive or negative
definite. Edges will also be detected, but they are discarded
to improve the repeatability of points detection.

For the Laplacian operator a pyramid of 10 layers was
built, one for each scale, starting from the original image,
and halving the image every two steps. For each scale,
local extrema were calculated with respect to the image
coordinates. Most of these extrema are likely to persist across
two or more scales. Scale linking as described in Lindeberg
has been carried out to select their strongest response across
scales. The Laplacian features on a given face image are
the resulting Laplacian extrema extracted from the 10 layers
pyramid.

V. EXPERIMENTAL RESULTS AND DISCUSSION
Here we compare human attention to ViT and Laplacian
features on the face images from the stimuli set of Uniss-
FGD. The attention maps of a ViT on each image of a
subset of the stimuli are extracted with Attention Rollout
as described in section IV-A. These attention maps are then
summed and normalized. The Laplacian features over a
subset of face images are the union of the features on each
of the face images in the subset. To estimate a probability
density function of the union of them, they are fed into a
kernel density estimation based on diffusion [60]. As for the

human attention, we cumulate all fixations from all observers
from Uniss-FGD on a subset of the stimuli set. Cumulating
observers is a necessary step, since humans have different
strategies to observe faces leading to idiosyncratic gaze paths
whose fixations cluster around a few facial areas (one of the
two eyes or between them, or the mouth [14]). To estimate
the variation of the cumulative fixations across observers,
we do a statistical analysis of the location of the center
of their distributions. The 95% confidence intervals of the
distribution centres’ coordinates are reported in table 4 for
the distributions obtained by cumulating fixations on neutral,
happy, sad and on the whole set of stimuli.

TABLE 4. 95% confidence intervals for the x and y coordinates of the
centers of the distributions on Neutral, Happy, Sad and All stimuli image
faces.

Each of the four cumulative fixations set is fed into the
kernel density estimation in [60] to estimate a probability
density function.

To compare the density functions we employ three
different metrics:

1) Jensen Shannon similarity which is defined for two
probability distributions P and Q as:

JSD(P∥Q)sim = 1 −
1
2
(KLD(P∥M ) + KLD(Q∥M ))

(3)

where KLD refers to the Kullback-Leibler Divergence,
defined as:

KLD =

∑
x

P(x) ln
P(x)
Q(x)

(4)
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FIGURE 6. Fixation densities, attention maps and handcrafted features over happy, neutral, sad
and all images (from left to right). On the first row are human fixation densities, on the second:
ViT attention maps, on the third: ∇2 densities.

and

M =
1
2
(P+ Q) (5)

2) χ2 similarity:

χ2
sim = 1 −

∑
x

(P(x) − Q(x))2

(P(x) + Q(x))
(6)

3) and the Pearson correlation coefficient.
Each of the three metrics sheds light on the similar-

ity between two density functions. The Jensen Shannon
similarity is widely used to compare density functions
and looks at how different the two densities are from
their average, while the χ2 similarity can be seen as a
weighted Euclidean distance between probability values. The
Pearson correlation estimates the covariance between the two
probability distributions and, unlike the previous metrics,
it establishes the linear relationship between them.

We designed two experimental protocols, one to compare
the attention of humans to ViT and Laplacian features on
human faces with different expressions, the other to compare
humans to ViT and Laplacian features on faces showing one
of the three expression happy, neutral and sad.

For the first protocol, we consider all image stimuli of
Uniss-FGD, and cumulate all fixations and Laplacian features
to estimate the respective density maps. On the same stimuli
set, we extract the ViT attention maps. We then compare
the human density function to the Laplacian one and the

ViT attention maps with the three chosen metrics. For the
second protocol, we consider three sets of stimuli, each
corresponding to one of the three expressions. On each set,
we estimate the density functions of human fixations and
Laplacian features and the ViT attentionmap andwe compare
them with the three metrics.

The density functions generated by all expressions are
plotted in the last column of figure 6. The attention of humans
and ViT are quite similar. Humans tend to be less interested
by lateral areas such as the ears, where the ViT attention falls,
although in a marginal way. The similarity measures between
the fixations density and the ViT attention map are reported
in the bar plot on the left of figure 7. They confirm the visual
similarity of the two attentions, with a correlation of over 60%
and the JS and χ2 over 80%. The same similarities are found
for the stimuli subsets of neutral and sad expressions, while
in the case of happy expressions there are some differences
in the mouth area, where the ViT seem to attend to the
whole lip/teeth arch, compared to humans who just scan the
area in a vertical direction down to the center of the mouth.
This reflects to the lower similarity measures (especially the
correlation) reported in the bar plot.

The results from the two experimental protocols are shown
in figure 7 and figure 6, where the various densities are
superimposed over an image from the stimuli set. A generally
higher similarity is evident for the Transformers. This
outcome is observed both for the densities of individual
expressions and for the density over the whole stimuli set.
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FIGURE 7. Human fixation densities similarity measurements from Transformer (left) and handcrafted features (right), split by expression and
cumulative (all).

The densities of the Laplacian features shown in the last
row of figure 6, reflect the fact that the ∇

2 points extracted
are clustered around smaller areas around the eyes, nose
and mouth with respect to the ViT and the fixations. This
is because the ∇

2 stronger extrema selected by the process
correspond to blobs that are persistent at multiple scales,
so flat areas are not attended. The densities exhibit more
variations with expressions. The bar plot reveals they are
most similar to fixation densities on the sad stimuli, while
they differ the most on the happy stimuli, where most of the
∇

2 attention falls on the open mouth.
All in all, the experimental results show there is some

intersection between the facial areas where the attention of
the ViT and of the Laplacian features falls and the areas
where the human attention falls. The intersection is stronger
between humans and the ViT, which highlights the fact that
a system that is allowed to optimize its features, at the end
of the training process it produces features that are similar to
human fixations. However, the ViT seems to get distracted by
uninformative areas of the face, such as around the ears, so the
idea to include human attention in the ViT training process
could lead to a more efficient model.

Regarding the Laplacian features, they seem to be less
distracted by uninformative areas. However, due to their
nature, they are located on areas of large variation between
pixels so that in happy faces, when all 10 scales are considered
as in this experiment, they tend to concentrate on the mouth.
By guiding the scales selection through human fixations,
in [59] it is shown that a face detection method based on
Laplacian features can perform better and more efficiently
than it would if all scales were considered, which proves the
potential of exploiting human attention for face detection.

VI. CONCLUSION
This paper introduces Uniss-FGD, a novel dataset that
collects human gaze data on face images. The gathered data
can be a precious resource for research investigations across
different scientific fields, from Neuroscience to Physiology,
Psychology, Human-Robot Interaction, and Computer Sci-
ence. Since humans exhibit an extraordinary efficiency at
tasks such as recognition, reaching levels still unattainable

by automatic computer systems, human gaze tracking can
be immensely useful for training and optimizing automatic
recognition systems, such as those based on neural networks.

The data collected in Uniss-FGD were acquired, using
a professional eye tracking tool, from 20 observers who
viewed 120 images, each for 3 seconds. The avaliable
data includes fixations, saccades and a variety of raw
data. The dataset’s utility has been validated through some
baseline experiments which compare fixation densities in the
Uniss-FGD dataset with two state-of-the-art techniques for
face detection and recognition: Visual Transformers (ViT)
and multi-scale handcrafted features based on the Laplacian
operator. We conducted a comprehensive comparison of
Laplacian features and Transformers to human observers by
using three similarity measures. Furthermore, we compared
the attentions mechanisms on each of the facial expressions
of the image stimuli. The results reveal a stronger similarity
of ViT and human attentions, which holds true for each
expression.

Future work will involve assessing methodologies for
integrating Uniss-FGD data into the attentive mechanisms of
advanced face detection and recognition systems, especially
those based on Deep Learning techniques. These methods,
by leveraging the effectiveness of human vision, aim to
enhance performance by prioritizing salient aspects of faces,
thus reducing the computational resources required for
training.

The Uniss-FGD dataset is publicly available for academic
research purposes. Full details on how to download the
Uniss-FGD database can be found on the project website:
https://github.com/CVLab-Uniss/Uniss-FGD.

APPENDIX
UNISS-FGD STRUCTURE AND RECORDS
The Uniss-FGD dataset contains a collection of gaze data
relative to fixations and saccades. The dataset is structured
with a main folder containing 120 CSV files. The size of the
full dataset is about 90 MB.

Each file (one for each of the 120 images showed to the
observers during the test) contains a list of gaze events where
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each row is a single gaze event (fixation or saccade) and the
columns, in order from left to right, correspond to:

• ParticipantName: unique anonymous identification
number associated to each observer.

• RecordingDate: Date when the recording was per-
formed (Year, Month, Day).

• RecordingDuration: The duration of the recording
(Milliseconds).

• RecordingResolution: The resolution of the screen or
of the video capture device used during the recording.

• RecordingTimestamp: Timestamp counted from the
start of the recording (t0=0). This timestamp is based
on the internal computer clock of the computer running
Tobii Studio. This clock is regularly synchronized
with the eye tracker clock in order to ensure that the
timestamps of the gaze data is accurate in relation
to other events such as when media is shown or
participant generated events such as mouse clicks
(Milliseconds).

• MediaPosX (ADCSpx): Horizontal coordinate of the
left edge of the eye tracked media (pixels).

• MediaPosY (ADCSpx): Vertical coordinate of the top
edge of the eye tracked media (Pixels).

• MediaWidth: Horizontal size of the eye tracked media
(Pixels).

• MediaHeight: Vertical size of the eye tracked media
(Pixels).

• FixationIndex: Represents the order in which a fixation
event was recorded. The index is an auto-increment
number starting with 1 (first gaze event detected).

• SaccadeIndex: Represents the order in which a saccade
event was recorded. The index is an auto-increment
number starting with 1 (first gaze event detected).

• GazeEventType: Type of eye movement event classi-
fied by the fixation filter settings applied during the gaze
data export (Fixation; Saccade; Unclassified).

• GazeEventDuration: Duration of an eye movement
event (Milliseconds).

• FixationPointX (MCSpx): Horizontal coordinate of the
fixation point on themedia. Column empty if: Fixation is
outside media, Media is covered, No media is displayed.
(Pixels)

• FixationPointY (MCSpx): Vertical coordinate of the
fixation point on themedia. Column empty if: Fixation is
outside media, Media is covered, No media is displayed.
(Pixels)

• SaccadicAmplitude: Distance in visual degrees
between the previous fixation location and the current
fixation location as defined by the fixation filter
(Degrees).

• AbsoluteSaccadicDirection: Offset in degrees between
the horizontal axis and the current fixation location
where the previous fixation location is set as the origin
(Degrees).

• RelativeSaccadicDirection: The difference between
the absolute saccadic direction of the current and

previous saccade where the current saccade is between
the current and previous fixation (Degrees).

• GazePointIndex: Represents the order in which the
gaze sample was acquired by Tobii Studio from an eye
tracker. The index is an auto-increment number starting
with 1 (first gaze sample)

• GazePointLeftX (ADCSpx): Horizontal coordinate of
the unprocessed gaze point for the left eye on the screen
(Pixels).

• GazePointLeftY (ADCSpx): Vertical coordinate of the
unprocessed gaze point for the left eye on the screen
(Pixels).

• GazePointRightX (ADCSpx): Horizontal coordinate
of the unprocessed gaze point for the right eye on the
screen (Pixels).

• GazePointRightY (ADCSpx): Vertical coordinate of
the unprocessed gaze point for the right eye on the screen
(Pixels).

• GazePointX (ADCSpx): Horizontal coordinate of the
averaged left and right eye gaze point on the screen
(Pixels).

• GazePointY (ADCSpx): Vertical coordinate of the
averaged left and right eye gaze point on the screen
(Pixels).

• GazePointX (MCSpx): Horizontal coordinate of the
averaged left and right eye gaze point on the media
element. Column empty if: Fixation is outside media,
Media is covered, No media is displayed (Pixels).

• GazePointY (MCSpx): Vertical coordinate of the
averaged left and right eye gaze point on the media
element. Column empty if: Fixation is outside media,
Media is covered, No media is displayed (Pixels).

• GazePointLeftX (ADCSmm): Horizontal coordinate
of the unprocessed gaze point for the left eye on the
screen (Millimeters)

• GazePointLeftY (ADCSmm): Vertical coordinate of
the unprocessed gaze point for the left eye on the screen
(Millimeters).

• GazePointRightX (ADCSmm): Horizontal coordinate
of the unprocessed gaze point for the right eye on the
screen (Millimeters).

• GazePointRightY (ADCSmm): Vertical coordinate of
the unprocessed gaze point for the right eye on the screen
(Millimeters).

• StrictAverageGazePointX (ADCSmm): Horizontal
coordinate of the averaged gaze point for both eyes on
the screen. ‘‘average’’ function similar to the one used
for Eye selection (Millimeters).

• StrictAverageGazePointY (ADCSmm): Vertical coor-
dinate of the averaged gaze point for both eyes on the
screen. ‘‘average’’ function similar to the one used for
Eye selection (Millimeters).

• EyePosLeftX (ADCSmm): Horizontal coordinate of
the 3D position of the left eye. (Millimeters).

• EyePosLeftY (ADCSmm): Vertical coordinate of the
3D position of the left eye (Millimeters).
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• EyePosLeftZ (ADCSmm): Distance/depth coordinate
of the 3D position of the left eye (Millimeters).

• EyePosRightX (ADCSmm): Horizontal coordinate of
the 3D position of the right eye (Millimeters).

• EyePosRightY (ADCSmm): Vertical coordinate of the
3D position of the right eye (Millimeters).

• EyePosRightZ (ADCSmm): Distance/depth coordinate
of the 3D position of the right eye (Millimeters).

• PupilLeft: Estimated size of the left eye pupil. The Tobii
Eye Trackers aim to measure the true pupil size, i.e.
the algorithms take into account the magnification effect
given by the spherical cornea as well as the distance to
the eye (Millimeters).

• PupilRight: Estimated size of the right eye pupil. The
Tobii Eye Trackers aim to measure the true pupil size,
i.e. the algorithms take into account the magnification
effect given by the spherical cornea as well as the
distance to the eye (Millimeters).

• ParticipantGender: information about the sex of each
(anonymous) observer.
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