
Received 29 April 2024, accepted 25 May 2024, date of publication 28 May 2024, date of current version 8 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3406500

A Systematic Literature Review of Inter-Service
Security Threats and Mitigation Strategies in
Microservice Architectures
PHILIPP HAINDL , PATRICK KOCHBERGER , AND MARKUS SVEGGEN
Department of Computer Science and Security, St. Pölten University of Applied Sciences, 3100 St. Pölten, Austria

Corresponding author: Philipp Haindl (philipp.haindl@fhstp.ac.at)

ABSTRACT Ensuring security is of paramount importance in microservice architectures, given their
distributed nature, involving numerous services and network-spanning interactions. This architectural style,
which can comprise hundreds to thousands of services, inherently presents a more extensive attack surface
compared to traditional monolithic applications. Moreover, the polyglot nature of microservices, which
encompasses services developed and deployed using diverse programming languages and technologies,
further complicates the security landscape. This paper presents a systematic literature review, analyzing
54 publications specifically in the context of security threats and mitigation strategies within the area
of inter-service security in microservice architectures. We observed that the majority of studies focus on
presenting methods, models, and guidelines for microservice security, with a significant portion validating
these approaches. Publications in the field have increased since 2015, with conference papers being the
most common type. Security threats identified are mainly related to security perimeters, attack surfaces, and
inadequate monitoring and intrusion detection. There is a notable lack of comprehensive analysis on specific
security threats, particularly in inter-service authentication and communication. Mitigation strategies receive
more attention than security threats, with extensive discussion on infrastructure defense and secure coding
practices. The identified research gap highlights the need for establishing a connection between security
threats and their mitigation strategies in microservice architectures. It also underscores the necessity for
a standardized taxonomy in microservice security to clarify terminology and consolidate best practices,
addressing inconsistencies in the literature and guiding future empirical studies on the practical challenges
of implementing security measures.

INDEX TERMS Microservices, microservice architecture, inter-service, security threats, mitigation
strategies.

I. INTRODUCTION
Microservice architecture (MSA) is widely considered to be
a distributed system design that highlights the deployment
of small, self-governing services. These services, according
to Newman [1], should be developed around business
capabilities, with a strong emphasis on automation, decen-
tralization, failure isolation, and observability, ensuring that
they can be independently deployed. Richardson [2] char-
acterizes microservices as self-contained components that

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

prioritize specific business domain functionality. He posits
that microservices should possess their own databases to
facilitate independent deployment, scaling, and development
procedures. This autonomy is crucial for ensuring consistent
and efficient software delivery as well as promoting scalabil-
ity. Lewis and Fowler [3] further elaborate on this by defining
microservices as a method of creating a single application
as a collection of small services, each operating in its own
process and often communicating through HTTP resource
APIs, advocating for minimal centralized management and
the ability to use diverse programming languages and
data storage technologies. According to Wolff [4], a novel

90252

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-6075-5286
https://orcid.org/0000-0002-0898-9824
https://orcid.org/0009-0003-8079-1649
https://orcid.org/0000-0003-3264-185X

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

characteristic of microservices is their use of modules that
function as separate processes. This methodology is rooted in
the principles of UNIX, which may be distilled into three key
elements: (a) a program ought to perform a single function
with exceptional proficiency, b) programs ought to have the
ability to collaborate effectively, and c) a universal interface
ought to be adopted.

Other scholars engage in comparing MSA with Service-
Oriented Architecture (SOA), wherein microservices are
viewed by some as a distinct architectural style [3] or
a refined version of SOA [5], [6], focusing on aspects
like service centralization, size, and independence. The
transition to microservices introduces changes in system
interactions to network calls, bringing forward potential
latency and security issues [3], while also enhancing scal-
ability and the utilization of cloud computing benefits [5],
[7]. Microservice architecture’s compatibility with DevOps
practices and containerization emphasizes its suitability
for modern application development and adaptability to
cloud-based environments [8]. This amalgamation of views
underscores the multifaceted nature of MSA, reflecting
its roots in business-driven design, technological diversity,
and operational independence, while also acknowledging
the transition from traditional architectural models and its
implications on security and deployment practices [1], [3],
[4], [5], [6], [7].

Given the distributed nature of MSA, robust security
measures are essential. Also, MSA have the potential to
increase a software system’s vulnerability by expanding
the attack surface of a software system. A further increase
in attack surface is caused by the use of virtualization
technology, automated pipelines, and various third-party
software in the cloud for microservice applications.

In this paper we define inter-service security as the
ensemble of strategies dedicated to securing the interactions
and connections between microservices, excluding security
mechanisms operating at the edge. Likewise, we define inter-
service security threats as threats that specifically target
microservices and their interconnections. In the same vein,
we recognize mitigation strategies for inter-service security
threats as approaches to alleviate dangers resulting from such
threats.

A. BACKGROUND
1) INTER-SERVICE COMMUNICATION
Inter-service communication, which refers to the exchange of
data between services inMSA, is a distinguishing feature that
sets the microservice architectural style apart from traditional
monolithic architectures. Additionally, this aspect can result
in the transfer of large amounts of data within a single
network or across multiple network boundaries. One of
the challenges of implementing microservices is effectively
managing the flow of data between services. Excessive and
unnecessary network calls between microservices can lead to
increased costs and slower system performance.

2) ARCHITECTURAL PATTERNS FOR MICROSERVICE
SECURITY
Based on Bass et al. [9], architectural patterns are solutions
to recurrent design challenges within specific contexts that
detail the functions, responsibilities, and interactions of
software components. The decision to use a particular
architectural pattern is critical and deeply influences multiple
quality attributes of a system, including security, by dic-
tating the system’s structural organization and interaction
models. Selecting an architectural pattern involves balancing
trade-offs among quality attributes, with security being a
pivotal quality attribute in the design process. In the realm
of microservice security, specific patterns have evolved.

a: API GATEWAY PATTERN
An API Gateway streamlines API requests between clients
and backend services in an MSA. It conceals the internal
structure of a microservice-based application from the
client, thus presenting the client a simplified view of it.
By centralizing common tasks across requests and services,
such as authentication and authorization, logging, and
SSL termination, it eliminates unnecessary redundancy of
these tasks among microservices. Additionally, it distributes
incoming requests acrossmultiple instances ofmicroservices,
enhancing the performance and dependability of the applica-
tion. Furthermore, it can combine the outcomes frommultiple
microservices into single responses, reducing the number
of round-trip requests required and simplifying client-side
logic [1], [2].

b: SERVICE MESH PATTERN
A service mesh is a layer of infrastructure that handles
inter-service communication in MSA, traffic management,
and observability-related tasks such as tracing requests.
It also provides security enhancement capabilities like access
control, communication encryption, and rate limitation. Most
importantly, it facilitates the management of traffic flow
between microservice by implementing a lightweight proxy,
commonly known as a Sidecar alongside each instance of a
microservice [2], [10].

c: SIDECAR PATTERN
The Sidecar pattern is used to enhance and extend the
functionality of a single microservice without altering its core
functionality. This pattern involves deploying an additional
component, the Sidecar, alongside the main service, both
running on the same host and sharing the same lifecycle and
resources but operating in separate processes. The Sidecar
handles cross-cutting concerns such as monitoring, logging,
configuration, network traffic control, and encryption using,
e.g., SSL (Secure Sockets Layer) or TLS (Transport Layer
Security), thus offloading these aspects from the application
logic. It intercepts microservices’ communication to provide
a range of features [2], [10], e.g.:

VOLUME 12, 2024 90253

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

• Service Discovery: Automatically detecting microser-
vices within the infrastructure.

• Load Balancing: Efficiently distributing incoming
requests across multiple instances of a microservice.

• Encryption and Authentication: Securing communica-
tion between microservices.

• Monitoring and Tracing: Providing insights into perfor-
mance and the flow of requests through the architecture.

• Fault Injection and Recovery: Testing the resilience of
the MSA by introducing controlled failures.

d: TOKEN PATTERN
This pattern revolves around the generation, distribution,
and validation of tokens for authentication and authorization
purposes, not limited to MSA. Upon user login, an authenti-
cation microservice verifies the user’s credentials and issues
a token, such as a JSON Web Token (JWT), encapsulating
the user’s identity and their roles or permissions. This
mechanism extends also to inter-service communication
in MSA, where microservices authenticate and authorize
requests from other microservices by validating the token and
checking the encoded permissions. The self-contained nature
of these tokens ensures statelessness, promoting scalability
of the software system by removing the need for shared
session data. Furthermore, this pattern enhances security
and decoupling by allowing services to authenticate requests
without directly managing user credentials, thus enabling
flexible security mechanisms and facilitating easier updates
to authentication processes without impacting service func-
tionality [1], [11].

3) PERSPECTIVES ON MICROSERVICE SECURITY
The distributed nature of microservices can potentially
increase the system’s vulnerability [12] to security threats
by expanding the general attack surface. Furthermore,
microservices applications are frequently deployed in the
cloud using virtualization technology, automated pipelines,
and various third-party software, which further expands the
attack surface. In discussing security within the context of
microservices, it is essential to address several important
aspects, such as the authentication and authorization [13] of
both users and between services and applications.

Siriwardena andDias [12] categorizemicroservice security
into edge-level security, inter-service communication, secure
deployment, and secure development. The objective of edge
security is to protect against increasing threats at the edge of
networked environments. This requires a thorough examina-
tion of sophisticated security measures, such as encryption
protocols, identity and access management, and anomaly
detection techniques, to secure microservices from vulnera-
bilities that are inherent in edge computing scenarios [14],
[15], [16], [17]. Security in the context of inter-service
communication in MSA [12] deals with security in commu-
nication, interaction, and operation between microservices.
It covers authentication, e.g., using Mutual Transport Layer

Security (mTLS) and authorization, secure communication
between services, e.g., using encrypted channels, and other
security-related topics like service discovery, communication
within a Service Mesh, the Sidecar Pattern [18], network
segmentation and firewalls, and intrusion detection. The
use of orchestration and container technologies, such as
Kubernetes [19] and Docker [20], can increase the com-
plexity of managing microservices and extend the range of
potential attacks to include third-party vulnerabilities and
other related issues [13], [21], [22]. The implementation
of dedicated patterns, such as the Token Pattern [11], the
API Gateway Pattern, and the use of a Service Mesh, are
particularly effective in enforcing security measures within
microservices [1], [2]. Adherence to secure development
principles, including automated security testing, continuous
integration and deployment, and adherence to best practices,
ensures that MSA are resilient to attacks, thereby improving
the overall security posture of such a distributed system.

B. EXISTING LITERATURE REVIEWS
A number of literature reviews have been conducted in the
field of microservice security. Yu et al. [23] presented a
survey resulting from a structured literature search on security
challenges in microservice-based fog applications. The work
exclusively focuses on vulnerabilities present in service
communication across containers and networks and related to
data security and permission issues in MSA. The authors did
not follow the guidelines of systematic literature reviews in
the sense of the guidelines of Kitchenham and Charters [29]
and restricted their search to Scopus and Web of Science
exclusively. In our study, we examined a broader range
of publications by directly querying the relevant scholarly
libraries. This allowed us to include sources that may not
have been considered in their review. Soldani et al. [24]
carried out a grey literature review examining the challenges
and advantages of employing microservices. The authors
provided a unique perspective by drawing on industrial
experiences withMSA, captured frommagazines, blog posts,
whitepapers, and videos. However, the sources utilized in
their work inevitably have not undergone the same level
of academic rigor as the sources employed in our study.
Further, the paper has not addressed the classification of
the challenges and advantages based on common security
issues. Similarly, Pereira-Vale et al. [25] conducted a
systematic literature review on security in microservice-
based systems, deriving 15 security mechanisms from a
selection of academic and grey literature. The authors have
classified the security solutions presented in the articles
based on the standard security mechanisms, scope, and
relevance to specific security contexts. They noted that
authentication and authorization within MSA are the most
commonly discussed security mechanisms in the selected
papers. While our paper and theirs share some common
themes, their emphasis is on security mechanisms rather
than security threats. Additionally, their classification of

90254 VOLUME 12, 2024

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

TABLE 1. Existing literature reviews and comparison to this SLR.

mitigation strategies is less comprehensive and less specific
compared to ours. Hannousse and Yahiouche [26] conducted
a systematic mapping study of 46 studies on microservice
security and identified unauthorized access, data exposure,
and service compromise as primary concerns. The authors
recommended implementing auditing and access control
solutions to mitigate these risks. The study emphasized
the effectiveness of these measures at the software infras-
tructure layer. Furthermore, an ontology was developed to
assist developers in addressing specific threats and security
mechanisms associated with MSA. Their work, however,
does not particularly concentrate on security issues emerging
from inter-service communication or the interplay between
microservices, being the primary distinction to our study.
Ponce et al. [27] conducted a multivocal literature review
on microservice security, analyzing 58 publications and
formulating ten security smells, along with a set of methods
to mitigate these smells. The primary focus of this work is
a trade-off analysis that aids in deciding whether to keep a
security smell or to apply refactoring, taking into account the
positive and negative impacts on specific code and design
quality attributes. In contrast to our work, this research specif-
ically, but also solely, concentrates on security challenges and
mitigation strategies resulting from the code-based imple-
mentation of microservices. Berardi et al. [28] performed a
comprehensive literature review of 290 publications, utilizing
both quantitative and qualitative analysis to examine threat
models, security approaches, infrastructure, and development
methods. Their work provides a thorough and expansive
overview of microservice security. However, it does not
present a conceptualization or categorization of the identified
issues, particularly in relation to inter-service communication
threats and mitigation strategies in MSA.

In Table 1, we present a comprehensive summary of the
dissimilarities pertaining to focus, study population, sources,
and search date of the pertinent literature reviews. This
table facilitates a clear understanding of the distinctions
between the various existing reviews. Our research is distinct
from the existing works in four aspects: a) it specifically
focuses and categorizes inter-service security threats and
mitigation strategies in MSA, b) by utilizing only white

literature from digital scholarly libraries, c) by also assessing
the level of focus that each reviewed study takes on an
examined topic on an ordinal scale, and d) by also covering
17 recent studies published after 2021, which we identified
as the last year a literature review in this realm has been
conducted.

C. CONTRIBUTIONS AND NOVELTY
The current body of literature does yet not contain any
systematic reviews that specifically and comprehensively
address the topic of inter-service security in MSA. In this
sense, the primary objective of this paper is to gain a more
in-depth understanding of the security challenges associated
with inter-service communication in MSA and to identify
existing mitigation strategies. The main contributions of our
work are:

C1. Demographic attributes of publications w.r.t. study
distribution over time, research and contribution types,
publication channels and publication venues

C2. Categorization and synthesis of inter-service security
threats in MSA

C3. Categorization and synthesis of mitigation strategies for
inter-service security threats in MSA

The remainder of this paper is structured as follows:
Section II outlines the methodology and research questions.
In Section III we present the findings of our study in the
following order: Demographic attributes of the reviewed
publications are given in Section III-A, the categorization
and description of inter-service security threats reported in
the publications in Section III-B, followed by describing
and categorizing the mitigation strategies in Section III-C.
Following to that, in Section IV we condense and discuss our
interpretation of the findings. In Section V, we elaborate the
potential threats to the validity of this study. We conclude our
work in SectionVI, alongwith suggestions for future research
directions.

II. METHOD
A systematic literature review (SLR) [30] is a widely
acknowledged research method in the field of

VOLUME 12, 2024 90255

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

Evidence-Based Software Engineering. It is a structured
process [29] for identifying, assessing, and synthesizing all
relevant evidence associated with a specific research question
or topic. The process comprises three main stages: formulat-
ing a review protocol, executing the review, and documenting
the review. We adhered to the guidelines provided by
Kitchenham and Charters [29], which included the following
key components: (i) defining research questions, (ii) devising
a search strategy, (iii) establishing inclusion and exclusion
criteria, (iv) selecting studies, (v) assessing the quality of
the included studies, and (iv) extracting and synthesizing
data. In adherence to the PRISMA 2020 guidelines [31],
we have followed the framework’s reporting items, ensuring
transparency and reproducibility in our systematic literature
review. The PRISMA 2020 guidelines aim to improve
research by providing concretemeasures for transparency and
reproducibility. In the following, we elaborate on each step of
this process as defined by Kitchenham and Charters [29].

A. RESEARCH QUESTIONS
This study aims at summarizing the current state of
research pertaining to “inter-service security threats and
mitigation strategies in microservice architectures”. To this
end, we have formulated three research questions.

RQ1. What characterizes the research, contributions, publi-
cation channels, venues, and publication trends in the
field of inter-service security of microservices?

RQ2. Which inter-service security threats in MSA are dis-
cussed in the studies and how can they be categorized?

RQ3. Which mitigation strategies for inter-service security
threats in MSA are discussed in the studies and how
can they be categorized?

The first question delves into the research and contributions
facets, publication trends, and venues of the publications
through a comprehensive analysis of bibliometric data. The
second research question systematically identifies and cate-
gorizes the security threats discussed in the relevant literature.
The third research question examines the proposedmitigation
strategies and their implementations in the publications,
while also grouping the identified mitigation strategies into
thematic categories.

B. SEARCH STRATEGY
In order to retrieve as many relevant studies as possible,
we defined a search strategy as described by Kitchenham
and Charters [29] and Zhang et al. [32]. In the following,
we elaborate the search method, search terms, and data
sources that were used for this review.

1) SEARCH METHOD
Pilot searches were conducted between March and August
2023, with an iterative approach to refining the search
string. The primary (automated) searches for this study were
conducted subsequently in October 2023 and updated in
April 2024.

To ensure that all relevant primary studies were included,
we conducted a manual backward snowballing step [33]
in addition to our automatic search. This was done to
capture further studies that may have been overlooked
during the initial search [34], [35]. There are various
methods available for identifying primary studies, such as
snowballing [33], quasi-gold standard (QGS) methods [32],
random sampling, and margin of error [36]. These methods
can be used individually or in combination to achieve the
desired results. Backward snowballing involves utilizing the
reference list of a publication to identify additional relevant
publications. Also, this approach considers the context in
which references are made, ensuring that only publications
that are appropriately related to the topic are included.

2) SEARCH TERMS
We adhered to the guidelines outlined by Zhang et al. [32]
and systematically refined and assessed our search terms
to retrieve a suitable number of publications discussing
microservices and inter-service security issues or mitigation
strategies within the same context. The search string was
composed of search terms concerned with population and
intervention as suggested by Petticrew and Roberts [37].
The population encompasses microservices and inter-service
communication, which are the primary areas of focus in
the application domain. In this context, the intervention
refers to security threats and mitigation strategies within the
aforementioned application area. The relevant search terms
were reflected through synonyms and logical operators were
employed to pair them. These synonyms were selected based
on the words utilized in the publications retrieved from the
pilot searches, as well as the terms employed by prominent
scholars in the field. Throughout the iterative refinement
process, we ensured that all relevant publications that wewere
aware of were captured using the resulting search string. After
multiple rounds of refinement, we determined the final search
string as:

(microservice)
AND

(“inter-service” OR “interservice” OR “service-to-service”)
AND

(“security” OR “threat” OR “vulnerability” OR “mitigation”
OR “protection”)

3) DATA SOURCES
We queried five prominent scholarly libraries, namely IEEE
Xplore, SpringerLink, ScienceDirect, Wiley Online Library,
and ACM Digital Library due to their extensive coverage
of scientific literature relevant to the study’s focus. Initially,
we restricted the search string to keywords, titles, and
abstracts in the digital libraries. We extended our search
to include the fulltexts of the articles as we observed that
searching within the fulltexts provided additional relevant
publications. Despite the large number of retrieved publi-
cations, each publication could still be evaluated manually.

90256 VOLUME 12, 2024

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

TABLE 2. Query filters used for the digital libraries.

TABLE 3. Inclusion and exclusion criteria of this study.

In addition, we employed a set of search query filters
(see Table 2) for each library, which reduced the retrieved
publications to those most relevant to our study.

C. INCLUSION AND EXCLUSION CRITERIA
The articles obtained from the digital libraries were assessed
against a set of predetermined inclusion and exclusion
criteria to systematically exclude irrelevant studies. The
comprehensive list of the criteria used for selection is
provided in Table 3.

The criteria for inclusion in the review were designed
to limit the selection of publications to those with a
specific focus on security issues or mitigation strategies in
inter-service communication in MSA. Duplicate or non-peer
reviewed publications as well as those in another language
than English were eliminated from the outset. In order to
ensure that selected papers adequately address the topics
of this study and later allow us to extract relevant data,
we also placed emphasis on assigning each paper to at least
one inclusion criterion. This was particularly important to
facilitate the later categorization of the papers into either
elaborating on security threats or mitigation strategies. On the
other hand, we excluded any papers that did not place
sufficient emphasis on the examined topics. During the

FIGURE 1. Overview of the study retrieval and selection process
according to PRISMA 2020 [31].

backward snowballing process, we assessed the relevance of
a paper for inclusion by examining its context and reference
in the main paper, and compared it to the criteria as outlined
by Wohlin [33].

D. STUDY SELECTION
Figure 1 shows the stages of the study retrieval and selection
process according to the PRISMA 2020 guidelines [31] for
reporting systematic reviews.

1) IDENTIFICATION
A total of 427 publications were retrieved from the five digital
libraries using our search string and the filters, most of them
from ScienceDirect (n = 254).

2) SCREENING
The retrieved publications were screened and duplicates (E1,
4 publications) and publications in languages other than
English (E2, 1 publication) were removed in the first stage
of assessment. This resulted in 422 publications remaining
for the next step.

3) ELIGIBILITY
We assessed 422 publications against our inclusion and
exclusion criteria based on their abstract, introduction, and/or
conclusion. If a paper met any of the inclusion criteria,
we thoroughly examined it. We excluded 122 publications
due to insufficient focus on microservices (E5), further
106 publications due to limited discussion of the examined
security aspects (E6), 109 publications due to off-topic focus

VOLUME 12, 2024 90257

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

(E7), and 52 publication due to insufficient quality (E8).
Therefore, we excluded 389 studies and assessed 33 studies
as eligible for inclusion in this review. It is important to
note that no bachelor, master, or PhD theses, nor any other
non-peer reviewedworks were included in these publications,
so exclusion criteria E3 and E4 were not applicable.

The 33 studies that were identified were then utilized as
the basis for the backward snowballing step, which ultimately
resulted in an additional 21 studies being incorporated into
this review. Just like the primary search results, all the
referenced papers that were assessed during this step were
also subjected to the same inclusion and exclusion criteria.

4) INCLUDED
A total of 54 studies were included in this review after
retrieval, screening, and eligibility checks. Mourão et al. [38]
suggest three metrics to evaluate the performance of a search
method for querying digital libraries in the context of an SLR.
Precision refers to the correctness of the results, with a score
of 100% indicating that all papers retrieved were selected for
the SLR. Recall measures the completeness of the results,
with a score of 100% indicating that all papers selected for
the SLR were retrieved through the search method. These
two metrics are crucial in evaluating search methods for
SLRs, as they balance the correctness and completeness of the
results. Finally, the F-score provides a compromise between
precision and recall, which is considered the best measure for
evaluating the overall performance of a search method. These
metrics can be calculated based on the below formulae.

Precision =
|Visited ∩ Selected|

|Visited|

Recall =
|Visited ∩ Selected|

|Selected|

F-score = 2 ×
Precision× Recall
Precision+ Recall

In Table 4 we show the performance of searching on the
digital libraries and of the subsequent snowballing step. For
calculating the former, the set of visited studies reflects the
set of studies retrieved as result from this search. The metrics
indicate that IEEE Xplore has a high precision but lower
recall, meaning that it is efficient at retrieving relevant studies
but may miss a significant number of them. ScienceDirect
has a high recall, indicating that it covers a broad range of
relevant studies, but its lower precision suggests that it also
includes many irrelevant studies. Most of the studies used in
this study were obtained from this library. Compared to the
other libraries, SpringerLink strikes a good balance between
precision and recall, as evidenced by its F-score.

When calculating the metrics for the snowballing step,
the visited set was formed of the references of the pri-
mary studies, which we procured from a specific digital
library. As depicted in the table, IEEE Xplore demonstrated
exceptional effectiveness in revealing pertinent documents,
as evidenced by its superior recall and F-score. This indicates
that although it retrieved a significant quantity of irrelevant

documents, it is highly adept at utilizing references to
locate pertinent documents. SpringerLink also exhibits great
potential, particularly with regard to its recall and highest
F-score, suggesting a relatively effective balance in its
search approach. Conversely, ScienceDirect andWiley Online
Library show significant limitations in both precision and
recall, with ScienceDirect performing particularly poorly
across all metrics.

E. STUDY QUALITY ASSESSMENT
To ensure the reliability of the studies included in our review,
we established a separate exclusion criterion (E8) to discard
studies that exhibited insuffient quality. We placed different
emphasis on particular aspects of a study, depending on
its type. When evaluating studies reporting evaluation or
validation research, we placed emphasis on identifying biases
within the studies and their internal and external validity.

For solution proposals, philosophical papers, and opinion
papers, our quality assessment was less concerned with
empirical validity, considering these studies’ conceptual
or argumentative nature. The assessment of these studies
focused on the clarity of their key findings. Studies were
excluded if their key findings were not explicitly stated or if
their implications were not understandable. For solution pro-
posals, sample size was taken into account when evaluating
their quality. Although we acknowledge that not all solution
proposals are grounded in empirical data, those that relied on
empirical data were assessed for the adequacy of their sample
size. Insufficient sample sizes that undermined the credibility
or reliability of the findings led to their exclusion.

By differentiating the quality assessment based on the
study type, we were able to include a broad range of studies,
while ensuring that the quality of each study was evaluated
based on criteria appropriate for its research type. In total,
52 studies were excluded due to insuffient quality.

Table 6 in the Appendix provides a comprehensive list of
all the studies that finally were selected for this review. The
first column of the table serves as a unique identifier for each
study, with the prefix ‘‘S’’ used to refer to the studywithin this
paper. The following column indicates the title of the study,
while the subsequent columns list the authors, venue, and year
of publication for each study.

F. DATA EXTRACTION AND SYNTHESIS
1) DATA EXTRACTION
Based on the properties described in Table 7 in the Appendix,
we extracted all necessary information from the selected
studies to answer the research questions of this systematic
literature review. This information was stored in spreadsheets
and made accessible to all researchers involved in the project.

2) SYNTHESIS
We have separated the data extraction form into two distinct
sections. The first section involves capturing bibliometric
data (P1–P7), while the second section focuses on collecting

90258 VOLUME 12, 2024

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

TABLE 4. Performance of the search on the digital libraries and the snowballing process.

information related to security issues (P8–P9) or mitigation
strategies (P10–P11) in the context of inter-service communi-
cation inMSA. As the studies examined either security issues
ormitigation strategies, wewere able to categorize each paper
into one of these two areas based on its full text. We applied
descriptive statistics to analyze the properties P1–P5.
To classify the research types (P6) of the selected papers,

we employed six categories, namely experience paper, eval-
uation research, validation research, philosophical paper,
solution proposal and opinion paper. These categories have
been derived from the existing literature [39], [40]. The
definitions of each research type are provided in Table 8
in the Appendix. In a similar vein, we extracted the
contribution type (P7) of each paper’s full text, which
includes the following options: model, method, theory,
framework, guideline, lessons learned, advice or tool. These
options have been derived from the works of Shaw [41] and
Paternoster et al. [42]. The definitions of each contribution
type are provided in Table 9 in the Appendix.

The data pertaining to properties P8 through P11were ana-
lyzed qualitatively, specifically applying thematic analysis to
each paper’s full text. Adhering to the five steps outlined
by Cruzes and Dyba [43], we initially extracted and coded
the primary statements in each study. This enabled us to
classify each study as either describing security threats or
mitigation strategies. Additionally, during this initial coding
process, we established a set of pilot categories for security
threats or mitigation strategies that were identified in the
studies.

For each paper, we conductedmultiple iterations to identify
which categories were addressed within the paper. These
categories were predefined, and each paper could be assigned
to multiple categories, with a different level of focus.We used
an ordinal scale (i.e., low, medium and high) to indicate the
extent to which a paper focused on a particular category
from the background of inter-service communication. This
scale was used to differentiate between studies that briefly
discussed one or more topics (e.g., systematic reviews) and
studies with a more in-depth focus on one or more topics.
The definition of each level of focus is provided in Table 10
in the Appendix. In cases where a paper’s content did not
alignwith any existing category, we recorded this discrepancy
and scheduled the paper for another review cycle. If multiple
papers addressed a topic that was not yet categorized,

we created a new category specifically for that topic. This
approach ensured that our categories accurately reflected the
topics discussed in the paper and were tailored to the domain
of inter-service microservice security. The classification of
each study is given in Table 11 in the Appendix.

We continued the thematic analysis until all researchers
agreed that the contents of each paper were thoroughly
represented by the categories assigned to it. Table 12 and 13
in the Appendix show the extracted categories and their level
of focus for each study in this review.

III. RESULTS
In the following subsections we report the results from ana-
lyzing and synthesizing the data extracted from the reviewed
papers to answer the research questions. We interpret and
reflect upon the results in Section IV.

A. DEMOGRAPHIC ATTRIBUTES
This subsection presents the demographic characteristics of
the studies that were selected, including their distribution by
year and publication type, the types of research conducted
and contributions, as well as themost significant venues in the
field. The findings presented in this subsection are relevant to
the first research question (RQ1) as specified in Section II-A.
All the selected papers and the data discussed in this section
are listed in Table 11 in the Appendix.

1) STUDIES DISTRIBUTION
We extracted the year of publication of the examined studies
to analyze how this research field evolved over time. As can
be seen in Figure 2, all selected studies were published
between 2015 and 2023, covering a duration of only eight
years. This underscores the fact that microservices represent
a relatively new concept. The pivotal article “Microservices:
Defining the microservices architectural style by describing
their nine common characteristics” by Lewis and Fowler [3]
was published in 2014 and marked a significant moment
in the field of microservices development. Consequently,
the subsequent emergence of publications concentrating on
microservices security, particularly the security between
inter-service communications, in the following years appears
to be a natural progression. The year with the most studies
analyzed in this study was 2021, with 11 studies (20%)
published. The year with the second-highest number of

VOLUME 12, 2024 90259

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

FIGURE 2. Distribution of selected studies by year and publication type.

publications was 2019. In this year, 9 studies (17%) have been
published.

The majority of scholarly works in this field are typically
published as conference papers, although a notable increase
in journal publications was observed in 2021 and 2023.
In contrast, the fewest publications were produced in any
form in 2020, which may be attributed to the beginning of
the Corona pandemic during that year. Given the uncertainty
surrounding the possibility of conferences taking place in
the following year, the increase in journal publications
particularly in 2021 can be attributed to this factor. It is
worth noting that only three workshop papers were published
throughout the analyzed time frame, suggesting a limited
relevance in this field.

2) RESEARCH TYPES
According to Figure 3, the majority of publications were
categorized as validation research, accounting for 46.3% of
the total. If we combine this with evaluation research, we find
that more than 50% of the examined studies fall under one
of these two categories, reflecting a substantial emphasis
on research that either validates existing theories, models,
or frameworks or evaluates their practical effectiveness.
Additionally, there is a substantial volume of solution
proposals (22.2%) and philosophical papers (22.2%), which
tend to lack comprehensive validation or evaluation of the
proposed solutions or ideas. Only one publication can be
classified as opinion paper, representing only 1.9% of the
total. The majority of the assessed publications seem to
rely on existing research to formulate their content and
viewpoints, or introduce new concepts and ideas that are
subsequently validated and evaluated to varying extents. This
suggests a strong focus on research-based content or rigorous
testing of new ideas, rather than simply relying on personal
opinions.

3) CONTRIBUTION TYPES
In Figure 4 we see that the majority of the examined
publications primarily focus on methods for addressing
security threats in microservice architectures, accounting for
33.3% of the total of evaluated publications. Additionally,
a significant number of these works contribute models

FIGURE 3. Research types of the selected studies.

FIGURE 4. Contribution types of the selected studies.

(14.8%) to the field, e.g., systematic literature reviews
and systematic mapping studies. Guidelines, i.e., advices
based on research results, are contributed by 13% of
the publications. A small share of 7.4% of the assessed
publications contribute conceptual frameworks for managing
microservices security and categorize their content into
mitigation strategies, design patterns, security tactics, and
similar concepts, as exemplified in works like [S31, S11,
S14]. However, a smaller segment, about 5.6%, of these
publications specifically contributes lessons learned derived
from practical experiences or empirical studies, and only one
paper (1.9%) of the publications present an advice based on
personal opinions.

To compare the distribution of research and contribution
types between studies that address security threats P8
respectively mitigation strategies P10, we have constructed a
systematic map, as depicted in Figure 5. The systematic map
highlights a prevailing interest in mitigation strategies (40
studies) compared to security threats (14 studies). Notably,
among the studies focusing on mitigation strategies, there
is a predominance of research related to validation research
and solution proposals. This trend suggests a greater incli-
nation towards developing and validating solutions to tackle
security threats, rather than merely identifying or examining
them. With regard to publications that primarily address
inter-service security threats, it is evident that a substantial

90260 VOLUME 12, 2024

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

TABLE 5. Distribution of the selected studies on publication venues.

number of them are categorized as philosophical papers and
employing evaluation research. Furthermore, a majority of
these publications contribute lessons learned or engage in
discussions about theory related to the publications’ topics.

4) PUBLICATION VENUES
The studies were primarily published in well-regarded
journals, such as the “Journal of Systems and Software”
(six studies), the “European Conference on Software Archi-
tecture” (four studies), and “Computers & Security” (three
studies). These venues are widely recognized in the field
of software engineering and have a strong reputation for
publishing high-quality research. In Table 5, we provide a
comprehensive list of the venues that have hosted at least
two publications. Intriguingly, all venues with exactly two
publication were conferences. Our analysis also shows that
33 of the 54 studies (61%) were hosted in single venues, i.e.,
each venue hosted only one publication.

B. INTER-SERVICE SECURITY THREATS IN MICROSERVICE
ARCHITECTURES
In this subsection we present the results of our research
into the second research question (RQ2) and categorize the
inter-service security threats identified in the studies we
examined. The level of focus given to each threat in each
study is provided in Table 12 in the Appendix. For each
category we also provide a brief summary of the key studies
that are representative for that category. Figure 6 shows that
many of the topics discussed in the studies were given only a
low level of focus, and did not provide detailed information
about specific security threats. Although many publications
listed security threats and issues as risks to consider, the
reasons behind these threats were often not explored in depth.

1) SECURITY PERIMETERS AND ATTACK SURFACE
As depicted in Figure 6, a substantial portion of the included
publications (14 out of 54, constituting 26% of the total)
concentrate on the security perimeters and the attack surface

of microservices. This substantial representation reflects the
popularity of this topic within the academic community.
However, it is noteworthy that a substantial number of these
publications exhibit a relatively low level of focus on this
topic, with a particular emphasis on the attack surface of
microservices.

a: INCREASED ATTACK SURFACE
The notion that adopting an MSA leads to an expansion of
the attack surface, as opposed to a monolithic architecture,
has been reported in numerous studies [S10, S49, S22,
S24, S46, S44, S42, S35, S32]. The primary reason for
this is the decentralized nature of microservices, where
data are exchanged across multiple networks rather than
within a single application. Furthermore, the increase in the
number of open ports, accessible APIs, and access control
mechanisms in MSA are identified as the primary factors
contributing to the growing attack surface [S10]. According
to Chondamrongkul et al. [S24], as microservices are
horizontally scaled, the attack surface expands proportionally
with the scaling, as new ports are opened for each deployed
service.

b: PIVOTING AND TRUST ISSUES
The issue of implicit trust between services has been
identified as a potential security risk in two studies [S39,
S15]. According to Sun et al. [S39], this can result in
scenarios where an adversary compromising one service may
lead to the takeover of the entire system. Furthermore, these
authors report on the limited flexibility in controlling the
trust placed on different microservices. Other studies, such
as [S36], also discuss the risks of pivoting and additional
attacks on microservices after an initial compromise. The
practice of trusting the network was investigated in [S15],
where 13 other studies were identified to categorize this
practice as negative to system security. Adherence to
this practice involves trusting that all network traffic is
legitimate without any verification. The study highlights that
insecure inter-service communication mechanisms can be
implemented by practitioners, with the justification that the
network is secure and has undergone filtering and inspection
by edge-level security controls. Another example of this bad
practice is when microservices trust network components
such as API gateways by their identity, which could allow
the compromise of these network components and also pose
a risk to the microservices they communicate with. The
findings presented in [S8] suggest insecure configuration as a
factor that explains why the compromise of one service could
lead to the complete takeover of the entire system.

c: INDEFINABLE SECURITY PERIMETERS
The work of Nkomo and Coetzee [S32] highlights the
challenges that arise when security perimeters are difficult
to define in the context of microservices. These challenges
are compounded by the implementation of containerization,
which enables port mapping, dynamic addressing, and

VOLUME 12, 2024 90261

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

FIGURE 5. Systematic map of research and contribution types of the selected studies.

FIGURE 6. Categories of security threats and level of focus they are described in the studies.

microservice scaling. The authors argue that this added
complexity makes securing microservices comparable to the
challenges faced in securing monolithic systems.

d: UNNECESSARY PRIVILEGES
The issue of granting unnecessary privileges to microservices
is addressed in the work of Ponce et al. [S7]. This occurs
when privileges beyond what is required to carry out business
functions are provided to microservices, such as when a
microservice has the ability to interact with a message queue
without it being essential to its business functions. In the
study, it was found that 12 of the 58 selected studies reported
negative security implications associated with this security
smell. Additionally, the study indicates that this security
smell contributes to an expansion of the attack surface for
MSA.

2) CONTAINER AND ORCHESTRATION THREATS
Figure 6 shows that containerization and orchestration are
crucial concepts of most MSA, as they provide the ability
to scale rapidly and flexibly, which is one of the advantages

of employing MSA. A significant number of the examined
studies (20.3%) have reported security issues directly related
to the use of containerization and orchestration tools and
platforms in a microservice environment. This substantial
percentage indicates that this group of security threats is
relatively common among the analyzed publications.

a: VULNERABLE AND MALICIOUS CONTAINER IMAGES
Several studies [S49, S22, S46, S4] emphasize the significant
number of easily exploitable vulnerabilities discovered in
public container images. According to Yarygina and Bagge
[S31], the utilization of vulnerable and/or malicious container
images poses a significant security concern. Microservices
are often deployed inside containers and the inherent mutual
trust between services makes a container compromise even
more dangerous, as it could allow lateral pivoting between
services [S46]. Furthermore, a compromise of one container
could lead to a compromise of other containers and services,
and the use of vulnerable container images may be due to
the use of unverified images found in public repositories
[S22]. The use of images from untrusted sources that have

90262 VOLUME 12, 2024

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

not been validated is considered one of the most critical
image vulnerabilities [S17]. However, it is important to note
that the problem with vulnerabilities found in container
images is not limited to the use of unverified container
images, as official Docker images also contain prevalent
vulnerabilities [S49].

b: CONTAINERS REQUIRING LOW-LEVEL OPERATING
SYSTEM FEATURES
Li et al. [S6] acknowledge that it can be challenging to
containerize microservices that require low-level features
from the operating system without compromising security.
The research of Hannousse and Yahiouche [S8] emphasizes
two main security concerns when using containers in
the deployment of microservices: first, the possibility of
containers being breached through unauthorized access, and
second, the potential vulnerabilities that may be present
within the container images themselves.

c: LACK OF AUTOMATIC UPDATES FOR CONTAINERS
According to Torkura et al. [S17], container images derived
from other container images (parent images) are not automat-
ically updated and patched in the same way as traditional
software, which may leave them vulnerable, even if no
vulnerabilities existed at the time of container creation. This
is in line with the results of Torkura et al. [S35], which
highlighted the risks associated with using homogeneous
microservices. If multiple microservices are created using
the same base image, a vulnerability in a base image could
potentially impact all of the homogeneous microservices that
were derived from it.

d: CONTAINER MISCONFIGURATION
Torkura et al. [S17] highlight the potential risks associated
with misconfigurations of container images, including the
possibility of vulnerabilities. Similarly, risks may also be
present in container run-time and container engine config-
urations, as indicated by Minna and Massacci [S4], which
observed a high number of container host devices using
default configurations.

e: APPLICATION- AND IMAGE-LAYER VULNERABILITIES
Torkura et al. [S17] highlight the lack of research into
application-layer vulnerabilities and the absence of efforts
to understand the relationship between application and
image-layer vulnerabilities in MSA. The authors present
a study that applies vulnerability correlation to identify
dependencies between different vulnerabilities, improving
risk management and security hardening of microservices
through a prototype implementation named Cloud Aware
Vulnerability Assessment System (CAVAS). This system,
which outperforms traditional testing approaches in detecting
vulnerabilities, underscores the importance of correcting
severity metrics provided by image vulnerability scanners
for effective continuous security and risk assessments
in MSA.

f: CONTAINERIZATION PLATFORMS
Security vulnerabilities within containerization platforms
have been examined in a study by Zeng et al. [S1],
which analyzed Docker, containerd [44], and runc [45]) for
Common Vulnerabilities and Exposures (CVE) that affect
various containerization platforms. Among the components
assessed, the Docker platform was determined to be the
most susceptible to being compromised, with 80% of its
vulnerabilities related to privilege escalation. Additionally,
the study raised the concern of container escape possibilities,
which could potentially allow an attacker to access files or
perform actions beyond the confines of the container.

g: ORCHESTRATION TOOLS
Zeng et al. [S1] conduct a mapping of public CVE to the
various components utilized in theKubernetesorchestration
platform [19]. These components include the API Server,
Kubectl [46], and Kubelet [47]. The study found that the
API Server component was the most vulnerable, with 30%
of CVEs related to this component. Additionally, 80% of all
identified vulnerabilities were caused by privilege escalation
attacks, with a significant number resulting from tools that
work together with the Kubernetes platform, such as plugins.
The Kubernetes network and its different layers (Layer 2 and
Layer 3) were also evaluated, and it was discovered that 90%
of the vulnerabilities were related to increased privileges and
50% of these were caused by Man-in-the-middle (MITM)
attacks resulting from misconfigurations.

h: EXCESSIVE PRIVILEGES
The potential security risk associated with granting exces-
sive privileges to Docker containers is highlighted by
Ibrahim et al. [S37]. Due to the fact that certain containers
require extensive privileges to function effectively and are
therefore granted access to the Docker daemon, they may
have the ability to access all services within a microservice-
based system, as these are all managed by this daemon.

3) INSUFFICIENT MONITORING AND INTRUSION
DETECTION MECHANISMS
Figure 6 shows that 10 out of 54 publications (18.5%) address
the issue of inadequate monitoring and intrusion mechanisms
in MSA. These publications examine various aspects of
intrusion mechanisms, including detection, response, and
prevention. The research in this category focuses on the
need for robust security measures to protect against potential
threats and ensure the secure functioning of microservices.

a: LACK OF REACTION, DETECTION AND RECOVERY
MECHANISMS
A study conducted by Márquez and Astudillo [S23] revealed
that MSA primarily concentrate on preventing attacks, with
insufficient focus on detecting, responding to, or recovering
from them. This research also emphasizes the scarcity of
discussion and development regarding recovery mechanisms

VOLUME 12, 2024 90263

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

for MSA in the event of a cyber attack, which are
essential to restore the system to its normal functioning
state. Furthermore, Yarygina and Otterstad [S29] highlight
the deficiency in research on Intrusion Response Systems
(IRS) tailored for MSA, particularly given the increasing
number of potential attacks. The study also mentions the
restricted focus of research on the self-protection capabilities
of microservices.

b: LACK OF TRACEABILITY AND INTRUSION DETECTION
The issue of traceability in MSA has been identified in two
separate studies [S54, S22]. According to Alshuqayran et al.
[S54], tracing an inter-service request through microservices
is a challenging task that warrants further research. The
findings of Pereira-Vale et al. [S3] indicate that only a small
number of intrusion detection systems have been developed
to identify anomalous behavior in MSA.

c: DIFFICULTIES WITH SECURITY MONITORING
The challenges related to security monitoring in MSA are
highlighted by Nkomo and Coetzee [S32]. Specifically, the
use of containers in microservice-based meetings systems
can add complexity to the process of identifying network
traffic for specific services. It is difficult to determine
which specific service is operating within each container,
further complicating the process of monitoring. Additionally,
the use of cloud services that are not owned by product
owners can make deployed microservices attractive targets
for adversaries [S39]. This can lead to limited visibility of
service failures in MSA [S22], making it difficult to track
system failures. This can complicate to effectively identify
and address security breaches in microservice-based systems.

d: DEEP-PACKET INSPECTION ISSUES
The complexities involved in traffic monitoring and filtering
in relation to deep packet inspection are thoroughly explored
in the work of Nehme et al. [S49]. The authors underscore the
necessity for tailored rules in deep packet inspection within
an MSA, while simultaneously acknowledging the difficulty
of this endeavor.

4) NETWORK ATTACKS
Several publications discuss different network level attacks,
such as MITM attacks and Distributed Denial-of-Service
(DDoS) attacks (see Figure 6). Out of the 54 analyzed
publications, only 9 (16,7%) discuss one or more network
attacks that could pose a threat to microservice systems.
Although all publications discuss these threats on a low level
of focus, these threats have not been the primary focus of
detailed examination by these publications.

a: DISTRIBUTED DENIAL OF SERVICE
Numerous studies have highlighted the potential vulnerability
of microservices to DDoS attacks [S20, S7, S51, S31, S24,
S23]. According to Zdun et al. [S20], DDoS attacks can
result in service-level degradation or availability issues in

MSA. The large attack surface typically associated with a
microservice system, as identified by Márquez and Astudillo
[S23], may contribute to increased susceptibility to DDoS
attacks. Additionally, the use of utility microservices, such
as sidecars, has been reported to pose an increased risk of
DDoS attacks by Suneja et al. [S26], as these microservices
may contain unpatched DDoS-related vulnerabilities. Fur-
thermore, the flexibility of microservices can be exploited
in DDoS attacks, where attackers could potentially scale up
less secure microservices to overwhelm more secure central
components.

b: MAN IN THE MIDDLE ATTACKS
The vulnerability of MSA to MITM attacks has been
acknowledged in multiple studies [S20, S24, S42]. While
these sources emphasize the potential threat posed by MITM
attacks to microservices, they do not provide in-depth
analysis or information on this topic.

c: SERVICE DISCOVERY AND HIJACKING ATTACKS
Undermining service discovery mechanisms and the possi-
bility of enrolling a malicious node within MSA is a security
concern pointed out by Yarygina and Bagge [S31]. This type
of attack could lead to misdirecting communication towards
the attacker. Torkura et al. [S42] provide a brief overview of
the issue of session/token hijacking. However, the discussion
of this threat in this paper lacks extensive elaboration.

5) CONFIGURATION, INFRASTRUCTURE AND DEPLOYMENT
THREATS
Figure 6 depicts that 8 of the 54 analyzed studies (14.8%)
concentrate on security threats associated with the configu-
ration, infrastructure, and deployment of MSA. The majority
of these studies take a low level of focus.

a: AGNOSTIC TECHNOLOGY AND VULNERABILITY
DETECTION
Microservices can be developed using diverse programming
languages, libraries, and other tools, yet they are capable of
functioning and communicating collectively within a unified
system. Moreover, MSA frequently employ a variety of
technologies and tools, such as those for monitoring, traffic
mediation, and data storage. According to Torkura et al.
[S42], the technological diversity within such systems can
complicate the process of vulnerability detection, as each
technology employedmust be separately identified and tested
for vulnerabilities.

b: CLOUD INFRASTRUCTURE
The potential security threats arising from the utilization of
cloud technologies in MSA are investigated by Yarygina and
Bagge [S31]. The authors characterize cloud technologies
as engendering “a myriad of security concerns”. As an
illustration, they sketch an adversary that compromises one
service inside the perimeter and afterwards moves laterally
through the system to gain full control. If the credibility

90264 VOLUME 12, 2024

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

of the sender is not ensured in inter-service communication
and microservices blindly trust whoever is calling them,
then a single compromised microservice would allow an
attacker to manipulate all the other services, for example by
issuing arbitrary malicious requests that each microservice
will fulfill. The latter is sometimes referred to as Confused
Deputy Problem. Furthermore, the adversary could attempt
to eavesdrop on the inter-service communication, insert, and
modify data in transit.

c: SECRETS AND DATA AT REST
According to Ponce et al. [S7], a variety of security
issues arise when data and secrets are stored in MSA.
One significant concern is the Hardcoded Secrets security
smell, which occurs when secrets are embedded directly
in the application code or configuration files used for
deployment. Additionally, their research emphasizes the
critical problem of not encrypting data, particularly data at
rest, which falls under the Exposure of Non-Encrypted Data
security smell. Storing unencrypted data or using encryption
mechanisms with known vulnerabilities can lead to this issue.
Moreover, the study highlights a potentially larger risk: the
use of in-house developed cryptographic code that has not
undergone extensive testing and can thus create a false sense
of security.

d: ATTACKS TO SOFTWARE AND HARDWARE
INFRASTRUCTURE
The research conducted by Hannousse and Yahiouche
[S8] explores the categorization of attacks on microser-
vices, distinguishing between Soft-Infrastructure and Hard-
Infrastructure. Attacks to the former type refer to vulnerabil-
ities in the software components of an MSA, such as message
queues, network mediation software, and monitoring tools.
In contrast, Attacks to the latter type target the hardware
components of a software system, focusing on vulnerabilities
that may have been intentionally or unintentionally intro-
duced during development. These hardware vulnerabilities
present potential exploit opportunities for adversaries, and it
has been noted that comparatively less attention is paid to
securing microservices against such attacks. This suggests a
potential gap in security measures being implemented, with
a stronger focus typically placed on software aspects rather
than hardware vulnerabilities.

e: POLYGLOT AND HOMOGENEOUS ENVIRONMENTS
According to Billawa et al. [S22], deploying microservices
written in various programming languages, each with its
own versions and life cycles, presents complex challenges.
These challenges are further exacerbated by the difficulties
of implementing effective security measures in such a diverse
ecosystem. This is due to the fact that each programming
language typically relies on different frameworks, which
demand distinct security considerations and approaches. The
need to tailor security practices to each framework adds

layers of complexity to ensure robust security in these
heterogeneous microservice architectures.

6) SERVICE MESH AND SIDECAR THREATS
Figure 6 illustrates that 6 out of the 54 studies (11.1%)
handle topics related to service meshes and sidecar threats.
By using a service mesh, much of the functionality that
previously had to be implemented within the microservices
codebase is shifted to the service mesh, which simplifies
the implementation of commonly used functionality in
MSA independent of the technologies used to develop
microservices [1].

a: SERVICE MESH THREATS
Aktypi et al. [S21] identify significant design issues in
contemporary service mesh technologies. One of the key
challenges is the difficulty in consistently establishing a
connection to a central registry. Moreover, as highlighted by
El Malki and Zdun [S38], the absence of encrypted generated
keys and certificates, and the lack of use of a certificate
management service outside the service mesh, increase the
susceptibility of the service mesh to manipulations and mali-
cious traffic. Another issue addressed by Alboqmi et al. [S48]
is the lack of policy autonomy within service meshes. This
problem is compounded by the need for manual intervention
to make changes within the service mesh configuration
at run-time in order to protect against potential threats.
Zeng et al. [S1] examined the vulnerabilities connected to
Istio [48] and uncovered a number of substantial security
issues, many of which were triggered by misconfigurations
in the data and control plane or exposed vulnerabilities that
were already known to the public.

b: THREATS FROM SERVICE MESH TOOLS
The study conducted by Hahn et al. [S28] investigates the
security vulnerabilities present in widely used service mesh
tools, which were primarily caused by misconfigurations
and the absence or insufficiency of security mechanisms.
The primary focus of this study was on the Consul service
mesh [49], which served as a model, and also included
evaluations of Istio and Linkerd (version 2) [50]. The
study discovered that, unlike Consul, both Istio and Linkerd
required a Kubernetes cluster to implement their security
features, resulting in increased complexity in the deployment
of these service mesh technologies.

c: SIDECAR ISSUES
According to Suneja et al. [S26], injecting utility microser-
vices (such as sidecars) into the container of a core (regular)
microservice facilitates close collaboration between services.
However, this raises security concerns as the lack of
isolation between the services implies that vulnerabilities
affecting the utility microservice may compromise the
core microservice, leading to potential risks for the entire
system.

VOLUME 12, 2024 90265

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

7) SOFTWARE AND DEPENDENCY THREATS
The issue of security threats arising from insecure code,
poor architectural choices, and vulnerable dependencies is
addressed in 5 out of the 54 publications studied (9.2%).Most
of these publications give only a low level of focus to these
security threats (see Figure 6).

a: DIFFICULTY IN DEVELOPING MICROSERVICES
The absence of tailored security patterns for developingMSA
is highlighted in a study conducted by Pereira-Vale et al. [S3].
This research examines the scarcity of microservices security
patterns in academic literature. According to Waseem et al.
[S27], three out of six interviewees cited “poor design
and introducing insecure code for microservice systems”
as factors contributing to the complexity and difficulty of
addressing security in a microservice system. Ahmadvand
and Ibrahim [S50] argued that the decomposition of a
software system into a microservices system is often done
with the interests of a select few stakeholders in mind,
resulting in a system that does not take into account the
requirements of the entire system. The research presented
by Waseem et al. [S9] suggests that MSA may be more
susceptible to vulnerabilities than those constructed with
a monolithic architecture. This increased risk is partially
attributed to the greater use of third-party components in
microservice-based applications.

b: HOMOGENEOUS ENVIRONMENTS
The study of Torkura et al. [S35] highlights significant risks
associated with the adoption of homogeneous technology
stacks in MSA. This practice, commonly used to sidestep
the complexity of maintaining multiple technology stacks
characteristic of polyglot architectures, can lead to the
proliferation of shared vulnerabilities among services. The
risk of these shared vulnerabilities is particularly acute
in homogeneous microservice environments, where the
uniformity of the technology stack can exacerbate security
risks.

8) DATA LEAKAGE AND EXPOSURE
Out of the 54 selected publications, only 4 studies (7.4%)
discuss dangers associated with the excessive exposure
of data or unintended data breaches within microservice
ecosystems. Given the nature of MSA, which accommodates
expansive and complex systems, efforts to minimize data
exposure present significant challenges, as evidenced by the
selected publications.

a: LEAKAGE OF DIAGNOSTIC INFORMATION
Rezaei Nasab et al. [S2] discuss the vulnerability of
diagnostic endpoints to attacks. The authors emphasize the
potential risk of sensitive information leakage that may arise
if these endpoints are not adequately secured.

b: EXPOSURE OF UNENCRYPTED DATA
The security smell Exposure of Unencrypted Data, as defined
by Ponce et al. [S7], arises when microservices fail to
implement adequate security controls and storage mech-
anisms. One example of this is storing sensitive data in
plaintext without encryption. This security smell poses a
threat to the confidentiality and integrity of MSA, as a breach
or unauthorized access to the data could compromise the
system’s security.

c: DATA EXPOSURE THROUGH APIS
As described by Genfer and Zdun [S18], the exchange of
information in an MSA through APIs is extensive, and data
transfers typically involve sensitive and private information.
Therefore, the study emphasizes that data exposure represents
a significant security risk. The authors highlight the risk
of excessive data exposure through APIs, which should be
avoided to prevent sensitive data from being uncovered.
Excessive data exposure is defined as data that are neither
consumed by the receiving API nor routed to another API.
The study of Zdun et al. [S41] also addresses the associated
security risks of disclosing unnecessary information about
system internals in API error messages, as this expands the
attack surface. Furthermore, the study reports that excessive
utilization of APIs by a user can negatively impact the
availability of a microservice-based system.

9) INSECURE INTER-SERVICE COMMUNICATION
Insecure inter-service communication, which refers to var-
ious network communication methods utilized between
services in MSA, is a prevalent issue that has been identified
in 4 of the 54 analyzed studies (7.4%). This issue is discussed
with a relatively low level of focus in the selected studies,
as illustrated in Figure 6.

a: INSECURE INTER-SERVICE COMMUNICATION
According to Ponce et al. [S7], the security smell Unsecured
Service-to-Service Communications represents a security
concern when no safeguards are implemented to secure inter-
service communication. The absence of secure communi-
cation methods can result in vulnerabilities such as MITM
attacks, eavesdropping, and data manipulation, thereby
compromising the confidentiality, integrity, and availability
of the system. Moreover, Waseem et al. [S27] highlight
that one of the complexities in securing MSA is the
issue of insecure inter-service communication. This aspect
significantly contributes to the challenge of addressing
security concerns in the design of microservices.

b: ATTACK SURFACE IN INTER-SERVICE COMMUNICATION
Wang et al. [S12] and Pereira-Vale et al. [S3] note that
the attack surface in MSA expands due to inter-service
communication. This increase in vulnerability is a result of

90266 VOLUME 12, 2024

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

the fact that communication between services takes place
over a network rather than being limited to local interactions.

10) OTHER SECURITY THREATS
As shown in Figure 6, 4 studies out of the 54 included
in this review (7.4%) address inter-service security threats
that cannot be categorized under any of the previously listed
categories.

a: INSIDER THREATS
Ahmadvand et al. [S14] examine the security threats that can
arise when insiders have access to microservices systems.
According to the study, insiders refer to individuals who
have access to the tools that manage microservices, such as
DevOps engineers and Sysadmins. The research presented
various attack paths that target both data and behavior assets.
For data assets, the study emphasized the security threats
associated with the manipulation of logs. As for behavior
assets, it highlighted the risk of manipulation of services,
hardware containers, and similar modules. Additionally,
it noted that such interference could facilitate in-memory
attacks.

b: THREAT MODELING AND RISK ASSESSMENTS
The research of Nkomo and Coetzee [S32] underscores
the inherent security challenges associated with conducting
threat modeling and risk assessment for MSA. The inde-
pendent nature of development teams in such architectures,
coupled with continuous delivery practices, heightens the
risk of releasing vulnerable code before thorough risk
assessments and threat models can be developed. Moreover,
the absence of threat models specifically designed for
MSA, as noted by Berardi et al. [S51], adds complexity to
developers’ workload.

c: MISSING INTER-SERVICE SECURITY POLICIES
According to Li et al. [S46], the development of more
flexible mechanisms for generating inter-service security
policies for MSA is necessary. The study highlights that
the current practices of manual configuration become
increasingly challenging as an MSA expands in size.
The authors also emphasize that their research resulted
in the development of a tool aimed at addressing these
challenges.

11) USER AUTHENTICATION AND AUTHORIZATION
THREATS
The issue of user authentication and authorization is closely
linked to inter-service security, although it is not exclusively
related to it. This is exemplified by the fact that user
tokens are frequently exchanged between services or used
in service-specific authorization processes. As illustrated in
Figure 6, a relatively small number of only 4 publications
(7.4%) address security threats related to this topic, with a
distribution that spans all levels of focus.

a: NON-UNIFORM ACCESS CONTROL
Ponce et al. [S7] delve into the Insufficient Access Control
security smell, which is characterized by a lack of uniform
access control enforcement across all microservices in MSA.
The study points out that this deficiency may result in
vulnerabilities, including the creation of potential attack
vectors for the Confused Deputy Problem. Furthermore, the
authors underscore that in MSA, access control and identity
management necessitate a unique approach in contrast to a
monolithic application. More specifically, automated identity
verification is required when data is transferred between
various services.

b: ISSUES WITH CENTRALIZED AUTHORIZATION
The security smell entitled Centralized Authorization as
described by Ponce et al. [S7], arises inMSAwhen authoriza-
tion duties are restricted to a solitary microservice, usually
positioned at the system’s periphery. This arrangement
disregards the dispersed nature inherent in microservices by
neglecting to implement precise access control at the level of
each microservice. Instead, it opts for centralized regulation,
which can also result in latency issues. This security concern,
like the Insufficient Access Control smell, serves as an
enabler for the Confused Deputy Problem as the services
are compelled to trust the central authorization service.
Nehme et al. [S49] also argue that this problem could arise
when access tokens are only verified at the API Gateway.
According to Soldani et al. [S10], the challenges related to
access control in MSA can be addressed by utilizing suitable
tools or technologies for decentralized access control.

c: USING MULTIPLE POINTS FOR AUTHENTICATION
Ponce et al. [S7] point out that theMultiple User Authentica-
tion security smell emerges inMSAwhen user authentication
is carried out at multiple points. This practice expands the
attack surface and elevates the development effort required
to maintain and secure these multiple authentication points.
In a similar vein, Soldani et al. [S10] state that distributed
authentication and access control enlarges the overall attack
surface of systems due to the numerous open ports and APIs.

d: ACCESS MECHANISM WEAKNESSES
The research conducted by Nehme et al. [S13] delves into the
security concerns present in the access mechanisms utilized
in MSA. The authors emphasize that OAuth2 access scopes
are confined to static and coarse-grained levels, which in turn
poses challenges in devising adaptable policies. Moreover,
the study underscores the intricacy involved in auditing these
scopes. The study also identifies vulnerabilities in MSA
associated with OpenID Connect [51], a framework based on
OAuth2. It is noted that these mechanisms typically rely on
a single token to access all microservices, thereby creating
the issue of Powerful Token Theft. Furthermore, the research
sheds light on the Confused Deputy Problem, a significant
security risk in this context.

VOLUME 12, 2024 90267

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

12) INTER-SERVICE AUTHENTICATION AND
AUTHORIZATION THREATS
The issue of security threats related to inter-service access
control mechanisms is addressed in two (3.7%) of the
54 publications analzyed for our study. As illustrated in
Figure 6, this topic has yet not been extensively explored in
literature.

According to Ponce et al. [S7], the concept of Unau-
thenticated Traffic was introduced as a security smell,
which pertains to instances in which communication between
services lacks proper authentication. Walsh and Manferdelli
[S43] also point out the lack of research on authentication
mechanisms between services, indicating the necessity for
additional investigation and development in this particular
area of study.

C. MITIGATION STRATEGIES TO INTER-SERVICE SECURITY
THREATS IN MICROSERVICE ARCHITECTURES
In this section, we present the results of our investigation
into the third research question (RQ3) and classify the
inter-service mitigation strategies in MSA that we identified
in the studies. The level of focus given to each threat in
each study is detailed in Table 13 in the Appendix. For each
category, we provide a concise overview of the key studies
that are representative of that category.

As shown in Figure 7, a substantial number of the analyzed
publications focus on mitigation strategies at a medium level.
Furthermore, many of these publications contribute models
and methods for mitigating security threats in MSA from
an inter-service perspective. Also the figure illustrates that
mitigation strategies aiming on secure coding practices and
patterns as well as user authentication and authorization
mitigation techniques are the most commonly discussed
topics in the reviewed studies.

1) SECURE CODE, DESIGN PATTERNS AND ARCHITECTURE
This topic is discussed in 13 of the 54 publications (24%)
in relation to mitigating security threats for the inter-service
security domain in MSA. Most of these publications discuss
the topic with a medium level of focus.

a: DEVOPS AND DEVSECOPS
Macarthy and Bass [52] define DevOps as a set of practices
aimed at automating and integrating the processes between
software development and IT teams, to build, test, and release
software faster and more reliably. The focus is on continuous
integration, continuous delivery, and automated testing to
enhance the speed and quality of software development.
Within the context of MSA, DevOps practices facilitate the
management of independently deployable, small, modular
services. In this realm, Alshuqayran et al. [S54] identified
50 effective tools for implementing MSA within DevOps,
underscoring the importance of adopting DevOps practices
for managing microservices effectively.

The integration of security in DevOps has led to devel-
opment of DevSecOps. The central notion of DevSecOps
is to prioritize security and incorporate security measures
and practices into the DevOps process [53]. In the context
of MSA, DevSecOps plays a critical role in continuously
integrating security into the microservices’ development
process. Ponce et al. [S15] recommend adopting the DevSec-
Ops practice and implementing continuous security testing
as strategies to address the security issues related to the
Non-Scalable Security Controls security smell. The authors
explain that DevSecOps integrates security considerations
into the development process early on, while continuous secu-
rity testing ensures ongoing automated security assessments
throughout the lifecycle of an MSA.

b: SECURITY BY DESIGN
Billawa et al. [S22] discuss Security by Design and DevSec-
Ops in the context of securing MSA. The former emphasizes
that security should be a central aspect throughout the entire
microservice life cycle, working in tandem with DevSecOps
to timely identify vulnerabilities in the development process.
DevSecOps seeks to incorporate security principles and stan-
dards throughout the whole software lifecycle while ensuring
continuous integration and fast deployment, implementing
issue tracking to ensure timely identification of any defects
along with continuous and automated security testing. These
concepts are highlighted as best practices for securing MSA.

c: SECURITY PATTERNS AND TACTICS
Bass et al. [9] define tactics as deliberate design choices
that significantly impact a software system’s quality attributes
by influencing its response to various stimuli. It is essential
to note that security, as a critical quality attribute, is also
profoundly influenced by the selection and implementation of
suitable tactics. Tactics are implemented through employing
patterns specific for a particular tactic.

A distinction must be drawn between architectural patterns
presented by Bass et al. [9] (see Section I) and software
design patterns, presented by Gamma et al. [54]. The former
pertains to creating software architectures that meet specific
quality attributes to a predetermined extent. In contrast,
the latter proposes reusable software designs, such as class
composition, responsibilities, and methods, to improve the
maintainability of software by employing object-oriented
structures and behaviors.

Billawa et al. [S22] emphasize the significance of archi-
tectural patterns in developing secure microservices. They
provide examples such as the API Gateway, the Command
Query Responsibility Segregation (CQRS), and the Circuit
Breaker pattern, contributing primarily to the availability
of microservices [9]. The API Gateway can be employed
when data from multiple microservices need to be retrieved.
In particular, it encapsulates the software architecture in
an API tailored for each individual internal or external
actor, acting as an authentication and authorization hub.

90268 VOLUME 12, 2024

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

FIGURE 7. Categories of mitigation strategies and level of focus they are described in the studies.

On the other hand, the Circuit Breaker pattern is designed
to prevent a chain reaction of security failures. By setting a
threshold that determines the maximum number of failures
a microservice can tolerate, it helps mitigate the impact
of security breaches. The authors also consider the CQRS
pattern to be suitable for securingMSA. It involves separating
read and write operations in a data store, making it easier to
ensure that only authorized entities can read and write data.
Recognizing that security is significantly connected to the
principles of confidentiality, integrity, and availability, these
principles together constitute the widely recognized ‘‘CIA
triad’’ [9], [55].

Additionally, Márquez and Astudillo [S23] investigate the
utilization of architectural tactics and patterns in microser-
vices development, focusing particularly on availability
patterns and tactics.

d: SECURE MICROSERVICE DEVELOPMENT
Waseem et al. [S25] discuss the use of decision models
in choosing appropriate design patterns and strategies for
MSA, specifically in the context of microservice security.
The decision model outlined in the paper requires architects
to assess the relative importance of various attributes, such
as security, confidentiality, integrity, and availability. Each
design pattern and strategy is then connected to one or more
of these attributes, either positively or negatively impacting
them. Zdun et al. [S41] outline approaches for developing
quality-focused microservices APIs by means of reusable
decisions, which encompass design patterns, practices,
or specific choices. In a similar vein, Zimmermann et al.
[S45] devise a pattern language that can be applied to the
creation of secure microservice APIs, among other uses.

Ponce [S33] describes a methodology for developing a
taxonomy of security smells and mitigation strategies that
are specific to microservice security. This taxonomy provides
a set of refactorings that serve as a guide for creating
secure microservices. These refactorings share similarities
with security tactics in their concrete definitions and in the
directive manner in which they should be executed. Nkomo
and Coetzee [S32] suggest a range of best practices for the
secure development of microservices, including implement-
ing and validating secure software development practices,
safeguarding configurations (such as those for containers)
during runtime, continuously monitoring assets, employing
automated adaptation measures in response to attacks, and
meticulously documenting the security requirements of the
microservices architecture. Ahmadvand and Ibrahim [S50]
propose a methodology for transitioning a system from a
monolithic to a microservice architecture, ensuring both
security preservation and optimal scalability. The authors
also applied this methodology in a fictional case study to
demonstrate its practical applicability.

e: VALIDATING ADHERENCE TO SECURITY TACTICS
The study conducted by Zdun et al. [S20] evaluates the
implementation of security measures in MSA and assessed
the extent to which these measures adhered to established
guidelines. The authors identified challenges in ensuring
MSA security, including the difficulties and potential for
errors in manually verifying the system’s compliance with
various security measures. To address this issue, the authors
derived a set of alternative security tactics from the reviewed
literature, which they categorized into several Architectural
Design Decisions (ADD), each focused on a specific aspect

VOLUME 12, 2024 90269

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

of microservice security, such as observability, secure com-
munication, and authentication and identity management.
Additionally, the authors developed metrics to evaluate
the different security tactics and automatically determine
whether a system conforms to the analyzed ADDs and
security measures.

f: DETECTING VULNERABLE CODE
Waseem et al. [S25] present a method for scanning depen-
dencies in MSA to detect vulnerabilities in the development
pipeline and codebase. This strategy can be used to identify
security-related issues in the source code. Schneider and
Scandariato [S47] propose a technique for creating dataflow
diagrams for Java microservices that include security anno-
tations. By doing so, the authors can locate security-related
parts of the source code. Their method utilizes the snow-
balling approach, which entails examining the source code
for specific keywords and iteratively identifying additional
keywords. The researchers achieved a precision rate of over
90% and a recall rate of 85% in validating their approach.

2) USER AUTHENTICATION AND AUTHORIZATION
Figure 7 shows that 13 of the 54 assessed publications
(24%) concentrate on mitigation strategies concerning user
authentication and authorization. It is noteworthy that the
majority of these publications dedicate a medium level of
focus to this topic. Nevertheless, there are also three studies
that exhibit a higher level of interest, delvingmore deeply into
this area with a high level of focus.

Utilizing federated identity is proposed by Li et al.
[S6] as a solution to address the implementation of the
Authentication and Authorization tactic [9] in MSA. This
approach involves the use of technologies such as OpenID
Connect, JWT, andOAuth2. Several security practices related
to user authentication, authorization, and credentials have
been defined by Rezaei Nasab et al. [S2]. In addition,
Zdun et al. [S20] specifically address the identification and
authentication of API clients. The research highlights two
distinct design choices for implementing these processes for
API clients. The first option eliminates any authentication
measures, which is only advisable if the risks of misuse
are negligible [S41]. The second approach recommends
enforcing authentication, a process that can be securely
implemented using protocols such asOAuth, SAML,Kerberos
or LDAP.

a: TOKENS
The use of security tokens, such as JSON Web Tokens (JWT),
is prevalent in many of the analyzed publications. This is
unsurprising, as the Token Pattern is a well-established secu-
rity design pattern in MSA, as described by Richardson [2].
The use of security tokens has been shown to enhance security
in terms of identity management in microservices. According
to Billawa et al. [S22], the JWT standard is effective for
securely transmitting claims between two parties in MSA.
Waseem et al. [S25] introduce the Access and Identity Token

pattern, which utilizes tokens and access-based protocols
such as JWT and OAuth1 & 2. These tokens can carry user
data that can be validated, for example, by an edge-service.
The authors claim that the implementation of this pattern
improves aspects such as confidentiality, integrity, account-
ability, authenticity, and recoverability. Rezaei Nasab et al.
[S2] explored various security practices related to tokens and
credentials, evaluating their effectiveness based on interviews
with microservice practitioners. The study finds that the use
of JWT for handling session revocations and expirations,
as well as the practice of employing asymmetric encryption
for JWT, was considered either absolutely useful or useful by
almost all the interviewed practitioners. Additionally, 78.83%
of the interviewed practitioners believed that encrypting
tokens is either absolutely useful or useful when the tokens
are to be exposed outside the microservices boundaries.

b: USER AUTHORIZATION
According to Nehme et al. [S49], it is essential to verify
the scope of access tokens in incoming requests and to have
a central authorization service, such as for audit purposes,
in order to address theConfused Deputy Problem in microser-
vices. Rezaei Nasab et al. [S2] found that the majority of
microservice professionals they interviewed regarded the
implementation of an API Gateway in large systems as
highly beneficial for authorizing requests to microservices.
Waseem et al. [S25] discuss the Edge-Level Authorization
pattern, which enforces authorization at the API Gateway
and enhances both the security and integrity of the system.
The authors also introduce the Service-Level Authorization
pattern, where authorization is enforced at each individual
microservice through access control policies. The authors
recommend this pattern over the Edge-Level Authorization
pattern as it increases the granularity of the access control
policies and improves the availability, security, and integrity
of the system. Nehme et al. [S13] propose a tool that utilizes
OAuth2 and eXtensible Access Control Markup Language
(XACML) [56], two open standards, to address the challenges
associated with implementing and enforcing access control
in microservices. The system consists of “an access control
server acting as an OAuth2 and XACML server, consumer
microservices that contain OAuth2 client credentials and
require access to resources, resource microservices that
host and expose assets, and a gateway that secures each
microservice” [S13]. According to the authors, the use of
the OAuth2 authorization protocol is an effective mitigation
measure for the security smell of Insufficient Access Control
as discussed by Ponce et al. [S7]. Additionally, Billawa et al.
[S22] also mention OAuth2 as an effective security protocol.

c: DECENTRALIZED AUTHORIZATION
The research conducted by Ponce et al. [S7] highlights
decentralized authorization as a potential mitigation approach
for the Centralized Authorization security smell. By adopting
this approach, which is based on a token-based authorization

90270 VOLUME 12, 2024

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

protocol, authorization can be implemented at the service
level. Xi et al. [S11] propose a scheme for decentralized
access control in microservices, utilizing a blockchain-based
distributed access control scheme and smart contracts to store
policies for microservices authorization. The authors claim
that their scheme not only ensures confidentiality, integrity,
and non-repudiation but also exhibits better performance than
classic access control schemes for microservices. This claim
is supported by the authors’ results of the experiment.

d: USER AUTHENTICATION
Ahmadvand et al. [S14] stress that it is essential to verify the
identity of the end user before making any modifications to
sensitive data in MSA to ensure data integrity. Furthermore,
the authors emphasize the importance of authenticating
configuration changes, such as alterations to container
images. Zdun et al. [S20] suggest two architectural design
decisions related to authentication: a) backend authentication,
which focuses on interactions between systems like service
discovery and microservices, and b) authentication on paths
from clients or UIs to system services, which deals with
interactions between a system and end-users. Both design
decisions propose the use of Token-based Authentication
(using identity tokens, such as JWT tokens) and Protocol-
based Authentication (using encrypted protocols, such as
SSL) as the most secure options for both scenarios.
Ponce et al. [S15] recommend using OpenID Connect [51]
for authentication and OAuth2 for access control as part of
the Defense-In-Depth and follow The Zero Trust Principle
security practices.

e: OPENID CONNECT
Ponce et al. [S7] note that OpenID Connect is considered a
highly effective method for mitigating the Unauthenticated
Traffic security smell. The authors further explain that
this authentication protocol is commonly employed in
conjunction with a JWT to transfer OpenID Connect session
information. Additionally, Billawa et al. [S22] provide
recommendations for the use of OpenID Connect, which are
supported by several gray literature sources.

3) INFRASTRUCTURE DEFENSE AND INTRUSION
MECHANISMS
Security measures and mitigation strategies related to infras-
tructure defense and intrusion mechanisms are presented in
12 of the 54 assessed publications (22.2%). The majority of
these publications have a high level of focus on the topic.

a: DATABASES AND ENVIRONMENTS
The work of Rezaei Nasab et al. [S2] discusses several
security measures for databases and environments in MSA.
According to the survey conducted with microservice
practitioners, two security practices were considered useful
by the majority of respondents. The first practice stresses
the importance of implementing more stringent security
policies in production environments than in development

environments, while still acknowledging the importance of
security measures in development environments. The second
practice highlights the significance of always enforcing
authentication to databases.

b: INTRUSION DETECTION AND RESPONSE
Li et al. [S6] discuss the Intrusion Defender security
tactic, which involves identifying insecure states in MSA
and selecting an appropriate response. The authors rec-
ommend four possible responses: rollback/restart, isola-
tion/shutdown, diversification, and n-variant service scaling.
These responses involve taking specific actions to address
insecure states and maintain the security and integrity of
the system. Yarygina and Otterstad [S29] developed a
real-time system for responding to network attacks using
game theory. Game theory is a branch of applied mathematics
that provides tools for analyzing situations in which players
make interdependent decisions. The approach operates by
dynamically altering microservices, such as by removing,
restarting, or relocating them. It employs the same defender
actions as the approach of Li et al. [S6], along with additional
actions for diversification through relocating service to
another cloud provider, splitting or merging service instances
on a functional code level using dedicated tools, and isolating
or shutting down service instances. Chondamrongkul et al.
[S40] present a method for conducting automated security
analysis for MSA. According to the authors, this approach
can recognize security threats and depict attack scenarios
while also revealing the potential consequences of these
attacks.

c: INTEGRITY PROTECTION
Ahmadvand et al. [S14] define six requirements for main-
taining integrity in MSA. Their requirements for integrity
protection can be listed as follows:

• Enable authentication and tracing of sensitive data
changes by end users

• Protect confidentiality of system secrets in all processes
• Collect unforgeable evidence of insiders’ activities in
tamper-proof storage

• Detect tampering with static artifacts such as config,
script files and binaries

• Raise the bar against program tampering attack (intra-
service integrity protection)

• Enable services to attest to the integrity of their recipi-
ents and senders (inter-service integrity protection)

d: CIRCUIT BREAKER
This pattern involves proxying requests and rejecting them
after a specific number of consecutive failures [2]. It can be
used to time out calls in order to prevent system failures,
as suggested by Márquez and Astudillo [S23]. Additionally,
this pattern can be used to mitigate attacks such as DDoS
attacks, as recommended by Yarygina and Bagge [S31].
By enabling partial failures, it allows some microservices

VOLUME 12, 2024 90271

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

to fail while others remain operational, preventing the entire
system from failing.

e: FIREWALLS AND PACKET INSPECTION
Chondamrongkul et al. [S24] emphasize the importance of
using a firewall to restrict network traffic flowing from
the public to publicly accessible microservices. The use of
the API Gateway pattern simplifies firewalling in an MSA.
According to Soldani et al. [S10], requests from the public
must be routed through the gateway before they reach the
microservices, making it easier to control access to the
microservices.

f: DIVERSIFICATION OF MICROSERVICES
Microservice architectures offer several advantages, one of
which is the ability to create a technologically diverse
environment. According to Lewis and Fowler [3], this archi-
tectural pattern allows for the deployment of each microser-
vice using various programming languages, frameworks, and
technologies. Furthermore, inter-service communication in
MSA can be effectively managed through the use of proxies
or an API Gateway. Yarygina and Bagge [S31] advocate for
the deployment of heterogeneous microservices to enhance
diversity within MSA. This approach helps mitigate attacks
such as low-level exploitation and shared code vulnerabili-
ties, which aremore prevalent in homogeneous environments.
This recommendation aligns with the insights of Otterstad
and Yarygina [S34], where the authors developed a security
monitor service for identifying anomalies in the system
and acting on this, for example, by shutting down infected
microservices. Similarly, Torkura et al. [S35] present the
concept of Moving Target Defense (MTD) to mitigate shared
code vulnerabilities. Their concept enables diversification at
runtime in order to promote uncertainty in the architecture
to increase the effort needed to perform successful attacks
against the architecture. This is achieved through their
techniques for automatic code generation, where code is
transformed into other programming languages at runtime.

g: GENERATION OF ATTACK GRAPHS
Ibrahim et al. [S37] introduce a solution for creating
automatic attack graphs as ameans to identify network threats
within MSA. Their approach utilizes microservices deployed
in containers, rather than traditional network nodes, in the
construction of attack graphs. Designed for integration into a
CI/CD pipeline, their method aims at assisting microservice
practitioners in discovering potential attack paths in MSA,
tomitigate the risks associated with inter-service pivoting and
lateral network movement.

4) MONITORING, TRACING AND LOGGING
Out of the 54 publications, 12 studies (22.2%) focus on
the topic of monitoring, tracing, and logging as a means to
mitigate security threats in MSA. However, none of these
publications demonstrate a particularly high level of focus on
these topics.

a: SECURITY HEALTH ENDPOINT
The concept of the Security Health Endpoint was introduced
by Torkura et al. [S42] as a component of their Security
Gateway implementation. According to the authors, this
concept enhances the monitoring capabilities of MSA,
thereby promoting environmental awareness. The Security
Health Endpoint is based on theHealth Endpoint Monitoring
design pattern, which involves providing an API endpoint for
retrieving essential system information about the health of
microservices. By adhering to this mitigation concept, rele-
vant security metrics should be accessible from endpoint(s)
exposed by the microservice(s), such as an security-health
API endpoint. The Security Health Endpoint offers various
types of information, including, among other things, key
insights from the most recent security assessment. This
includes details about specific affected components and their
related vulnerabilities, as well as metrics like CVEs and
Common Weakness Enumerations (CWE) associated with
each vulnerability. The authors highlight the advantage of
automatically consuming this information from other security
tools, and provide an example where firewalls can retrieve
updated security information from individual services to
construct automated firewall rules.

b: TRACING
The Microservice Observability (OBS) architectural design
decision, as presented in Zdun et al. [S20], encompasses
various related security tactics as alternative decision points.
In this context, observance refers to the enforcement of
logging, monitoring, and the execution of request tracing.
Kalubowila et al. [S16] propose an external validation
solution to reduce latency in MSA. This approach utilizes a
trace analyzer that detects errors by monitoring requests as
they traverse through various services in MSA, identifying
any errors or latency-related issues.

c: MONITORING
A critical aspect of maintaining a microservice architecture
is monitoring the system to detect and respond to anomalies
[S49]. Ahmadvand et al. [S14] suggest enabling tracing
mechanisms for changes to sensitive data within such
architectures. They also emphasize the importance of logging
insider activities, such as those of DevOps personnel,
to improve security. Nkomo and Coetzee [S32] advocate
for monitoring the behavior of microservices during runtime
to ensure system integrity. Additionally, Sun et al. [S39]
introduce their prototype, FlowTap, which is designed for
network monitoring in microservice environments. The tool
monitors the security status of microservices, allowing it
to enforce policies over the network traffic seen by the
microservice. Further, Zeng et al. [S1] suggest monitoring
the containers used for deploying microservices. Li et al.
[S6] introduce the Security Monitor security tactic to monitor
MSA for anomalies that could lead to security issues.

90272 VOLUME 12, 2024

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

Otterstad and Yarygina [S34] present the Security Monitor
Service, which is also discussed in Section III-C3.

5) SECURE COMMUNICATION
Mitigation strategies for inter-service security threats inMSA
based on secure communication techniques are presented
in 11 of the 54 publications studied (20.3%), although the
majority discuss the topic with a low level of focus.

a: TLS
Several studies discuss the application of Transport Layer
Security (TLS) for safeguarding communication between
microservices [S3, S32, S2, S43]. Walsh and Manferdelli
[S43] stress that microservices communications can be
secured through multiple methods, including TLS. The
article primarily focuses on mutual authentication, but the
TLS mechanisms mentioned, such as Baseline Mutual TLS
and Centralized Attested TLS, are integral to the secure
communication process. In addition, Nkomo and Coetzee
[S32] recommend TLS as a mitigation strategy against var-
ious security risks, including unauthorized access, insecure
application programming interfaces, insecure microservice
discovery, and insecure message broker. Rezaei Nasab et al.
[S2] propose several security best practices to improve
the security of microservices communication, based on
their evaluation of gray literature and interviews with
microservices practitioners. One such practice involves using
TLS to secure service-to-database communication, ensuring
that the connection is encrypted and cannot be intercepted or
tampered with. Moreover, Ahmadvand et al. [S14] developed
a framework that focuses on integrity protection of MSA.
This framework requires services to be able to verify
the integrity of other services, ensuring that a service is
indeed the entity it claims to be. The use of TLS is a key
component of this framework, as it provides encryption and
authentication mechanisms that help to maintain the integrity
of microservice communications.

b: MTLS
Ponce et al. [S7] suggest mitigating the security issue of non-
secure inter-service communication through the use of mTLS
for inter-service communication. The authors recommends
the implementation of mTLS to ensure bidirectional encryp-
tion of traffic, rendering it uninterceptable and unalterable.
Similarly, Ponce et al. [S15] advocate for the use of
mTLS for the same purpose. Miller et al. [S44] also posits
that employing mTLS for communication between pods
(i.e., a group of containers on the same Kubernetes host)
contributes to securing data in transit.

c: HTTPS AND FTPS
According to Waseem et al. [S25], an HTTPS enforcement
strategy strategy should be implemented to promote the use
of the HTTPS protocol over HTTP for inter-service commu-
nication. This is to ensure that an encrypted connection is
maintained between the services, which cannot be achieved

using the nativeHTTP protocol alone. Chondamrongkul et al.
[S24] suggest using encrypted protocols such as HTTPS or
FTPS for communication in MSA, but emphasize that this
should be done exclusively on public networks to prevent data
tampering and eavesdropping.

d: API SECURITY
The use of an API rate limiting strategy, as described by
Waseem et al. [S25], is essential to prevent adversaries from
launching brute-force attacks and making excessive API calls
in MSA. Similarly, Genfer and Zdun [S18] conducted a
study aimed at identifying and preventing data exposure
in microservice APIs by determining the minimum amount
of data required for successful exchanges. Their research
objective was to establish an optimal data threshold to reduce
the risk of data breaches. The authors used a source code
detector, developed in a previous research project, to monitor
traffic between APIs. According to the authors, data that are
neither directly consumed nor routed to another API can be
considered excessively exposed, serving as a criterion for
identifying data overexposure. By utilizing this criterion and
their source code analyzer tool, the authors discovered several
instances of overexposure in two open-source microservices
projects that they used for validation of their approach.
However, their study did not cover all aspects of data
exposure.

6) SECURITY POLICIES
Among the 54 publications that were analyzed, 10 of
them (18.5%) discuss methods for enhancing security in
MSA using security policies and implementing mitigation
measures against inter-service security threats. Eight of these
publications focus on this topic with a moderate level of
attention.

a: SECURITY POLICIES
Torkura et al. [S17] developed a tool called CAVAS, which
includes a Security Gateway module that functions as a
Security Enforcement Point (SEP). This module is designed
to enforce policies for automated vulnerability assessments
of container images and to provide continuous security
assessments of microservices, tailored specifically to the
microservices’ technology stack. The CAVAS tool is based
on the foundational concepts established by the same authors
in their previous research publication [S42]. Li et al. [S6]
emphasize the need for security policies for the assessment of
certain vulnerabilities and areas of the network. Soldani et al.
[S10] state that one of the gains of microservices is
the possibility to enforce fine-grained policies, by using
hierarchical groups of subsets of microservices.

b: ACCESS CONTROL POLICIES
Several authors have made significant strides in devel-
oping tools for fine-grained access control in microser-
vices. Xi et al. [S11] present a distributed access control
scheme for microservices cooperation utilizing blockchain

VOLUME 12, 2024 90273

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

technology, featuring smart contracts for storing policies and
a graph-based decision-making scheme for efficient access
control. The scheme enhances confidentiality, integrity,
and non-repudiation while outperforming traditional access
control methods in efficiency, as demonstrated by security
analysis and performance evaluations. Nehme et al. [S13]
utilize XACML to create access control policies to promote
fine-grained access control in microservices. Waseem et al.
[S25] discusses access control policies in relation to the
Service-level Authorization pattern and advocates this pattern
as it provides more control over the enforcement of access
control policies. The authors also state that the pattern covers
several API policies, which can be applied in different ways.
However, the authors do not note the security implications
related to the different ways of applying these policies.
Li et al. [S36] implemented a feature in their tool Jarvis
that uses inter-service interactions extracted from the source
code of an MSA to define such policies. Li et al. [S46] also
developed AutoArmor, a tool that automates the generation
of inter-service authorization policies, and has been proven
effective with minimal overhead. Another approach was
taken by Miller et al. [S44], who developed a workflow that
employs the Sidecar pattern to enforce policies in line with
the zero-trust security model. Furthermore, Sun et al. [S39]
introduce FlowTap, a tool that enforces policies based on
inter-service network traffic.

7) SERVICE MESH, SIDECARS AND API GATEWAYS
The use of mitigation strategies in relation to the Service
Mesh, Sidecar, and API Gateway pattern is examined in 9 of
the 54 publications (see Figure 7), amounting to 16.7% of the
total. However, it should be noted that the majority of these
publications only dedicate a low level of focus to the subject.
On the other hand, three of the nine publications demonstrate
a high degree of focus on the topic.

a: SERVICE MESH
A service mesh is comprised of several key components
that together form the infrastructure layer. These components
include the data plane, also referred to as the mesh
proxy, and the control plane [1]. The Themis framework,
introduced by Aktypi et al. [S21], was designed to facilitate
secure peer-to-peer communication and establish a secure
communication network for a service mesh without the
need for a central certificate authority. The framework
aims to improve security in MSA using a service mesh
through a dual-layer architecture. The upper layer of Themis
supports a peer-to-peer network, while the lower layer offers
an alternative to the commonly used mTLS protocol for
secure inter-service communication and authentication. The
framework also includes features for distributed identity
management [S21]. As a prototype,Themiswas released as an
open source project onGitHub, and its performance overhead
was evaluated as minimal, averaging only a throughput
overhead of 1.24%. El Malki and Zdun [S38] recommend
prioritizing encryption and efficient key management for

improving security in service meshes, which can be achieved
through either API keys or a central certificate authority
in the control plane. Additionally, they propose setting up
authorization in either the control plane or data plane.
Alboqmi et al. [S48] present a method for securing MSA
using self-protection measures in the service mesh. The
authors describe self-protection as a means of responding
to security threats autonomously and automatically once
they are detected. To enable self-protection in the service
mesh, the authors overcame previous limitations of static
configuration by developing a system that dynamically
alters traffic routes and controls information flow based on
threat assessments and defined preferences. Sedghpour and
Townend [S19] highlight the increasing popularity of using
extended Berkeley Packet Filter (eBPF) in combination with
service meshes in MSA. eBPF is considered a lightweight,
sandboxed virtual machine embedded within the Linux
kernel, where calls are made through kernel hooks. The
authors state that this enables security actions to be performed
with low overhead.

b: SIDECAR
Suneja et al. [S26] assess various methods to securely
implement container fusion. They explore the Sidecar pattern
as a solution to ensure that container fusion does not increase
the overall risk of the system. In their evaluation, they have
taken into account the possibility of malicious code within
the fused container. To securely attach to a microservice,
they have set up a Sidecar while limiting access to critical
system components such as disk, memory, network states,
and resource statistics. The demonstration has shown that
their implementation does not compromise the security of
the system, and it only results in negligible performance
overhead.

c: API GATEWAY AND BACKENDS FOR FRONTENDS
Several studies indicate the positive security attributes that
the adoption of the API Gateway pattern can bring to MSA
[S3, S7, S2, S25]. According to Waseem et al. [S25], the
implementation of the API Gateway pattern can enhance the
security, availability, and portability of MSA. Additionally,
Waseem et al. [S25] report that the use of the Backends for
Frontend (BFF) pattern, similar to the application of the API
Gateway, can also improve these same security properties.
Ponce et al. [S7] recommend adding an API Gateway to
mitigate the risks associated with having publicly accessible
microservices. By enforcing security at this component
before the request reaches the microservices, an additional
layer of security is added to the architecture, which is not
present when microservices are directly exposed to the public
environment.

8) INTER-SERVICE AUTHENTICATION AND AUTHORIZATION
Based on the analysis of 54 publications, only 5 of them
(9.3%) discuss mitigation strategies related to this topic.
While the majority of these publications demonstrate a high

90274 VOLUME 12, 2024

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

level of focus on the subject matter, the overall number of
publications addressing this topic remains relatively small.

a: INTER-SERVICE AUTHENTICATION
According to Walsh and Manferdelli [S43], the current TLS
standards used for inter-service authentication and attestation
(the process of verifying identity & integrity), such as
Baseline Mutual TLS and Federated Attested TLS-PSK, were
evaluated based on benchmarking tests. However, the authors
did not assess the relative security level of these standards.
In conclusion, the authors consider all the assessed protocols
to be capable of providing trustworthiness to MSA, although
each protocol has a different level of performance overhead.
Several studies [S7, S31, S15] advocate for the use of mTLS
to ensure authentication at the inter-service level. Similarly,
Ponce et al. [S7] advocate the use of mTLS to enable
authentication between services to mitigate the Unauthen-
ticated Traffic security smell, which is also defined in the
study. Yarygina and Bagge [S31] also present a prototype
for securing and enabling inter-service authentication with
mTLS, Public key infrastructure (PKI) and tokens. The study
discovered that the implications of enabling these security
measures provided minimal performance overhead.

b: INTER-SERVICE AUTHORIZATION
Li et al. [S36] introduce the Jarvis tool, developed for the
automated creation of inter-service authorization policies.
This tool examines the architecture of microservices prior
to deployment, identifying potential communication patterns
among services to form corresponding policies. Furthermore,
Jarvis actively observes the operational behavior of MSA,
gathering updated information to refine and adapt these
policies accordingly. The tool was developed to mitigate
the issues associated with having to manually configure
inter-service authorization policies, which could be both a
tedious and error-prone manual task, especially considering
the flexible architecture of microservices constantly in
change.

9) SECURING DATA AT REST
The issue of secure data storage is mentioned in 5 of the
analyzed publications, which constitutes 9.3% of the total
studies evaluated. However, the level of attention given to this
topic is generally limited. Out of this group, only one study
is classified as having a moderate level of emphasis on the
topic, based on the established criteria. The other studies that
briefly address this topic do so with a relatively low level of
detail or focus.

a: ENCRYPTION OF DATA AT REST
The importance of encrypting data at rest is a central
theme in the study conducted by Mateus-Coelho et al.
[S5]. The study emphasizes the use of widely recognized
and public cryptographic algorithms. The advantages of
these algorithms, such as regular updates with security
patches, comprehensive penetration testing, and ongoing

scrutiny by security experts, are highlighted in the study. The
authors argue that such rigorous maintenance and validation
processes ensure the effectiveness and reliability of these
algorithms in safeguarding data at rest. In addition, the
study by Ponce et al. [S7] also recommends the use of
established and widely recognized encryption technologies
for encrypting data at rest. This emphasizes the significance
of employing proven cryptographic methods that have
undergone extensive examination and testing.

b: ENCRYPTING AND MANAGING SECRETS
The significance of encrypting confidential informationwhen
it is stored has been highlighted by Ponce et al. [S7],
who recommend it as a fundamental security strategy. This
approach includes avoiding the storage of secrets in reposito-
ries intended for application code and refraining from placing
them in environment variables or near the application itself.
This measure is critical to safeguard sensitive information
and prevent unauthorized access. Billawa et al. [S22] also
stress the importance of encrypting data at rest to ensure their
confidentiality. Additionally, Waseem et al. [S25] propose a
security strategy called Encrypt and Protect Secrets, which
involves the use of secret vaults like HashiVault [57] and
Microsoft Azure Key Vault [58] for secret storage. The work
of Ahmadvand et al. [S14] emphasizes the importance of
secure secret management, specifically in differentiating
access between development and production environments.
The authors advocate a system where developers can access
secrets during the development phase, but these secrets are
tightly controlled and restricted in production environments.
This approach ensures that secrets are not accessed or
exposed to unauthorized individuals in production, and are
generated and distributed confidentially.

10) SECURITY APPROACHES AND MODELS
As depicted in Figure 7, five of the 54 publications (9.3%)
center around security approaches and models that serve to
alleviate inter-service security threats in the context of MSA.
It is noteworthy that the majority of these publications devote
only a low level of focus to this subject.

a: CONCEPT OF LEAST PRIVILEGES
Ponce et al. [S7] recommend to follow the Least Privilege
Principle as a security refactoring strategy to mitigate
the security smell of granting Unnecessary Privileges to
Microservices, identified by the same authors. Newman [1]
describes theMinimum Privilege Principle as a way to ensure
that microservices are given the minimum privileges required
to fulfill their tasks. Billawa et al. [S22] also mention the
concept of least privileges as a security best practice that is
recommended to adhere to when developing microservices.

b: DEFENSE-IN-DEPTH
The principle of Defense-in-Depth is a strategy that involves
positioning defensive measures at multiple locations within

VOLUME 12, 2024 90275

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

MSA [1]. To achieve this, network segmentation, limiting
microservice privileges, and enforcing service-level autho-
rization can be employed. This approach is recommended by
Ponce et al. [S15] tomitigate theNo Layered Defense security
smell, which occurs when insufficient layers of security
defense measures are in place. This strategy is particularly
effective in implementing adequate defense measures in the
outermost layer of a system, as emphasized by Ponce et al.
[S15]. Implementing Defense-in-Depth also involves a)
positioning every service behind a firewall, b) using an
API Gateway to enforce security on incoming requests,
c) employing mTLS, OAuth2, and OpenID Connect for
encryption and access control between services, d) adhering
to the Least Privilege Principle, e) securing sensitive data
through encryption, f) verifying service input for validity, and
g) enforcing observability measures such as monitoring and
logging information. This pattern has been widely recognized
as one of the most effective security measures inMSA. As per
Billawa et al. [S22], this approach is considered to be one
of the best practices for ensuring the microservice security.
Moreover, Waseem et al. [S25] refer to this pattern as the
Layered Defense design pattern, and state that it enhances
the security, confidentiality, and integrity of the system.
By implementing this pattern, multiple API layers and
gateways are utilized, each enforcing specific authentication
and authorization rules.

c: ZERO-TRUST PRINCIPLE
Ponce et al. [S15] recommend applying the Zero-Trust
Principle to mitigate the Trust The Network security smell.
The authors state that all their examined studies discussing
this security smell agree that it can be mitigated by applying
the Zero-Trust principle. The authors also associate a set
of recommendations with the practice of implementing the
Zero-Trust Principle, which briefly summarized includes; use
mTLS between services, the use of OpenID Connect to verify
identity at the edge, use OAuth2 to enforce authorization at a
service level, and enforce network segmentation. In the study
by Miller et al. [S44], the authors follow the principles of
zero-trust to define a secure system in which data exchanges
between untrusted parties can be performed.

11) CONTAINERIZATION AND ORCHESTRATION
Figure 7 shows that 4 of the 54 analyzed publications (7.4%)
discuss mitigative strategies related to containerization and
orchestration, with the majority of these devoting a low level
of focus to the topic. Nehme et al. [S49] suggest that container
firewalls should be used to analyze all requests it receives,
whether it is originating from the API gateway or other
microservices.

a: MITIGATING VULNERABILITIES IN CONTAINERS
Torkura et al. [S17] explore the challenges in recognizing
vulnerabilities within container images in the context of
MSA and introduce their prototype called CAVAS (see
Section III-B2), designed to detect and validate these

vulnerabilities while minimizing false positives. CAVAS
is intended for use in both development and production
environments, with the aim of identifying vulnerabilities as
early as possible in the software development lifecycle. The
authors conducted various validation tests of the tool in a lab
environment to assess the tool’s ability to detect and validate
vulnerabilities, as well as its efficiency in doing so. Addi-
tionally, they assessed the effectiveness of the tool’s security
policies and demonstrated that CAVAS is significantly more
effective than traditional security testing techniques, showing
a 31.4% improvement in the identification of vulnerabilities
compared to these conventional methods. The authors also
developed and integrated a specialized set of policies into the
tool, with the goal of identifying vulnerabilities arising from
shared code prior to their deployment in containers. Nkomo
and Coetzee [S32] present several protection measures for
a list of identified security threats. To mitigate the threats
of an insecure runtime infrastructure, the authors list several
mitigation strategies. The process of vulnerability scanning
should be conducted for containers prior to their deployment
to the production environment. This entails the creation
and validation of secure configurations for all infrastructure
components. Additionally, containers should be grouped
based on their relative sensitivity, which refers to the potential
impact of a malfunction. Billawa et al. [S22] identified the
security practice of employing immutable containers as a
key best practice in their research. This approach entails
restricting updates to containers once they are deployed.
Moreover, the authors recommend external data storage
separate from the containers to ensure data preservation and
easy access if container replacement is necessary.

12) SECURITY PERIMETERS AND NETWORK SEGMENTATION
Figure 7 illustrates that the use of security perimeters and
network segmentation tomitigate security threats is discussed
in 4 of the 54 analyzed publications (7.4%), with the majority
of these studies devoting a low level of focus to the topic.

a: PRIVATE MICROSERVICES
Rezaei Nasab et al. [S2] describe two practices for managing
private microservices, i.e., microservices that are meant to
be accessed only by a specific set of end users and should
be isolated from other networks. The first practice states
that it should not be possible to verify the existence of
a private microservice from an external microservice. The
second practice suggests that service grouping should be
implemented to restrict communication and visibility to the
member services in the group. Both of these security practices
were found to be either absolutely useful or useful by the
majority of the study’s respondents.

b: NETWORK SEGMENTATION
Mateus-Coelho et al. [S5] advocate for network segregation
as a countermeasure against security threats in microservices.
The authors propose that distributing microservices across
various networks or subnets, managed through firewalls or

90276 VOLUME 12, 2024

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

filtering rules, is an effective strategy to improve security.
However, the authors do not provide guidance on how
microservices should be effectively segregated to enhance
system security. Ponce et al. [S15] further assert that network
segmentation should be applied to enforce the Zero-Trust
Principle, also known as the Zero-Trust Security Model.
Adherence to this model implies that one assumes that the
environment has already been breached. As a result, this
assumption implies the need to consider a potential adversary
who attempts to eavesdrop on network traffic, establish
unauthorized connections, or engage in other malicious
activities [1]. However, the authors do not specify how the
network should be segmented or how to determine which
microservices should be isolated.

c: MICROSERVICES ISOLATION
The concept of isolating microservices is thoroughly dis-
cussed in Otterstad and Yarygina [S34]. The authors explore
how the isolation of microservices, in conjunction with
the divergence of software, can mitigate the exploitation
of system layers, referred to as low-level exploitation in
the publication. The study examines the implementation
of automatic microservice isolation when anomalies, which
could pose potential security risks, have been detected
by a monitoring component. The publication recommends
isolating a single node or multiple nodes exhibiting similar
anomalies to safeguard the microservice architecture. The
authors assert that the combination of automated isolation
and software diversity enhances the defense against low-level
exploitation.

IV. DISCUSSION
When categorizing the studies according to their primary
security focus (properties P8 and P10, Table 7 in the
Appendix), we observed that the majority of the analyzed
publications presented mitigation strategies rather than delv-
ing into descriptions of specific inter-service security threats
inMSA. Also, the elaboration of security threats was often on
a relatively low level of focus, according to our classification
scheme outlined in Table 10 in the Appendix.

A. SECURITY THREATS
In the context of security threats, we already noted in
Section III-B1 that numerous publications have examined
issues related to the security perimeters and attack surface
within MSA. Nevertheless, the majority of these publications
have restricted their analysis to a general overview, without
delving into in-depth exploration or detailed examination of
this topic.

Themajority of the studies reviewed in this context concen-
trated on cloud technologies, such as container and orchestra-
tion threats, as delved into in Section III-B2. Microservices,
often employed in conjunction with these technologies,
present unique security challenges. The analyzed research
delves into issues pertaining to both the technological diver-
sity in MSA and the utilization of homogeneous technology

stacks. These two concepts, despite seeming contradictory,
imply that there is no definitive approach to designing secure
microservices. Technological diversity in MSA can result in
increased complexity and a more extensive attack surface,
especially due to third-party vulnerabilities. For example,
deploying 300 distinct microservices using 5 programming
languages will likely yield a greater number of libraries
and software packages than a monolithic application that
employs a single programming language. Conversely, if these
300 microservices are constructed using the same technology
stack and are horizontally scaled, the homogeneity of
these services could facilitate shared-code vulnerabilities,
potentially making every microservice susceptible to the
same attacks.

B. MITIGATION STRATEGIES
In this realm, we found that the research was more advanced
and provided us with comprehensive information on security
measures and threat mitigation. Particularly, we were able to
gather valuable insights on topics such as secure code, design
patterns, and architecture (Section III-C1), user authentica-
tion and authorization (Section III-C2), and infrastructure
defense and intrusion mechanisms (Section III-C3) from a
significant number of evaluated publications.

For topics addressing mitigation strategies, we have
observed more mature and detailed research, such as for the
subtopics of diversification of services, as addressed in the
works by Otterstad and Yarygina [S34] and Torkura et al.
[S35] in Section III-C3. Additionally, we noted that many
of the studies relied on conceptual frameworks to derive
their presented mitigation strategies. These frameworks span
a variety of approaches, including design patterns, security
tactics, and mitigation decisions (refer to Section III-C1),
reflecting efforts to systematically address and mitigate
inter-service security threats.

C. IMPLICATIONS FOR RESEARCHERS AND
PRACTITIONERS
For researchers, developing methodologies and tools that can
help define precise security perimeters, identify and mitigate
unnecessary privileges, and securely configure containers and
orchestration platforms may be directions for future research.
Our study particularly revealed a dearth of examination of the
implications of proposed methods and tools, particularly with
respect to their advantages and disadvantages in practical
scenarios. Additionally, further advancements in monitoring
and intrusion detection mechanisms are required, which are
specifically tailored to the polyglot nature of microservices.

Practitioners must adopt a comprehensive approach that
goes beyond traditional security measures in order to effec-
tively protect MSA against security threats. By implementing
zero-trust architectures, which minimize trust assumptions
within and across services, and by employing fine-grained
access control mechanisms, they can significantly enhance
the security posture of microservice-based systems. Fur-
thermore, it is crucial to securely configure and manage

VOLUME 12, 2024 90277

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

container and orchestration tools, as these play a critical
role in MSA and can introduce significant security risks
if not properly managed. Further, dedicated training with
respect to DevSecOps practices to integrate securitymeasures
throughout the development lifecycle, utilizing secure design
patterns, and deploying sophisticated authentication and
authorization mechanisms is highly advisable.

V. THREATS TO VALIDITY
According to the taxonomy developed by Wohlin et al. [59],
there are possible threats to external, internal, construct and
conclusion validity of our study.

A. EXTERNAL VALIDITY
External validity concerns the broader applicability of a set of
results, particularly in situations that differ from the specific
context in which they were obtained [59].

The classification schemes outlined in this SLR, specifi-
cally those presented in Table 8 to 10 in the Appendix, were
developed using the retrieved papers. However, it is possible
that future studies may not fit to these classification schemes,
which could impact the external validity of these schemes.

B. INTERNAL VALIDITY
As per Wohlin et al. [59], internal validity pertains to the
legitimacy of the methods employed to study and examine
data, taking into account any biases present. Three steps of
our used researchmethodmight particularly affect the study’s
internal validity.

In the paper selection process (see Section II-D), the deci-
sion of whether or not to include a paper can be subjective and
influenced by the personal views of the authors. To address
this potential selection bias, we employed an online tool
for managing systematic reviews (https://www.rayyan.ai)
to document the individual authors’ decisions regarding
inclusion or exclusion of each retrieved paper. The decisions
were documented at the level of the individual inclusion
criteria (I1-I3) or exclusion criteria (E1-E8). During the
first round, each author used the tool to document their
decisions independently. For the second round, if all authors
agreed on the same inclusion or exclusion criteria for a
paper, we have taken over this decision without further
discussion. However, if there were discrepancies in the
authors’ individual decisions whether to include or exclude
a paper, all authors participated in a joint discussion to
reconcile their differences and arrive at a consensus decision,
which was then recorded in the tool.

When assessing the quality of the studies (see Sec-
tion II-E), subjective judgments of the authors may introduce
biases with regards to a study’s quality. This particularly
pertains to identifying biases in the studies, gauging the
clarity and relevance of findings and the appropriateness of
sample sizes in solution proposals. To address this issue, the
first and third authors collaborated in assessing the quality of
each paper, while the second author independently verified
a random sample of both included and excluded studies to

ensure unbiased and consistent quality assessments. In cases
of inconsistencies, all authors engaged in discussions to
reconcile different judgments regarding a study’s quality.

The classification of papers into predefined categories
(experience paper, evaluation research, etc.) and the assign-
ment of papers to specific contribution types (model,
method, etc.) (see Section II-F1) may rely on subjective
judgments of the authors. To mitigate this potential bias,
a standardized data extraction form (see Table 7) was created
and used consistently to extract and analyze data in a
manner that would allow to answer the research questions.
Moreover, to ensure the accuracy of the extracted data,
a random subset of the data was cross-checked by the first
author. Additionally, to reconcile any inconsistencies in the
extracted data, the first and second author engaged in regular
discussionswith the third author, who carried out a substantial
portion of the data extraction process.

C. CONSTRUCT VALIDITY
Construct validity pertains to extending the findings of a
study to the underlying theory or concept. Various threats
may arise from the design of the experiment itself or from
social factors (e.g., researchers’ biases) [59]. We particularly
regard threats to construct validity in the search method (see
Section II-B1) used for this SLR.
One of the potential threats in this context is the possibility

of missing or excluding relevant papers. To mitigate this
threat, we used five popular digital libraries to retrieve
relevant papers, as discussed in Section II-B3. In addition,
we employed three strategies to mitigate any potential threats
in the search strategy. First, we developed our search string
based on the PICO scheme, as suggested by Petticrew
and Roberts [37]. Second, we improved our search string
iteratively based on the results of the pilot search and tested it
carefully before executing it to search for the papers retrieved
for this review. Third, we employed a backward snowballing
step, adhering to the guidelines of Wohlin [33], to identify as
many related papers as possible by manually searching the
references of selected papers.

D. CONCLUSION VALIDITY
The validity of a study’s conclusion refers to the extent
to which the results can be used to make accurate conclu-
sions [59]. It is crucial to correctly interpret the data that have
been extracted and to recognize potential threats, such as the
researchers’ biases, which could undermine the validity of the
conclusions that are drawn from the data.We regard particular
threats to conclusion validity when synthesizing the extracted
data (see Section II-E).

The process of coding properties P8 to P11 (see Table 7 in
the Appendix) and categorizing studies as related to security
threats or mitigation strategies was prone to individual inter-
pretation, which necessitated a predefined list of recurring
themes that emerged during our initial review. This list was
agreed upon by all authors prior to the synthesis and served
as a guide for our thematic analysis. Each paper was read

90278 VOLUME 12, 2024

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

by at least two authors prior to its analysis. Subsequently,
each author independently coded a subset of papers, followed
by group discussions with the other authors to reconcile any
differences in coding and interpretation. This collaborative
approach promoted a unified understanding and consistent
application of the coding schema.

The creation of new categories for topics not initially
anticipated may have been influenced by the researchers’
familiarity with the domain or their subjective perception
of the importance of certain themes. As such, there is a
risk of overemphasis on specific areas. The third author
was primarily responsible for the categorization and the
creation of new categories. To ensure that the categorization
was accurate and comprehensive, the following process was
organized: if new categories needed to be added or existing
ones refined, the third author recorded this information. The
authors then engaged in iterative discussions to reconcile
the categorization, particularly to revise the new categories
and the papers that should be assigned to them. These
discussions continued until all authors agreed on a common
categorization, i.e. the refinement of existing categories or the
addition of new ones.

During the coding process, we also recognized that the
studies have a diverse focus on the identified categories from
the background of inter-service communication. To address
this disparity in focus, we utilized an ordinal scale, with levels
of attention classified as low, medium, or high. However,
there may be potential for interpretation bias in the use of
such a subjective scale. To mitigate this bias, we have defined
explicit criteria for each level of focus (see Table 10 in the
Appendix). These criteria were refined and discussed among
the authors to ensure consensus.

VI. CONCLUSION
Microservice architectures pursue a modular approach to
developing large software systems, but they also introduce
particular complexities related to inter-service communi-
cation, which requires the adoption of suitable security
mechanisms to ensure resilience. The field of inter-service
security presents distinct challenges for developers and
security professionals who are accustomed to monolithic
architectures. As a result, they may encounter difficulties in
understanding the specific security threats associated with
this architectural style and in identifying effective strategies
for mitigating and reducing these risks. In this paper we
have explored the intricate landscape of security threats
and mitigation strategies for inter-service communication in
microservice architectures. Through a systematic literature
review encompassing 54 publications, we have analyzed
the current state and trajectory of research in this field,
emphasizing the prevailing focus of existing studies on con-
tributing methods, models, and guidelines. In the following,
we summarize our main conclusions:

(a) The majority of analyzed studies primarily focus on
presenting methods, models, and guidelines, with a

considerable number involving research with validation
and evaluation. We interpret this as a commitment
to rigorously examining the effectiveness of proposed
security solutions, ensuring they are both innovative and
practically viable for microservice architectures.

(b) The number of publications in this field has increased
since 2015, with a slight decline in 2020, likely due to the
impact of the Corona pandemic. Of these publications,
conference papers make up the largest proportion (33
conference papers, 18 journal articles, 3 workshop
papers), demonstrating the diverse range of platforms
used to disseminate research in this area.

(c) A significant portion of the reported security threats
are associated with the security perimeters and attack
surface of microservice architectures, as well as
aspects of containerization and orchestration. Another
recurrent theme across is the inadequate implemen-
tation of monitoring and intrusion detection tech-
niques in this domain, highlighting a critical area of
vulnerability.

(d) There appears to be a general shortfall in the compre-
hensive analysis of security threats within the reviewed
literature, with the overall level of focus on reported
security threats being relatively low. This is especially
true in the realms of inter-service authentication and
authorization, and inter-service communication, where
in-depth exploration is particularly scarce.

(e) We have noticed a greater emphasis on mitigation
strategies compared to studies that concentrate on
security threats. In this sense, a significant number of
publications have been dedicated to discussing topics
such as infrastructure defense, monitoring, tracing and
logging, secure coding, design patterns, and architecture
in detail. Each of these topics has received considerable
attention and focus. The majority of studies can be
classified as validation research and solution proposals,
with their primary contribution being the development
of methods.

(f) In the frame of mitigation strategies, we have identified
advanced research on more complex methods for
modifying microservice architectures at run-time to
enhance their resilience against attacks. The research
observed in the realm of security threats in inter-service
communication can be characterized as less sophisti-
cated.

Future studies could greatly benefit from conceptualizing
the identified security threats and their corresponding mit-
igation strategies in relation to one another, in a manner
similar to the categorization of security smells presented by
Ponce et al. [27]. Establishing a clear connection between
security issues and mitigation strategies to address them
could offer valuable guidance, particularly for practitioners.
Further investigation could involve the use of empirical
methods, such as user studies, focus groups, or expert
interviews, to assess the challenges associated with the

VOLUME 12, 2024 90279

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

TABLE 6. Studies selected for the review.

90280 VOLUME 12, 2024

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

TABLE 6. (Continued.) Studies selected for the review.

practical implementation of the mitigation strategies iden-
tified in our study. Additionally, it would be beneficial
to evaluate the identified security threats using predefined
criteria, such as their potential risk to organizations and the
effectiveness, complexity, and potential side effects of the
corresponding mitigation strategies. Complementary, future
research should focus on the development of methodologies
and tools that define precise security perimeters, eliminate
unnecessary privileges, and securely configure containers and
orchestration platforms. Our study found a lack of research
on the practical implications of proposed methods and tools,

including their advantages and disadvantages. Additionally,
improved monitoring and intrusion detection mechanisms
are needed to address the unique challenges of polyglot
microservices.

We also discovered a deficiency in the existing literature
regarding the used terminology in the general context of
microservice security. It became evident that different authors
classify certain concepts differently, with some referring
to them as “design patterns” while others categorize them
as “security tactics”. To address this issue, we advocate a
taxonomy that brings together all the relevant tactics, design

VOLUME 12, 2024 90281

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

TABLE 7. Properties extracted from the studies and related research questions.

TABLE 8. Research types, adapted from Petersen et al. [39] and Wieringa et al. [40].

TABLE 9. Contribution types, adapted from Shaw [41] and Paternoster et al. [42].

TABLE 10. Levels of focus that studies take on security threats or mitigation strategies.

patterns, methods, and other related concepts in the field. This
taxonomy could provide much-needed clarity and guidance

on best practices and principles to follow when developing
secure microservices.

90282 VOLUME 12, 2024

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

TABLE 11. Research and contribution types of the studies.

VOLUME 12, 2024 90283

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

TABLE 12. Categorization of the studies regarding described security threats and their level of focus on it.

TABLE 13. Categorization of the studies regarding described mitigation strategies and their level of focus on it.

APPENDIX
SELECTED STUDIES
See Table 6.

CLASSIFICATION SCHEMES
See Tables 7–10.

CLASSIFICATION OF THE STUDIES
See Table 11.

CATEGORIZATION OF SECURITY THREATS AND
MITIGATION STRATEGIES
See Tables 12 and 13.

REFERENCES

[1] S. Newman, Building Microservices: Designing Fine-Grained Systems.
Sebastopol, CA, USA: O’Reilly Media, 2021.

[2] C. Richardson, Microservices Patterns: With Examples in Java.
Shelter Island, NY, USA: Manning, 2019.

[3] J. Lewis and M. Fowler. (2014). Microservices. Accessed: May 25, 2024.
[Online]. Available: https://Martinfowler.com/articles/microservices.html

90284 VOLUME 12, 2024

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

[4] E. Wolff, Microservices: Flexible Software Architecture, 1st ed. London,
U.K.: Pearson, 2021.

[5] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, ‘‘Microservices: Yesterday, today, and
tomorrow,’’ in Present and Ulterior Software Engineering, M. Mazzara
and B. Meyer, Eds. Cham, Switzerland: Springer, 2017, pp. 195–216, doi:
10.1007/978-3-319-67425-4_12.

[6] C. Pautasso, O. Zimmermann, M. Amundsen, J. Lewis, and N. Josuttis,
‘‘Microservices in practice, part 1: Reality check and service design,’’
IEEE Softw., vol. 34, no. 1, pp. 91–98, Jan. 2017. [Online]. Available:
https://ieeexplore.ieee.org/document/7819415

[7] N. Alshuqayran, N. Ali, and R. Evans, ‘‘A systematic mapping study in
microservice architecture,’’ in Proc. IEEE 9th Int. Conf. Service-Oriented
Comput. Appl. (SOCA). Macau, China: IEEE, Nov. 2016, pp. 44–51.
[Online]. Available: http://ieeexplore.ieee.org/document/7796008/

[8] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov,
‘‘Microservices: The journey so far and challenges ahead,’’ IEEE Softw.,
vol. 35, no. 3, pp. 24–35, May 2018.

[9] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice
(SEI Series in Software Engineering), 4th ed. Upper Saddle River, NJ,
USA: Addison-Wesley, 2021.

[10] L. Calcote and Z. Butcher, ISTIO: Up and Running: Using a Service Mesh
to Connect, Secure, Control, and Observe. Sebastopol, CA, USA: O’Reilly
Media, 2019.

[11] R. S. de O. Júnior, R. C. A. da Silva, M. S. Santos, D. W. Albuquerque,
H. O. Almeida, and D. F. S. Santos, ‘‘An extensible and secure
architecture based on microservices,’’ in Proc. IEEE Int. Conf. Con-
sum. Electron. (ICCE), Jan. 2022, pp. 1–2. [Online]. Available: https://
ieeexplore.ieee.org/document/9730757

[12] P. Siriwardena and N. Dias, Microservices Security in Action.
Shelter Island, NY, USA: Manning, 2020.

[13] U. Zdun, P.-J. Queval, G. Simhandl, R. Scandariato, S. Chakravarty,
M. Jelic, and A. Jovanovic, ‘‘Microservice security metrics for secure com-
munication, identity management, and observability,’’ ACM Trans. Softw.
Eng. Methodol., vol. 32, no. 1, p. 16, Feb. 2023, doi: 10.1145/3532183.

[14] F. Al-Doghman, N. Moustafa, I. Khalil, N. Sohrabi, Z. Tari, and
A. Y. Zomaya, ‘‘AI-enabled secure microservices in edge comput-
ing: Opportunities and challenges,’’ IEEE Trans. Services Comput.,
vol. 16, no. 2, pp. 1485–1504, Mar. 2023. [Online]. Available: https://
ieeexplore.ieee.org/document/9723563

[15] M. D. Hossain, T. Sultana, S. Akhter, M. I. Hossain, N. T. Thu,
L. N. T. Huynh, G.-W. Lee, and E.-N. Huh, ‘‘The role of microservice
approach in edge computing: Opportunities, challenges, and
research directions,’’ ICT Exp., vol. 9, no. 6, pp. 1162–1182,
Dec. 2023. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2405959523000760

[16] A. Kollu, K. K. Chennam, and D. Mahajan, ‘‘An empirical review
on secure edge computing architecture,’’ in Proc. 2nd Int. Conf.
Cogn. Intell. Comput., in Cognitive Science and Technology,
A. Kumar, G. Ghinea, and S. Merugu, Eds. Singapore: Springer, 2023,
pp. 661–668.

[17] A. H. Sodhro, A. Lakhan, S. Pirbhulal, T. M. Groenli, and H. Abie,
‘‘A lightweight security scheme for failure detection in microservices
IoT-edge networks,’’ in Sensing Technology (Lecture Notes in Electrical
Engineering), vol. 886. Cham, Switzerland: Springer, 2022, pp. 397–409.
[Online]. Available: https://link.springer.com/10.1007/978-3-030-98886-
931

[18] C. Meadows, S. Hounsinou, T. Wood, and G. Bloom, ‘‘Sidecar-based
path-aware security for microservices,’’ in Proc. 28th ACM Symp. Access
Control Models Technol.NewYork, NY, USA: Association for Computing
Machinery, May 2023, pp. 157–162, doi: 10.1145/3589608.3594742.

[19] The Linux Foundation. (2024). Production-Grade Container Orchestra-
tion. Accessed: Feb. 8, 2024. [Online]. Available: https://kubernetes.io/

[20] Docker Inc. (2024).Docker. Accessed: May 25, 2024. [Online]. Available:
https://www.docker.com/

[21] F. Dewanta, ‘‘Secure microservices deployment for fog computing
services in a remote office,’’ in Proc. 3rd Int. Conf. Inf. Commun.
Technol. (ICOIACT), Nov. 2020, pp. 425–430. [Online]. Available:
https://ieeexplore.ieee.org/document/9332025

[22] H. Yu, X. Wang, C. Xing, and B. Xu, ‘‘A microservice resilience
deployment mechanism based on diversity,’’ Secur. Commun. Netw.,
vol. 2022, pp. 1–13, Jun. 2022, doi: 10.1155/2022/7146716.

[23] D. Yu, Y. Jin, Y. Zhang, and X. Zheng, ‘‘A survey on security issues
in services communication of microservices-enabled fog applications,’’
Concurrency Comput., Pract. Exper., vol. 31, no. 22, Nov. 2019,
Art. no. e4436, doi: 10.1002/cpe.4436.

[24] J. Soldani, D. A. Tamburri, and W.-J. Van Den Heuvel, ‘‘The pains
and gains of microservices: A systematic grey literature review,’’
J. Syst. Softw., vol. 146, pp. 215–232, Dec. 2018. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0164121218302139

[25] A. Pereira-Vale, E. B. Fernandez, R.Monge, H. Astudillo, and G.Márquez,
‘‘Security in microservice-based systems: A multivocal literature review,’’
Comput. Secur., vol. 103, Apr. 2021, Art. no. 102200. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0167404821000249

[26] A. Hannousse and S. Yahiouche, ‘‘Securing microservices and
microservice architectures: A systematic mapping study,’’ Comput.
Sci. Rev., vol. 41, Aug. 2021, Art. no. 100415. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1574013721000551

[27] F. Ponce, J. Soldani, H. Astudillo, and A. Brogi, ‘‘Smells and refac-
torings for microservices security: A multivocal literature review,’’
J. Syst. Softw., vol. 192, Oct. 2022, Art. no. 111393. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S016412122200111X

[28] D. Berardi, S. Giallorenzo, J. Mauro, A. Melis, F. Montesi, and M.
Prandini, ‘‘Microservice security: A systematic literature review,’’ PeerJ
Comput. Sci., vol. 8, p. e779, Jan. 2022, doi: 10.7717/peerj-cs.779.
[Online]. Available: https://peerj.com/articles/cs-779

[29] B. Kitchenham and S. Charters, ‘‘Guidelines for performing systematic
literature reviews in software engineering,’’ Softw. Eng. Group, School
Comput. Sci. Math., Keele Univ., Keele, U.K., Tech. Rep. EBSE-2007-01,
2007, vol. 2.

[30] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey,
and S. Linkman, ‘‘Systematic literature reviews in software
engineering—A systematic literature review,’’ Inf. Softw. Technol.,
vol. 51, no. 1, pp. 7–15, 2009. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/S0950584908001390

[31] M. J. Page et al., ‘‘The PRISMA 2020 statement: An updated guideline
for reporting systematic reviews,’’ Systematic Rev., vol. 10, no. 1, p. 89,
Dec. 2021, doi: 10.1186/s13643-021-01626-4.

[32] H. Zhang, M. A. Babar, and P. Tell, ‘‘Identifying relevant
studies in software engineering,’’ Inf. Softw. Technol., vol. 53,
no. 6, pp. 625–637, Jun. 2011. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0950584910002260

[33] C. Wohlin, ‘‘Guidelines for snowballing in systematic literature studies
and a replication in software engineering,’’ in Proc. 18th Int. Conf. Eval.
Assessment Softw. Eng. New York, NY, USA: Association for Computing
Machinery, May 2014, pp. 1–10, doi: 10.1145/2601248.2601268.

[34] C. Wohlin, P. Runeson, P. A. da Mota Silveira Neto, E. Engström,
I. do Carmo Machado, and E. S. de Almeida, ‘‘On the reliabil-
ity of mapping studies in software engineering,’’ J. Syst. Softw.,
vol. 86, no. 10, pp. 2594–2610, Oct. 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121213001234

[35] W. Afzal, S. Alone, K. Glocksien, and R. Torkar, ‘‘Software test
process improvement approaches: A systematic literature review
and an industrial case study,’’ J. Syst. Softw., vol. 111, pp. 1–33,
Jan. 2016. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0164121215001910

[36] T. Kosar, S. Bohra, and M. Mernik, ‘‘A systematic mapping study
driven by the margin of error,’’ J. Syst. Softw., vol. 144, pp. 439–449,
Oct. 2018. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0164121218301353

[37] M. Petticrew and H. Roberts, Systematic Reviews in the Social Sciences:
A Practical Guide, 1st ed. Oxford, U.K.: Wiley, Dec. 2005.

[38] E. Mourão, J. F. Pimentel, L. Murta, M. Kalinowski, E. Mendes,
and C. Wohlin, ‘‘On the performance of hybrid search strategies
for systematic literature reviews in software engineering,’’ Inf. Softw.
Technol., vol. 123, Jul. 2020, Art. no. 106294. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584920300446

[39] K. Petersen, S. Vakkalanka, and L. Kuzniarz, ‘‘Guidelines for conducting
systematic mapping studies in software engineering: An update,’’ Inf.
Softw. Technol., vol. 64, pp. 1–18, Aug. 2015. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0950584915000646

[40] R. Wieringa, N. Maiden, N. Mead, and C. Rolland, ‘‘Requirements
engineering paper classification and evaluation criteria: A proposal and a
discussion,’’ Requirements Eng., vol. 11, no. 1, pp. 102–107, Mar. 2006,
doi: 10.1007/s00766-005-0021-6.

VOLUME 12, 2024 90285

http://dx.doi.org/10.1007/978-3-319-67425-4_12
http://dx.doi.org/10.1145/3532183
http://dx.doi.org/10.1145/3589608.3594742
http://dx.doi.org/10.1155/2022/7146716
http://dx.doi.org/10.1002/cpe.4436
http://dx.doi.org/10.7717/peerj-cs.779
http://dx.doi.org/10.1186/s13643-021-01626-4
http://dx.doi.org/10.1145/2601248.2601268
http://dx.doi.org/10.1007/s00766-005-0021-6

P. Haindl et al.: SLR of Inter-Service Security Threats and Mitigation Strategies in MSAs

[41] M. Shaw, ‘‘Writing good software engineering research papers,’’ in Proc.
25th Int. Conf. Softw. Eng., 2003, pp. 726–736. [Online]. Available:
http://ieeexplore.ieee.org/document/1201262/

[42] N. Paternoster, C. Giardino, M. Unterkalmsteiner, T. Gorschek, and
P. Abrahamsson, ‘‘Software development in startup companies:
A systematic mapping study,’’ Inf. Softw. Technol., vol. 56, no. 10,
pp. 1200–1218, Oct. 2014. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0950584914000950

[43] D. S. Cruzes and T. Dyba, ‘‘Recommended steps for thematic
synthesis in software engineering,’’ in Proc. Int. Symp. Empiri-
cal Softw. Eng. Meas., Sep. 2011, pp. 275–284. [Online]. Available:
https://ieeexplore.ieee.org/document/6092576

[44] The Linux Foundation. (2024). Containerd. Accessed: May 25, 2024.
[Online]. Available: https://containerd.io/

[45] Open Container Initiative. (2024). RUNC. Accessed: May 25, 2024.
[Online]. Available: https://github.com/opencontainers/runc

[46] The Linux Foundation. (2024). Kubectl. Accessed: May 25, 2024.
[Online]. Available: https://kubernetes.io/docs/reference/

[47] The Linux Foundation. (2024). Kubelet. Accessed: May 25, 2024.
[Online]. Available: https://kubernetes.io/docs/reference/command-line-
tools-reference/kubelet/

[48] ISTIO. (2024). ISTIO/The ISTIO Service Mesh. Accessed: May 25, 2024.
[Online]. Available: https://istio.io/latest/about/service-mesh/

[49] HashiCorp. (2024). Consul by HashiCorp. Accessed: May 25, 2024.
[Online]. Available: https://www.consul.io/

[50] Buoyant. (2024). Linkerd. Accessed: May 25, 2024. [Online]. Available:
https://linkerd.io/2.14/overview/

[51] OpenID Foundation. (2024). OpenID—OpenID Foundation. Accessed:
May 25, 2024. [Online]. Available: https://openid.net/

[52] R. W. Macarthy and J. M. Bass, ‘‘An empirical taxonomy of
DevOps in practice,’’ in Proc. 46th Euromicro Conf. Softw. Eng.
Adv. Appl. (SEAA), Aug. 2020, pp. 221–228. [Online]. Available:
https://ieeexplore.ieee.org/document/9226359

[53] H. Myrbakken and R. Colomo-Palacios, ‘‘DevSecOps: A multivocal
literature review,’’ in Software Process Improvement and Capability
Determination, A. Mas, A. Mesquida, R. V. O’Connor, T. Rout, and
A. Dorling, Eds. Cham, Switzerland: Springer, 2017, pp. 17–29.

[54] E. Gamma, R. Helm, R. Johnson, J. Vlissides, and G. Booch, Design
Patterns: Elements of Reusable Object-Oriented Software, 1st ed. Reading,
MA, USA: Addison-Wesley, Oct. 1994.

[55] Nat. Inst. Standards Technol. (2006). Minimum Security Requirements
for Federal Information and Information Systems. Federal Information
Processing Standard (FIPS). [Online]. Available: https://csrc.nist.gov/
pubs/fips/200/final

[56] Org. for Advancement Structured Inf. Standards. (2013). EXtensible
Access Control Markup Language (XACML) Version 3.0. [Online].
Available: http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-
en.html

[57] HashiCorp. (2024). Vault by HashiCorp. Accessed: May 25, 2024.
[Online]. Available: https://www.vaultproject.io/

[58] Microsoft. (2024). Key Vault—Microsoft Azure. Accessed: May 25, 2024.
[Online]. Available: https://azure.microsoft.com/en-us/products/key-vault

[59] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. Berlin, Germany:
Springer, 2012. [Online]. Available: http://link.springer.com/10.1007/978-
3-642-29044-2

PHILIPP HAINDL received the Ph.D. degree
in computer science from Johannes Kepler
University Linz, in 2021. He has more than
15 years of practical experience in industrial
and research-focused software projects as a
Software Engineer and an Architect. He is
currently a Lecturer in software engineering with
the St. Pölten University of Applied Sciences.
His research interests include empirical software
engineering, software security, and software

quality operationalization. He regularly functions as a reviewer for
international software engineering conferences and journals.

PATRICK KOCHBERGER received the M.Sc.
degree in IT security from the St. Pölten University
of Applied Sciences. He is currently a Researcher
in software security with the St. Pölten University
of Applied Sciences.

MARKUS SVEGGEN received the M.Sc. degree
in cyber security and resilience from the St.
Pölten University of Applied Sciences, in 2024,
with a thesis examining the topics of this study.
During his study, he was a Security Consultant
in an international consulting company in Vienna,
with a focus on penetration testing and payload
development.

90286 VOLUME 12, 2024

