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ABSTRACT The increasing integration of renewable energy sources and the growing complexity of modern
power grids demand innovative solutions for efficient energy management. This paper introduces a novel
dynamic demand-aware Power Grid Intelligent Pricing (PGIP) algorithm based on Deep Reinforcement
Learning (DRL). The proposed PGIP algorithm aims to optimize energy consumption and pricing in real time
by leveraging the capabilities of DRL to adapt to dynamic demand patterns and evolving grid conditions.
PGIP employs a sophisticated neural network architecture to model the intricate relationships between
various grid parameters, user demand, and pricing strategies. Through continuous learning and adaptation,
the algorithm dynamically adjusts pricing structures to incentivize demand-side flexibility while ensuring
grid stability. The reinforcement learning framework enables the algorithm to discover optimal policies
for pricing in response to changing environmental factors and user behaviors. We used real-world data
sets to assess its performance in diverse scenarios. Results demonstrate the algorithm’s ability to optimize
energy consumption, reduce peak demand, and enhance overall grid efficiency. Moreover, comparisons with
traditional pricing models highlight the superior adaptability and responsiveness of PGIP in addressing the
challenges posed by the evolving landscape of power grids. PGIP presents a promising approach to address
the dynamic nature of power grids and the increasing demand for efficient energy management.

INDEX TERMS Deep reinforcement learning, dynamic demand, intelligent pricing, power grid.

I. INTRODUCTION
The current power grid landscape is significantly transform-
ing, propelled by the escalating assimilation of renewable
energy sources, advancements in smart grid technologies,
and a rising demand for sustainable and efficient energy
management solutions [1], [2]. Conventional power grid
structures struggle to adjust to the volatile nature of energy
production and consumption patterns, and the necessity
for real-time optimization [3]. Given these challenges,
there is an urgent requirement for innovative algorithms
capable of intelligently managing energy demand, opti-
mizing pricing strategies, and improving overall grid
efficiency.

A pivotal factor affecting the performance of power grids
is the demand-side consumer behavior [4], [5]. Traditional
pricing models frequently lack the adaptability necessary
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to encourage consumers to relocate their energy usage to
off-peak times or curtail consumption during high-demand
periods [6]. Additionally, the incorporation of renewable
energy sources incurs variability, making it crucial for the
power grid to dynamically modify its operations.

The shifting dynamics of power grid management have
sparked comprehensive research into intelligent algorithms
and pricing strategies designed to confront the challenges of
dynamic demand patterns, integration of renewable energy,
and the necessity for real-time adaptability [7]. Existing
literature demonstrates a myriad of strategies geared towards
optimizing energy consumption, pricing structures, and grid
stability [8]. Current solutions underscore a range of efforts
to improve the efficiency and adaptability of power grid
management [9]. However, this work aims to augment
the existing knowledge base. It focuses principally on
applying deep reinforcement learning for dynamic pricing in
reaction to changing demand patterns, thus targeting a more
responsive and sustainable power grid.
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Driven by these challenges, we propose a dynamic,
demand-aware Power Grid Intelligent Pricing (PGIP)
algorithm based on Deep Reinforcement Learning (DRL)
in this paper. The rationale for this research is to exploit
the potential of deep reinforcement learning to tackle the
intricate and evolving dynamics of power grids. By utilizing
the capabilities of DRL, the algorithm can determine optimal
pricing strategies in real time, adapting to fluctuating demand
patterns, grid conditions, and the increasing dominance of
renewable energy sources.

This work’s significance transcends are theoretical
advancements, seeking to offer pragmatic solutions for
power grid operators, utility companies, and policymakers.
The proposed DDPG-IPA aims to amplify demand-side
flexibility, mitigate peak demand, and enhance the overall
stability and efficiency of power grids. Aspiring to contribute
to the ongoing efforts in constructing smarter, more robust,
and sustainable power grids for the future, the algorithm
employs a data-driven approach and advanced machine-
learning techniques. Results from this work hold the potential
to inform policy decisions, direct the development of
intelligent grid management systems, and lay the foundation
for a more adaptive and responsive energy infrastructure. Our
contributions comprise:
• An Innovative Power Grid PricingAlgorithm.We design
an original PGIP algorithm catered to resolve the
challenges stemming from the amplified integration of
renewable energy sources and the escalating complexity
of today’s power grids. This algorithm employs DRL
to adapt dynamically to real-time alterations in demand
patterns and evolving grid conditions.

• An Advanced Neural Network Architecture for Grid
Parameter Modeling. We integrate an advanced neural
network architecture to model the complex relationships
among various grid parameters, user demand, and pric-
ing strategies. This addition enhances the algorithm’s
ability to capture the intricate dynamics of modern
power grids accurately.

• Real-World Performance Evaluation and Superior
Adaptability. To verify the effectiveness of PGIP,
we utilize real-world data sets to conduct comprehensive
performance evaluations across a myriad of scenarios.
The results showcase the algorithm’s exceptional ability
to optimize energy consumption, lower peak demand,
and bolster overall grid efficiency.

The remainder of the paper is organized as follows:
Section II briefly discusses related work in this field.
Section III describes the system model, introducing the
electricity consumer and service provider models. Section IV
presents our proposed dynamic demand-aware Power Grid
Intelligent Pricing algorithm based on deep reinforcement
learning. In Section V, we discuss the comparison exper-
iments and their results. Finally, Section VI concludes
this work and outlines potential directions for future
research.

II. RELATED WORK
The changing dynamics of power grid administration have
spurred in-depth exploration into smart algorithms and
pricing tactics to tackle the complexities presented by
fluctuating demand trends, the integration of renewable
energy, and the imperative for immediate adaptability. Recent
literature showcases a varied array of methods focused on
enhancing energy usage efficiency, pricing frameworks, and
the stability of the grid.

Traditional demand response methods involve incentiviz-
ing consumers to adjust their energy consumption in response
to price signals. Time-of-use pricing and peak/off-peak
pricing have been widely explored [10]. For example, in [11],
Hung and Michailidis examined the attributes of power
demand observed in actual grids to represent it as a steady
level with variations using a scaled fractional Brownian
motion during uniform peak periods. In [12], Yang et al. out-
lined a game-theoretic method to enhance the optimization of
pricing strategies based on Time-of-use. In [13], Wesseh and
Lin suggested an electricity market pricing model based on
time-of-use (TOU) that can effectively represent the interplay
among power plants, generation ramping, storage devices,
electric vehicle charging, and fluctuations in electricity
prices.While effective to some extent, these approaches often
lack the adaptability required for real-time optimization and
may not fully exploit the potential of emerging technologies.

Several studies have explored the application of Machine
Learning (ML) techniques for demand forecasting. Predictive
models, such as neural networks and ensemble methods, aim
to forecast energy demand with high accuracy [14], [15]. For
instance, in [16], Real et al. designed a blended framework
comprising a convolutional neural network (CNN) paired
with an artificial neural network. The primary goal is
to leverage the strengths of both architectures: utilizing
ANN’s regression capabilities and tapping into CNN’s
feature extraction capacities. In [17], Almaghrebi et al. used
three ML techniques to forecast the charging demand for
Plug-in Electric Vehicle (PEV) users once a charging session
commences. In [18], Haq et al. introduced a hybrid approach
utilizing ML to predict appliance consumption and peak
demand. The methodology involves the implementation of
accelerated k-medoids clustering, support vector machine,
and artificial neural network for forecasting both appliance
consumption and peak demand among customers. However,
these approaches often operate statically and may struggle to
adapt to sudden changes in demand or grid conditions.

The integration of reinforcement learning (RL) in energy
systems has gained attention for its ability to optimize
decision-making in dynamic environments. RL algorithms,
including deep reinforcement learning (DRL), have been
applied to various aspects of power grid management [19].
For example, in [20], Li et al. proposed a prioritized expe-
rience replay automated RL (PER-AutoRL) to streamline
the implementation of a customized DRL-based forecasting
model. To tackle the uncertainties present in grid networks,
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Bahrami et al. [21] created a DRL algorithm employing an
actor-critic method. In [22], the Q-learning methods were
applied to predict the plug-in hybrid electric vehicle (PHEV)
loads under different scenarios. However, the specific focus
on dynamic demand-aware pricing algorithms for real-time
grid optimization is an area that warrants further exploration.

Research on intelligent grid management systems empha-
sizes the development of comprehensive solutions that
combine data analytics, optimization algorithms, and smart
grid technologies. These systems often integrate ML com-
ponents for adaptive decision-making. For instance, in [23],
Aurangzeb et al. designed an equitable pricing scheme
grounded in power demand prediction to minimize additional
costs for consumers with low energy consumption. In [24],
Rasheed et al. explored a comprehensive framework for
constructing models for electricity retail pricing, utilizing
load demand and market price data. The aim is to mini-
mize the average system cost and mitigate rebound peaks
through the incorporation of energy procurement prices, load
scheduling, and the integration of renewable energy sources.
However, the incorporation of deep reinforcement learning
specifically for demand-aware pricing remains a relatively
underexplored aspect. With the increasing share of renewable
energy sources, researchers have investigated strategies for
effectively integrating these sources into the grid [25].
Dynamic pricing mechanisms that incentivize consumption
during periods of high renewable energy availability and
discourage consumption during low availability have been
explored.

III. PROPOSED METHOD
In this section, we propose a dynamic demand-aware Power
Grid Intelligent Pricing (PGIP) algorithm that integrates
strategies based on pricing and incentives, aiming to
encourage consumers to alter their electricity consumption
patterns while considering satisfaction with consumption.
The objective is to establish an optimal pricing and incentive
structure within the context of contemporary markets. Two
markets are considered in our work, including a wholesale
market and an adjustment market, as shown in Fig. 1.

FIGURE 1. Market models considered in this work.

We use reinforcement learning techniques to increase the
adoption of Renewable Energy Sources (RES) by adding
flexibility to the power grid and decreasing uncertainty in
long-term planning. This involves integrating signals from
the wholesale market into pricing and incentive strategies,
by optimizing their transmission to consumers. The primary
objective is to achieve effective management of electrical
energy, allowing consumers to adapt to emerging system
components like electric mobility and demand aggregators,
while maximizing the utilization of available RES.

A. MULTI-PERIOD HIERARCHICAL ELECTRICITY PRICE
MODEL
We construct a multi-period hierarchical electricity price
model P = {Pm,Pw,Pd }, where Pm represents the electricity
price set of one month, Pw represents the electricity price set
of one week, and Pd represents the electricity price set of one
day. In addition, each day’s electricity price set consists of
hourly electricity prices for 24 hours, that is,

Pdi = {Pi,1,Pi,2, . . . ,Pi,t , . . . ,Pi,24}. (1)

Similarly, each week’s electronic price set consists of the
prices of each day of the week, that is,

Pwj = {P
d
1 (Sun),P

d
2 (Mon),Pd3 (Tue),

Pd4 (Wed),Pd5 (Thu),P
d
6 (Fri),P

d
7 (Sat)}. (2)

The price for each month consists of the price for each day
of the month. Pmk = {P

d
k,1,P

d
k,2, . . .}. An example of the

proposed multi-period hierarchical electricity price model is
illustrated in Figure 2.

FIGURE 2. Multi-period hierarchical electricity price model.

B. ELECTRICITY CONSUMER MODEL
We establish the consumption behavior and income model
of electricity consumers to provide theoretical support for
electricity price prediction. The electricity consumption
behavior and benefit model is a theory that describes how
individuals, businesses, or social organizations use electricity
and obtain benefits from it. This model covers the behavior
of electricity consumers, the services of electricity suppliers,
and the working mechanism of energy markets. The model
mainly includes consumer consumption behavior, which
consists of consumer usage needs and renewable energy
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preferences, and consumer benefits, which consist of cost
savings and environmental benefits.

1) CONSUMER USAGE NEEDS
The electricity demand pattern of individuals or organizations
refers to their demand characteristics for electricity in
different periods and different scenarios. For example,
electricity demand may be different during the day and night,
and electricity usage patterns may also be different during
workdays and rest days. The electricity usage demand of a
certain consumer ua in each hour on the i-th day can be
defined as:

Ri(ua) = {Ri,1(ua), . . . ,Ri,24(ua)}. (3)

2) RENEWABLE ENERGY PREFERENCE
Some electricity consumers may prefer to choose electricity
from renewable sources due to environmental or sustain-
ability considerations. Suppose there is a set of renewable
energy power options G = {g1, . . . , gN }, a certain consumer
ua’s preference for each renewable energy power is set to
γ (ua) = {γua,g1 , . . .}.

3) COST SAVINGS
By optimizing energy usage and selecting appropriate power
supply contracts, electricity consumers can achieve cost
savings. Since the price of electricity may be different every
hour, the user’s cost savings in one day is the sum of the cost
savings in 24 hours that day. For each hour, the cost savings
for an hour is the difference between the highest market price
in that hour and the user’s actual purchase price multiplied
by the actual power usage. The cost saving of the certain
consumer ua in the i-the day is defined as CSi(ua):

CSi(ua) =
24∑
t=1

ci,t ×
(
max(Pdi,t )− P

d
i,t (ua)

)
, (4)

where ci,t is the actual power usage of ua in the period of t-th
hour, max(Pdi,t ) is the highest market price in that hour, and
Pdi,t (ua) is the user’s actual purchase price.

4) ENVIRONMENTAL BENEFITS
Choosing renewable energy or taking energy-saving mea-
sures can reduce carbon emissions and reduce the impact on
the environment, thereby obtaining environmental benefits.
The environmental benefit is calculated by the user’s use of
renewable energy multiplied by unit energy-saving income.
The environmental benefits of the certain consumer ua in the
i-the day is defined as EBi(ua):

EBi(ua) =
24∑
t=1

(ci,t × ϱe), (5)

where ϱe is the unit energy-saving income.

C. SERVICE PROVIDER MODEL
The behavioral and revenue model of electricity providers
involves how they produce, distribute, and sell electricity
and derive profits from these activities. Below are the key
elements of electricity provider behavior and revenuemodels,
including supply contracts and revenuemodels. Among them,
the supply contract consists of a fixed-price contract and a
floating-price contract. The revenue model consists of sales
revenue and renewable energy subsidies.

1) ELECTRICITY SUPPLY CONTRACT
Electricity supply contracts include fixed-price contracts and
floating-price contracts. In a fixed-price contract, providers
have stable electricity prices, and consumers can lock in
electricity costs based on the price within the contract period.
In a floating-price contract, the price of each provider is
adjusted according to market price fluctuations, consumers
may face price risks, but they also have the opportunity to
gain price advantages.

2) SALES REVENUE
Revenue is obtained from selling electricity and providing
related services. Since the price of electricity may be different
every hour, the supplier’s sales revenue in a day is the sum of
the sales revenue in the 24 hours that day. For each electricity
supplier sa, its sales revenue on the i-th day is calculated as
follows:

SRi(sa) =
24∑
t=1

(si,t × Pdi,t (sa)), (6)

where si,t is the quantity of electricity sale in the t-th hour
in the i-th day and Pdi,t (sa) is the price of sa provided in that
hour.

3) SUBSIDIES AND INCENTIVES
The government may encourage the development of renew-
able energy through subsidies and incentives to increase
the motivation of power providers to obtain revenue from
renewable energy. Therefore, if a supplier sells electricity
from renewable sources, he will receive corresponding
subsidies. For each renewable energy source in a set of
renewable energy power options G = {g1, . . . , gN }, assume
that the government subsidies are S(G) = {s1, . . . , sN }.
Assume that supplier Ua sells renewable energy g1, and the
quantity sold per hour is vi,t , then the renewable energy
subsidy it can obtain is:

ESi(sa) =
24∑
t=1

(si,t ×ϖgj ), (7)

where ϖgj is the unit renewable energy subsidy provided by
governments.

D. OBJECTIVE DEFINITION
Based on the periodic electricity price model, consumer
behavior and revenue model, and supplier revenue model,
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we propose the objective function of this work. For con-
sumers, the optimization goal is to maximize consumption
benefits and minimize power purchase costs.

max
∑
ua∈U

∑
t∈(1,24)

(αCSi(ua)+ βCSi(ua)), (8)

where the role of coefficients α and β is to control the
importance ratio between cost savings and environmental
benefits.

min
∑
ua∈U

∑
t∈[1,24]

(ci,t × Pdi,t (ua)), (9)

where ci,t is the actual power usage of ua in the period of
t-th hour and Pdi,t (ua) is the user’s actual purchase price.
For service providers, the optimization goal is to maximize
revenue.

max
∑
sa∈S

SRi(sa)+ ESi(sa). (10)

IV. INTELLIGENT PRICING ALGORITHM BASED ON DEEP
REINFORCEMENT LEARNING
In this section, we design a novel dynamic demand-aware
Power Grid Intelligent Pricing (PGIP) algorithm based on
Deep Reinforcement Learning (DRL) [21]. The proposed
PGIP algorithm aims to optimize energy consumption and
pricing in real time by leveraging the capabilities of DRL
to adapt to dynamic demand patterns and evolving grid
conditions.

The PGIP algorithm tackles the challenge of optimizing an
agent’s benefits within an environment. This is achieved by
observing the response (reward) a state receives as a result of
an action taken by the agent. The agent’s goal is to acquire
knowledge about which set of actions (policy) will yield the
most favorable outcome (return) from the environment. It’s
important to note that each action has the potential to alter
the environment, making the process reliant on interactive
learning between the agent and its surroundings.

A. DYNAMIC DEMAND-AWARE SCHEME
Initially, we have the environment, which includes the energy
usage data of each consumer in this context. Conversely,
there’s the agent, which encompasses processing from
the perspectives of the service provider, aggregator, and
marketer. These two components engage in interactions
within a discrete-time sequence denoted by t ∈ T . As the
agent perceives alterations in the Reinforcement Learning
(RL) environment caused by an action, it generates state
observations. A state S encompasses all the parameters
obtained by the usage demand aggregator cs,t from the
consumers and the sale behaviors si,t and price Pdi,t from the
providers, as defined as:

SU = [cs,t ,Pdi,t ],

SS = [si,t ,Pdi,t ]. (11)

The set of actions A of each agent relates to the incentives
provided to the users, as defined as:

Au,h = [ηu,h, ru,h]. (12)

Ultimately, the overall reward for the approach is defined as
the set of rewards or benefits rt .

Based on the mentioned actions, it is essential to define
a policy, referred to as π . This policy acts as a set of rules
that the agent adheres to decide its actions depending on the
current state of the environment. Essentially, it serves as the
function that links the action A with the state S:

Q(SU ,i,t , ai,t ) = Q(Si,t , ai,t )+ α[r(Si,t , ai,t )

+ γ (Si,t+1, ai,t+1)] (13)

Q(SS,i,t , ai,t ) = Q(Si,t , ai,t )+ α[r(Si,t , ai,t )

+ γ (Si,t+1, ai,t+1)] (14)

B. DEEP REINFORCEMENT LEARNING
We develop the DRL algorithm to obtain the optimal policies.
The collection of policies acts as a foundation, allowing the
agent S − t to initiate without initially relying on an e-
greedy policy. Alternatively, it initiates by examining this
predetermined collection and then proceeds with iterations
to optimize rewards. Once the agent achieves an optimal
policy, the S-t Q-learning algorithm registers the policy
set to strike a balance between short-term and long-term
tactics. As depicted in Fig. 3, Agent L − t gathers data
from the environment, encompassing states and rewards
(st , at , rt , st+1) resulting from actions at+1.

FIGURE 3. Process of the deep reinforcement learning for PGIP.

As shown in Fig. 3, utilizing the above data, the Q-table
is generated. Moreover, utilizing the policy interaction
approach, the algorithm identifies actions that maximize the
Q-values, representing the rewards rh ofQ∗(st , at ). The result
of the L−t Q-learning algorithm is the optimal policy π∗(St ),
which is then stored in the experiential memory replication.
Upon temporal shift, the agent seeks actions that maximize
the rewardmax(Q−value). In this scenario, the agent utilizes
its existing knowledge and incorporates iterations of the L− t
agent as input for searching the optimal policy π∗(St ). The
step-by-step procedure of the proposed DRL-based PGIP
algorithm is outlined in Algorithm 1.
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Algorithm 1 DRL-Based PGIP Algorithm
Require:

U : the set of electricity customers;
SP: the set of service providers;
Zda: the unit price of each provider.

Ensure:
Q∗(Su,h, au,h): the optimal solution for grid pricing.

1: for each customer ui in U do
2: initialize the value of Q(Su,h, au,h)←;
3: while au,h = maxQ∗(Su,h, au,h) do
4: for each epoch τ do
5: set the initialization value to su0,h0;
6: calculate policy r(s, a)← Q(Su,h, au,h);
7: perform action a based on state s and policy

r(s, a);
8: end for
9: end while

10: save the solution Q(Su,h, au,h);
11: update action based on the current optimal solution;
12: end for
13: return Q∗(Su,h, au,h).

V. EXPERIMENTS
In this section, we first introduce our experimental setup.
Subsequently, we evaluate the effectiveness of our proposed
PGIP algorithm by comparing it with the state-of-the-art
methods under different cases.

A. EXPERIMENTAL SETUP
In our experiments, we utilize input data obtained from
smart meters installed in the consumer population of a
distribution network grid. The electrical grid in question is
a crucial component of the ‘‘Caucete Smart Grid’’ innovation
project [26]. The main aim of this project is to modernize
a section of the current electrical distribution network in
the City of Caucete, situated in the San Juan province of
Argentina, into an advanced and modernized network.

The intended overhaul seeks to improve the operational
effectiveness, regulatory mechanisms, and general electrical
functionality of the grid. The project’s primary objectives
include enhancing energy efficiency in electricity usage and
elevating service quality to maximize overall benefits for
consumers, the utility company, and society as a whole,
ultimately boosting social welfare. Additionally, our exper-
iments are designed to promote the utilization of Renewable
Energy Sources (RES) for electricity generation, with a
specific emphasis on photovoltaic solar energy. Moreover,
our experiments aspire to establish an advanced measure-
ment infrastructure that illuminates consumption patterns,
facilitating the development of innovative strategies for a
sustainable system. In essence, the initiative seeks to create
a forward-looking and sustainable electrical distribution
system that integrates modern technologies and promotes the
utilization of renewable energy, contributing to both energy
efficiency and the overall well-being of the community.

1) METRICS
We assess the effectiveness of the suggested pricing strategies
using two primary measures. Firstly, we examine the overall
alteration in electrical energy usage per day, termed as the
variation in demand. This factor, known as DV (Demand
Variation), measures the relationship between consumption
prior to any demand response action and consumption
following the implementation of a demand response program.
The formula representing this factor is:

DV =
Co
u − C

n
u

Co
u

, (15)

where Co
u is the original price and Cn

u is the new price. This
metric provides valuable insights into the effectiveness of
the demand response scheme in influencing and optimizing
consumer energy consumption patterns.

Furthermore, we assessed the average load factor of
consumers to conduct a comparative analysis of pricing
formulations and to determine whether, despite efforts to
address demand responses, there was an improvement in the
load factor. This metric acts as an extension, reflecting both
the significant peak consumer demand and the efficiency
of the pricing strategy in altering electricity usage patterns.
Furthermore, the assessment was expanded to assess the
average load factor of consumers to examine the influence of
the pricing strategy and its effectiveness in improving the load
factor. This metric offers insights into managing high peak
consumer demand and assessing the efficacy of the pricing
approach in redirecting electricity usage patterns.

B. COMPARISON WITH RELATED METHODS
We evaluate the effectiveness of the PGIP algorithm by
conducting experiments to compare it with the SGDM and
RMSProp methods. The experimental results of algorithm
comparison are shown in Fig. 4.

FIGURE 4. Comparison with related methods.

To predict future time step values, a Stochastic Gradient
Descent with Momentum (SGDM) model was utilized. This
model was trained using responses as training steps, with
values adjusted by a single action. The dataset was divided
into 90% for training and the remaining 10% for testing.
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The Long Short-Term Memory (LSTM) layer was equipped
with 128 hidden units to enhance learning and forecasting
capabilities. Following a comprehensive evaluation, it was
found that the Adam algorithm produced the most favorable
results in terms of reducing error, particularly the Root
Mean Square Error (RMSE). Consequently, RMSProp was
selected as the preferred optimization algorithm for the
LSTM network within this predictive modeling framework.

C. CONSUMER GROUPING RESULTS
Wediscuss the results of residential consumers in whole days.
All-time electricity demand records are used in the exper-
iments. The consumer experiences their peak consumption
from 9:00 (am) to 11:00 (am) and from 20:00 (pm) to 22:00
(pm). The experimental results of consumer grouping are
shown in Fig. 5.

FIGURE 5. Consumer grouping results.

As depicted in Fig. 5, if the consumers use electricity not
in the period of system peak, they are selected. However,
despite this, the consumer encounters their peak consumption
period from 13:00 (pm) to 21:00 (pm). Consequently, the
grouping mechanism needs to discern and categorize these
consumption patterns, adhering to the specific Demand
Response (DR) requirements. In this scenario, based on
the group results, the period of system peak is deliberately
excluded from consideration. This strategic exclusion ensures
that the grouping process accurately captures and classifies
the distinct consumption behavior, aligning to optimize
demand response strategies for consumers with varying peak
hours.

D. PRICING RESULTS WITH COINCIDENCE FACTORS
We further consider the pricing results of our algorithm
according to the coincidence factors. We analyze the incor-
poration of a wholesale market price along with associated
elements, demonstrating the effective decrease of the system
peak by regulating consumer demand. The experimental
results are illustrated in Fig. 6.

As shown in Fig. 6, it’s crucial to emphasize that the
static price is inherently inefficient in the experiment, as it
fails to adapt to the dynamic nature of demand behavior–an

FIGURE 6. Code-related instruction-following experiment output
examples for various models.

aspect that is known in advance. Notably, the approach no
longer targets the reduction of consumer peak exclusively,
and as a consequence, the hours with consumer demand peaks
exhibit a more tempered price signal compared to the scenario
without considering coincidence factors. Furthermore, thanks
to the incorporation of bidirectional satisfaction considera-
tions, the algorithm adeptly devises prices that incentivize
consumers to increase their consumption. The feature is
particularly evident during the use time of the day. Thus, the
experiments demonstrate how the consumer is presented with
prices that reflect an elasticity, fostering a more responsive
and adaptive approach to energy consumption.

E. EVALUATION ON SYSTEM PEAK
We discuss the effectiveness of the PGIP algorithm during
the period of system peak. The electricity consumers’ adept
reduction in consumption precisely during the designated
peak hours of the system. The experimental results are
illustrated in Fig. 7.

FIGURE 7. Demands and pricing results on system peak.

Fig. 7 illustrates the consumer’s adept reduction in
consumption precisely during the designated peak hours
of the system, thereby successfully accomplishing the
demand response objective. Conversely, owing to the model’s
provision of a price lower than a small rate, and the related

VOLUME 12, 2024 75815



C. Tang et al.: Dynamic Demand-Aware PGIP Algorithm Based on Deep Reinforcement Learning

electricity consumption tends to experience a more moderate
increase. Nevertheless, it effectively serves the purpose of
mitigating the impact on the system peak. This demonstrates
the nuanced influence of pricing strategies on consumer
behavior, striking a balance between incentivizing demand
reduction during peak times and encouraging consumption
at a rate that aligns with overall system efficiency.

F. EVALUATION UNDER DIFFERENT CONSUMER GROUPS
We discuss the reward behaviors of our algorithm under
different consumer groups. Fig. 8 illustrates the cumulative
reward patterns concerning the formulation of demand
response prices, particularly concentrating on different 6 con-
sumer groups.

FIGURE 8. Cumulative reward behaviors under different consumer
groups.

As shown in Fig. 8, the rewards derived from the DL
method are outcomes of optimizing the benefits for each
participant. Our algorithm effectively achieves its objective
in approximately 600 episodes, although it is configured to
run for 1000 episodes in this instance. Notably, the algorithm
exhibits a tendency to seek analogous strategies across the
three cases, indicating a consistent pattern of growth. This
suggests a convergence towards similar optimal solutions for
the different scenarios.

G. PRICING RESULTS FOR DYNAMIC DEMANDS
We further evaluate the performance of the PGIP algorithm
under dynamic demands. A time frame of four days was set
to ascertain the model’s prediction, and reference consumer
data was utilized to validate the algorithm’s understanding
of long-term dynamics. Moreover, the algorithm is designed
to transfer data via shared information between different
periods. This design improvement aims to boost efficiency
and streamline the quest for the most favorable solution. The
pricing results for dynamic demands are shown in Fig. 9.

As illustrated in Fig. 9, the algorithm excels in identifying
optimal pricing strategies, not only to alleviate long-term
system peaks but also to incentivize the identification of long-
term peaks. This capability shows that could potentially facil-
itate a direct load control scheme. As the energy landscape

FIGURE 9. Pricing results for dynamic demands in four days.

continues to transform, PGIP is a potential of DRL, in shaping
the future of efficient energy management. This research con-
tributes not only a practical and effective algorithm but also
insights that can inform the development of intelligent grid
management systems. PGIP presents a crucial step towards a
more sustainable, adaptive, and resilient power grid infras-
tructure, addressing the dynamic nature of energy demand
and fostering the efficient use of renewable resources.

VI. CONCLUSION
This paper presented the Power Grid Intelligent Pricing
(PGIP) algorithm, driven by Deep Reinforcement Learning
(DRL), to address the pressing challenges arising from
the integration of energy sources and modern power grids.
Through an innovative approach, PGIP optimizes energy con-
sumption and pricing in real-time by dynamically adapting
to the intricate interplay of dynamic demand patterns and
evolving grid conditions. The incorporation of a sophisticated
neural network architecture enables PGIP to model the
complex relationships among various grid parameters, user
demand, and pricing strategies with unprecedented accuracy.
The continuous learning and adaptation capabilities of
the algorithm empower it to dynamically adjust pricing
structures, fostering demand-side flexibility while ensuring
grid stability. Empirical validation using real-world datasets
showcases PGIP’s exceptional performance across diverse
scenarios. The algorithm proves its efficacy by optimizing
energy consumption, reducing peak demand, and enhancing
overall grid efficiency. Comparative analyses against tradi-
tional pricing models underscore PGIP’s superior adaptabil-
ity and responsiveness, positioning it as a promising solution
to meet the evolving challenges of modern power grids.
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