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ABSTRACT The transformation to Industry 4.0 also transforms the processes of developing intelligent
manufacturing production systems. Digital twins may be employed to advance the development of these
new (embedded) software systems. However, there is no consensual definition of what a digital twin is.
In this paper, we provide an overview of the current state of the digital twin concept and formalize the
digital twin concept using the Object-Z notation. This formalization includes the concepts of physical twins,
digital models, digital templates, digital threads, digital shadows, digital twins, and digital twin prototypes.
The relationships between all these concepts are visualized as class diagrams using the Unified Modeling
Language. Our digital twin prototype approach supports engineers in the development and automated testing
of complex embedded software systems. This approach enables engineers to test embedded software systems
in a virtual context without the need of a connection to a physical object. In continuous integration/continuous
deployment pipelines, such digital twin prototypes can be used for automated integration testing and, thus,
allow for an agile verification and validation process. In this paper, we demonstrate and report on the
application and implementation of a digital twin using the example of two real-world field studies (ocean
observation systems and smart farming). For independent replication and extension of our approach by other
researchers, we provide a laboratory study published open source on GitHub.

INDEX TERMS Cyber-physical systems, embedded software systems, digital twin prototypes, automated
testing, continuous integration.

LIST OF ACRONYMS PIL Processor-in-the-Loop.
ARCHES Autonomous Robotic Networks to Help PLC  Programmable Logic Controller.
Modern Societies. PT Physical Twin.
CAD Computer-aided Design. SIL  Software-in-the-Loop.
CI/CD Continuous Integration/Continuous SME  Small and Medium-sized Enterprise.
Delivery. UML Unified Modeling Language.
CPS Cyber-physical System.
DT Digital Twin. I. INTRODUCTION
DTP Digital Twin Prototype. For cyber-physical systems Cyber-physical Systems (CPSs),
HIL Hardware-in-the-Loop. the Industrial Internet of Things Industrial Internet of Things
HoT Industrial Internet of Things. (IToT), and Industry 4.0 applications, embedded software is
MAPE-K  Monitor-Analyze-Plan-Execute  over  a an increasingly crucial asset. With increasing requirements
shared Knowledge. and hence, increasing complexity, new challenges arise
MIL Model-in-the-Loop. for manufacturers and in particular, for the engineers of

these systems. While in large software companies, software
The associate editor coordinating the review of this manuscript and development is often performed by distributed teams of engi-
approving it for publication was Muhammad Khalil Afzal = . neers [1], this is usually different for small and medium-sized
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enterprises Small and Medium-sized Enterprises (SMEs)
that develop embedded systems [2]. Especially, in SMEs,
embedded software still is often developed by the same
engineers who also develop the electronics and/or mechanical
parts [3].

A. RELEVANCE OF DIGITAL TWIN TECHNOLOGY

With the demand for context-aware, autonomous, and adap-
tive robotic systems [4], more advanced software engineering
methods have to be adopted by the embedded software
community. Consequently, the way these systems are devel-
oped has to advance. In future development workflows, the
embedded software systems will be the center-piece of IIoT
applications. To achieve this, the community has to move
from expert-centric tools [4] to modular systems, whereby
domain experts are enabled to contribute to parts of the
system.

B. RELEVANCE OF SOFTWARE QUALITY IN THIS CONTEXT
A survey among 2,000 decision makers about trends and
challenges in software engineering found that quality is
perceived in the software industry as the single most
relevant premise for survival [5]. Achieving high software
quality encompasses optimizing key attributes such as
functional correctness, reliability, usability, user experience,
performance efficiency, security, maintainability, scalability,
compatibility, and interoperability [6], yet organizations
struggle to achieve software quality along with cost and
efficiency [7]. They often face hurdles due to technical
debt, which arises when opting for quick and easy soft-
ware solutions over more thorough, sustainable approaches,
leading to increased maintenance/scalability challenges and
potential performance issues down the line. Technical debt
can significantly impede the ability to achieve and maintain
software quality because it requires additional resources to
rectify [8]. Therefore, alongside adopting agile methodolo-
gies and automating processes, managing and minimizing
technical debt is crucial for organizations that aim to enhance
their software quality and ensure long-term success.

C. RELEVANCE OF TESTING IN THIS CONTEXT

During the development of embedded (software) systems,
at some point, thorough and reliable tests are necessary
to verify and validate the whole system [9]. A common
method to test the control algorithms of an embedded
software system is Hardware-in-the-Loop Hardware-in-the-
Loop (HIL) testing. An example for HIL testing at large
scale is Airbus, which creates iron birds of their aircraft
containing the corresponding electronics, hydraulics, and
flight controls [10]. However, many SMEs cannot afford such
redundant hardware just for the purpose of testing software.
Hence, test automation is among the most popular topics
for testing embedded software [11]. Still, automatic quality
assurance is a challenge in this context, since hardware is in
the loop.
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Many different simulation tools have been proposed, devel-
oped, and sold, with the promise of reducing costs and time
needed for verification and validation. Yet, none of these tools
is able to combine all aspects of modern machines during
all steps of the production life-cycle, due to the complexity
of systems and the high amount of data being processed.
Thus, multidisciplinary simulation concepts are increasingly
important with regard to scalable and highly modular produc-
tion environments enabled by cyber-physical systems [12].
Alongside HIL testing, manufacturers have implemented
different automated testing strategies with In-the-Loop simu-
lations to reduce costs, e.g., Software-in-the-Loop Software-
in-the-Loop (SIL), Model-in-the-Loop Model-in-the-Loop
(MIL), and Processor-in-the-Loop Processor-in-the-Loop
(PIL) simulations [13].

D. CONTRIBUTIONS

One promising technique to enhance the overall software
quality of embedded systems, is the digital twin Digital
Twin (DT) concept. This paper aims to enhance the
overall comprehension of the concept of digital twins. The
contributions of this paper are:

o Our discussion begins with an examination of related
work in Section II, highlighting the lack of consensus
on the definition of digital twins.

o Despite numerous research papers proposing new
definitions or analyzing existing ones, formal or
semi-formal methodologies remain rare. Therefore, this
paper focuses on deconstructing the various components
of a digital twin, using Object-Z notation for formal
specification rather than mere definition. Specifically,
we offer formal specifications for the physical twin,
digital model, digital template, digital thread, digital
shadow, digital twin, and digital twin prototype in
Section III.

o These concepts have been applied in real-world con-
texts, as detailed in Section I'V.

« To facilitate independent replication of our methodolo-
gies, we include the PiCar-X example, which is available
as open source on GitHub.

o The paper concludes with a summary of our findings and
directions for future research in Section V.

Il. RELATED WORK

Digital twins are not only a growing topic in academia but
also in industry, particularly in manufacturing [14]. However,
there is still no consensus on the definition of a digital twin,
as explained in Section II-A. Most of the research conducted
to find a general definition of a digital twin are literature
reviews [15], [16], [17], [18] investigating where digital twins
are used, which components are part of it, and which level of
integration with the CPS exists. In particular, Kritzinger et al.
[18] contributed with their literature review to a consensual
understanding about which subsystems are part of a digital
twin. They consider the digital model, the digital shadow, and
the digital twin as three separate levels of integration in the
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overall concept of digital twins. In this paper, we extend this
work by providing a formalization for all these categories.
With regard to mathematical approaches to formalize the
concept of digital twins, there is a lack in research papers.
Nevertheless, we discuss two approaches [19], [20] that use
semi-formal approaches to define the relationships between
the different components of a digital twin in Section II-B.

A. THE EVOLUTION OF THE DIGITAL TWIN CONCEPT

An innovative method for testing and monitoring embedded
systems was used for space missions, dating back to the early
Apollo missions conducted by the National Aeronautics and
Space Administration (NASA). Here, the “Twin” concept
was initially employed during the Apollo missions in the late
1960s as a safety precaution. If a system on the spacecraft
failed during the mission, engineers had no access to the
capsule. A failure to fix problems in a timely manner could be
catastrophic for the space mission. At the time, computational
power was insufficient for complex simulations. Therefore,
NASA engineers came up with the idea of building at
least two identical space capsules. One was used for the
mission while the other remained on Earth, serving as the
“Twin” for simulation purposes. Changes to the system
were first tested on the Twin before the astronauts received
the instructions. This approach required both capsules to be
maintained exactly the same, including replacing parts on
the Twin even if it was not used during a mission. NASA
had planned to transfer this approach to the Space Shuttle
program but abandoned the idea because of high costs.

Half a century later, with advancements in computational
power and improved simulations, NASA’s Twin concept
has evolved into a digital twin. However, there was a
second research threads that contributed to this concept.
The second thread originated in the manufacturing industry
and dates back to 2002, when Grieves [21] first pitched
for the formation of a product lifecycle management (PLM)
center at the University of Michigan. The presentation slide,
as depicted in Figure 1, had the title “Conceptual Ideal for
PLM” [22] and sketched the idea of a digital twin and named
it “Mirrored Spaces Model” back than [21].

FIGURE 1. A digital twin by Grieves and Vickers [22] consists of the real
space (left side), the virtual space (right side), and the link for data flow

from real space to virtual space. The opposite direction is done manually
by using information to enhance processes (Source: [22]).

Grieves envisioned with the Mirrored Spaces Model
already three crucial components of digital twins: the
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physical space, the virtual space, and the data link between
the physical and virtual spaces. Later, in 2016, Grieves and
Vickers [22] defined the digital twin as stated in Definition 1:

N

Definition 1 (Digital Twin by Grieves and Vick-
ers [22]): The Digital Twin is a set of virtual
information constructs that fully describes a potential
or actual physical manufactured product from the
micro atomic level to the macro geometrical level.
At its optimum, any information that could be
obtained from inspecting a physical manufactured
product can be obtained from its Digital Twin. Digital
Twins are of two types: Digital Twin Prototype and
Digital Twin Instance. Digital twin’s are operated on
in a Digital Twin Environment.

Definition 1 considered the digital twin to be a collection
of technologies and distinguished between two types: the
Digital Twin Prototype Digital Twin Prototype (DTP) and
the Digital Twin Instance. The Digital Twin Prototype is a
set of blueprints etc. used to construct or maintain a physical
twin Physical Twin (PT). The Digital Twin Instance is the
specific instance created after the physical twin has been
manufactured and is linked to it throughout its lifecycle.
While the vision presented by Grieves and Vickers [22] hinted
at possibilities achievable with contemporary technology, the
limitations of the technology available in 2002 restricted
the implementation of digital twins to a rudimentary level.
The computational power was not sufficient for large
and complex simulations and the Web 2.0 and hardware
virtualization, as used in modern data centers, were in their
infancy. Digital twins were seen as a new paradigm for
designing, manufacturing, and servicing products. However,
the interpretation of a digital twin may varies across different
sectors [14]

After their introduction, digital twins experienced a hype
phase until around the year 2006. The first hype of digital
twins was driven by high hopes in the industry. However,
the technology did not live up to the hype, and digital twins
became a buzzword in marketing departments rather than a
fully realized concept. Newman [23] observed and criticized
something similar with regard to microservice architectures.
Saracco and Henz [14] emphasized that industry drove
the development of digital twins, while academia ignored
it. The revival of interest in digital twins in 2016 was due
to the maturity of IIoT and CPS technologies, and academia
also joined the bandwagon. Digital twins reached the peak
of the Gartner Hype Cycle of emerging technologies in 2018
[24]. Furthermore, an increased number of research papers
and special issues published by journals can be registered
after 2016.

Between 2006 and 2016, different NASA researchers
proposed their visions for digital twins [21]. Piascik, Vickers,
Lowry, et al. [25] used the term digital twin in their
technology roadmap for NASA. However, they described
the digital twin concept but did not define digital twins.
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The better known digital twin definition was by Glaessgen
and Stargel [26] for next-generation fighter aircraft and
NASA vehicles, as shown in Definition 2:

Definition 2 (Digital Twin by Glaessgen and
Stargel [26] (NASA)): A Digital Twin is an
integrated multiphysics, multiscale, probabilistic
simulation of an as-built vehicle or system that
uses the best available physical models, sensor
updates, fleet history, etc., to mirror the life of
its corresponding flying twin. The Digital Twin
is ultra-realistic and may consider one or more
important and interdependent vehicle systems,
including airframe, propulsion and energy storage,
life support, avionics, thermal protection, etc.

and connectivity are crucial requirements for digital twins,
among other factors.

The definitions provided by Grieves and Vickers [22]
and NASA include only an automated connection from the
physical twin to its digital twin. Trauer, Schweigert-Recksiek,
Engel, et al. [30] conducted an industrial case study to analyze
how the industry perceived and defined digital twins between
2002 and 2019. They traced the evolution of digital twins and
presented Definition 4 as a result:

Definition 4 (Digital Twin by Trauer et al. [30]
(2020)): A Digital Twin is a virtual dynamic repre-
sentation of a physical system, which is connected
to it over the entire life cycle for bidirectional data
exchange.

They tailored their vision for the specific use case of
spacecraft, satellites, and space exploration, where simu-
lations play a crucial role because of the high cost of
hardware and human resources. These simulations are used
both in the development phase, which indicates at least a
MIL approach, and to monitor the systems during missions.
To detect anomalies during flight, they also included a
channel for sending sensor data from the physical twins to
their corresponding digital twins. Loading these data into the
simulation with a realistic model supersedes NASA’s Twin
approach from the Apollo missions. This is similar to the data
link shown in Figure 1, only with far advanced technology
and tools. A demonstration of their implementation can
be seen in the Perseverance Rover that landed on Mars
in 2021 [27].

In parallel to the definition by NASA, Garetti, Rosa, and
Terzi [28] defined digital twins for manufacturing, as defined
in Definition 3:

Definition 3 (Digital Twin by Garetti et al. [28]):
The digital twin consists of a virtual representation
of a production system that is able to run on different
simulation disciplines that is characterized by the
synchronization between the virtual and real system,
thanks to sensed data and connected smart devices,
mathematical models and real time data elaboration.
The topical role within Industry 4.0 manufacturing
systems is to exploit these features to forecast and
optimize the behaviour of the production system at
each life cycle phase in real time.

When the attention on digital twins research was rekindled,
academia proposed multiple definitions for the concept [15].
These definitions were influenced by the realistic simulation
approach proposed by NASA. Rosen et al. [17] linked the
digital twin concept to the Industry 4.0 strategy of the
German Platform Industry 4.0 [29]. They illustrated how
simulations evolved over time, from mechanics in the 1960s
to simulation-based system design and finally to digital twins
since 2015. They also highlighted that modularity, autonomy,
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We present Definition 4 here because of the inclusion of
the bidirectional data exchange from the digital twin to the
physical twin. This bidirectional interaction allows remote
control and operation of the physical twin as well as new
opportunities for collaboration between physical twin and
digital twin. This poses a challenge for engineers to either
develop the software independently for each twin, violating
the principle of realistic replication, or to use tools such as
Docker to containerize the physical twin’s software for use
as a digital twin.

Depending on the research field, the industry, and use
cases, the term digital twin is often used synonymous
with concepts such as Digital Model, Digital Shadow, and
Digital Thread [15], [18]. Kritzinger et al. [18] conducted
a categorical literature review and analyzed research papers
with regard of the proposed concept and how it deviates
from a common understanding of the essential parts of
digital twins. They classify three subcategories of a digital
twin by their level of integration with the physical twin: (i)
digital model, (ii) digital shadow, and (iii) digital twin. The
differences are depicted in Figure 2.

(1) Figure 2a shows the digital model. There is no
automated connection between the physical object and
the digital model. No automated data exchange is
realized. State changes in the physical object do not
immediately affect the digital model and vice versa.

(ii) If there is an automated one-way data flow from the
physical object to the digital object (see Figure 2b),
then this is a digital shadow. A change in the state of
the physical object leads to a change in the state of the
digital shadow, but not vice versa.

(iii) Figure 2c shows a fully integrated digital twin. The
data flows between the physical twin and the digital
twin in both directions were automated. In such a
configuration, the digital twin might also act as a control
instance of the physical twin. A change in the state of
the physical twin directly leads to a change in the state
of the digital twin and vice versa.

With the increasing importance of digital twins, the
International Organization for Standardization (ISO) also
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FIGURE 2. Subcategories of digital twins by their level of integration with the physical twins (Source: [18]).

published the ISO 23247 series, defining a framework
to support the creation of digital twins of observable
manufacturing elements, including personnel, equipment,
materials, manufacturing processes, facilities, environment,
products, and supporting documents [31]:

Definition 5 (Digital Twin by International Organiza-
tion for Standardization [31] (2021)): A digital twin
assists with detecting anomalies in manufacturing
processes to achieve functional objectives such as
real-time control, predictive maintenance, in-process
adaptation, Big Data analytics, and machine learning.
A digital twin monitors its observable manufacturing
element by constantly updating relevant operational
and environmental data. The visibility into process
and execution enabled by a digital twin enhances
manufacturing operation and business cooperation.

J

One aspect of ISO 23247 that immediately catches the
eye is the notable omission of bidirectional communication.
This standard primarily emphasizes the monitoring aspect
of a digital twin. According to the definition provided by
Kritzinger et al. [18], ISO 23247 solely encompasses what
they term as a digital shadow.

Since 2018, IIoT platforms transitioned from basic data
hubs to digital twin platforms. Lehner et al. [33] evaluated
the digital twin platforms provided by Amazon Web Services,
Microsoft Azure, and the Eclipse ecosystem and showed that
they fulfill many requirements, yet not all key requirements.
Features like bidirectional synchronization between physical
and digital twins require additional coding, and automation
protocols are not covered yet. According to the categorization
of the integration level of digital twins [18], these platforms
only help to establish a so-called digital shadow [18]. Modern
simulation tools, such as AutoDesk, aPriori, or Ansys, use
IIoT platforms to feed the simulation with data and enable the
integration of automation protocols. Often, they are promoted
with the promise of a digital twin. However, similar to cloud
providers, these tools also just help to establish a digital
shadow. The simulation of a physical twin still does not
cover the entire embedded software system that runs on the
physical twin and also lacks the ability of proper bidirectional
synchronization between physical twin and digital twin.
Table 1 classifies the presented digital twin definitions into
their primary use cases.
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B. CONCEPTUAL MODELS TO DEFINE DIGITAL TWINS

The presented research projects and papers leave plenty of
space for interpretation of the digital twin concept. This is one
reason, why there are so many definitions of digital twins.

Yue [19] present a semi-formal approach using Unified
Modeling Language (UML) class diagrams to define the
physical twin, the digital twin, and their relationships by
the example of an automated warehouse system. Figure 3
depicts these relationships. The physical twin and digital twin
exchange data via the PT-To-DT-Connection and DT-To-PT-
Connection. A state change in one twin, triggers the change of
the state of its counterpart. Furthermore, they payed attention
to two aspects, which are often not considered explicitly:
fidelity and the twinning rate. Fidelity considers the accuracy
and the level of abstraction of the digital twin and the
twinning rate is the interval physical twin and digital twin
synchronize their states. However, the semi-formal approach
by Yue, Arcaini, and Ali [19] has its flaws. Although they
considered the digital model as part of the digital twin, it is
not explicitly mentioned in the general overview in Figure 3.
Moreover, the digital shadow was ignored completely.

Becker et al. [20] present in their conceptual model of
digital shadows for cyber-physical systems in a similar
approach using also UML class diagrams to show the
relationships, but solely for the digital shadow. The focus of
the digital shadow is on single assets and their information
flow from the physical twin to the digital shadow. They
also emphasize that an asset’s corresponding model is part
of the digital shadow and that models can be of different
natures/types.

A formal mathematical approach, yet very abstract, of the
relationships between physical twins, digital shadow, and
digital twin was presented by Lv [34]. A limitation of their
approach is that it still offers a lot of space for interpretation
and the mathematical notation is peculiar.

In this paper, we merge and extend the relationship
diagrams of Yue et al. [19] and Becker et al. [20] by also
including the digital model and digital shadow to give a full
overview of the digital twin concept. In addition, we present
the formalization of a digital twin software architecture using
the Object-Z notation.

C. CONTINUOUS TWINNING
In the development phase of cyber-physical systems, HIL
testing is still the common approach. The pressure to
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TABLE 1. Classification of the presented digital twin definitions into their primary use case.

Primary Use Case

Definitions from Related Work

A snapshot of a mathematical model or computer-aided design used primarily for initial simulations.

Monitors the corresponding physical twin in (near) real-time and internally updates an instance of the

digital model.

Operates and monitors the corresponding physical twin in (near) real-time and internally updates an

instance of the digital model.

Bundles all information, the digital model, and the embedded software system required to build the

physical twin.

[26], [18]

[17], [28], [31], [18]

[22], [30], [32], [18]

[21] (Digital Twin Prototype Defi-
nition)
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FIGURE 3. Semi-formal description of the relationships between physical twin, digital twin,
their connections, and environments as described by Yue, Arcaini, and Ali [19].

reduce costs [7] led to many different approaches to switch
from HIL to SIL. To date, for most industrial applications,
sensors and actuators are connected via input/output ports
to programmable logic controllers Programmable Logic
Controllers (PLCs). Although new wireless communication
technologies and more powerful and efficient single-board
computers open up the embedded community for cheaper and
faster development processes, the predominance of PLCs will
hold for years. It is quite common to use PLCs in a HIL setup,
where the PLC is connected to a simulation [35]. Engineers
can program the PLC, and the simulation delivers a virtual
context with simulated sensors/actuators to the PLC. As only
one engineer can work on an HIL system at the same time,
SIL approaches become more and more popular to enable
collaboration between engineers. Yu et al. [35] demonstrated
that a software PLC in a SIL context can be realized with
Docker and other tools.

Quality assurance of embedded systems is regulated with
standards and norms to ensure robust testing and to prevent
malfunctions that might pose a risk to the safety of individuals
who work with or use these systems [2]. The aviation
industry is renowned for its strict and stringent testing
procedures, contributing to the fact that aircraft are the
safest mode of transportation, statistically. This was not
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the case half a century ago, as standards and procedures
have evolved through various experimentation with different
testing strategies.

The digital twin prototype approach presented in this
paper, enables engineers to produce the first minimum
viable product with the first implemented device driver
and emulator. Thanks to the proposed modular architecture,
all additional nodes and emulators can be developed and
added iteratively. Putting all modules in a source code
management system allows all developers to use the digital
twin prototype and enhance the entire system incrementally,
without the need to connect to the hardware of the digital
twin. As a bonus, this also enables automated SIL testing
in continuous integration/continuous delivery Continuous
Integration/Continuous Delivery (CI/CD) pipelines.

By following CI/CD workflows, the development of
embedded software systems becomes an agile and incremen-
tal process. Beginning with a prototype of a device driver for a
single piece of hardware, to entire production plants, to smart
factories, agile software development is enabled. This not
only improves the software quality and shortens the release
cycles, it also allows additional stakeholders to participate in
a feedback loop in the development process from the first
minimum viable product. Adjusting software requirements
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or fixing design flaws can be done during development.
With this method, digital twins evolve continuously in small
incremental steps, rather than in major releases. Nakagawa
et al. [36] envision and call this approach Continuous
Twinning.

Ill. THE DIGITAL TWIN CONCEPT - A FORMALIZATION
As Grieves [37] elaborates, there is a flaw in the catego-
rization of the digital twin definition by Kritzinger et al.
[18]. Their framework, which divides digital twins into three
subcategories, paradoxically includes a digital twin as one of
its own subcategories, resulting in the potential for endless
recursion. Despite Kritzinger et al. [ 18] effectively illustrating
the distinctions among these proposed subcategories, as seen
in Figure 2, their definition still permits the categorization
of a digital model or digital shadow as a digital twin. This
ambiguity complicates the understanding of what constitutes
digital twins in contrast to digital models or digital shadows.
Consequently, there is a risk that customers might expect
to purchase a digital twin, as advertised by vendors, only
to receive a digital model instead. However, we do not
share the recommendation to ignore the difference between
a digital shadow and a digital twin with Grieves [37].
To enhance the clarity around the concepts and relationships
between physical twins, digital models, digital shadows,
digital threads, digital twin prototypes, digital templates, and
digital twins, we formally specify the digital twin concept as
follows. Similar to Hasselbring [38], we propose a three-level
interleaving of formality in the specification:

1) informal prose explanation and illustrations with

examples;
2) semi-formal object-oriented modeling with the UML;
3) rigorous formal specification with Object-Z.

Object-Z [39] is a formal specification notation used to
describe the behavior of software systems. It extends the
Z notation [40] and enables the incorporation of object-
oriented concepts, such as classes, objects, inheritance,
and polymorphism, into specifications. Additionally, Object-
Z allows for the specification of operations that can be
performed on objects, along with constraints on attribute
values and relationships between objects, all expressed in a
mathematical notation. The following specification has been
checked using a type checker provided by the Community Z
Tools Project [41].

The formal specification is exemplified through an embed-
ded software system comprising a sensor, an actuator that
also serves as a data transmitter, and an embedded control
system connected to both. This control system manages
data and command exchange between these components. All
example components are very basic and are only meant to
demonstrate the core ideas. A real system would be more
complex, including more third-party dependencies, tools, and
frameworks.

A. THE PHYSICAL TWIN
The digital twin concept starts with the physical twin:
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Definition 6 (Physical Twin): A physical twin is
a real-world physical system-of-systems or product.
It comprises sensing or actuation capabilities driven
by embedded software.

Figure 4 illustrates the deployment diagram of the pro-
posed simple embedded system. In this example, the sensor
is connected to the controller via an RS232 interface, and
the transmitter is connected via Ethernet. All data collected
from the sensor is processed by the controller logic and
subsequently sent to an external source via the transmitter.
Commands to modify the sensor’s behavior are received
by the transmitter and forwarded to the sensor through the
control logic.

Consider both devices as black boxes that maintain a list
of accepted commands, a method for executing tasks based
on the commands and returning a result, and functions for
sending and receiving data. Additionally, a device driver
holds a corresponding list of commands that can be sent
to the devices. The lists on the device and the device
driver are identical, and the device driver handles command
transmission and response reception.

The UML class diagram in Figure 5 depicts the various
classes that form the embedded control system. To align
with the clean code principles, abstract classes Device and
DeviceDriver are introduced first. Sensors and actuators
are considered as devices and thus inherit from Device,
as depicted on the left side of Figure 5. All devices are
connected to the embedded control system.

The crucial elements of embedded software systems
are the connections between the control systems and the
sensors/actuators. In this example, the connections are estab-
lished using different PROTOCOL types (TCP or RS232) to
facilitate communication between Device and DeviceDriver.
Specifically, SensorDriver inherits from DeviceDriver and
employs a RS232Connection to establish a connection with a
Sensor. Similarly, Transmitter and TransmitterDriver (which
also inherits from DeviceDriver) establish a connection
using TCPConnection. While a Device is treated as an
external component running on the device, a corresponding
DeviceDriver is an integral part of the embedded control
system. A Device consists of two main components: a
Connection object and a set of accepted commands (comman-
dList). The Connection object manages the data exchange
between a Device and a DeviceDriver. The ExecuteCommand
function represents the execution of a task after a command
has been sent to the Device. It expects a COMMAND object
sent by the DeviceDriver and returns a RESPONSE object.
The Send and Receive functions utilize the corresponding
functions provided by the contained Connection. To facilitate
the exchange of data from a sensor to another process, such as
the control logic, EventHandler objects are introduced. It can
be assumed that these EventHandler objects are implemented
in a manner similar to the Observer pattern, which also
encompasses publish/subscribe architectures.
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Embedded Control System
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FIGURE 4. The deployment diagram of an embedded system comprising a sensor, a data transmitter and the embedded
control system both are connected to. The sensor is connected via RS232 and the transmitter via Ethernet.

EventHandler

RS232Connection
PROTOCOL receives
<< abstract >> Producer Consumer
] TCPConnection
sends
uses é DeviceDriver L
: connects via << abstract >>
CommandList
1 . 1
Connection
holds
Device Sel?sor Trans_mitter
<<abstract>> [ connects via Driver Driver
exchanges
receives ?ﬂ sends |[receives
DATA N
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FIGURE 5. UML class diagram of a physical twin.

In this setup, all events received from the Sensor are
emitted to all listeners through a Producer, and processes
receive these events by including a Consumer.

1) OBJECT-Z FORMALIZATION

The specification of this simple embedded system follows a

bottom-up approach. The deployment diagram, as depicted

in Figure 4, can be defined using the Object-Z notation.

To achieve this, some basic type definitions are introduced:
[PROTOCOL, EVENT |

PROTOCOL represents the communication protocols uti-
lized between the devices and the control system, whereas
EVENT is the type employed for data exchange between
processes. Basic type definitions introduce new types in Z and
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Object-Z. Such internal structure is considered irrelevant for
the specification. In this particular specification, any details
that are not architecturally relevant are abstracted in this
way. The various PROTOCOL types used in the schema
architecture are subsequently defined through an axiomatic
definition. In this context, TCP and RS232 are established as
values of type PROTOCOL:

| TCP,RS232: PROTOCOL

Up until this point, only basic types have been introduced.
However, because Object-Z is object-oriented, objects are
also created. In this context, the parent class is denoted as
DATA, which will later be specialized through inheritance
into classes specific to the various data types:
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DATA

data : seq{0, 1}

Communication between devices is represented by a
sequence of bits. Given that standard data types such as
integers, floats, or strings are irrelevant for the specification,
only a bit representation is utilized. As both a device and
its corresponding device driver exchange either RESPONSE
or COMMAND, the corresponding schemes inherit from the
DATA class. In this context, RESPONSE can represent either
MEASUREMENT or STATUS:

COMMAND STATUS
(DATA (DATA
MEASUREMENT __ RESPONSE
(DATA MEASUREMENT
STATUS

Once the data types have been formalized, the various com-
ponents and their connections can be configured. Initially, the
abstract Connection class can be defined as follows:

— Connection
[ (Iir, Read , Write)

type : PROTOCOL
dataStream : seq DATA

— Inir
dataStream = ()

— Write
A(dataStream)
value? : DATA

dataStream’ = dataStream ™ (value?)

— Read
A(dataStream)

value! : DATA

dataStream = (value!) ™ dataStream’

The symbol ? denotes input parameters and !
denotes outputs [39].

A Connection possesses a type and manages bit sequences,
represented as a stream (dataStream). The Write function
appends bit sequences to the stream, whereas the Read
function extracts them by reading bits from it. The specific
implementations, RS232Connection and TCPConnection, are
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named after the types they set for the Connection object from
which they inherit:

RS232Connection __ TCPConnection ___
Connection Connection
type = RS232 type = TCP

A Device comprises a Connection object and a set of
accepted commands (commandList). The Connection object
is responsible for managing the data exchange between a
Device and a DeviceDriver. The ExecuteCommand function
represents the execution of a task following the transmission
of a command to the Device. It expects a COMMAND object
sent by the DeviceDriver and returns a RESPONSE object.
The Read and Write functions make use of the corresponding
functions provided by the contained Connection:

— Device
[ (Ivir, Send , Receive, commandList)

connection : | Connection(C)
commandList : P COMMAND

connection ¢ Connection
F#commandList > 0

The symbol | denotes the union of Connec-
tion with all sub-types. Connection is abstract.
Thus, the Connection has to be a sub-type that
implements it.

The symbol (C) denotes object containment
[39].

__IniT
connection.INIT

__ExecuteCommand
command? : COMMAND
result! : | DATA

command? € commandList

Send = connection.Write
Receive = connection.Read § ExecuteCommand
§Send

The symbol § denotes a sequential composi-
tion.

Similar to the Device class, the DeviceDriver class also
contains a Connection object, a set of commands, a set of
known behaviors, and a function that maps a behavior to the
corresponding command that can be sent to the Device:
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—DeviceDriver
[ (Iir, Send , Receive, commandList , emitter
consumer)

connection : | Connection(C)
commandList : P COMMAND
emitter : Producer(C)
consumer : Consumer (C)

connection ¢ Connection

_IniT
connection. INIT N\ consumer .INIT

Send = consumer.Consume § connection.Write
Receive = connection.Read § emitter .Emit

Assume that for this example the DeviceDriver fully
implements all interactions with the Device and hence, the
commandList for both instances is equal. The Receive and
Send functions in this class also utilize the Connection’s Read
and Write functions. Any further implementations beyond
this scope are not relevant to our specification.

Data exchange between different processes, such as
the DeviceDriver and the ControlLogic, occurs through
EventHandlers:

EventHandler
[ (event)

event : EVENT

Each EventHandler registers for a specific EVENT, which
can represent, for example, a simple response from the
Device. In this example, the EventHandler is an abstract
class, and Producer and Consumer are the specific imple-
mentations. Assuming both register for the same EVENT,
like “NEWDATA,” a Producer can emit new events, and
the Consumer receives and handles all incoming events. It is
important to note that this relationship is not one-to-one
but rather one-to-many, allowing an indefinite number of
Consumers to listen to the same Producer. The main function
of a Producer is the Emit function, which is called with a
passed DATA object, and then all Consumers are notified:

—_Producer
[ (IviT, event , Emit)
EventHandler

— Emit
occuredEvent? : |[DATA
eventToEmit! : | DATA

eventToEmit! = occuredEvent?
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A Consumer registers via the Observe function to an
EVENT, listens only to the emitted events, and handles them
in a queue. The Consume function always returns the first
element in the queue:

— Consumer
[ (IviT, event , queue, Observe, Consume)
EventHandler

queue : P | DATA

—Inir
queue =

— Observe
A(queue)
item? : [DATA

queue’ = queue U {item?}

— Consume
A(queue)
item! : | DATA

#queue > 0
item! € queue
queue’ = queue \ {item!}

After introducing the basic classes, the logic of the
embedded control system can be defined. The DeviceDriver
manages all communication between the control system
and the Device, with communication being established
through the Connection class. In this scenario, assume this
DeviceDriver is straightforward and serves as a relay between
the control logic and the device.

The Consumer handles all incoming DATA from the
control logic and forwards it to the device. When responses
are received from the device, the emitter forwards these
responses to all listeners. In Object-Z, the symbol 3"
signifies sequential execution. Consequently, in the Send
function, the process begins by receiving an incoming event
by invoking consumer.Consume. Only after this call’s result
is obtained, it is passed to the Connection, which then sends
the command to the device. Conversely, incoming responses
from the device are acquired from the connection using
connection.Read and subsequently emitted to all listeners
through emitter. Emit.

Now that the abstract classes for Device, Connection,
and DeviceDriver have been established, we can proceed to
define the concrete classes for the sensor, named Sensor, and
its corresponding device driver, SensorDriver, as depicted in
Figure 5. In this particular example, Sensor and SensorDriver
are interconnected using a RS232Connection. The outcome of
an executed command is categorized as a RESPONSE, which
can represent either a MEASUREMENT or a STATUS object.
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The remaining functions within these specific classes remain
consistent with those in the abstract parent classes Device and
DeviceDriver:

___Sensor
[ (Ivir, Send , Receive, commandList)
Device

connection : RS232Connection(C)

__ExecuteCommand
command? : COMMAND
result! : RESPONSE

command? € commandList

A SensorDriver inherits the EventHandlers from its parent
class:
SensorDriver
[ (Ivir, Send , Receive, commandList)
DeviceDriver

connection : RS 232C0nnecti0n©

In this example, all incoming commands are dispatched by
the control logic, consumed by the driver, and subsequently
forwarded to the sensor via the connection. Vice versa,
all responses from the sensor are emitted as events by
the corresponding producer and can be listened to by all
consumers. The essence of this specification lies in the
communication between a device and its device driver, which
is captured by the Communication schema. In this instance,
the device is a Sensor, and the driver is a SensorDriver. Both
the device and the device driver share the same commandsList
and are connected through an RS232Connection. In Object-Z,
the symbol “||”” denotes the execution of functions in paral-
lel [39]. As such, the ReadFromDevice operation exemplifies
the Sensor transmitting data while the corresponding Sensor-
Driver reads it. Conversely, ReadFromDriver represents the
reverse scenario, with communication from the SensorDriver
to the Sensor:

— Communication

device : Sensor
driver : SensorDriver

YV x : device.commandList

e x € driver.commandList
Y x : driver.commandList

® x € device.commandList

ReadFromDevice = device.Send || driver.Receive
ReadFromDriver = driver.Send || device.Receive
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The Transmitter class is akin to the Sensor class in several
ways. It handles incoming commands and provides responses
in return. However, since the Transmitter is an actuator,
it does not return measurements but instead sends data using
another communication protocol, such as LoRaWAN. It is
important to note that this communication differs from the
Communication schema described earlier. Additionally, the
Connection object solely represents the connection between
the Device and DeviceDriver and does not pertain to the
communication between two transmitters:

— Transmitter
[ (Ivir, Send , Receive, commandList)
Device

connection : TCPConnection(C)

__ExecuteCommand
command? : COMMAND
result! : RESPONSE

command? € commandList

Similar to the SensorDriver, the TransmitterDriver repre-
sents only a data relay between device and control logic:
TransmitterDriver
[ (Iir, Send , Receive, commandList)
DeviceDriver

connection : TCPConnection(C)

The details of the control system are not within the scope
of this specification. The control logic for an embedded
system is often some form of a state machine. State
machines fully automate a system but do not adapt to
new or changed processes on the fly. Modern Industry
4.0 applications, incorporate autonomous behavior, extracted
or learned from gathered data and thus, include architectures
different from state machines. Furthermore, the orchestration
of processes, including different commands to different
sensor and actuators, can be quite complex. However, for
this example, the only function of the ControlLogic class is
to execute the commands received from the transmitter and
return the responses from the sensor:

The incoming commands contain the value that sets the sam-
pling rate of the sensor. To configure the period, the function
sendCmd processes events sequentially from the transmitter
queue. For each event, the SetPeriod function is called
to set the sampling rate. The newly configured period is
then sent as a command to the sensor, which adjusts its
sampling rate accordingly. This message exchange is logged
into a list called dataLog. All events originating from the
sensor are handled by sendRsp and are sent to the transmitter
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— ControlLogic

sensor : Consumer(C)
transmitter : Consumer(C)
response : Producer(C)
command : Producer(C)
period : 7

dataLog : P | DATA

—_IniT
period =0
datalog = &
sensor INIT N\ transmitter .INIT

__SetPeriod
A(period)
newPeriod? : Z

period’ = newPeriod?

— LogData
A(dataLog)
newSensorData? : | DATA

period > (0
dataLog' = dataLog U {newSensorData?}

sendCmd = data : transmitter .queue
o transmitter .Consume § SetPeriod
scommand .Emit || LogData
sendRsp = $data : sensor.queue
o sensor.Consume § response.Emit
|| LogData

without any alterations. Once again, the message exchange is
recorded in the data list through the LogData command.

With all required classes defined, the schema of the
EmbeddedControlSystem in Figure 4 can be defined as
follows:

EmbeddedControlSystem

sensorDriver : DeviceDriver@
transmitterDriver : DeviceDriver@
controlLogic : ControlLogic(C)

Finally, the union of the devices and the schema Embed-
dedControlSystem forms the Physical Twin:

PhysicalTwin

sensor : Device(C)
transmitter : Device(C)
ecs : EmbeddedControlSystem(C)
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B. THE DIGITAL MODEL

Modeling and simulation are powerful methods that are uti-
lized in various fields to evaluate complex systems, processes,
and knowledge. They empower researchers, engineers, and
decision-makers to examine real-world phenomena within
controlled and virtual environments. This, in turn, enables
them to make informed decisions and gain insights into the
system under investigation. At the core of modeling lies the
concept of mathematical modeling, which plays a pivotal role
in formally capturing the essence of the system.

Mathematical models are representations of real-world
systems that sue mathematical equations, relationships, and
logical structures. They provide a mean to describe and
quantify the behavior of a system. While mathematical
models are not confined to any specific domain, in this
work, we concentrate on their application in the engineering
domain.

Before the advent of computers, machines were con-
structed primarily on drawing boards. This paradigm shifted
with the introduction of computer-aided designs Computer-
aided Designs (CADs), enabling the creation of 2D and
3D models that could be easily shared and replicated with
others. Over the past decades, advancements in tooling
and computational power have facilitated the substitution
of real prototypes with virtual prototypes. This transition
significantly reduced the number of design cycles and
lowered the design costs. When components of a system are
governed by mathematical relationships, virtual prototypes
can be rigorously tested in simulations under a wide range
of conditions. This allows for the evaluation of potential
design weaknesses, providing immediate feedback on design
decisions.

The Digital Model serves as a central component of
a digital twin. However, most definitions merely mention
digital models, assuming that researchers share a common
understanding of what a model entails. This often leads to
the assumption that a CAD model constitutes the entirety of
a digital model, while a simulation is considered something
more than a digital model, despite both being forms of
mathematical models. Hence, we define a digital model as
follows:

Definition 7 (Digital Model): A digital model
describes an object, a process, or a complex aggre-
gation. The description is either a mathematical or a
computer-aided design.

This definition encompasses various aspects of digital
modeling, including the use of CAD as the foundational
model for system design, its utilization within simulation
tools involving complex processes, and even purely mathe-
matical models.

1) INTRODUCING THE STATE MACHINE EXAMPLE
Although the physical twin is defined as including
(autonomous) behaviors instead of a state machine, this
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example can also be implemented as a finite state machine,
where one can model its different states as follows [42]:

M =(Q.2.. 8,90, F) ey

A finite state machine M can be represented by a 5-tuple
M, which consists of a finite set of states Q, a finite set of
input symbols known as the alphabet >, a transition function
delta defined as § : Q x > — Q, an initial or starting state
qo € O, and aset of accept states ' € Q. The creation of state
machines, often done using tools such as LabView, remains a
common approach employed by engineers for programming
machines. This practice falls within the scope of the provided
definition of a digital model.

The state machine of the embedded control system can be
defined as follows:

e QO = {STANDBY, ACTIVE, OFF}

e gqo = STANDBY

L] Z == Z

e 8:0x> =0
The corresponding UML state diagram is presented in
Figure 6. Upon initiation, the initial state is STANDBY, with
the corresponding period value for the sensor’s sampler rate
set to 0, indicating that no samples are taken at this point.
If a command with a value x € >, where x > 0, is issued,
the state machine transitions to the ACTIVE state. Conversely,
if a command with a value x = 0 is received, the state reverts
to STANDBY. For values of x < O, the state of the system
changes to OFF.

Embedded Control System
period > 0
period > 0
period < 0
.7 StandBy Active
period = 0
period < 0

FIGURE 6. UML state machine diagram of the embedded control system
formalized for the physical twin.

2) OBJECT-Z FORMALIZATION
This state machine can also be specified in Object-Z. First,
the class diagram is displayed in Figure 7. STATE is the parent

class:
STATE

[ (execute)

execute

—

The execute method will be internally overwritten by
the child states. For this example, the specific code that is
executed is irrelevant. The states in which the state machine
can be in are defined as subclasses:
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StateMachine

Model State
+ currentState: State operations
+ period: Float

+execute()

operations /d ‘>\

+processEvent(newEvent: Command) ‘ StandBy ‘ ‘ Active

0

FIGURE 7. UML class diagram for the state machine.

ACTIVE STANDBY
(S TATE (S TATE
OFF
(S TATE

The EventStateMachine encapsulates the logic responsible
for state changes upon receiving COMMAND events and
maintains both a STATE (state is also the variable) and a
period, which is a number. Initially, the period is set to
0, corresponding to the initial state set as STANDBY. The
ProcessEvent function is responsible for modifying the state
of the state machine in response to incoming events.

_ EventStateMachine

[ (Inir, ProcessEvent, state)

state : |STATE
period : 7

—Inir
period =0

__ProcessEvent
A(state)
newEvent? : COMMAND
newState! : |[STATE

state’ = newState!

It is important to note that, at this stage, the EventStateMa-
chine has no connection to the physical twin. All modi-
fications and updates are made manually, and there is no
automatic synchronization between the digital model and
physical twin. The schema for the digital model than includes
the state machine:
—DigitalModel

[ (Inir, ProcessEvent )

stateMachine : EventStateMachine(C)

__IniT
stateMachine .INIT

ProcessEvent = stateMachine.ProcessEvent
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C. THE DIGITAL TEMPLATE

In their initial definition of digital twins, Grieves and
Vickers [22] view the digital twin as a collection of
information necessary for constructing and monitoring the
physical object. Specifically, the digital twin prototype can
be regarded as a virtualized set of blueprints, bills of
materials, technical manuals, and similar documentation.
When combined with a digital model, which can be used to
extract all the information needed to create blueprints and
bills of materials, it can indeed be employed to construct and
maintain the physical twin. However, this approach does not
completely virtualize the physical twin, as later demonstrated
by the example of the OSI Model in Figure 17 on Page 75357.
Thus, the early interpretation of this definition does not fully
realize a digital twin of a physical twin.

To encompass all available materials for constructing and
maintaining the physical twin, including the software running
the physical twin and the digital model, these components can
be bundled together into a comprehensive package. We refer
to this bundle as the Digital Template:

Definition 8 (Digital Template): A digital template
serves as a framework that can be tailored or
populated with specific information to generate the
physical twin. It encompasses the software operating
the physical twin, its digital model, and all essential
information needed to construct and sustain the
physical twin, such as blueprints, bills of materials,
technical manuals, and similar documentation.

Grieves and Vickers [22] initially defined a digital template
as a digital twin prototype. However, in a recent paper,
Grieves [43] elaborates on the definition of a digital
twin prototype. The digital twin prototype encompasses all
products that can be manufactured, including their variants.
This concept evolves over time, from conception to the
creation of the initial manufactured article [43]. We still
consider that early iterations of the digital twin prototype are
only a digital template. Nonetheless, upon full development,
they may also incorporate the digital twin prototype definition
presented later in this work.

1) OBJECT-Z FORMALIZATION

The UML class diagram of a digital template is depicted in
Figure 8. The digital template includes all documents that
either describe the physical twin or are required to build it.
Furthermore, it includes the digital model from which the real
system is derived and the software that operates the physical
twin later. For an Object-Z formalization, the general class
Document is defined as follows:

Document

—
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Specific types inherit from the Document class:

_ BluePrint _TechnicalManual __
Document Document

_ BillOfMaterials _ Generic
Document Document

The schema for the digital template includes all the
documents, the embedded control software, and the digital
model:

DigitalTemplate

documents : P Document
ecs : EmbeddedControlSystem
digitalModel : DigitalModel

D. THE DIGITAL THREAD

With the development of cyber-physical systems, machines
have begun interacting with servers tasked with monitoring
and controlling them. This paradigm also applies to digital
twins. In this context, the communication channel facilitating
such interaction is referred to as a digital thread. Taking
inspiration from Leiva [44], we define the digital thread as
follows:

Definition 9 (Digital Thread): The digital thread
refers to the communication framework that allows
a connected data flow and integrated view of the
physical twin’s data and operations throughout its
life-cycle.

J

Data accumulated from physical objects can only be
preserved if these objects have an interface for storing the
generated data. Similar to the definitions of a digital twin,
there is currently no universally accepted and standardized
solution for digital threads because of their diverse applica-
tions across various domains. Furthermore, it is crucial to
understand that the digital thread encompasses more than
just the communication protocol. It also involves applications
and functionalities that assist in tasks such as monitoring,
analysis, planning, and execution. These applications have
the capacity to incorporate and share knowledge derived from
the digital template and the gathered data, preserving the
physical twin’s evolution over time [32].

1) OBJECT-Z FORMALIZATION

The UML class diagram for a digital thread between the
previously formalized physical twin and a digital twin,
which will be defined later in this paper, is illustrated in
Figure 9. The DigitalThread exists of a PTtoDTConnection
that sends measurement and status messages (see the
RESPONSES Object-Z class) and the DTtoPTConnection,
which sends commands to the physical twin. To send data,
a TransmitterDriver is used to establish a Connection.
Note that this connection is not between a DeviceDriver
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FIGURE 8. Relationship diagram of the digital template concept.
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FIGURE 9. UML class diagram of a digital thread.

and a Device but between two transmitters, e.g. using the
LoRaWAN protocol.

Both connection types gather data from processes (Dig-
italThreadProcess). In general, these processes can differ
for each digital thread. Referencing our example again, the
ControlLogic represents a PTDigitalThreadProcess, since it
forwards all sensor messages to the transmitter, which then
can transmit the data to the digital twin. On the digital
twin’s side, the DTDigitalThreadProcesses can include
many different kinds of processes. However, at least one
process is included: the process that decides which com-
mand is sent to the physical twin to adjust its sampling
rate.

Since the digital thread is meant to show the evolution of
the physical twin over its life-cycle, all the gathered data has
to be stored in some form of a database. Hence, the database
is a DigitalThreadProcess, which is part of the digital thread.

Formalizing this with Object-Z, we first define the
DigitalThreadProcess:

DigitalThreadProcess

knowledge : P DATA

A DigitalThreadProcess has a set of DATA that can be
shared with the corresponding twin counterpart. PTDigi-
talThreadProcess and DTDigitalThreadProcess are derived
classes:
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PTDigitalThreadProcess .
DigitalThreadProcess

DTDigitalThreadProcess
DigitalThreadProcess

These data are sent via the Connection in the PTtoDTCon-
nection, which is defined as follows:
__PTtoDTConnection

connection : TransmitterDriver (C)
collectFrom : P PTDigitalThreadProcess

The counterpart is the DTtoPTConnection:
— DTtoPTConnection

connection : TransmitterDriver (C)
collectFrom : P DTDigitalThreadProcess

Both classes form the DigitalThread:
__DigitalThread

ptData : PTtoDTConnection
dtData : DTtoPTConnection

E. THE DIGITAL SHADOW

To fully harness the potential of the digital thread, a process
situated at either end of the digital thread must consolidate all
the disparate elements into a platform that users can utilize
to gain insights into the current state of the physical twin.
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In the context of the digital twin concept, this role is fulfilled
by the digital shadow. The term ‘“‘digital shadow” emerged
approximately a decade ago in discussions surrounding the
privacy implications of “‘Digital Footprints”, wherein numer-
ous traces of digital actions are left behind and potentially
misused by mischievous actors [45]. Comparatively, while a
digital footprint encompasses the entirety of an individual’s
online activities, a digital shadow in the context of the digital
twin concept specifically focuses on capturing and analyzing
data related to the behavior, performance, and environment
of physical objects or systems in the digital realm. The digital
shadow is defined as follows:

Definition 10 (Digital Shadow): A digital shadow is
the sum of all the data that are gathered by an embed-
ded system from sensing, processing, or actuating.
The connection from a physical twin to its digital
shadow is automated. Changes on the physical twin
are reflected to the digital shadow automatically. Vice
versa, the digital shadow does not change the state of
the physical twin.

Legend

User Interaction | Analyze Plan

|::> Data Exchange |

£ Dpata Flow

Knowledge

Monitor

Execute

Computer System

FIGURE 10. MAPE-K reference model for cyber-physical systems.

Because digital shadows represent the predominant state
of most commercial digital twin products [33], exten-
sive research is also being conducted on their develop-
ment. Popular are model-driven approaches [46], [47],
[48], [49], [50]. Michael and Wortman [50] describes an
model-driven approach using the =~ Monitor-Analyze-Plan-
Execute over a shared Knowledge (MAPE-K) (Monitor-
Analyze-Plan-Execute over a shared Knowledge) reference
model. MAPE-K extends IBM’s MAPE framework, with
“K” signifying “Knowledge.” The MAPE-K reference
model provides a framework for automation of processes
and the control loop for managing and optimizing computer
systems. The different stages, see Figure 10, Monitor,
Analyze, Plan, and Execute represent a specific stage or
function within an autonomic computing system:

o Monitor: This is the first stage of the framework.

In this phase, the system continuously collects data and
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monitors its own performance and the surrounding envi-
ronment. This can involve data from various sensors,
actuators, or monitoring tools that gather information
about the system’s behavior, resource utilization, and
external conditions.

« Analyze: To gain insights into the system’s behavior and
performance, the data collected through monitoring, gets
analyzed. The goal is to identify patterns, anomalies, and
potential issues, and hence, to understand the current
state of the system.

« Plan: Based on the analysis of the system’s current state,
the system formulates a plan for actions to be taken.
This plan may involve adjustments, optimizations,
or corrective measures aimed at improving the system
performance, resource allocation, or other relevant
parameters.

« Execute: In the last phase, the system performs the
actions defined in the planning stage. These actions can
be automatic or semi-automatic depending on the level
of autonomy and control designed into the system. The
system implements the planned changes to achieve the
desired state.

« Knowledge: This component is critical for learning
and adaptation. It involves maintaining a repository
of historical data, models, policies, and best prac-
tices. The system uses this knowledge to make more
informed decisions in subsequent iterations of the
MAPE-K loop. Over times, the system becomes better at
self-optimization and self-management by learning from
past experiences.

Legend
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::> Data Exchange
EL Data Flow &
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FIGURE 11. A digital shadow realized with the MAPE-K reference model.
The Plan and Execution stages are not included, since there is also no
data exchange from the Execution stage to the physical twin.

Since machines controlled by external computers/servers
already exist in the form of CPSs, it is essential to clarify the
distinction between a digital shadow and a CPS. As illustrated
in Figure 11, the digital model has the same level of
importance as that of Knowledge. However, a CPS does
not necessarily have to include a model of the connected
machine, and even if it does, this model may not always be
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FIGURE 12. The digital shadow is deployed separately from the physical twin. The automated communication is unidirectional from the
physical twin to the digital shadow. Status changes and all other data are sent by the physical twin and received by the digital shadow via
transmitters. The digital shadow can reuse the transmitter driver from the physical twin. The logic inside the digital shadow is based on

the MAPE-K model.

up-to-date. By contrast, for a digital shadow, this scenario
is different. In the monitoring stage, all received data
automatically update the digital model.

Another distinction is that a CPS can be used to operate
the physical object directly. In contrast, a digital shadow’s
sole purpose is to monitor the physical twin and provide
data for analysis, thus enabling insight into the received
data. Consequently, the Planning and Execution stages of the
MAPE-K model are not inherent components of the digital
shadow. While they can be incorporated, the automated
change of state in the physical object is not a function of the
digital shadow.

1) OBJECT-Z FORMALIZATION

The configuration of the digital shadow for the physical
twin, is illustrated in Figure 12. It is noteworthy that some
parts of the physical twin are not depicted in the figure. The
digital shadow operates on a server that establishes a network
connection to the physical twin, either through a cable or
wireless. In this example, we assume a wireless connection
between the physical twin and its digital shadow.

The UML class diagram in Figure 13 is reduced to the
two new classes for the Monitor and Analyze stages. All
other classes and relationships are identical to the UML class
diagram of the physical twin in Figure 5 on Page 75344.
A direct association between the classes is not required,
as they exchange data via an Observer pattern using the event
handlers. Software packages to enhance these two classes, are
again ignored in this example.

A digital shadow specification with Object-Z can be done
as follows. The Transmitter and its operation are managed
by the corresponding TransmitterDriver, both of which can
be reused from the Object-Z formalization provided earlier
for the physical twin. Additionally, all exchanged messages
and the EventHandler can also be reused. What remains
to be specified are the Monitor and Analyze stages of the
MAPE-K reference model. The monitoring class Monitor
is a DTDigitalThreadProcess and comprises two separate
consumers: one for statuses and another for measurements:
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FIGURE 13. Reduced UML class diagram of the digital shadow. The
MAPE-K stages Monitor and Analyze are included, all other classes and
relationships are identical to the UML class diagram of the physical twin
in Figure 5 on Page 75344.

__Monitor
[ (InrT)

DTDigitalThreadProcess

statuses : Consumer (C)
measurements : Consumer (C)
emitter : Producer(C)
digitalModel : DigitalModel

__IniT
statuses.INiT \ measurements.INIT

handleState = §status : statuses.queue
o statuses.Consume
sdigitalModel .ProcessEvent § emitter .Emit

handleMeasurements = $data : measurements.queue
o measurements.Consume § emitter .Emit
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Any status changes occurring in the physical twin are
emitted as STATUS events, whereas all measurements are
emitted as MEASUREMENT events. An emitter-producer
is responsible for transmitting all consumed events to any
registered listener. The most crucial component here is the
digitalModel, which is an object of the previously specified
EventStateMachine. All status changes are handled by the
handleState function, which reads all the STATUS messages
from the queue and forwards them to the digital model (state
machine) for event processing. Subsequently, the result of the
state machine’s operation is emitted to all registered listeners.
Because measurements do not affect the state machine’s
state, they are individually read from the queue via the
handleMeasurements function and immediately relayed to all
registered listeners. One such listener could be a database
(part of the Knowledge state) responsible for storing all the
data. It is worth noting that the digitalModel could also be
a separate process that registers as a listener and consumes
STATUS messages. In this example, the direct reference in the
Monitor class was used for better demonstration purposes.

The Analyze stage is also a DTDigitalThreadProcess and
can be a (semi-)automated stage of the MAPE-K model in
the context of the digital shadow. In this particular example,
the Analyze stage serves a singular purpose, which is to verify
whether the received state from the physical twin aligns with
the state of the digital model or not. The results of this
comparison can then be emitted to all registered listeners. One
potential listener could be a service responsible for notifying
a user if any disparities in states were detected. Nonetheless,
independent from the MAPE-K model, the analysis from the
monitored events could also be performed manually by a user,
as no further stage is following:

—_Analyze
[ (Ivir)
DTDigitalThreadProcess

consumer : Consumer(C)
emitter : Producer(C)
digitalModel : DigitalModel

__IniT
consumer .INIT

__ CheckStatuses
ptState? : STATUS
equal! : B

compare = $message : consumer .queue
o consumer.Consume § CheckStatuses
Semitter .Emit

With these processes, the DigitalShadow schema can be
defined. Since the MAPE-K example is only used for a better
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visualization of the concept, we use a more generic schema
definition for the digital shadow:

DigitalShadow

digitalModel : DigitalModel(C)
DThreadProcesses : P DTDigitalThreadProcess
DTtoPTConnection : DTtoPTConnection(C)

Please note that no data are sent from the digital shadow
to the physical twin. The DTtoPTConnection solely receives
data from the physical twin.

F. THE DIGITAL TWIN

After defining and specifying the digital thread and digital
shadow, the subsequent step is to comprehensively define the
digital twin. The model-driven approach using the MAPE-K
reference model is well suited to more concretely illustrate
the differences between a digital shadow and a digital
twin. The digital twin expands upon the digital shadow
by enabling the automatic synchronization of all alterations
made to the digital model with the corresponding physical
twin. This means that any changes made to the physical twin
are mirrored in the digital twin, and vice versa. Ultimately,
the digital twin evolves into a complete replica of the
physical twin. To formulate this definition, we draw upon
the digital twin definitions proposed by Saracco [32] and
Trauer et al [30]:

Definition 11 (Digital Twin): A digital twin is a
digital model of a real entity, the physical twin. It is
both a digital shadow reflecting the status/operation
of its physical twin, and a digital thread, recording the
evolution of the physical twin over time. The digital
twin is connected to the physical twin over the entire
life cycle for automated bidirectional data exchange,
i.e. changes made to the digital twin lead to adapted
behavior of the physical twin and vice-versa.

Extending the system utilized in this example results in
the addition of an extra communication channel from the
digital twin to the physical twin, as illustrated in Figure 14.
In the previously shown Figure 12 on Page 75353, the digital
shadow only facilitates communication from the physical
twin to the digital shadow. Now, all modifications within the
digital model are also transmitted from the digital twin to the
physical twin.

Moreover, the MAPE-K model must be adapted to
accommodate the digital twin. The Monitor and Analyze
stages in this new model are identical to those in the digital
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FIGURE 14. The digital twin extends the digital shadow in a way, that the communication between physical twin and digital twin is
bidirectional. Additional to communication from the physical twin to the digital twin, all changes in the digital twin are automatically sent

to the physical twin.

shadow, as shown in Figure 15. The Plan stage takes the
analysis results and formulates an execution scenario for
the Execution stage if changes to the physical twin are
necessary. The key distinction from the original MAPE-K
reference model lies in the digital twin, where the Execution
stage interacts with the digital model. Only if a positive
result is returned, the command is sent to the physical twin.
Consequently, the digital model serves as the final control
instance, and all incoming and outgoing changes are verified
against the digital model.

Legend
User Interaction Analyze
: (]
::> Data Exchange |
£ pata Flow i
Knowledge

>o
1l

A1 | Digital Model =3
Monitor Execute

FIGURE 15. A digital twin realized with the MAPE-K reference model. The
status change of the digital model and the corresponding data exchange
from the Execution stage to the physical twin is fully automated.

1) OBJECT-Z FORMALIZATION

The Object-Z formalization of the digital twin can be
built upon the digital shadow, incorporating two additional
stages of MAPE-K as mentioned previously. Figure 16
includes only the MAPE-K relevant classes Monitor, Analyze,
Plan, Execute, and the EventHandlers. All other classes are
identical to the UML class diagram of the digital shadow in
Figure 13. First, the Plan class is introduced:
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FIGURE 16. UML class diagram of the digital twin, including only the
MAPE-K relevant classes Monitor, Analyze, Plan, Execute, and the
EventHandlers used for data exchange. All other classes are identical to
the UML class diagram of the digital shadow in Figure 13.

— Plan
[ (IniT)
DTDigitalThreadProcess

consumer : Consumer(C)
emitter : Producer(C)
digitalModel : DigitalModel

__INnIT
consumer .INIT

__Planning
data? : |DATA
result! : COMMAND

plan = $message : consumer .queue
e consumer.Consume § Planning
Semitter .Emit

This class is also a DTDigitalThreadProcess and includes a
Consumer component to receive data from the Analyze stage.
All results generated during the planning stage are emitted via
the Producer. Similar to the other stages, the Plan stage has
direct access to the digitalModel. However, in this example,
no specific access details are provided.
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The primary objective of this stage is to formulate a
plan outlining which part of the physical twin’s software
needs modification, and how those modifications should be
implemented. This task is executed through the plan function.
All incoming data are consumed and subsequently passed to
the Planning function. The resulting plan is then emitted to
all registered listeners.

The last DTDigitalThreadProcess is the Execute class,
which is kept straightforward as well. It receives all plans
from the previous stage through the execute function. The
commands are validated against the digitalModel, and the
outcome is sent to the physical twin. The transmitter producer
emits the command as an event to the TransmitterDriver,
which subsequently consumes this command and transmits
it to the physical twin:

— Execute

[ (IniT)

DTDigitalThreadProcess

plans : Consumer(C)
transmitter : Producer(C)
digitalModel : DigitalModel

— Inir
plans.INiT

__ChangeState
command? : COMMAND
newState! : |[STATE

execute = $plan : plans.queue o plans.Consume
SChangeState § transmitter .Emit

Please note that the concrete implementation of the
digital model in this context is not critical. The digital
model could exist as a separate process that receives events
through consumers and provides responses via producers.
Alternatively, it could collect all events from the Execute
stage and independently transmit the results to the transmitter.
There are numerous ways to realize this concept. However,
the fundamental idea remains constant: changes to the digital
model automatically trigger changes in the state of the
physical twin without requiring any user intervention.

Similar to the digital shadow, we again define a generic
schema DigitalTwin without the MAPE-K processes:

DigitalTwin

digitalModel : DigitalModel (C)
DThreadProcesses : P DTDigitalThreadProcess
DTtoPTConnection : DTtoPTConnection(C)

The schemes DigitalShadow and DigitalTwin appear
similar in this Object-Z formalization. The distinct
difference is that the digital twin can send state
changes automatically to the physical twin and thus, more

75356

DTDigitalThreadProcess are involved. In a mathematical
representation, the difference is more obvious. Therefore,
we compare the DTDigitalThreadProcess sets:

DSProcesses = DThreadProcesses € DigitalShadow
DTProcesses = DThreadProcesses € DigitalTwin ~ (2)

The digital twin fully includes the digital shadow processes
and extends them by including additional processes to send
data back to the corresponding physical twin. Therefore
applies:

DSProcesses C DTProcesses

Following, the cardinality of the intersection of both DTDigi-
talThreadProcess sets is less than the cardinality of the digital
twin’s DTProcesses:

| DSProcesses N\ DTProcesses | < | DTProcesses | (3)

At least one process is not a part of the intersection, and this
process is the process that automatically sends changes to the
physical twin.

G. THE DIGITAL TWIN PROTOTYPE

Today’s existing modeling and simulation tools can rapidly
create an abstract digital twin of a single component
or process, and publish/subscribe architectures allow all
messages between the processes to be captured and sent to
a database or an IIoT platform. However, complex Industry
4.0 applications require the integration of multiple sensors
and actuators into a larger system, posing a challenge with
no simple solution yet. The embedded community still uses
various industrial interfaces and communication protocols
such as ProfiBus, ProfiNet, ModBus, CANOpen, OPC-UA,
or MQTT, to name a few. Some are proprietary, making
integration difficult, for instance, ProfiBus and ProfiNet.

Robust software testing for communication protocols
is challenging because of the difficulty in emulating or
simulating them. Software engineers frequently use mock-up
functions in unit tests to bypass the need of establishing con-
nections between processes or dependencies. This provides
rapid feedback to developers through automated, repeatable
tests executed quickly as part of the development workflow.
However, even robust unit testing with comprehensive edge
case coverage is insufficient. Therefore, some approaches use
simulation tools that replace the communication protocols
between hardware components with software interfaces. For
Industry 4.0 applications, both approaches are inadequate,
as insufficient testing can jeopardize the safety of human
operators. Despite this, simulation tools are crucial for the
development of Industry 4.0 applications as a source of data
for sensors and actuators.

The software part of the connection can be formalized
as shown in the Communication schema of the physical
twin. The physical part, however, where the data are sent
between Device and DeviceDriver, cannot be replaced in
the same way. Hence, this approach still involves real
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hardware in the development loop. During the development
and testing, the Connection object is the central piece.
Without a counterpart, no command is executed and no
data are exchanged. Thus, engineers always require the
hardware connected to the embedded software system that
they develop and test. Replacing the Connection with a
software mockup to circumvent HIL would result in a
different Connection object that than used by the original
SensorDriver. Thus, the configuration during development
would differ from that of the real counter part it is deployed
on later. Furthermore, not all communication protocols used
in industry are properly mockable. This can be demonstrated
by the example of ModBus and OPC-UA applications on
the OSI-Model shown in Figure 17. Unlike Ethernet-based
communication protocols that implement and cover all layers
of the OSI-Model, communication protocols based on serial
connections, such as ModBus or CANOpen, are placed on the
model’s 7th layer, the Application Layer. No additional host
layers exist. Sending/receiving data are handled immediately
by the Data Link and Physical Layers. This means that the
physical hardware handles the necessary actions required for
data exchange. Mocking these layers is difficult. On the other
hand, communication protocols based on TCP, such as OPC-
UA, can easily be mocked by opening a socket on the TCP
layer and connecting another device to it. However, this is not
true for serial protocols. On connection, the driver attempts
to establish a connection to another device via RS232. As no
device is connected, this would fail, and a connection error
would be thrown.
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FIGURE 17. RS232 applications and communication can be visualized on
the OSI layered model. The application on Layer 7 is directly connected to
the RS232 API and driver (Layer 2) that uses the physical connection
(Layer 1) to transmit data to other RS232 interfaces.

Replacing the entire physical twin during development
and testing, which includes the hardware interfaces, leads
to a fully virtual representation of the physical twin, and
engineers do not necessarily need the hardware anymore
for development. This is the main difference to the digital
twin prototype definitions by Grieves and Vickers [22] and
Grieves [43]. We define the digital twin prototype as follows:
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Definition 12 (Digital Twin Prototype): A Digital
Twin Prototype is the software prototype of a physical
twin. The configurations are equal, yet the con-
nected sensors/actuators are emulated. To simulate
the behavior of the physical twin, the emulators
use existing recordings of sensors and actuators.
For continuous integration testing, the DTP can be
connected to its corresponding digital twin, without
the availability of the physical twin.

1) OBJECT-Z FORMALIZATION
To reduce the dependency of the embedded software
system on the hardware during development and testing,
communication protocols such as RS232 need to stay on the
host layers of the OSI-Model without the need of changing
the original connection properties of a device driver. This
circumvents the layers that include the hardware. However,
rerouting the connection disconnects the device from the
device driver. Rerouting only works if another process exists
at the other end of the connection. So far, there is none. This
is why not only the connection but also the device has to
be emulated. To begin, the emulated connection is defined
first. The Object-Z formalization for EmulatedConnection is
as follows:

— EmulatedConnection
[ (Ivit, Read , Send , EmulateWrite, EmulateRead )
Connection

originalProtocol : |Connection

originalProtocol ¢ Connection

__IniT
type = TCP
__EmulateWrite

data? : |DATA
forwardData! : |DATA

forwardData! = data?

— EmulateRead
data? : |DATA
forwardData! : | DATA

forwardData! = data?

The EmulatedConnection object inherits from the abstract
Connection class, and thus has all its properties and functions.
This is shown in the OSI-Model in Figure 17. The safe way
to stay in the host layers is to route all other communication
protocols to TCP and from there back to the original
protocol. Hence, the EmulatedConnection does not replace
the connection objects of Device and DeviceDriver. Instead,
it is an independent additional connection that provides
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interfaces for a device emulator and a device driver to connect
to with their original protocols. The EmulatedConnection
then uses TCP and forwards all incoming data via the
function EmulateRead and all outgoing data via the function
EmulateWrite between the emulated device and device driver.

How can this be realized without reconfiguring the device
or the device driver? Simply by using tools such as socat
(SOcket CAT) [51]. Socat is a command-line utility that
allows for bidirectional data transfer between two endpoints,
typically over a network or through pipes. It is similar to the
more well-known tool netcat but with support for multiple
connection types and protocols (TCP, UDP, SSL, PTY, etc.).
With two virtual serial ports (client and server) via socat
for the emulator and the device driver, a connection can be
established without the need to change the configuration.
In the background, socat forwards the data between the ports
via a TCP connection.

Sensor Sensor Sensor A
Component Component Driver

Emulator

Device Device DeviceDriver

operations R S operations
Send() Send()

Read| 1o Emulator Jo ) Read()

0
ExecuteCommand()

i

Sensor

i

SensorDriver

—F

SensorEmulator

operations operations operations

Send()
Read()
ExecuteCommand()

Send()
Read()
ExecuteCommand()

(a) (b) (c)

FIGURE 18. UML component diagrams for sensor and emulator
components. The real SensorComponent in (a) can be replaced by an
EmulatedSensorComponent (b) and the SensorDriver (c) cannot
distinguish whether it is connect to the real sensor in (a) or the emulated
on in (b).

Send()
Read()

A device emulator for a sensor could be similar to
that shown in Figure 18. Similar to the real sensor, the
SensorEmulator inherits all properties and functions from the
generic Device class. There is only one difference: instead
of executing a command and responding with the real result,
the emulator uses virtual context for the response. Virtual
context can be a list of previously recorded data from the real
device or context provided by a simulation. In this example,
we assume that the virtual context consists of previously
recorded data with the real device. Formalizing the emulated
device and connection with Object-Z requires the definition
of another data subtype first. Since the sensor responds to
commands with a RESPONSE type, a subtype of RESPONSE
named RECORDING can be defined:

RECORDING
TRESPONSE

The abstract class Emulator inherits all properties and
functions from the abstract class Device, and SensorEmulator
inherits from Emulator:
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Emulator

TDevice

Although it may seem more obvious to inherit from Sensor,
the emulator cannot inherit its properties and functions from
there. Most devices are a black box for the developer, and
vendors provide only a technical manual and support to
interact with the device. Thus, an emulator only mimics the
behavior of its real counterpart and provides its API with
corresponding return values. However, this is sufficient to
replace the real device with an emulator for development and
testing. A developer is mostly interested in the connection and
data exchange part, not the internal behavior of a connected
device.

For abstraction reasons, the Sensor object in this example
was very simple. That is why the SensorEmulator can
also inherit all properties from Emulator and change the
ExecuteCommand function to always return RESPONSE
objects from the virtualContext set:

__SensorEmulator
Emulator

virtualContext : P RECORDING

__ ExecuteCommand
A(virtualContext)
command? : COMMAND
result! : RECORDING

command? € commandList
result! € virtualContext
virtualContext’ = virtualContext \ {result!}

The SensorDriver remains as it is and does not need
any changes. The communication between an emulator
and the SensorDriver can be specified as follows using
EmulatedCommunication:

—_ EmulatedCommunication

emulator : SensorEmulator
driver : SensorDriver
connection : EmulatedConnection

V x : emulator.commandList
® x € driver.commandList
Y x : driver.commandList
e x € emulator.commandList

ToDrv = emulator .Send § connection.EmulateWrite
|| connection.EmulateRead § driver.Read
ToDev = driver.Send § connection.Emulate Write
|| connection.EmulateRead § emulator .Read

The EmulatedCommunication object now includes an
additional Connection object in the form of EmulatedCon-
nection. The communication from the emulator to the device
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driver, labeled as ToDrv, is now a composition of the
connections from the device to the EmulatedConnection.
From there, the data are sent to the device driver, where
the EmulatedConnection receives it and forwards it to the
connection defined by the device driver. The EmulatedCon-
nection is not part of either the device/emulator or the device
driver. Therefore, in this example, the SensorDriver cannot
differentiate between whether it is connected to a real device
or an emulator, which is the goal of our approach.

H. SUMMARY OF THE DIGITAL TWIN CONCEPT

The relationships between the different concepts are illus-
trated in the UML diagram in Figure 19. We extended the
semi-formal approaches by Yue [19] and Becker et al. [20]
for the digital shadow and the digital twin. A Physical
Twin performs actions using real Devices in a Physical
Environment. The Physical Environment is not a real class,
but the real world context in which the Device operates.
Changing behaviors lead to changes in the current State
of the Physical Twin. Hence, the Physical Twin updates its
State and sends the change of State via the Digital Thread
to the Digital Shadow. Yue, Arcaini, and Ali [19] named
this Twinning, see Figure 3 on Page 75342. Different to the
formalization by Yue, Arcaini, and Ali [19], the Physical Twin
is not directly connected to the Digital Twin but via the Digital
Shadow, which is included by the Digital Twin. In our Object-
Z formalization of the Digital Shadow and Digital Twin,
we illustrated the difference utilizing the MAPE-K model
and showed that the Digital Shadow does not send any data
to the Physical Twin. All State changes are received by the
Digital Shadow, which then changes the Digital Model. Only
the Digital Twin updates State changes similar to the change
of State of the Physical Twin. Instead of Physical Process,
the digital twin uses the Digital Model, which operates in
a Virtual Environment, to change the Physical Twin’s State.
The special feature of the Digital Twin Prototype is that it
is operated by the same Embedded Control System as the
Physical Twin. Its software does not even recognize, whether
Physical Hardware or Emulated Hardware is used. Hence,
during the development phase, the Digital Twin Prototype can
replace the Physical Twin. A Digital Twin Prototype executes
commands on Emulated Hardware in a Virtual Environment.
The Virtual Environment should mirror the real world, which
can be realized via a Simulation. Notice that the Digital Model
used by the Digital Tivin Prototype is a different instance than
the Digital Model updated by the Digital Shadow. To describe
and construct the Physical Twin its Digital Template can be
used, as it includes the Digital Model and the Embedded
Control Software.

The formal specifications of the digital shadow and
digital twin were achieved through a model-driven approach
employing the MAPE-K reference model. Nonetheless,
these methodologies have inherent drawbacks. A significant
concern is the disconnect between the development of
the physical twin and the digital twin. Developing the
digital twin requires additional software development and
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ongoing maintenance efforts. Furthermore, the control logic
of the physical twin must be either developed anew or
emulated to ensure accurate planning and execution within
the automated control loop. As the complexity of the physical
twin increases, this process can become labor-intensive and
contribute to accruing technical debt [8].

Fully automated testing of embedded control software
on the physical twin often proves impractical due to the
requirement of the corresponding hardware, resulting in
potentially additional costs for spare hardware solely for the
HIL test environment. Consequently, the physical twin is
typically assessed using a manual HIL approach. Conversely,
a digital twin, implemented with a model-driven approach,
could undergo fully automated testing without necessitating
the physical twin’s hardware. However, alterations in the
physical twin’s behavior mandate corresponding adjustments
in the digital twin prior to any software updates. If only
the physical twin can be thoroughly tested including the
real hardware, manual testing of the interaction between
the physical twin and digital twin becomes necessary.
In manual testing, additional time is required from testing
engineers, involving tasks such as setting up the test bed
and executing all tests. Moreover, the test execution may
differs with each round of testing owing to human error. With
automated testing, the virtual test bed setup does not require
any manpower, and the test execution is always identical;
however, it demands increased computational resources. This
challenge prompted the introduction of the digital twin
prototype.

The digital twin prototype employs the same embedded
control software as the corresponding physical twin, with the
addition that the sensor/actuators are emulated and the
communication protocols between sensors/actuators, and
the embedded control system are also virtualized. This
configuration transforms the digital twin prototype into a
virtual test bed of the physical twin, shifting development
from an HIL approach to a SIL approach. Engineers can
utilize the digital twin prototype to implement and evaluate
new software features without the necessity of manual steps,
such as setting up the real test bed, deploying the new version,
starting the system, and executing the new code. By requiring
fewer hardware resources solely for development purposes,
costs are reduced, and it is also more sustainable with regard
to material consumption. Moreover, the entire embedded
control system of the physical twin can be integrated into
automated test pipelines without the need for spare hardware.

The digital twin prototype can also be used to develop
the digital shadow or digital twin. In our formal speci-
fication, we have already repurposed the physical twin’s
class TransmitterDriver for the digital shadow, a process
applicable to all control logic aspects of the physical twin.
The integration of the embedded control system with a
digital model, such as in a simulation, is already inherent
in the digital twin prototype. Initializing the digital twin
prototype without sensors/actuators and connecting it to a
receiving transmitter already constitutes a digital shadow of
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TABLE 2. Classification of the concepts and definitions presented in Table 1 on Page 75342 with our formalized digital twin concept.

Concept Primary Use Case

Definitions from Related Work

Digital Model
initial simulations.

Digital Shadow
updates an instance of the digital model.

Digital Twin

Digital Template
required to build the physical twin.

Digital Twin
Prototype
and in CI/CD pipelines.

A snapshot of a mathematical model or computer-aided design used primarily for
Monitors the corresponding physical twin in (near) real-time and internally
Operates and monitors the corresponding physical twin in (near) real-time and

internally updates an instance of the digital model.

Bundles all information, the digital model, and the embedded software system

[26], [18] (Digital Model Defini-
tion)

[17], [28], [31],
Shadow Definition)

[22], [30], [32], [18] (Digital Twin
Definition)

[18] (Digital

[21] (Digital Twin Prototype Defi-
nition)

Contains the physical twin’s embedded software system but uses emulators -
instead of real sensors/actuators. Replaces the physical twin during development

the physical twin. By substituting the physical twin with the
digital twin prototype in the test pipelines and initiating a
second, reduced digital twin prototype as the receiving end in
the form of a digital shadow, automated testing of the physical
twin and digital shadow interaction becomes possible. This
capability can also be extended to the digital twin, allowing
the digital twin prototype to evaluate commands intended
for the physical twin and identify potential software errors
before they affect the system. Reusing the embedded control
system for the digital shadow/digital twin reduces the need for
parallel control logic implementation between the physical
twin and digital twin. New software modules are only
developed to enhance user interaction with the physical twin
and to gain deeper insights into the system. This approach
of reusing software modules from physical twin development
for a digital twin was also described by Heithoff et al. [52] as
a means to improve the sustainability of embedded control
software.

A digital twin prototype not only streamlines the software
development process of a physical twin but also serves
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various analytical purposes. For example, it can be employed
for evaluating ‘“‘what-if”” scenarios [32] or for conduct-
ing system examination and risk management using the
HAZOP (Hazard and Operability) method. HAZOP involves
examining the system or process in detail, considering
every conceivable deviation from the intended operation
or design caused by various factors, such as human error,
equipment failure, or external events [53]. For each potential
deviation, possible causes, consequences, and safeguards to
mitigate the risk are identified. By furnishing a detailed,
dynamic, and data-driven understanding of the physical
twin, the digital twin prototype facilitates a more effective
identification, analysis, and mitigation of risks, ultimately
enhancing the safety and reliability of the embedded
system.

To conclude, Table 2 extends Table 1 to provide an
overview of the various concepts defined and discussed
throughout this paper, offering a guideline on the contexts in
which they are used. We reclassify the definitions presented
in Table 1 into our formalized digital twin framework.
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IV. APPLICATION OF THIS CONCEPT

In the following, two projects are presented, where the
previous definitions and methods have already been applied
in real life contexts. The validation of research results
and the reproducibility of experiments are integral aspects
of good scientific practice [54]. However, replicating
the conducted field experiments from our  Autonomous
Robotic Networks to Help Modern Societies (ARCHES)
demonstration mission or the SilageControl case study using
similar hardware can be expensive. To facilitate indepen-
dent replication of the digital twin prototype approach by
engineers and other researchers, we have developed a digital
twin prototype using cost-effective hardware, specifically a
PiCar-X by SunFounder [55]. This digital twin prototype is
based on the ARCHES Digital Twin Framework [56] and
is publicly available on GitHub [57]. More comprehensive
details regarding the PiCar-X digital twin prototype will be
presented in a separate publication.

A. FIELD EXPERIMENT WITH UNDERWATER OCEAN
OBSERVATION SYSTEMS

The digital twin prototype approach was developed for a
network of ocean observation systems and tested during
the research cruise AL547 with RV ALKOR (October
20-31, 2020) of the Helmholtz Future Project ARCHES
(Autonomous Robotic Networks to Help Modern Societies)
[58]. In ARCHES, with a consortium of partners from the
Alfred-Wegener-Institute Helmholtz Centre for Polar and
Marine Research, the German Aerospace Center, the Karl-
sruhe Institute of Technology, and the GEOMAR Helmholtz
Centre for Ocean Research Kiel, several digital twin proto-
types for ocean observation systems were developed. The
major aim of this project was to implement robotic sensing
networks, which are able to autonomously respond to changes
in the environment by adopting its measurement strategy,
in both space and in the deep sea.

The ocean observation network realized within the
project ARCHES comprised five ocean observation systems,
constructed at the Alfred-Wegener-Institute and GEOMAR.
One of the challenges was the geographical distance between
these two institutes, compounded by the fact that each
system differed in construction, payload, and software.
These systems are costly, prompting research institutes to
maximize their usage across numerous missions. Tradi-
tionally, researchers designed experiments and engineers
implemented the necessary system logic. Once deployed
underwater, the systems operated autonomously for up to
a year without direct intervention, and researchers could
only evaluate the results after retrieval. This approach was
primarily due to the limited battery life and the challenges
of underwater wireless communication, as electromagnetic
waves are absorbed quickly in water. As a result, acoustic
communication, which only recently became reliable and
still suffers from low bandwidth, was utilized [58]. However,
the high costs associated with both the ocean observation
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systems and the research cruises make minimizing the risk
of experiment failure a high priority. Consequently, robust
testing of hardware and software has become increasingly
critical.

The goal of ARCHES extended beyond simply developing
an ocean observation system that could be remotely mon-
itored. The project also aimed to facilitate the execution
and modification of individual experiments directly from
the research vessel. Initially, the participating systems in the
network lacked a communication link with other systems or
the research vessel at the ocean surface. With ARCHES, this
was set to change as all systems were to be equipped with
acoustic modems for data exchange. Rather than completely
rewriting the existing software to integrate communication
across all systems, we opted to install RaspberryPis between
the acoustic modem and the existing controllers of the ocean
observation systems. This strategy allowed us to reuse not
only the device driver for the acoustic modems - which
were identical across all systems - but also the entire
communication stack, thereby forming a digital thread.

We implemented a microservice architecture using the
middleware Robot Operating System (ROS) [59] and encap-
sulated all microservices in Docker. This approach also
enabled us to treat the existing software on the ocean
observation systems as a connected device, requiring us
to develop only specific device drivers for each system.
Given the challenge of not having access to the actual
systems, we adopted the digital twin prototype approach.
We virtualized the physical connections, including RS232
and RS485, using socat [51], and developed an emulator for
the existing software on the ocean observation system. The
use of digital twin prototypes allowed for the development
and testing of scenarios before missions began. Furthermore,
we integrated automated testing into CI/CD pipelines within
GitLab to ensure high software quality. The development
process of these digital twin prototypes is detailed further in
the work by Barbie et al. [60].

To enable researchers to observe and control experiments
in near real-time, it was necessary to have software on
the research vessel that could receive and analyze data.
In the context of cyber-physical systems, user interfaces
are often developed to monitor and operate these systems,
but this would have required additional effort and a new
software system. Although feasible, this method overlooked
a critical issue: detecting hardware or specific software
failures in an underwater ocean observation system. The
limited bandwidth underwater makes sending error messages
impractical, as they must be sent in small chunks, consuming
too much energy. Our solution involved using a digital
twin for each physical twin underwater. With digital twin
prototypes already developed, we only had to ensure that
all data, status changes, and control operations occurring on
the underwater systems were mirrored to the corresponding
digital twin on the research vessel. The publish/subscribe
mechanism of ROS allowed us to tap into all publishers,
ensuring that the same messages sent to the physical twin
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were also received by the digital twin. This setup meant that
if a message caused an error in a ROS process on the physical
twin, the same message would similarly affect the digital
twin, since their software configurations were identical. This
way, the intended message containing the data would be sent,
and any potential errors would be logged in the digital twin.

To further reduce energy consumption for data exchange,
all ROS messages were converted into a binary serialization
using Apache Avro [61] before being sent, and then
deserialized back into ROS messages at their destination.
Therefore, the digital twin prototypes served a dual purpose:
they allowed us to maintain digital shadows of the physical
twins underwater without additional software development,
and they enabled us to test commands for correct behavior
before sending them to the underwater systems. In effect,
the digital twin prototypes functioned as actual digital twins,
eliminating the need for further software development. The
digital thread we developed facilitated uniform data exchange
across all systems.

The digital twin prototype approach was tested during the
ARCHES demonstration mission in the Baltic Sea. Various
scenarios were executed for evaluation, including monitoring
the ongoing experiments of individual systems, changing
the status of the entire network from the research vessel,
and facilitating collaboration between a physical twin and
its digital twin in a potential experiment. A detailed field
report on this demonstration mission was published in Barbie
et al. [58]. Moreover, Figure 20 features a screenshot from
a video capturing the moment when two ocean observation
systems received a broadcast from the research vessel. This
video is accessible in our GitHub repository [57], [58]. The
ARCHES Digital Twin Framework, developed during the
project, was released as open-source software [56] as well.
This framework was used to establish a digital thread between
all physical twins and their corresponding digital twins.
Throughout the mission, all messages exchanged between the
digital twins and physical twins were recorded. These records
can now be utilized by the sensor and actuator emulators
to replay the interactions within the CI/CD pipelines during
testing. Leveraging real data from real-life contexts provides
a ground truth in our data, enhancing the quality of the
automated tests.

B. CASE STUDY WITH SMART FARMING APPLICATIONS
As the digitalization of agricultural processes promotes the
use of digital twins for various use cases [63], we also
report in Barbie [62] on a case study that experimented
with the digital twin prototype approach for a smart farming
application utilizing methods and ideas we developed during
the project ARCHES. In this paper, we only provide a brief
overview.

The smart farming project SilageControl, with a con-
sortium of the Silolytics GmbH, Blunk GmbH, and Kiel
University, used digital twins to adopt the digital twin
prototype approach for development and maintenance. The
major goal of SilageControl is to improve the process of
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FIGURE 20. On the left side of the video, the digital twins of Mansio - a
stationary sensor hub - and Viator, a crawler equipped with a camera, are
displayed. In the captured scenario, we broadcast a command to the
network, altering the behavior of all systems. The video captures Mansio
activating its lights and Viator slowly moving backward. A split-screen
format is used to show that the digital twins replicate the actions of their
physical counterparts with a small delay [58], [62].

silage making, i.e. the fermentation of grass or corn in silage
heaps. In order to avoid mold formation, the harvested crop
is compacted using heavyweight tractors. As displayed in
Figure 21, these tractors are equipped with a sensor bar,
which includes GPS sensors, an inertial measurement unit,
and a LiDAR sensor. In combination, the sensors enable
the continuous and accurate representation of the tractor’s
position / orientation and the shape and volume of the silage
heap.

Silolytics faces several challenges similar to those we
encountered in ARCHES. For instance, the equipment is
expensive, and as a small company, they lack the resources to
purchase hardware solely for testing purposes. Since silage
production is seasonal, the hardware is in use in the field
during these times and cannot be accessed by engineers
for further development. Additionally, they encounter issues
such as the GPS sensor not functioning correctly indoors,
necessitating outdoor testing [62]. They adapt the digital twin
prototype approach to improve the sensor platform indepen-
dent from the current season. The first field experiments were
conducted from May to October 2022. During this period,
sensor data was be recorded to further improve the accuracy
of the physical models and create scenarios for the automated
testing of future features. The scenarios derived from real
field experiments once again offer a basis of ground truth
for the tests conducted during development. The digital twin
prototype in SilageControl is connected to a GAZEBO [64]
simulation. Our PiCar-X example can be used to explore this
setup [57], [62].

C. OTHER USE CASES, RISKS AND ETHICAL CONCERNS

In this paper, we have defined and described the digital
twin concept from a manufacturing perspective. However,
research on digital twins is also being conducted in other
fields. Examples include the Digital Twin of the Earth
project [65] and digital twins of humans [66]. These research
areas introduce new perspectives to the digital twin concept
and thus employ various definitions, which often resemble
those used in the manufacturing sector. However, this also
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FIGURE 21. Sensor bar which monitors the process of silage making.

results in these concepts becoming mixed, similar to what
was described in Section II, with each claiming to develop a
digital twin. That is why it is necessary to distinguish between
digital models, digital shadows, digital twins, and digital twin
prototypes, not only for technical but also maybe ethical
reasons.

For instance, a digital twin as defined in this paper, would
mean for the project Digital Twin of the Earth that changes
to the digital twin automatically result in adjustments to the
physical system, thus directly influencing our planet. This
could involve actions similar to geoengineering. However, the
actual focus of the project is on improving climate models,
analyzing the resulting data, and subsequently providing
consulting and recommendations for action to governments
and societies [65]. Therefore, this merely represents a digital
model or - depending on the number of available sensors
around the world - a digital shadow. From a risk and ethical
perspective, this has very different implications compared to,
for instance, geoengineering.

Similarly, this applies to the digital twin of a human.
Does a status change in the digital twin directly influence
the well-being or actions of the physical counterpart (the
human), or does the digital twin in this context serve only to
collect and better analyze data about the person, and to more
readily provide this information during medical emergencies?
Collecting comprehensive data about a person naturally raises
ethical questions and risks. How is this data secured, who has
access to it, and what happens if authoritarian states use it to
suppress citizens or if mischievous actors misuse it?

Ethical questions and risks also arise in the manufacturing
domain. On the one side, for use cases including manufactur-
ing plants or unmanned vehicles, digital twins solve several
challenges enterprises face and open new opportunities.
On the other side, for use cases involving the cooperation with
or transport of humans, the employment of digital twins can
pose a security risk. For instance, autonomous passenger air
craft with a remote digital twin on the ground can be hijacked
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by mischievous actors. The same holds true for cars, ships,
and other means of transport.

We do not intend to take sides on these issues, as they
are matters that societies, associations, and governments
need to discuss and resolve. Nonetheless, with the increas-
ing significance of digital twins, the topic of risks and
ethical implications is also receiving more attention in
research [67], [68].

V. CONCLUSION AND FUTURE WORK

Digital twins find applications across all layers in Industry
4.0 scenarios. However, there is confusion in the definitions
of digital models, digital shadows, digital twins, digital twin
prototypes, and the digital thread. While many studies attempt
to list and categorize these differences, a formal description
has been lacking. Therefore, in our digital twin concept,
we formally specified the various components, ranging from
the physical twin to the digital twin, culminating in a fully
virtualized digital twin prototype capable of substituting the
physical twin during development. We extended the digital
twin concept by the digital template. A digital template
describes the physical twin and is used to build it. It includes
the digital model of the physical twin, describing documents,
and the embedded control software operating it. To emphasize
the distinctions among these different facets of the digital
twin from a software engineering standpoint, we provide an
Object-Z formalization for each component.

Furthermore, we have provided real-world application
examples to illustrate the practical context. A proof of
concept for the formal specifications was demonstrated in
a demonstration mission showcasing the viability of digital
twins in ocean observation systems. Moreover, we offered
insight into how this approach could be employed in the
SilageControl smart farming project, which aims to enhance
the silage-making process through the development of a
sensing platform. The digital twin prototype approach is not
limited to the presented use cases but can be utilized for all
embedded software systems regardless of their application
scenario.

The usage of digital twin prototypes transforms the way
how embedded software systems are developed. By starting
with the emulation of hardware - sensor by sensor, actuator
by actuator, and communication protocol by communication
protocol - the development of embedded software systems
becomes an iterative process. Furthermore, the integration
of a fully operational digital twin prototype heralds a shift
towards collaborative efforts between engineers and domain
experts, regardless of their physical location or connection
to the hardware. This approach diverges from others, such
as model-driven approaches. Rather than relying solely on
mathematical models and simulations with software modules
that emulate or implement the behavior of the physical twin,
a digital twin prototype incorporates the embedded control
software of the physical twin. This enables the reuse of
control logic by the digital twin, reducing the need for parallel
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development between the physical twin and the digital twin,
and consequently mitigating potential technical debt.

In addition to reducing the time required for testing
by switching from HIL to SIL testing with digital twin
prototypes, this approach also avoids expenses for redundant
hardware and paves the way for more efficient and sustainable
development workflows that are otherwise difficult to
implement for embedded software systems. Digital twins
become a key enabler for fully automated integration testing
of embedded software systems in CI/CD pipelines. While
building, testing, and releasing of software is possible for
embedded software just like in other fields of software
engineering, integration testing with hardware interaction
is expensive, due to the HIL testing, and is often done
manually. Thus, the integration tests are a bottleneck in the
verification and validation activities, and hence, the release
of new software.

In summary, digital twins have the potential to enhance the
quality of embedded software systems, concurrently reducing
costs and accelerating development speed. These benefits
align with the challenges we elaborated in the introduction
and were cited by both Ebert [7] and Ozkaya [5], who
identified these challenges to achieve quality while managing
costs and efficiency.

Nevertheless, the digital twin community still has a lot
of home work. The lack of a consensual definition of
digital twins leads to much room for interpretation what a
digital twin is. Instead of introducing abstract approaches
that are described using an attached case study, researchers
should focus more on formal approaches to demonstrate and
distinguish different approaches. This still may leads to many
different digital twin definitions, but at least the community
is able to consolidate similar approaches and has a starting
point to discuss differences, flaws, or benefits of different
approaches. With the introduction of virtualization tools,
such as Docker, and open platforms, such as GitHub, the
distribution of code and tools to replicate results of a research
study or experiment with an approach became easy and has
no costs attached.
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