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ABSTRACT The practice of adding new features or changing current features to enhance amachine-learning
model’s performance is known as feature engineering. It increases the prediction potential of machine
learning and aids in revealing the data’s underlying patterns. Different soft structures can be utilized to
reach a decision where we have to decide the best alternative among the given choices. The structure of
a ring is an algebraic structure that plays a vital role due to its characteristics. Moreover, a soft set is a
valuable structure that can consider the parameterization tool. Also T-bipolar soft set is a parameterization
tool that can consider the positive and negative aspects. Based on these observations we have developed
the theory of lattice-ordered T-bipolar soft rings (LOTBSRs) and anti-lattice-ordered T-bipolar soft rings
(ALOTBSRs). Moreover, we have defined the notions of OR product, extended union, and restricted union
for LOTBSRs. Furthermore, the ideas of AND product, restricted intersection, and extended intersection are
defined. To analyze the whole theory, we have proved some results related to these ideas. To construct the
applications part of these developed notions, we have defined an algorithm and utilized these ideas in the
decision-making scenarios for the classification of feature engineering techniques. In the end, we have some
conclusion remarks.

INDEX TERMS Lattice (anti-lattice) ordered T-bipolar soft rings, feature engineering techniques.

I. INTRODUCTION
Feature engineering (FE) is an important phase in the
machine learning pipeline that can have a big effect on the
effectiveness, understandability, and generalization of mod-
els. It necessitates a thorough comprehension of the data and
the problem domain, as well as innovation in the creation of
features that effectively capture pertinent data. A mediocre
model can be improved with carefully designed features to
become a highly useful and accurate tool for making predic-
tions and judgments. The importance of FE cannot be denied
in machine learning procedure and we can list the importance
of FE as follows
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1. The predictive ability of a model can be consider-
ably increased by well-designed features. They can
assist the model in identifying pertinent patterns and
connections in the data, improving accuracy and gen-
eralization.

2. The associations between the characteristics and the
target variable are frequently nonlinear in real-world
problems. In order to capture these non-linear interac-
tions, you can generate new features or modify old ones
using feature engineering, which makes it simpler for
your model to learn and make correct predictions.

3. Imputation is one feature engineering approach that can
be used to address missing information. You can avoid
losing important data and enhance model performance
by filling in the values that are missing with relevant
information.
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To accommodate ambiguity or uncertainty in data, a soft
set (SS) is a mathematical structure that expands on the
idea of a classical (crisp) set. Molodtsov [1] created SSs in
1999 as a method for handling ambiguous data in modelling
and decision-making. Molodtsov SS theory is a widely used
mathematical framework for handling ambiguous and unclear
data that other conventional methods are unable to handle.
The construction of a SS proved to be a very interesting
technique for handling the issue by taking into account the
parameterization process. SSs theory has drawn increased
interest recently as a method for resolving confusing data.
SSs have found useful in a variety of fields, including data
analysis [2] and multi-attribute decision-making [3] where
handling erroneous or ambiguous information is essential.
They offer an adaptable and simple method for manipulat-
ing and modelling ambiguous data inside a mathematical
framework. Some operations on SS have been given in [4].
Ali et al. [5] proposed some new operations based on SS
theory. Numerous hybrid structures have been produced to
show the importance of SS like the notion of fuzzy SS (FSS)
[6], intuitionistic fuzzy SS (IFSS) [7], Pythagorean fuzzy
SS (PyFSS) [8], q-rung orthopair fuzzy SS (q-ROFSS) [9].
These structures have been utilized in different fields like
Sut [10] established the application of FS to decision-making
problems. Moreover, Celik et al. [11] provide the application
of FSS in ring theory. Neog and Sut [12] delivered the applica-
tion of FSS in medical diagnosis by using the idea of FS com-
plement. Also, the application of IFSS matrices for disease
diagnosis has been delivered in [13]. Akram and Dudek [14]
presented the theory of IF hypergraphs with applications. Fur-
thermore, Ali et al. [15] utilize the structure of interval-valued
Pythagorean fuzzy set and proposed the idea of Einstein
aggregation operators with their application to green supplier
chainmanagement. Shahzadi et al. [16] established the notion
of PyFS graphs and established their applications.

A mathematical framework called bipolar soft sets (BSSs)
is utilized in uncertainty modeling and decision-making.
They were presented as an extension of traditional soft sets to
deal with circumstances where decision-makers have varying
degrees of belief in and unbelief about an element’s mem-
bership in a given set. In circumstances where the data are
ambiguous or uncertain, bipolar soft sets are very helpful.
Two kinds of attempts have been made in this regard. First
by the Shabir and Naz [17] and other attempts have been
made by Karaaslan [18]. BSS has received attention and new
ideas have been developed to discuss the importance of the
introduced approach. We can see that Dalkilic [19] developed
a decision-making approach to reduce the margin of error
of decision-makers for BSS theory. Moreover, Ozturk [20]
delivered the notion of bipolar soft points and established the
relationship between bipolar soft points and BSSs. Musa and
Asaad [21] work on the theory of bipolar hypersoft sets.
Both of these ideas given in [17] and [18] have some

drawbacks observed byMahmood [22]. These drawbacks are
stated as follows

1. If we study the FS and SS, we can observe that both are
defined by a single function, have the same set as their
domain set, and in both cases, have a lattice codomain
set.

2. Take notice that both the IFS and the double-framed
SS [23] use two functions, each of which has a single
set serving as its domain set, and both of which have a
lattice codomain set for both functions.

3. However, we can see that this is not true for BSS and
bipolar-valued fuzzy sets. We can see that none of the
BSS efforts made in [17] and [18] succeeded in filling
the available area.Mahmood [22] introduced the notion
of a T-bipolar soft set (TBSS) to fill this gap. A lot
of new advancements have been achieved in this area,
and the concept of TBSS has been recognized as a
noteworthy achievement and innovative tool.

A branch of abstract algebra called ring theory is con-
cerned with the study of rings, which are algebraic structures.
Numerous branches of mathematics, science, and engineer-
ing use rings extensively. TBSS can fill up all the above
given gaps and it is a parameterization tool. So based on
this observation and the importance of the theory of TBSS,
we have delivered the idea of lattice-ordered TBSRs and anti-
lattice-ordered TBSRs. We have defined the concepts of OR
product, extended union, and restricted union for LOTBSRs.
In addition, the concepts of AND product, restricted inter-
section, and extended intersection have been added. We have
demonstrated various findings linked to these concepts to
analyze the entire theory. We have constructed an algorithm
and used these concepts in decision-making scenarios for the
classification of feature engineering techniques to build the
applications portion of these generated notions.

The rest of the article is organized as follows. In section II,
we have overviewed the notion of SS, BSS, TBSS, and their
fundamental operations. In section III, we have defined the
concepts of OR product, extended union, and restricted union
for LOTBSRs. In addition, the concepts of AND product,
restricted intersection, and extended intersection have been
added. Moreover, section IV deals with applications of the
developed theory. Section V is related to the conclusion of
the developed theory.

II. PRELIMINARIES
This part of the article is about the definition of SS, AND
product, OR product, extended union, extended intersection
for two SSs, BSS, TBSS and their basic properties.
Definition 1 [1]:Assume thatU represents a universal set

and E be the set of parameters. Now for any ⊆ E, a SS is a
pair

(
ĥ,

)
, where ĥ : → P(U ) is set-valued mapping.

Definition 2 [4]:Assume thatU represents a universal set
and E be the set of parameters and 1, 2 are the subsets of
E . Also assume that

(
ĥ1, 1

)
and

(
ĥ2, 2

)
denote the SSs

over U , then
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1. AND product of these two SSs is denoted and defined
by (

ĥ1, 1

) ∧ (
ĥ2, 2

)
=

(
ĥ3, 1 × 2

)
where ĥ3 (ă, ) = ĥ1 (ă) ∩ ĥ2( ) for all (ă, ) ∈ 1 × 2

2. OR product of these two SSs is denoted and defined by(
ĥ1, 1

)
∨

(
ĥ2, 2

)
=

(
ĥ3, 1 × 2

)
where ĥ3 (ă, ) = ĥ1 (ă) ∪ ĥ2( ) for all (ă, ) ∈ 1 × 2.

Definition 3 [4]:Assume thatU represents a universal set
and E be the set of parameters and 1, 2 are the subset of
E . Also assume that

(
ĥ1, 1

)
and

(
ĥ2, 2

)
denote the SSs

over U , then extended union of these two SSs is denoted and
defined by(

ĥ1, 1

)
∪exteded

(
ĥ2, 2

)
=

(
ĥ3, 1 ∪ 2

)
where

ĥ3 (ă) =


ĥ1 (ă) ; if ă ∈ 1 − 2

ĥ2 (ă) ; if ă ∈ 2 − 1

ĥ1 (ă) ∪ ĥ2(ă) ; if ă ∈ 1 ∩ 2

Definition 4 [5]:Assume thatU represents a universal set
and E be the set of parameters and 1, 2 are the subset of E .
Also assume that

(
ĥ1, 1

)
and

(
ĥ2, 2

)
denote the SSs over

U , then extended intersection of these two SSs is denoted and
defined by(

ĥ1, 1

)
∩extended

(
ĥ2, 2

)
=

(
ĥ3, 1 ∪ 2

)
where

ĥ3 (ă) =


ĥ1 (ă) ; if ă ∈ 1 − 2

ĥ2 (ă) ; if ă ∈ 2 − 1

ĥ1 (ă) ∩ ĥ2(ă) ; if ă ∈ 1 ∩ 2

Shabir and Naz [17] initiated the idea of BSS and they have
used the same codomain set.
Definition 5 [17]: Let U be a universal set and ⊆ E .

Also, ¬ = {¬ , ∈ } denote the NOT set of , then(
ĥ, Į,

)
is said to be BSS where ĥ : → P(U ) and

Į : ¬ → P(U ) and ĥ ( )
⋂
Į (¬ ) = φ (empty set) .

Definition 6 [18]: Let E represent the set of parameter
and 1 ⊆ E, 2 ⊆ E such that 1 ∪ 2 = E and 1 ∩ 2 =

φ (empty set) . Then
(
ĥ, Į,

)
is said to be BSS where ĥ :

1 → P(U ) and Į : 2 → P(U ) with ĥ ( ) ∩ Į ( ( )) = φ

where : 1 → 2 is bijective mapping.
Definition 7 [22]: Assume that U represent the universal

set and E be the set of parameters and ⊂ E . Also,
let L ⊂ U and G =U − X . then

(
ĥ, Į,

)
is said to

be TBSS over U , where ĥ : → P (L) and Į :

→ P (G). So TBSS is given by simply
(
ĥ, Į,

)
={

, ĥ ( ) , Į ( ) : ĥ ( ) ∈ P (L) and Į ( ) ∈ P (G)
}

.

III. LATTICE (ANTI-LATTICE) ORDERED T-BIPOLAR SOFT
RING
Here we will define the notion of lattice (anti-lattice) ordered
T-bipolar soft rings. In this whole section, the notationsL and
G represent two distinct rings, represent the set of parameter
and U = L ∪ G.

Definition 8: A T-bipolar soft set
(

, ,
)
over two dis-

tinct rings L and G such that U = L
⋃
G is called

lattice (anti-lattice) ordered T-bipolar soft ring (LOTBSR)(
, ,

)
if for all ă1, ă2 ∈ , (ă1) and (ă2) are the

subring of L and (ă1) , (ă2) are the subring of G and
if there exist order between elements of set of parameters
that is if ă1 ≤ ă2 then (ă1) ⊆ (ă2) and (ă1) ⊇

(ă2)
(

(ă1) ⊇ (ă2) and (ă1) ⊆ (ă2)
)
where : →

P (L) and : → P (G) .

Example 1: Assume that L = Z12 and G = Z24 are two
distinct rings such that U = L

⋃
G and = {ă1, ă2, ă3}

such that ă1 ≤ ă2 ≤ ă3. Now if we define the mappings as

(ă1) =
{
0, 4, 8

}
,

(ă2) =
{
0, 2, 4, 6, 8, 10

}
(ă3) = Z12

And

(ă1) =
{
0, 4, 8, 12, 16, 20

}
, (ă2) =

{
0, 8, 16

}
,

(ă3) =
{
0, 12

}
.

Then it is clear that (ă1) ⊆ (ă2) ⊆ (ă3) and
(ă1) ⊇ (ă2) ⊇ (ă3). Hence

(
, ,

)
is LOTBSR and

given by(
, ,

)
=


(
ă1,

{
0, 4, 8

}
,

{
0, 4, 8, 12, 16, 20

})
,(

ă2,
{
0, 2, 4, 6, 8, 10

}
,

{
0, 8, 16

})
,(

ă3, Z12,
{
0, 12

})
 .

Definition 9: Let
(

1, 1, 1
)
and

(
2, 2, 2

)
are two

LOTBSRs, then their OR product is denoted and defined by(
1, 1, 1

) ∨ (
2, 2, 2

)
=

{
(x, y) | 1(x)

⋃
2(y),

1(x)
⋂

2(y)

}
for all (x, y) ∈ 1 × 2.

Remark 1: In general the OR product of two LOTBSRs is
not a LOTBSR.
Example 2: LetL = Z12 andG = Z24 be two distinct rings

such that U = L
⋃
G and 1 = {ă1, ă2} with ă1 ≤ ă2 and

2 = {ă1, ă2, ă3} such that ă1 ≤ ă2 ≤ ă3. Now if we define
the mappings as

1 (ă1) =
{
0, 4, 8

}
, 1 (ă2) =

{
0, 2, 4, 6, 8, 10

}
And

1 (ă1) =
{
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22

}
,

1 (ă2) =
{
0, 4, 8, 12, 16, 20

}
Then it is clear that

(
1, 1, 1

)
is LOTBSR.
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Also for L = Z12 and G = Z24 with U = L
⋃
G and

2 = {ă1, ă2, ă3} such that ă1 ≤ ă2 ≤ ă3 if we define

2 (ă1) =
{
0, 6

}
,

2 (ă2) =
{
0, 3, 6, 9

}
,

2 (ă3) = Z12

And

2 (ă1) =
{
0, 3, 6, 9, 12, 15, 18, 21

}
,

2 (ă2) =
{
0, 6, 12, 18

}
, 2 (ă3) =

{
0, 12

}
Then it is clear that

(
2, 2, 2

)
is LOTBSR.

Now as OR product is defined as(
1, 1, 1

) ∨ (
2, 2, 2

)
=

{
(x, y) | 1(x)

⋃
2(y),

1(x)
⋂

2(y)

}
for all (x, y) ∈ 1 × 2.

As 1 × 2 =

{
(ă1, ă1) , (ă1, ă2) , (ă1, ă3) ,

(ă2, ă1) , (ă2, ă2) , (ă2, ă3)

}
Now we can observe that

1 (ă1) ∪ 2 (ă1) =
{
0, 4, 8

}
∪

{
0, 6

}
=

{
0, 4, 6, 8

}
Which is not a subring of L = Z12. Hence it is clear that

OR product of two LOTBSRs need not to be a LOTBSR.
Theorem 1: Let

(
1, 1, 1

)
and

(
2, 2, 2

)
are two

LOTBSRs, then OR product of these two LOTBSRs is a
LOTBSR provided that 1 (ă1) ∪ 2 (ă2) is a subring of L for
all (ă1, ă2) ∈ 1 × 2.

Proof: According to definition of OR product for two
LOTBSRs

(
1, 1, 1

) ∨ (
2, 2, 2

)
=

(
3, 3, 3

)
where 3 (ă1, ă2) = 1 (ă1) ∪ 2 (ă2) and 3 (ă1, ă2) =

1 (ă1) ∩ 2 (ă2) for all (ă1, ă2) ∈ 1 × 2. Now as(
1, 1, 1

)
and

(
2, 2, 2

)
are two LOTBSRs, then

1 (ă1) , 2 (ă2) are subring of L and 1 (ă1) , 2 (ă2) are
subring of G.Now as intersection of any number of subring is
a subring, so we can say that 3 (ă1, ă2) = 1 (ă1) ∩ 2 (ă2) is
a suborn ofG and it is given in the statement that 3 (ă1, ă2) =

1 (ă1)∪ 2 (ă2) is a subring of L. Hence, we can say that OR
product of two LOTBSR is again LOTBSR.

As
(

1, 1, 1
)
and

(
2, 2, 2

)
are two LOTBSRs

where both 1 and 2 are partially ordered sets. Now
ă1≼ 1 ă2 for all ă1, ă2 ∈ 1 then 1 (ă1) ⊆ 1 (ă2) and
1 (ă1) ⊇ 1 (ă2) and 1≼ 2 2 for all 1, 2 ∈ 2 then
2 ( 1) ⊆ 2 ( 2) and 2 ( 1) ⊇ 2 ( 2) . Now as ≼ 3 is
a partially ordered relation among the element of 1 × 2
such that (ă1, 1) ≼ (ă2, 2) where (ă1, 1) , (ă2, 2) ∈

1× 2 = 3 and this ordered is induced by elements of 1 and
2. As 1 (ă1) ⊆ 1 (ă2) and 1 (ă1) ⊇ 1 (ă2) and 2 ( 1) ⊆

2 ( 2) and 2 ( 1) ⊇ 2 ( 2) and (ă1, 1) ≼ 3 (ă2, 2) then
1 (ă1) ∪ 2 ( 1) ⊆ 1 (ă2) ∪ 2 ( 2) and 1 (ă1) ∩

2 ( 1) ⊇ 1 (ă2) ∩ 2 ( 2). It conclude that 3 (ă1, 1) ⊆

3 (ă2, 2) and 3 (ă1, 1) ⊇ 3 (ă2, 2) . Hence proved
Definition 10: Assume that

(
1, 1, 1

)
and

(
2, 2, 2

)
are two LOTBSRs then extended union of these two LOTB-
SRs is denoted and defined as(

1, 1, 1
)
∪extended

(
2, 2, 2

)

=
(

3, 3, 3
)
; 3 = 1 ∪ 2

3 (ă) =


1 (ă) ; if ă ∈ 1 − 2

2 (ă) ; if ă ∈ 2 − 1

1 (ă) ∪ 2(ă) ; if ă ∈ 1 ∩ 2

3 (ă) =


1 (ă) ; if ă ∈ 1 − 2

2 (ă) ; if ă ∈ 2 − 1

1 (ă) ∩ 2(ă) ; if ă ∈ 1 ∩ 2

Remark 2: The extended union of two LOTBSRs need not
to be LOTBSRs
Example 3: For L = Z12 and G = Z18 with U = L

⋃
G

and 1 = {ă1, ă2, ă3} such that ă1 ≤ ă2 ≤ ă3 if we define

1 (ă1) =
{
0, 6

}
,

1 (ă2) =
{
0, 3, 6, 9

}
,

1 (ă3) = Z12

And

1 (ă1) , = Z18, 1 (ă2) =
{
0, 3, 6, 9, 12, 15

}
,

1 (ă3) =
{
0, 6, 12

}
Then it is clear that

(
1, 1, 1

)
is LOTBSR.

Also assume that L = Z12 and G = Z18 with U = L
⋃
G

and 2 = {ă1, ă2} such that ă1 ≤ ă2 if we define

2 (ă1) =
{
0, 4, 8

}
,

2 (ă2) =
{
0, 2, 4, 6, 8, 10

}
And

2 (ă1) = Z18, 2 (ă2) =
{
0, 3, 6, 9, 12, 15

}
Then it is clear that

(
2, 2, 2

)
is LOTBSR.

Now as (
1, 1, 1

)
∪extended

(
2, 2, 2

)
=

(
3, 3, 3

)
; 3 = 1 ∪ 2

3 (ă) =


1 (ă) ; if ă ∈ 1 − 2

2 (ă) ; if ă ∈ 2 − 2

1 (ă) ∪ 2(ă) ; if ă ∈ 1 ∩ 2

3 (ă) =


1 (ă) ; if ă ∈ 1 − 2

2 (ă) ; if ă ∈ 2 − 1

1 (ă) ∩ 2(ă) ; if ă ∈ 1 ∩ 2

As 3 = 1 ∪ 2 = {ă1, ă2, ă3} then

3 (ă1) = 1 (ă1) ∪ 2 (ă1) =
{
0, 6

}
∪

{
0, 4, 8

}
=

{
0, 4, 6, 8

}
We can observe that 3 (ă1) = 1 (ă1)∪ 2 (ă1) is not a subring
ofL.Hence we can say that extended union of two LOTBSRs
need not to be LOTBSR.
Theorem 2: Let

(
1, 1, 1

)
and

(
2, 2, 2

)
are two

LOTBSRs, then extended union is again a LOTBSR provided
that 1 (ă) is a subring of 2 (ă) or 2 (ă) is a subring of 1 (ă).

VOLUME 12, 2024 77517



J. Ahmmad et al.: Classification of Feature Engineering Techniques for Machine Learning

Proof: Assume that 1 (ă) is a subring of 2 (ă) and 2 (ă)
is a subring of 1 (ă) then in either case 1 (ă) ∪ 2 (ă) is
a subring of L. Now consider 3 (ă) . If ă ∈ 1\ 2 then
3 (ă) = 1 (ă) or if ă ∈ 2\ 1 then 3 (ă) = 2 (ă), so in
either case 3 (ă) is the subring ofL.Now consider ă ∈ 1∩ 2
then 3 (ă) = 1 (ă) ∪ 2 (ă) . Hence 3 (ă) is again subring of
L. Now consider 3 (ă) . If ă ∈ 1\ 2 then 3 (ă) = 1 (ă)
or if ă ∈ 2\ 1 then 3 (ă) = 2 (ă), so in either case
3 (ă) is the subring of G. Now consider ă ∈ 1 ∩ 2 then
3 (ă) = 1 (ă) ∩ 2 (ă) . Now as 1 (ă) , 2 (ă) are subrings

of G then their intersection 1 (ă)∩ 2 (ă) is also a subring of
G. Hence 3 (ă) = 1 (ă) ∩ 2 (ă) is a subring of G. Hence(

1, 1, 1
)
∪extended

(
2, 2, 2

)
is a TBSR.

As
(

1, 1, 1
)
and

(
2, 2, 2

)
are two LOTBSRs then

for all ă1, ă2 ∈ for all ă1, ă2 ∈ 1, 1 (ă1) ⊆ 1 (ă2) and
1 (ă1) ⊇ 1 (ă2). Similarly for all ă1, ă2 ∈ 2, 2 (ă1) ⊆

2 (ă2) and 2 (ă1) ⊇ 2 (ă2) . Then 1 (ă1) ∪ 2 (ă1) ⊆

1 (ă2) ∪ 2 (ă2) and 1 (ă1) ∩ 2 (ă1) ⊇ 1 (ă2) ∩ 2 (ă2) as
required.
Definition 11: Let

(
1, 1, 1

)
and

(
2, 2, 2

)
be two

LOTBSRs, then restricted union of two LOTBSRs is denoted
and defined by(

1, 1, 1
)
∪restr .

(
2, 2, 1

)
=

{
ă, 1 (ă) ∪ 2 (ă) ,

1 (ă) ∩ 1 (ă) for all ă ∈ 1 ∩ 2

}
Remark 3: The restricted union of two LOTBSRs need not

to be LOTBSR.
Example 4: LetL = Z24 andG = Z28 be two distinct rings

such that U = L
⋃
G and 1 = {ă1, ă2} with ă1 ≤ ă2. Now

if we define the mappings as

1 (ă1) =
{
0, 12

}
, 1 (ă2) =

{
0, 4, 8, 12, 16, 20

}
And

1 (ă1) =
{
0, 7, 14, 21

}
, 1 (ă2) =

{
0, 14

}
Then it is clear that

(
1, 1, 1

)
is LOTBSR.

Also for L = Z24 and G = Z28 with U = L
⋃
G and

2 = {ă1, ă2, ă3} such that ă1 ≤ ă2 ≤ ă3 if we define

2 (ă1) =
{
0, 12

}
, 2 (ă2) =

{
0, 6, 12, 18

}
, 2 (ă3)

= Z24

And

2 (ă1) = Z28, 2 (ă2) =
{
0, 7, 14, 21

}
, 2 (ă3)

=
{
0, 14

}
Then it is clear that

(
2, 2, 2

)
is LOTBSR.

Now we can see that as ă2 ∈ 1 ∩ 2, 1 (ă2) ∪

2 (ă2) =
{
0, 4, 8, 12, 16, 20

}
∪

{
0, 6, 12, 18

}
={

0, 4, 6, 8, 12, 16, 18, 20
}
is not a subring of Z24

Theorem 3: The restricted union of two LOTBSRs(
1, 1, 1

)
and

(
2, 2, 2

)
is LOTBSR provided that

1 (ă) ∪ 2 (ă) is a subring of L for all ă ∈ 1 ∩ 2.

Proof: Similar to the proof of theorem (2).

Definition 12: Let
(

1, 1, 1
)
and

(
2, 2, 2

)
be two

LOTBSRs. Then AND product is denoted and defined by(
1, 1, 1

) ∧ (
2, 2, 2

)
=

{(
(ă1, ă2) , 1 (ă1)

⋂
2 (ă2) , 1 (ă1)

⋃
2 (ă2)

)
where (ă1, ă2) ∈ 1 × 2} .

Remark 4: AND product of two LOTBRS need not to be
LOTBSR in general.
Example 5: LetL = Z30 andG = Z28 be two distinct rings

such that U = L
⋃
G and 1 = {ă1, ă2, ă3} with ă1 ≤ ă2 ≤

ă3 and 2 = {ă1, ă2} such that ă1 ≤ ă2. Now if we define the
mappings as

1 (ă1) =
{
0, 15

}
, 1 (ă2) =

{
0, 10, 20

}
, 1 (ă3)

=
{
0, 5, 10, 15, 20, 25

}
And

1 (ă1) =
{
0, 7, 14, 21

}
, 1 (ă2) =

{
0, 14

}
, 1 (ă3)

=
{
0, 14

}
Then it is clear that

(
1, 1, 1

)
is LOTBSR.

Also for L = Z30 and G = Z28 with U = L
⋃
G and

2 = {ă1, ă2} such that ă1 ≤ ă2 if we define

2 (ă1) =
{
0, 6, 12, 18, 24

}
,

2 (ă2) =
{
0, 3, 6, 9, 12, 15, 18, 21, 24, 27

}
,

2 (ă3) = Z30

And

2 (ă1) = Z28, 2 (ă2)

=
{
0, 2, 4, 6, 8, 10, 12, 14, 16, 18,

20, 22, 24, 26
}
,

2 (ă3) =
{
0, 4, 8, 12, 16, 20, 24

}
.

Then it is clear that
(

2, 2, 2
)
is LOTBSR.

Now as AND product is defined as(
1, 1, 1

) ∧ (
2, 2, 2

)
=

{(
(ă1, ă2) , 1 (ă1)

⋂
2 (ă2) ,

1 (ă1)
⋃

2 (ă2)

)
where (ă1, ă2) ∈ 1 × 2}

As 1 × 2 =

{
(ă1, ă1) , (ă1, ă2) , (ă2, ă1) ,

(ă2, ă2) , (ă3, ă1) , (ă3, ă2)

}
Now we can observe that

1 (ă1) ∪ 2 (ă2)

=
{
0, 7, 14, 21

}
∪

{
0, 2, 4, 6, 8, 10, 12, 14, 16,

18, 20, 22, 24, 26

}
=

{
0, 2, 4, 6, 7, 8, 10, 12, 14, 16, 18, 20,

21, 22, 24, 26
}
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As 1 (ă1) ∪ 2 (ă2) is not a subring of G = Z28. Hence it
is clear that AND product of two LOTBSRs need not to be a
LOTBSR.
Theorem 4: Let

(
1, 1, 1

)
and

(
2, 2, 2

)
are two

LOTBSRs, then AND product of these two LOTBSRs is a
LOTBSR provided that 1 (ă1)∪ 2 (ă2) is a subring of G for
all (ă1, ă2) ∈ 1 × 2.

Proof: According to definition of AND product for two
LOTBSRs(

1, 1, 1
) ∧ (

2, 2, 2
)

=

{(
(ă1, ă2) , 1 (ă1)

⋂
2 (ă2) ,

1 (ă1)
⋃

2 (ă2)

)
where (ă1, ă2) ∈ 1 × 2} =

(
3, 3, 3

)
where 3 (ă1, ă2) = 1 (ă1) ∩ 2 (ă2) and 3 (ă1, ă2) =

1 (ă1) ∪ 2 (ă2) for all (ă1, ă2) ∈ 1 × 2. Now as(
1, 1, 1

)
and

(
2, 2, 2

)
are two LOTBSRs, then

1 (ă1) , 2 (ă2) are subring of L and 1 (ă1) , 2 (ă2) are
subring of G.Now as intersection of any number of subring is
a subring, so we can say that 3 (ă1, ă2) = 1 (ă1)∩ 2 (ă2) is a
subring ofL and it is given in the statement that 3 (ă1, ă2) =

1 (ă1) ∪ 2 (ă2) is a subring of G. Hence, we can say that
AND product of two LOTBSR is again LOTBSR.

As
(

1, 1, 1
)

and
(

2, 2, 2
)

are two LOTBSRs
where both 1 and 2 are partially ordered sets. Now ă1≼ 1 ă2
for all ă1, ă2 ∈ 1 then 1 (ă1) ⊆ 1 (ă2) and 1 (ă1) ⊇ 1 (ă2)
and 1≼ 2 2 for all 1, 2 ∈ 2 then 2 ( 1) ⊆ 2 ( 2) and
2 ( 1) ⊇ 2 ( 2) . Now as ≼ 3 is a partially ordered relation

among the element of 1 × 2 such that (ă1, 1) ≼ (ă2, 2)

where (ă1, 1) , (ă2, 2) ∈ 1 × 2 = 3 and this
ordered is induced by elements of 1 and 2. As 1 (ă1) ⊆

1 (ă2) and 1 (ă1) ⊇ 1 (ă2) and 2 ( 1) ⊆ 2 ( 2) and
2 ( 1) ⊇ 2 ( 2) and (ă1, 1) ≼ 3 (ă2, 2) then 1 (ă1) ∩

2 ( 1) ⊆ 1 (ă2) ∩ 2 ( 2) and 1 (ă1) ∪ 2 ( 1) ⊇ 1 (ă2) ∪

2 ( 2). It conclude that 3 (ă1, 1) ⊆ 3 (ă2, 2) and
3 (ă1, 1) ⊇ 3 (ă2, 2) . Hence proved
Definition 13: Let

(
1, 1, 1

)
and

(
2, 2, 2

)
are two

LOTBSRs, then restricted intersection of two LOTBSRs is
denoted and defined by(

1, 1, 1
)

∩restr .
(

2, 2, 1
)

=
{
ă, 1 (ă) ∩ 2 (ă) , 1 (ă) ∪ 1 (ă) for all ă ∈ 1 ∩ 2

}
Remark 5: The restricted intersection of two LOTBSRs

need not to be LOTBSR
Example 6: LetL = Z30 andG = Z12 be two distinct rings

such that U = L
⋃
G and 1 = {ă1, ă2} with ă1 ≤ ă2 and

2 = {ă1, ă2, ă3} such that ă1 ≤ ă2 ≤ ă3. Now if we define
the mappings as

1 (ă1) =
{
0, 6, 12, 18, 24

}
,

1 (ă2) =
{
0, 3, 6, 9, 12, 15, 18, 21, 24, 27

}
And

1 (ă1) = Z12, 1 (ă2) =
{
0, 2, 4, 6, 8, 10

}

Then it is clear that
(

1, 1, 1
)
is LOTBSR.

Also for L = Z30 and G = Z12 with U = L
⋃
G and

2 = {ă1, ă2, ă3} such that ă1 ≤ ă2 ≤ ă3 if we define

2 (ă1) =
{
0, 10, 20

}
,

2 (ă2) =
{
0, 5, 10, 15, 20, 25

}
,

2 (ă3) = Z30

And

2 (ă1) = Z12, 2 (ă2) =
{
0, 3, 6, 9

}
, 2 (ă3) =

{
0
}

Then it is clear that
(

2, 2, 2
)
is LOTBSR.

Now we can see that as ă2 ∈ 1 ∩ 2, 1 (ă2) ∪

2 (ă2) =
{
0, 2, 4, 6, 8, 10

}
∪

{
0, 3, 6, 9

}
={

0, 2, 3, 4, 6, 8, 9, 10
}
is not a subring of Z12. Hence it is

clear that restricted union is not a LOTBSR.
Theorem 5: The restricted union of two LOTBSRs(
1, 1, 1

)
and

(
2, 2, 2

)
defined on two distinct rings

L and G is LOTBSR provided that 1 (ă)∪ 2 (ă) is a subring
of G for all ă ∈ 1 ∩ 2.

Proof: Similar to the proof of theorem (4).
Definition 14: Let

(
1, 1, 1

)
and

(
2, 2, 2

)
be two

TBSRs. Then the extended intersection of two LOTBSRs is
denoted and defined by(

1, 1, 1
)
∩extended

(
2, 2, 2

)
=

(
3, 3, 3

)
; 3 = 1 ∪ 2

And

3 (ă) =


1 (ă) ; if ă ∈ 1 − 2

2 (ă) ; if ă ∈ 2 − 1

1 (ă) ∩ 2(ă) ; if ă ∈ 1 ∩ 2

3 (ă) =


1 (ă) ; if ă ∈ 1 − 2

2 (ă) ; if ă ∈ 2 − 1

1 (ă) ∪ 2(ă) ; if ă ∈ 1 ∩ 2

Remark 6: The extended intersection for two LOTBSRs
need not to be LOTBSR in general.
Example 7: LetL = Z20 andG = Z18 be two distinct rings

such that U = L
⋃
G and 1 = {ă1, ă2, ă3} with ă1 ≤ ă2 ≤

ă3 and 2 = {ă1, ă2} such that ă1 ≤ ă2. Now if we define the
mappings as

1 (ă1) =
{
0, 10

}
,

1 (ă2) =
{
0, 2, 4, 6, 8, 10, 12, 14, 16, 18

}
,

1 (ă3) = Z20

And

1 (ă1) = Z18, 1 (ă2) =
{
0, 2, 4, 6, 8, 10, 12, 14, 16

}
,

1 (ă3) =
{
0
}

Then it is clear that
(

1, 1, 1
)
is LOTBSR.

Also for L = Z20 and G = Z18 with U = L
⋃
G and

2 = {ă1, ă2} such that ă1 ≤ ă2 if we define

2 (ă1) =
{
0, 4, 8, 12, 16

}
,
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2 (ă2) =
{
0, 2, 4, 6, 8, 10, 12, 14, 16, 18

}
And

2 (ă1) = Z18, 2 (ă2) =
{
0, 3, 6, 9, 12, 15

}
Then it is clear that

(
2, 2, 2

)
is LOTBSR.

Now we can see that as ă2 ∈ 1 ∩ 2, 1 (ă2) ∪ 2 (ă2) ={
0, 2, 4, 6, 8, 10, 12, 14, 16

}
∪

{
0, 3, 6, 9, 12, 15

}
={

0, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16
}
is not a suborn

of Z18. Hence it is clear that extended intersection need not to
be LOTBSR in general.
Theorem 6: The extended intersection of two LOTBSRs is

a LOTBSR if 1 (ă) is a subring of 2(ă) or 2(ă) is a subring
of 1(ă) for all ă ∈ 1 ∩ 2.
Proof: The prove of this theorem trivial so it is omitted

IV. APPLICATION OF LATTICE ORDERED T-BIPOLAR
SOFT RINGS

In this part of the article, our aim is to define an algorithm
that can help us to utilize these developed notions for
decision-making problems. For this purpose, we will define
some basic definitions that can assist us to reach an appropri-
ate result.
Definition 15: Let = {ă1, ă2, ă3, . . . , ăm} ⊆ E be

the set of m alternatives and assume that L and G are two
distinct rings such that U = L

⋃
G and

(
, ,

)
is said to

be LOTBSR where : → P (L) and : → P (G) are the
set valued maps. Then we can represent

(
, ,

)
as

ijk =
(
ej, k

)
=


(0, 0) if sj ̸∈ (ăi) and tk ̸∈ (ăi)
(1, 0) if sj ∈ (ă1) and tk ̸∈ (ă1)
(0, 1) if sj ̸∈ (ă1) and tk ∈ (ă1)
(1, 1) if sj ∈ (ă1) and tk ∈ (ă1)

where M∗
ijk = ej

M�
ijk = k

Example 8: Let = {ă1, ă2, ă3} ⊆ E with ă1 ≤ ă2 ≤

ă3 and L = Z6 =
{
0, 1, 2, 3, 4, 5

}
and G = Z9 ={

0, 1, 2, 3, 4, 5, 6 , 7, 8
}
. Now if we define

(ă1) =
{
0
}
, (ă2) =

{
0, 2, 4

}
, (ă3)

=
{
0, 1, 2, 3, 4, 5

}
And

(ă1) = Z9, (ă2) =
{
0, 3, 6

}
, (ă3) =

{
0
}

Then
(

, ,
)
is LOTBSR and it is represented by(

, ,
)

=

{(
ă1,

{
0
}
, Z9

)
,

(
ă2,

{
0, 2, 4

}
,

{
0, 3, 6

})
,(

ă3,
{
0, 1, 2, 3, 4, 5

}
,

{
0
}) }

Now according to definition (15), the tabular representation
of this LOTBSR is given in Table 1.
Definition 16: Let = {ă1, ă2, ă3, . . . , ăr} for 1 ≤

i ≤ r, L = {l1, l2, l3, . . . , m} for 1 ≤ j ≤ m, G =

{g1, g2, g3, . . . , gn} for 1 ≤ k ≤ n be two distinct rings
with U = L

⋃
G and

(
, ,

)
be LOTBSRs.

Scori = Ii − Ni

where Ii =

∑
j, k

M∗
ijkand Ni =

∑
j, k

M�
ijk

Definition 17: Let = {ă1, ă2, ă3, . . . , ăr} for 1 ≤

i ≤ r, L = {l1, l2, l3, . . . , m} for 1 ≤ j ≤ m,
G = {g1, g2, g3, . . . , gn} for 1 ≤ k ≤ n be two distinct
rings with U = L

⋃
G and

(
, ,

)
be LOTBSRs. Then

ăi (1 ≤ i ≤ r) is called best alternative if and only if Scori >

Scori◦ for
(
i̸ = i

◦)
.

A. AlGORITHM
Let = {ă1, ă2, ă3, . . . , ăr} for 1 ≤ i ≤ r,
L = {l1, l2, l3, . . . , m} for 1 ≤ j ≤ m, G =

{g1, g2, g3, . . . , gn} for 1 ≤ k ≤ n be two distinct rings
with U = L

⋃
G and

(
, ,

)
be LOTBSRs. The overall

algorithm for choosing the optimal result is given by
Step 1: Collect the data in tabular form for LOTBSRs.
Step 2: Find out the score values 1, 2, 2, . . . , r

Step 3: Find out the maximum score value as maxi i =

T

Step 4: T is the optimal value.

B. NUMERICAL EXAMPLE
Feature engineering:

A critical stage in preparing data for machine learning
models is feature engineering. It entails developing new fea-
tures (variables) or altering already existing ones to boost a
machine learning algorithm’s performance. In order to better
comprehend and learn from the algorithm, it is necessary to
extract pertinent information from the raw data and portray
it in a suitable manner. Machine learning model perfor-
mance can be dramatically impacted by effective feature
engineering. In order to do this, you must have an extensive
knowledge of the data, the issue domain, and the approaches
to machine learning that you plan to utilize. Professional
feature engineers can design features that collect pertinent
data, decrease noise, and improve model generalization from
the data. Through the use of a number of techniques, feature
engineering enables us to combine or change existing features
to produce new ones. These methods assist in drawing atten-
tion to the data’s most significant patterns and connections,
which in turn improves the machine learning model’s capac-
ity to learn from the data. Here are some common feature
engineering techniques.

1) MISSING DATA IMPUTATION
When working with datasets that contain missing values,
missing data imputation is an essential stage in the feature
engineering process. The practice of adding new features
or changing existing ones to enhance the functionality of
machine learning models is known as feature engineering.
Dealing with missing variables is crucial since manymachine
learning algorithms cannot handle them, and if they are not
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TABLE 1. Tabular representation of LOTBSR
(

, ,
)

=

{(
ă1,

{
0
}

, Z9
)

,
(

ă2,
{

0, 2, 4
}

,
{

0, 3, 6
})

,
(

ă3,
{

0, 1, 2, 3, 4, 5
}

,
{

0
})}

.

TABLE 2. Score values.

handled correctly, they might produce biased or erroneous
results. Here are a few typical feature engineering methods
for imputation of missing data (1) Mean, median and mod
imputation (2) Constant value imputation (3) Linear regres-
sion imputation (4) Domain specific imputation, etc.

2) CATEGORICAL ENCODING
The act of converting categorical (nominal or ordinal) data
into a numerical representation that machine learning algo-
rithms can comprehend and utilize efficiently is known as
categorical encoding in feature engineering. Encoding cat-
egorical features is a critical step in getting data ready
for modeling because many machine learning models need
numerical input. Here are a few typical feature engineering
methods for categorical encoding like (1) One-hot encoding
(2) Label encoding (3) Ordinal encoding, etc.

3) VARIABLE TRANSFORMATION
A key component of feature engineering, which is a crucial
stage in the preparation of data formachine learningmodels is
variable transformation. In order to make the features (vari-
ables) in your dataset better suited for modelling, you must
edit or change them. By making the data more useful or by
meeting specific modelling algorithm assumptions, this can
aid in enhancing the performance of your machine learning

models. Some common types of variable transformations
used in variable transformations are (1) Normalizations (2)
Log transformation (3) Box-Cox transformations (4) Square
root and cube root transformation etc.

Assume that there are three kinds of feature engineering
techniques that are (1) Missing data imputation (2) Categor-
ical encoding (3) Variable transformation and our aim is to
classify these techniques based on above defined algorithm.
The overall discussion is given as follows

Step 1:Assume that data is given in the form of LOTBSRs
as shown in Table 1.

Step 2: Now we find out the score values and their results
are given in Table 2.
Step 3: Find out themaximum score value asmaxi Scori =

Scorw = 48
Step 4: ă3 is the best option

V. CONCLUSION
In In this article, we have defined the concepts of OR product,
extended union and restricted union for LOTBSRs. In addi-
tion, the concepts of AND product, restricted intersection
and extended intersection have been added. We have proved
some results based on developed notions. For the applicability
of the introduced notions, we have defined an algorithm
to support the introduced study. To cover the application
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part of these concepts, we have utilized these notion for the
classification of feature engineering techniques for machine
learning.
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