IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 21 April 2024, accepted 19 May 2024, date of publication 28 May 2024, date of current version 7 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3406562

== RESEARCH ARTICLE

Incremental Top-k High Utility Pattern Mining
and Analyzing Over the Entire Accumulated
Dynamic Database

CHANHEE LEE', HANJU KIM', MYUNGHA CHO"!, HYEONMO KIM?,
BAY VO “2, (Member, IEEE), JERRY CHUN-WEI LIN“3, (Senior Member, IEEE),
PHILIPPE FOURNIER-VIGER#, AND UNIL YUN"“"

! Department of Computer Engineering, Sejong University, Seoul 05006, South Korea

2HUTECH University, Ho Chi Minh City, Vietnam

3Faculty of Automatic Control, Electronics and Computer Science, Department of Distributed Systems and IT Devices, Silesian University of Technology, 44-100
Gliwice, Poland

4College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China

Corresponding author: Unil Yun (yunei@sejong.ac.kr)

ABSTRACT Top-k high utility pattern mining, which extracts the highest top-k patterns that the users want
to find, has been actively studied. Most previous studies in this domain have focused on static databases,
where data insertions do not occur. In the real world, however, various applications continuously generate
new data, and existing top-k high utility pattern mining algorithms devised to process static databases cannot
handle incremental databases. Although some methods can handle stream data, they have the limitation of
processing a portion of the database rather than the entire accumulated database. In this paper, we suggest an
efficient incremental mining method that discovers top-k high utility patterns from the entire accumulated
database. The proposed approach utilizes a list structure that stores minimal utility information required for
the mining process and does not generate candidate itemsets. The suggested algorithm processes the incre-
mental data with a single database scan and restructures the list for efficient mining. Moreover, four efficient
threshold raising techniques along with a restoring technique are utilized to calculate the optimal threshold
value in an accumulated incremental environment. The results of the experiments on runtime, memory, and
scalability show that the suggested method efficiently processes the entire incremental database.

INDEX TERMS Data analysis, high utility pattern, incremental dynamic database, pattern analysis, Top-k.

I. INTRODUCTION

As the application fields of information technology become
more diverse, research on data analysis, such as cluster-
ing [1], classification [2], pattern mining [3], and pattern
querying [4], [5], has been actively studied. In addition,
the amount of generated data increases rapidly. Therefore,
it is an important topic to analyze dynamic data efficiently.
Pattern mining, a branch of data analysis, discovers hidden
valuable patterns from huge databases. For example, there

The associate editor coordinating the review of this manuscript and

approving it for publication was Marco Anisetti

is unbalanced incomplete clustering [6], which is one of the
latest techniques in the area of data clustering. It aims to
handle information for datasets that have missing samples.
Likewise, in a pattern mining area, there are some fields, such
as uncertain pattern mining [7], that obtain useful patterns
from uncertain or incomplete databases. Because of its suit-
ability for analyzing databases, many applications, such as
high utility pattern mining [8], high average utility pattern
mining [9], erasable pattern mining [10], and differential
sensor pattern mining [11], have been studied. Among them,
high utility pattern mining expresses the utilities of itemsets
by considering not only the occurrence of items but also their

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 12, 2024

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 77605

https://orcid.org/0009-0005-3551-4292
https://orcid.org/0000-0002-9246-4587
https://orcid.org/0000-0001-8768-9709
https://orcid.org/0000-0002-3720-0861
https://orcid.org/0000-0002-5438-9467

IEEE Access

C. Lee et al.: Incremental Top-k High Utility Pattern Mining and Analyzing

quantities and profits. High utility pattern mining is applied
to various fields [12], such as e-commerce, medical, finance,
and biomedical applications.

Traditional pattern mining methods receive a threshold
from the user to extract result patterns. However, determining
a proper threshold according to the characteristics of the
dataset is a difficult task. Thresholds that are set too low
extract an extravagant number of patterns and cause high
runtime and memory usage. Therefore, the extracted patterns
should be inspected again to find more meaningful patterns.
In contrast, thresholds that are set too high discover few
or no patterns. To solve this problem, top-k pattern mining
algorithms have been proposed. Instead of the threshold, they
receive k, the number of patterns to be extracted. There-
fore, they can extract an ideal number of patterns without
complicated threshold adjustments. Meanwhile, quantitative
databases used in high utility pattern mining consist of the
quantities and profits of items. Therefore, setting the thresh-
old in high utility pattern mining is more difficult than
in frequent pattern mining. To facilitate this, many top-k
high utility pattern mining algorithms have been proposed.
However, existing methods are not capable of processing
dynamically accumulated incremental databases efficiently,
where the data can only be scanned once.

As the IT industry has dramatically developed in recent
years, the amount of accumulated data and the speed of accu-
mulation are increasing rapidly. In such situations, real-time
inserted incremental data must be scanned once. While vari-
ous pattern mining algorithms [13], [14] have been proposed
to process incremental databases, no incremental method for
top-k high utility pattern mining has been studied, where the
entire accumulated database is efficiently processed with one
scan. Motivated by this, we propose an efficient Incremental
Top-k High Utility Itemset mining algorithm (ITHUI) to
discover top-k high utility patterns from accumulated incre-
mental databases with a single scan using a list structure.
To process the entire accumulated database in an incremental
database situation, prior top-k high utility pattern mining
methods scan the entire accumulated database twice and
construct their data structures from scratch. However, ITHUI
scans just the inserted database portion once and updates its
data structure accordingly through a restructuring procedure.
It also introduces a new database restoring process, which
enables efficient threshold raising without the rescan of previ-
ous data. Thus, ITHUI has the advantage over existing meth-
ods in that it does not suffer from overheads in scanning mas-
sive amounts of previously accumulated data. This is espe-
cially relevant for rapidly accumulating databases in the IT
industry and is magnified as the size of the database increases.
To the best of our knowledge, this work is the first research
on top-k high utility pattern mining that analyzes the entire
accumulated incremental databases with a single incremental
database scan. The contributions of this paper are as follows.

o An efficient method that mines top-k high utility patterns

from accumulated incremental databases with single
incremental database scans is proposed, which reflects

77606

new data into efficient list structures with minimal utility
information.

« Reconstruction and restoring techniques for incremen-
tal database processing, threshold raising, and efficient
mining are suggested in top-k high utility pattern
mining.

« Runtime, memory usage, and scalability performance of
the proposed algorithm measured using real and syn-
thetic datasets show improvement over existing top-k
high utility pattern mining methods.

The remaining sections of this paper are organized as
follows. Section II presents the related work and specifies
the differences between the proposed approach and the pre-
vious studies. Section III presents the problem definition
and explains the procedures of the proposed approach for
efficiently handling incremental databases. In Section IV,
the results of the performance evaluations of the proposed
algorithm are analyzed in detail. Finally, Section V concludes
this paper.

Il. RELATED WORK
A. HIGH UTILITY PATTERN MINING
Not only the occurrence of items but also the quantity and
profit of items are handled in high utility pattern mining.
Because of this advantage, various studies on utility pattern
mining, such as on-shelf utility mining [15], cross-level high-
utility itemset mining [16], and utility sequence mining [17],
have been conducted. Furthermore, it is applied to real-world
database analysis such as hill climbing [18] and longitudinal
human studies [19]. However, unlike frequent pattern mining,
high utility pattern mining has the limitation that it does
not satisfy the anti-monotone property. To solve this prob-
lem, the two-phase algorithm [20] was proposed. It proposed
transaction weighted utility (TWU) as a utility upper-bound
to increase mining efficiency. However, since it performs in
a generation-and-test manner with multiple database scans,
many candidate patterns are created, and the performance is
degraded. Afterward, tree-based algorithms, UP-Growth [21]
and UP-Growth+ [22], reduced the number of candidate
patterns through improved upper-bounds. Nevertheless, these
tree-based high utility pattern mining methods still consume
a lot of runtime and memory for generating candidate pat-
terns. The tree structure is constructed through two database
scans, but an additional database scan is required to extract
result patterns among the candidate patterns. To overcome
this limitation, HUI-Miner [23], a list-based algorithm, was
proposed. HUI-Miner stores the actual utilities of items in a
list structure and extracts high utility patterns without gener-
ating candidate patterns. Therefore, an extra database scan is
not needed. Due to the benefits of the list structure, various
list-based algorithms, such as FHM [24], HUP-Miner [25],
and HMiner [26], were proposed.

Meanwhile, high utility pattern mining is applied in retail
analysis [27] or database analysis of IoT systems [28],
[29]. In these fields, data are continuously generated and

VOLUME 12, 2024

C. Lee et al.: Incremental Top-k High Utility Pattern Mining and Analyzing

IEEE Access

accumulated. Therefore, real-time processing and efficient
analysis of accumulated databases are important. Further-
more, high utility pattern mining, considering dynamic
environments, has been actively researched in various appli-
cation areas. ILDHUP [30] mines the high utility patterns,
considering the arrival time of transactions. DSHUP [31]
and RHUPS [32] extract high utility patterns from recent
transactions through the damped window and sliding window
concepts, respectively. Methods that employ the pre-large
concept [33], [34] can reduce the number of mining processes
in a dynamic environment by extracting large and pre-large
patterns.

B. TOP-K HIGH UTILITY PATTERN MINING
Determining an optimal threshold in quantitative databases
where items are expressed as quantities and profits is dif-
ficult for users. Therefore, TKU [35], a top-k high utility
pattern mining algorithm that receives the number of result
patterns instead of the threshold, was proposed. TKU extracts
potential top-k high utility patterns in phase 1 and scans the
database again in phase 2 to find actual top-k high utility
patterns. Thus, it creates much more potential patterns than
actual patterns, which leads to inefficient runtime and mem-
ory usage. To overcome this problem, REPT [36], which uses
improved threshold raising strategies, was proposed. How-
ever, REPT still generates many potential patterns compared
to the actual patterns because it is a tree-based algorithm.
Therefore, TKO [37] and KHMC [38], top-k high utility
algorithms using a list structure, were proposed. TKO and
KHMC no longer generate candidate patterns because their
list structures store the actual utilities of items. After that,
THUI [39] improved mining efficiency by using the list
structures and proposing new threshold raising strategies.
Top-k high-utility pattern mining has been utilized in
diverse areas. HUST [40] and TKUS [41] extract high utility
patterns from sequence databases. LMSpan [42] combines
top-k high utility pattern mining with the concept of time
interval-based events with duration. TONUP [43] optimizes
the data structure of d2HUP [44] for top-k high utility pat-
tern mining. PTM [45] analyzes massive data using a prefix
partitioning method. TKHUIM-GA [46] is an approach that
utilizes genetic algorithms to mine top-k high utility patterns.
TopHUI [47], THN [48], and TKN [49] find the top-k high
utility patterns in quantitative databases containing negative
utilities. FTKHUIM [50] extracts top-k high utility patterns
by using new strategies. To quickly raise the threshold,
it adopts a global priority queue and hash map. However, the
above traditional top-k high utility pattern mining methods
are designed to process static databases, which are fixed and
do not include incremental data. Therefore, they are unsuit-
able for handling incremental environments where data are
continuously added and accumulated. Sliding window-based
top-k high utility pattern mining approaches [51], [52] were
proposed to process stream data. However, since the slid-
ing window model only considers recent data, they remove

VOLUME 12, 2024

TABLE 1. Example database.

DB TID Transaction TU
T, b, 1) (c,2)d,) (,4) 19
T, (a,3) (e, 2) 8

Original T3 (a,1)(b,2)(d,3)(£,2) 23

DB T, (a,2) (b, 1) (c,4) (e,3) 19

Ts (b,3)(c,2)(d, 1) (e, 2) (,3) 27

Te (a,1)(d,2) (e, 2) 10

DBI+ T, (a,3) (b, 1) (c,3)(d, 1) (e, 1) 20

Tq (a,2) (b,2) (c, 1) (d, 1) 17

TABLE 2. Profit table.

Item a b c d e f
Profit 2 4 2 3 1 2

previous data and only address the most recent data in the
window size. On the other hand, the proposed algorithm
handles the entire accumulated incremental data while cal-
culating the optimal threshold to extract top-k high utility
patterns efficiently.

Ill. MINING TOP-K HIGH UTILITY PATTERNS FROM
ACCUMULATED INCREMENTAL DATABASES
A. PRELIMINARIES
For general definitions of top-k high utility pattern mining,
previous studies [35], [36] are referred to. A transaction
database D = {T1, T, ..., T, } consists of n transactions. A set
of m different items appearing in the database is expressed as
I ={iy, ip, ..., in, }. Each transaction has a unique identifier,
TID, and for any transaction Ty, T < [is always true.
An item i, in Ty has the information of quantity which is
called internal utility and notated as iu(iy, Ty). Table 1 shows
the database used in the examples of the paper. The example
database is composed of an original database and DBI+,
where the latter is an incremental database. Table 2 is the
profit table used in the examples. It consists of items and their
profits. The profit value is the external utility of an item and
is notated as eu(iy). In a transaction T}, the utility of an item
ix, U(iy, Tx), is calculated as iu(iy, Ty) X eu(iy). Next, assume
a pattern X ={iy, ip, ..., ix}. UX, Ty), the utility of X in
transaction Ty, is defined as >_ U (ix, T), where i, € X and
X C Ty. In addition, U(X), the utility of X in a database D is
represented as > U(X, Ty), where X € Ty and Ty € D.
Definition I (Transaction Utility): The transaction utility
of a transaction Ty, which means the sum of the utilities of
items in Ty, is expressed as TU(T}) and calculated as follows:

TU(Ty) = Z Uiy, Ty), where iy € Tg. (1)

Definition 2 (Transaction Weighted Utility): The transac-
tion weighted utility of a pattern X is expressed as TWU(X),
which is the sum of the transaction utilities of the transactions
where X occurs. TWU(X) is calculated by the formula below.

TWU(X) = Z TU(Ty), where X C Ty and Ty € D. (2)

77607

IEEE Access

C. Lee et al.: Incremental Top-k High Utility Pattern Mining and Analyzing

Original |
Database l—'—|
Ve Constructing
s e = S|

Incremental
U

Database
pdating

Item a b ¢ d e f

* Scan the database and store Utility 14 28 16 21 9 18

utilities and TWUs of items.

* Sort the transactions in TWU 60 88 65 79 64 69

ascending order of TWU.
» Construct data structures,
global lists and LIU structure.

Pattern [SumlU |SumRU
<T1, UX,T1), RUX,T1)>

<T'm, UX,T), RUX,T)>

<,

s I - N

* Scan the incremental database Item a b c d e f
and update utilities and TWUs
of items.

* Reflect the entered data on the
existing global lists.

rlislo

Utility 24 40 24 27 10 18
TWU 97 125 102 116 84 69

b [40]0
<Ty, 4, 0>
<Ts, 8, 0>
<Ty, 4, 0>
<Ts, 12,0>
<T;, 4, 0>
<Tg, 8, 0>

a]27]0
<Ty, 3, 0>
<T3, 9, 0>
<Ts, 3, 0>
<Ts, 6, 0>
<Ty, 3, 0>
<Tg, 3, 0>

el10]0][a]24[0] c[24] 0
<y, 8, 0>|[<Ty, 2,05 |[<T;, 6, 0> || <7y, 4, 0>
<Ty, 4,0>||<Ty, 3, 0> ||<T3, 2,0 || <T,, 8, 0>
<Ts, 6,0>||<T5, 2, 0> || <Ty, 4, 0> || <T5. 4, 0>
<Te, 2, 0>||<Te, 2, 0> || <y, 6, 0>
<Ty, 1,0>||<Ty, 6,0>| | <Ty, 2, 0>
<Tg, 4, 0>

- J
/—| Restoring N Restructuring

coe
— s |18]st , — d|27]36)| 5 [40] 0
cfrl| 28 | 16 c/bl 38 I 0 <T, 811> TID | Transaction (Item : Utility) 1,3 45| |<T, 40>
<Ty, 15 4>| |<Ty 16 0> <13 419>~ T |(.8) f|18| 0 PR |
<T3 968>||<T3 8 0>
<1y 13 125 |<1y 22 0> <1y 6215 T2 <T, 80> o :
= > >
T T3 (1, 4) <T, 40> cee Ts 312>|[<T, 40
10]68 < > || < >
utility lists to cf(lb| 44 | 0 « Ta « <T 6 0> Te 60 Ts5 120
generate longer <T, 19 0> eoe <T, 26> Ts |(f; 6)|((e, <T, 34>||<T, 40>
patterns. <T,316>| T < >|[< >
* Raise threshold Sy 2 1= 4 6 Tg38 Tg 80
PR <Ts 219> T
using utilities of / 7
_Patterns. oo @) <Te28>| 1, TID| T, | T, | T35 | Ty | Ts | T¢ | T, | Ty
<T; 119> RU| 7 |0 |17|4|15|6]| 7|11
Top-k * Construct LIU structure using transaction + Sort the lists in TWU-ascending order
High Utility Patterns information stored in the global lists.) + Update RU field of global lists.
(G . J

FIGURE 1. Overall process of the proposed approach.

Definition 3 (Processing order of Items): For an efficient
mining procedure, items in a transaction are sorted in the
ascending order of TWU. The TWU-ascending order con-
sidering incremental databases is defined as the processing
order, where < indicates the order of items.

Definition 4 (Remaining Utility of a Pattern): For a pat-
tern X and a transaction T} containing X, the set of items
located after X in T} is defined as T \X. In T}, the remaining
utility of X is expressed as RU(X, Ty), and it is the sum of the
utilities of items included in 73 \ X . In addition, the remaining
utility of X in database D is expressed as RU(X), and it is the
sum of RU(X, Ty) in the transactions where X occurs.

RUX,Ty) = > Ulix, Tr), where iy € (Ty \ X). 3)
RUX) = ZRU(X, Ty), where X C Ty and Ty € D.
4

Definition 5 (High Utility Pattern and Minimum Utility):
A high utility pattern is a pattern whose utility is not less than
the minimum utility threshold (minutil). In top-k high utility
pattern mining, minutil is divided into two types, current
minutil, and optimal minutil. The current minutil indicates
the threshold that is increased through threshold raising
strategies. The optimal minutil represents the minimum utility

77608

threshold that mines k result patterns for the user given k
value.

Definition 6 (Top-k high utility patterns): The k patterns
with the largest utility in a database D are defined as top-
k high utility patterns. That is, the top-k high utility pattern
set contains patterns with utilities no less than the optimal
minutil.

Definition 7 (Ordered and Contiguous Pattern): An
ordered and contiguous pattern, (iy—iy), is defined as a pattern
that consists of the entire sequence of adjacent items from i,
and iy when the items are sorted in processing order.

Definition 8 (LIU structure [39]): LIU (Leaf Itemset Util-
ity) structure is a triangular matrix that stores the utility of
all ordered and contiguous patterns, and it is used to raise
the current minutil. The utility value of (iy — iy) stored in
the LIU structure is denoted as LIU (x, y), and is defined as
LIU (ix’ iy) =U ((ix - iy)) = Zﬁix—iy)g U ((ix - iy) ’ T)-
For example, in sorted items I = {i1, i2, ..., i}, LIU (i3, ic)
means the utility value of the pattern with contiguous
items i3 to ig, stored in the LIU structure. In other words,
LIU (i3, i) = U (i3 — ig) = U({iziaisic}).

Definition 9 (Underestimated Utility of a Pattern [39]):
Assume a pattern X and its sub-pattern, Y. Pattern X — Y is a
set of items in X, excluding items in Y. The underestimated
utility of pattern X —Y is denoted as UE(X —Y') and is defined

VOLUME 12, 2024

C. Lee et al.: Incremental Top-k High Utility Pattern Mining and Analyzing

IEEE Access

as UE(X —Y) = UX) — X ,cy U(i). For example, when
X = {izigisig} and Y = {is}, UE(X —Y) is an underestimated
utility of pattern X — Y = {i3isig}.

B. OVERALL PROCESS OF INCREMENTAL TOP-K HIGH
UTILITY PATTERN MINING

Fig. 1 presents the overall process of ITHUI. ITHUI first
scans an original database and calculates the utility and TWU
values of items. At this time, RIU strategy for raising a
threshold is used by using the utilities of the items. Then,
items are sorted in TWU-ascending order, and list structures
storing utility information of items and a LIU structure used
for raising the threshold are constructed through the second
database scan. Although TWU value of an item is less than
current minutil, the item is not pruned because invalid pat-
terns can change into valid patterns as the incremental data
are inserted. Therefore, global lists for all items should be
managed. However, unpromising patterns that cannot become
the top-k high utility pattern are excluded from the construc-
tion of LIU, restructuring process, and mining process in
order to improve performance. Utilizing the LIU structure,
the threshold is raised again. Then, ITHUI creates longer
patterns and mines the top-k high utility patterns. During the
mining process, the threshold is increased by the actual utility
of the patterns. When the incremental database is inserted,
ITHUI scans newly inserted data and updates the global lists.
Then, LIU structure is constructed using information stored
in the global lists, and minutil is calculated again. Through the
restructuring and mining processes, top-k high utility patterns
are found in the dynamic databases.

C. CONSTRUCTING DATA STRUCTURES FOR
INCREMENTAL TOP-K HIGH UTILITY PATTERN MINING
One utility list corresponds to a pattern and consists of Name,
SumlIU, SumRU, and a set of tuples. Name represents the
corresponding pattern, Suml/U means the total utility of the
pattern in transactions, and SumRU signifies the sum of
remaining utilities of the pattern in transactions. The util-
ity list of a pattern X is denoted as UL (X). Each tuple is
composed of a transaction ID, a utility of a pattern in the
transaction, and a remaining utility of a pattern in the trans-
action and denoted as < TID, U (X, TID) , RU (X, TID) >.
ITHUI calculates the utility and TWU values of the items
by scanning the original database once. ITHUI uses the
utilities of items to raise the threshold by RIU strat-
egy [36]. If the number of items is more than or equal
to k inputted by a user, minutil is set to the k-th highest
value among utilities of the items. For example, when k is
five, since the utility values of the items in the database
are {(a, 14), (b, 28), (c, 16), (d, 21), (e, 9), (f, 18)}, minutil
increases to 14, which is the utility of the item {a}. The
TWU-ascending order of the items is as follows: a < e <
¢ < f < d < b. Note that an item whose TWU is
less than minutil should not be pruned because top-k high
utility patterns can be generated from the pruned item as the
incremental data are newly inserted. However, unpromising

VOLUME 12, 2024

cla|os|[r]s]7|[a]s]e]|o]]0
<1, 4 155||<r, 8 7|, 3 ||y 4 0>
(a)

a|14|46 e|9|43 c|16|40 f|18|39 d|21|24 b|28|0
<T, 6 2>|[<T, 2 0>||<Ty 4 I5>||<Ty 8 7>||<Ty 3 4>||<Ty 4 0>

<Ty 2 215\ |<T, 3 125||<T, 8 4>||<T3 4 175||<T5 9 &>||<Ty 8 0>

<T, 4 15> |<Ts 2 255||<Ts 4 215||<Ts 6 155 |<Ts 3 12>5||<T, 4 0>

<Ts 2 8>||<Ts 2 6> <Ts 6 0>||<Ts 12 0>
(b)

FIGURE 2. Construction of global utility lists: (a) Global lists after
processing Ty, (b) Global lists after processing Tg.

items, whose TWU values are less than minutil raised through
the RIU strategy, can be excluded in the mining process. As a
result, the algorithm can find valid patterns more efficiently.

Lemma 1: In the top-k high utility pattern mining that
processes the dynamic environments, if a global list for an
unpromising item in the original database is pruned, an inac-
curate pattern may be discovered as the top-k high utility
pattern when an incremental database is newly added.

Rationale: Let an original database be ODB and an incre-
mental database be IDB. TKH = {Pi,P>,...,Py} is a
set of top-k high utility patterns discovered from ODB, and
TKH = (P, P}, ..., Pi}isasetof top-k high utility patterns
extracted from the entire database, including ODB and IDB,
when the global lists for the unpromising items were pruned
in ODB. If TKH and TKH’ are sorted in utility descending
order of the patterns, the minimum utility threshold in ODB
is U(Py), and the minimum utility threshold in the entire
database is U(P,).In ODB, if TWU of an item {iy } is less than
U (Py), the utility of any super pattern {X } of {i,} is also less
than U(P,). In other words, the item and super patterns cannot
become the result patterns in ODB. However, when the incre-
mental data are inserted, the utility of a pattern may increase
because the pattern may appear in the added transactions.
After the incremental data are added, the utility of the pruned
pattern {X} is the total sum of utilities of {X} in ODB and
IDB, which is denoted as U(X) = U(X, ODB) + U(X, IDB).
However, when TKH' is extracted, the utility of the pruned
pattern in ODB may be not considered because the global list
for the unpromising item was pruned. If U (X, ODB) is greater
than U(P,)—U (X, IDB), the pattern {X } can become the top-
k high utility pattern instead of the pattern P,. As a result,
TKH' may contain the imprecise pattern because the global
lists for the unpromising items are not managed in memory.
]

ITHUI constructs global utility lists by scanning the sorted
transactions from the last item to the first item. If a global
utility list of the processed item has not yet been created,
a utility list is generated, and a tuple storing TID, utility, and
remaining utility is inserted into the list. If the global utility
list for the processed item already exists, ITHUI does not
create a utility list, makes a tuple, and just adds it to the con-
structed list. Since list construction begins with the last item,
the remaining utility can be efficiently obtained by accu-

77609

IEEE Access

C. Lee et al.: Incremental Top-k High Utility Pattern Mining and Analyzing

FIGURE 3. Constructed LIU structure.

mulating the utilities of the previous items. For efficiently
calculating the remaining utility, [ITHUI utilizes one variable
that is reused for each transaction to store the utility sum of
previous items. In this way, the RU values of list tuples can
be calculated without the need to revisit previously processed
data in the global list.

Example 1: Fig. 2 presents the process of generating the
global utility lists for items in transactions which are sorted
in TWU-ascending order. The construction process starts with
the last item {b} in the sorted transaction 77. Since there is no
utility list for the item {b}, UL(b) is configured, and a tuple
for T is inserted into the list. T is stored in the TID field, the
utility field is calculated as U(b, T1) = iu(b, T1) x eu(b) =
1 x4 = 4, and the remaining utility field is initialized to zero
because there is no item behind {b}. Next, ITHUI processes
the item {d}. A utility list for {d} is also newly generated,
and a tuple, < T1, 3,4 >, is added to UL(d). The remaining
utility of {d } is set to the utility of {b}. This remaining utility
value is remembered for future RU calculations. The remain-
ing items {c} and {f} are processed in the same manner. The
configured global lists after processing T are illustrated in
Fig. 2(a). Fig. 2(b) shows the configured global lists after the
construction process is completed for all transactions in the
original database.

During the second database scan, ITHUI not only con-
structs the global lists but also creates the LIU structure [39].
While the algorithm traverses a sorted transaction during
the database scan, it calculates the utility values of patterns
consisting of contiguous items and stores them in the LIU
structure. Whenever reading a transaction, the global utility
lists are constructed, and at the same time, the values are
accumulated into the LIU structure. Fig. 3 shows the con-
structed LIU structure after processing T¢. After constructing
and updating the LIU structure, ITHUI utilizes the LIU-E
strategy [39] that uses the utility values in the LIU structure
to raise the threshold. ITHUI stores the utility values in the
LIU structure, which are greater than or equal to minutil, into
a priority queue. The element stored in the priority queue
has a higher priority as the utility is larger. By not managing
low priority values, the size of the priority queue remains k.
For example, when k is set to five, the values stored in the
priority queue among the utility values shown in Fig. 3 are

77610

57, 44, 39, 33, and 28. Then, minutil is raised to 28. Then,
ITHUI raises the threshold using the LIU-LB strategy [39].
ITHUI raises the threshold by underestimating the utility
of the sub-patterns of the ordered and contiguous patterns
stored in the LIU structure according to Definition 9. The
patterns are generated by eliminating items except the first
and last items of the patterns managed in the LIU structure.
The number of items to be removed is set to three or fewer
so that a lot of patterns are created. For example, UE(fb) =
LIU(f,b) — U(d) = 57 — 21 = 36. Since UE(fb) is greater
than minutil, the value is added to the priority queue. Then,
values in the priority queue are 57, 44, 39, 36, and 33, and
minutil 18 raised to 33. Minutil, increased through the LIU-E
and LIU-LB strategies, can reduce the number of patterns
that the algorithm should combine in the mining process.
If minutil quickly increases to an optimal value, because
the algorithm can predict more unpromising patterns in the
mining process, it can skip the combining process for invalid
patterns. In other words, the LIU-E and LIU-LB strategies
increase minutil to a value close to the optimal value to
optimize the mining process.

D. MINING TOP-K HIGH UTILITY PATTERNS FROM
GLOBAL LIST STRUCTURES

When a mining request is received, ITHUI conducts the
mining process using the constructed global lists and current
minutil. The mining process can be performed after the global
lists are arranged in the ascending order of TWUs and the
remaining utilities in the lists are updated. Let {i; < i» <

. < Iy} be the current TWU-ascending order. The min-
ing process of ITHUI is performed in DFS-manner. ITHUI
combines the patterns with the same prefix and length. After
processing all patterns that can be expanded from the item
{i1}, the prefix is changed into the next item, such as {i>},
and pattern combining is performed recursively. The mining
process is completed when there is no pattern that can be
expanded.

Lemma 2: In the mining process, if an upper-bound of a
pattern X, which is denoted as UB(X) and defined as U (X) +
RU(X), is less than the current minimum utility threshold,
the pattern and super patterns cannot become the top-k high
utility patterns.

Rationale: An upper-bound of a pattern {X} represents
the maximum utility that a super pattern {X’} of {X} can
have. Namely, UB(X) is greater than or equal to the U(X)
and U(X'P). Since the top-k high utility pattern mining
approaches increase the minimum utility threshold from zero
to the optimal minimum utility threshold that extracts k result
patterns, the current minimum utility threshold is always
less than or equal to the optimal minimum utility threshold
during the mining process. If UB(X) is less than the current
minimum utility threshold, U(X) and U (X’) are also less than
the optimal minimum utility threshold. As a result, even if a
pattern with an upper-bound lower than the current minimum
utility threshold is pruned in the mining process, pattern loss
does not occur. |

VOLUME 12, 2024

C. Lee et al.: Incremental Top-k High Utility Pattern Mining and Analyzing

IEEE Access

o | 22] 22| [ea] 14] 16] [eb] 36] 0
<1, 12 7|, 7 || 8 0>
<1, 10 155| |<Ts 7 125] |<T, 12 0>

<Ts 16 0>

cfd|28|l6 cfb|38| 0
<T, 15 4>||<T; 16 0>

<Ts 13 12> |<T5 22 0>

cran| 44] 0
<1, 19 0>
<Ty 25 0>

FIGURE 4. Mining process performed on super patterns of {c}.

When a utility list for a pattern is visited, it is immediately
determined whether the pattern is a top-k high utility pattern
for the current minutil. This is achieved by checking the
sumlU value in the utility list. Since this value is the pattern’s
actual utility, top-k high utility patterns can be discovered
without candidate generation using the utility list structure.
Extensions of patterns during mining are performed by com-
bining two utility lists. Suppose a pattern {X} and a pattern
{Y}, which appears after {X}. Before combining UL(X)
with another utility list, UB(X) is calculated to determine
whether X is extendable. This is done in constant time without
traversing tuples of UL(X) because sumIU and sumRU are
stored in UL(X). When combining {X} and {Y}, the util-
ity of the prefix pattern {P} must be considered to avoid
the duplication of the utility. When the length of {X} and
{Y} is one, the prefix pattern {P} is empty, and its utility
is zero. Meanwhile, the remaining utility of the combined
pattern {XY} is set to the remaining utility of the pattern {Y}.
For each pair of tuples with the same TID in both UL(X)
and UL(Y), ITHUI creates a tuple < TID, U(X, TID) +
U(,TID) — U(P, TID), RU(Y, TID) > and inserts it into
UL(XY). Tuple pairs can be identified by traversing the tuples
of each utility list in order just once, since the tuples are
sorted in TID ascending order. During the construction of
the utility list for the combined pattern, ITHUI reduces the
upper-bound of long patterns to improve the mining perfor-
mance by LA-Prune [25]. If the reduced upper-bound is less
than minutil, ITHUI stops the expansion process of the pattern
{XY} and proceeds to the next pattern. The utility list structure
makes LA-Prune trivial and efficient by managing the U
and RU values of patterns per transaction, eliminating the
need for additional calculations. While ITHUI performs the
above mining process recursively, the RUC strategy [37] is
applied, where minutil is raised using the actual utility of
the pattern. ITHUI inserts the pattern whose utility is not
less than minutil into the priority queue. If the size of the
priority queue is greater than or equal to k, minutil increases
to the kth utility value in the priority queue. During the
mining process, if minutil is raised using the RUC strategy,
because the algorithm can predict unpromising patterns using
an upper-bound, the greater the minutil, the more quickly

VOLUME 12, 2024

4

<4f Restructuring order

s8] o] e[10]][a[24] 0] [24]44][a]27]36] b [40] 0
<1, 80> ||<T, 20> ||<T, 6 0> || <Ty 4 7> || <T1 3 4> || <T; 4 0>
<T3 40> || <1, 30> || <T5 20> || <1, 8 4> || <T5 9.8> || <T5 8 0>
<T5 60> || <Ts 20> || <1y 4 0> ||<Ts 4 15>||<T 3 12>|| <7, 4 0>
<T 20> || <Tg 20> || <T; 6 7> || <Ts 6 0> ||<Ts 12 0>
<T, 10> || <T; 6 0> ||<T3 2 115|| <T; 3 4> || <T; 40>
<Tg 40> <Tg 38> || <Tg 8 0>

Global
Lists

after TID| T, | T, | Ty | T, | Ts | T¢ | T, | Ty
processing {b} RU| 4 | 08| 4 |12]0]4 8

after TID| T, | T, | T; [T, | Ts | Tg | T, | Tg

Temporary processing {d}/ [RU| 7 | 0 | 17| 4 [15] 6 | 7 | 11
Table

after DT, | T, | T, [T, |Ts |[Te | T, | Ty
processing {c} [RU| 11| 0 |17 |12]19]| 6 | 12|13
L . g
(a)

sls]st|| e]1o]as]|a]24]61
<Ty 8 1I>|[<T, 2 6>||<T,
<1, 4 195||<1, 3 165||<Ty
<Ts 6 21> |<Ts 2 19>||<T,

b [40] 0
6 0>||<Ty 4 7>||<ry 3 4>||<Ty 4 0>
2 17> |<Ty 8 4>||<T3 9 &>||<T3 & 0>
4 12> |<Ts 4 15>|[<Ts 3 12>||<T, 4 0>

<Tg 2 8>||<T¢ 2 6>||<T; 6 7>||<Ts
6
4

¢ |24] 4] a]27]36

0>||<Ts 12 0>

<1, 1 19> |<T,

6
13> [<Tg 2 1I>||<T; 3 4>||<T; 4 0>
3 8&||<Tg & 0>

<Tg 4 13> <Tg

(b)

FIGURE 5. Restructuring process: (a) Restructuring process performed on
items {b}, {d}, and {c}, (b) Restructured global lists.

it can obtain valid patterns. Finally, ITHUI obtains optimal
minutil that extracts the top-k high utility patterns when the
mining process is finished, and patterns in the priority queue
are provided to the user as the top-k high utility patterns.
Example 2: Fig. 4 presents the utility lists of the super
patterns of item {c}. Since the upper-bound of the pattern
{cf}, UB(cf) = U(cf) + RU(cf) = 22 + 22 = 44,
is greater than minutil, patterns {cfd} and {cfb} are generated
by extending {cf}. When {cf} is combined with {cd}, tuples
for T1 and T are inserted into the utility list for the pattern
{cfd} because both patterns are included in the transactions
Ty and Ts. The utility of {cfd} for each transaction is calcu-
lated as follows, by considering the utility of the prefix pattern
{c}: U(efd, Ty) = Ulef,T1) + U(cd, Ty) — U(c, T1) =
1247—-4=15and U(cfd, Ts) = U(cf,T5)+ U(cd, T5) —
U(c,Ts) = 10 +7 — 4 = 13. The remaining utilities of
{cfd} are set to the remaining utilities of {cd}. Similarly,
patterns {cf} and {cb} are combined. The utility list for the
pattern {cfb} is created, and tuples, < 77, 16,0 > and <
Ts,22,0 >, are added to the list. The pattern {cfd} is not
the top-k high utility pattern because its utility is less than
minutil. However, the upper-bound of {cfd} is greater than
minutil, {cfdb} is created by extending {cfd}. Since utilities
of {cfb} and {cfdb} are greater than minutil, they are added
to the priority queue. At this time, utility values stored in
the priority queue are 44, 38, 36, and 33. The number of
values stored in the priority queue is less than k, which was
set to five, so minutil has not increased. After finishing the

77611

IEEE Access

C. Lee et al.: Incremental Top-k High Utility Pattern Mining and Analyzing

7 |18]s1
<r, 8§ 1715 TID

Transaction (Item : Utility)

<T, 4 195\ T1 [[(£8)
R
(e, 2)

<Ts 6 21> T,
T3\||(h 4
e|w]es| (e3)
T, 2 o) Ts ||h6)] |2
3 16> Ts (e, 2)
<T, 2 195 Ty
2
I

<'I"4

(e,)

<Te 8> Tg

<T, 1 193

FIGURE 6. Restoring process.

mining for the original DB, the patterns in the priority queue
are ({fdb} : 57), ({cfdb} : 44), ({fb : 42}), ({db : 39}) and
({cfb : 38}). The algorithm raises minutil to 38, which is the
optimal minutil, using the RUC strategy.

E. UPDATING AND RESTRUCTURING GLOBAL LISTS FOR
HANDLING INCREMENTAL DATA
When incremental data occur, ITHUI restructures the con-
figured global lists. ITHUI reflects the data on the global
lists, obtains TWU-ascending order again, sorts the global
lists in new TWU-ascending order, and updates the remain-
ing utility field of utility lists. ITHUI updates the global
lists by scanning the incremental data only once. Item infor-
mation is stored in the form of a tuple. Each tuple stores
TID, the utility of the pattern, and the remaining utility of
the pattern. The remaining utility field is initialized to zero
because the processing order may be varied depending on
the transaction insertion. Reflecting incremental data in the
list is the same as the construction process. Then, ITHUI
performs the restructuring process to update the remaining
utility values. A temporary table storing pairs of TID, and a
remaining utility are utilized. The remaining utility values in
the temporary table are initially set to zero. The restructuring
process is conducted by reading the global lists from behind.
While traversing tuples in the list, ITHUI finds each pair of a
tuple and an element of the array with the same TID, updates
the remaining utility of the tuple to the remaining utility
in the array, and increases the remaining utility in the array by
the utility of the tuple. When the above tasks are performed
on all global lists, the restructuring process is completed.
Example 3: Fig. 5 displays the process of updating the
remaining utility of the utility lists sorted in the new TWU-
ascending order. The restructuring process begins with the
last item {b}. The item {b} appears in transactions 77, T3,
T4, Ts, T7, and Tg. Since the remaining utility values in the
temporary table are initialized to zero, all remaining util-
ities of UL(b) are set to zero. Then, the remaining utility
values in the temporary array increase by the utilities of
UL (D) to update the remaining utilities of the next item. The
remaining utility values for T, T3, T4, Ts, T7, and Ty in
the temporary table become 4, 8, 4, 12, 4, and 8, respec-

77612

tively. Thereafter, ITHUI sequentially processes the tuples
of UL(d). TID of the first tuple is 77, and the remaining
utility related to T in the array is 4. Therefore, the remaining
utility of {d} in T is set to 4. The remaining utility in the
array increases by U(d, T3) to 7. TID of the second tuple
is T3, and the remaining utility for 73 in the array is 8.
Thus, UL(d, T3) is set to eight, and the remaining utility in
the array becomes 17. In this way, all tuples of UL(d) are
updated. The remaining utility fields of UL(c) are calculated
in the same manner as above. Fig. 5(a) shows the restruc-
turing process on the items {b}, {d}, and {c}. The above
process is repeated to all global lists except the item whose
TWU is less than minutil. The restructured global lists are
presented in Fig. 5(b).

ITHUI recalculates the threshold after handling the incre-
mental data in order to find the accurate top-k high utility
patterns efficiently. ITHUI raises the threshold using the
updated utility values of the items. In addition, the LIU
structure used to increase the threshold is configured utilizing
the information in the global utility lists. In an incremental
environment, because the algorithm has to reflect information
for a database in a single scan, it is efficient to use global
utility lists for configuring the LIU structure. Since each util-
ity list stores complete utility information in the transactions
where the item appears and is sorted in 7TWU-ascending order,
the LIU structure can be constructed using the global lists.
Tuples of the utility list are traversed, and each pair of the
name and the utility of the item is stored in a temporary
transaction list. Here, items whose TWU value is less than the
current minutil are skipped to minimize utility information
management. This can be achieved efficiently since tuples are
organized according to their corresponding item in the utility
list structure. Fig. 6 shows the process of restoring transaction
information from the restructured global lists. After restoring
the database with a temporary transaction list, it is traversed
to construct the LIU structure. The constructed LIU structure
is then used to perform LIU-E and LIU-LB strategies for
threshold raising. Finally, the temporary transaction lists and
the LIU structure are deleted after raising the threshold.

Lemma 3: In accumulated incremental database environ-
ments, the incremental method demonstrates higher theoreti-
cal efficiency compared to static methods in top-k high utility
pattern mining.

Rationale: Let an accumulated incremental database be
DB, and a database that is to be newly inserted in DB be
db. Both static and incremental methods process the entire
accumulated database, DB U db, to mine top-k high utility
patterns. However, static methods scan the entire accumu-
lated DB U db twice to prepare the data structure for mining,
whereas the incremental method scans just the inserted db
once to accomplish the same task. When the data structure is
ready, both static and incremental methods proceed with the
mining procedure. The incremental method may require the
scanning of its data structure in memory for the data structure
optimizations that happen during the two database scans of
static methods. Nonetheless, this data structure scanning is

VOLUME 12, 2024

C. Lee et al.: Incremental Top-k High Utility Pattern Mining and Analyzing

IEEE Access

Algorithm 1 Insertion

Algorithm 2 Mining

Input: A set of the global utility lists, GL

An incremental data, I 4

Output: A set of the restructured global utility lists,
GL

Variable: A temporary array, TA; A minimum utility

threshold, §;

A triangular matrix, LIU; A temporary transaction
list, Ty —list;

For each transaction Ty in I 4
For each itemiin T
Update U (i) and TWU (i)
If UL; does not exist inGL
UL; = Create a new global utility list for i

S S

Insert a tuple < Ty, U(i,Tk), 0 > into UL;

Raise § to the k-th highest value among utilities of
items

8. Sort GL in TWU-ascending order

9. For each utility list UL; in GL// Restructure (Reverse

order)

10. For each tuple T in

UL//IT = (T, U(i’Tk), RU(l,Tk)}
11. Set RU (i,Tx) of T to remaining utility stored

inTA

12. Increase TA (T) by U(i,Ty) of T
13.

pdate Sumlu and SumRu of UL;
14.

For each utility list UL; in GL// Restoring
15. IfTWU (i) < &

16. continue
17.
For each tuple T in UL;

18. Insert a pair (i, U(i,Tk)) into Ty —list
19.

For each Ty —list // constructing LIU structure
20. For each item i in T —list// Reverse order
21 UpdateLIU (i,Ty)
22.

Raise § using the LIU structure
23. Return GL

more efficient than scanning the entire database because the
read speed of primary memory is faster than that of secondary
memory. The incremental method thus has less overhead
when processing database insertions. Moreover, as more data
is inserted in a stream environment, the entire accumulated
database size grows, thereby widening the efficiency gap
between static and incremental methods with each incremen-
tal step. |

VOLUME 12, 2024

Input: A set of the global utility lists, GUL
Output: A set of top-k high utility patterns, TKH

Variable: A priority queue, PQ; A set of conditional
utility lists, CL; An upper-bound, UB; A minimum
utility threshold, §;

1. For each global utility list GUL, in GUL
2. If GUL,.SumlU > §
3. PQ = PQ U {GUL,.Name,GUL, .Sumlu}
4. Raise § to the k-th highest utility in PQ
5.
UB = GUL,.Sumlu + GULy,.SumRu
6. IfUB < §
continue
CL=0
9, For each utility list GUL, in GUL//p < q
10. Generate a conditional utility list for {pq},
CULy,
11. While tuple T', in GUL,, # end and tuple T,
in GUL, # end
12. If T} and T4 have the same TID
13. util =U(p, TID) + U (q, TID)
14. rutil = RU(q, TID)
15. Insert a tuple < TID, util, rutil >
into CULpq and Increase T and T,
16.
Elseif T is greater than T,
17. Increase T,
18.
Else
19. Increase T,
20.
CL = CLUCULy,
21.
If CL is not empty
2. Re — Mining(CL,GUL))
23.

TKH = {X|X € PQ and U(X) > 8}
24. Return TKH

F. ANALYZING THE PROPOSED ALGORITHM

We describe two algorithms, Insertion and Mining, in detail.
The proposed approach calls Insertion to handle the incre-
mental data and Mining to extract results by extending
patterns. Algorithm 1 presents the sub-procedure of ITHUI,
Insertion. The utility information and utility lists are updated
by scanning the incremental data once (Lines 01-06). The
utility and TWU values of items increase (Line 03). The utility
listis newly generated only if there is no utility list for the pro-
cessed item. Then, a tuple that stores the utility information
of the item is appended to the utility list (Lines 04-06). For

77613

IEEE Access

C. Lee et al.: Incremental Top-k High Utility Pattern Mining and Analyzing

the completeness of the results, the minimum utility threshold
is raised to the updated utilities of the items (Line 07). The
global utility lists are sorted in the newly obtained TWU-
ascending order in order to calculate the remaining utility
(Line 08). ITHUI conducts the restructuring process from the
last utility list (Lines 09-13). The remaining utility of the
tuple is set to the remaining utility in the temporary array
and the remaining utility in the array increases by the utility
of the tuple (Lines 11-12). The utility and remaining utility
are obtained after the restructuring process (Line 13). From
the updated global utility lists, the algorithm performs the
restoring process to construct the LIU structure. (Lines 14—
18). While traversing the global utility lists, if the TWU value
of an item is less than minutil, the algorithm does not contain
it in the temporary transaction list (Lines 15-16). It stores
the name of the item and utility value by traversing tuples
in the lists for the item whose TWU value is greater than
or equal to minutil (Lines 17-18). Finally, ITHUI configures
the LIU structure using the temporary transaction lists (Lines
19-21). The threshold is raised by utilizing the LIU structure
(Line 22). The restructured global utility lists are returned to
the main procedure (Line 23).

Algorithm 2 represents the sub-procedure of ITHUI,
Mining. One global utility list is selected, the utility and
upper-bound of the selected item are compared with the
threshold, and longer patterns are created. If the pattern has
a utility that is greater than current minutil, the pattern is
inserted into the priority queue, and minutil increases to the
kth utility value in the priority queue (Lines 02-04). The
pattern is expanded when an upper-bound is not less than
minutil (Lines 05-22). A set of utility lists for the combined
patterns is initialized (Line 08). ITHUI performs the combi-
nation by selecting an item to be combined with the selected
item (Lines 08—20). The utility list for the combined pattern
is created (Line 10). ITHUI handles each tuple to find TID
where the combined item appears (Lines 11-19). For each
pair of tuples with the same TID, ITHUI creates a tuple
storing utility information of the combined pattern and inserts
it into the utility list of the combined pattern (Lines 12—15).
If the compared TIDs of tuples are different, the tuple with
a smaller TID moves to the next tuple (Lines 16-19). The
created utility list is added to the set of conditional utility lists
for the next mining process (Line 20). If the set is not empty,
Re-Mining sub-procedure is recursively called to generate
longer patterns (Lines 21-22). Finally, the result patterns are
extracted from the priority queue by comparing the utility
of the pattern with the optimal minimum utility threshold
(Line 23). The result patterns are returned (Line 24).

G. CORRECTNESS OF THE PROPOSED ALGORITHM

This subsection discusses the correctness of the proposed
ITHUI method. ITHUI performs incremental top-k high util-
ity pattern mining efficiently through a single scan of the
inserted data. However, it must be certain that the pro-
posed algorithm mines the same results as existing methods
in the same domain that are designed to operate in static

77614

TABLE 3. Characteristics of diverse datasets.

Dataset |D| Tavg [1] Type
Chess 3,196 37.00 75 Dense
Connect 67,557 43.00 129 Dense
Accidents 340,183 33.81 468 Dense
Bms-pos 515,597 6.5 1,656 Sparse
200K
T5014DxK - 50 1,000 Synthetic
1,000K

environments, such as THUI, TKO, and FTKHUIM. We pro-
vide the following proof regarding this matter. Assume an
incremental database consisting of an original database,
DBy = {T1,T>..., Ty}, and incremental databases, DB| =
{Txt1, Txq2 ..., Ty}, DBy = {Ty41, Ty42 . .., T}, and so on.
Next, assume an arbitrary pattern X and let its utility value in
an incremental database accumulated up to DB for a static
and incremental algorithm be Ug(DB, X) and Uj(DB, X),
respectively. Then, when DBy is inserted, Us (DBy, X) =
> ,UX,T) and Uy (DBy,X) = >, UX,T;). When
the first incremental database DB; is inserted, Ug (DB, X) =

" UX,Tj) and Uy (DB, X) = X}_, UX, T;). Finally,
when DB; is inserted, Us (DB,, X) = lZ':l UX,T;) and
U; (DB, X) = o, UX, T)). Likewise, for any whole
number n, Us (DB,,, X) = Uj (DB,;, X) is satisfied. Accord-
ing to Definition 6, if the utility value of the pattern is greater
than or equal to an optimal minutil, it can be extracted as a top-
k high utility pattern. Since our incremental method, ITHUI,
and the existing static methods all use the same utility mea-
sure, ITHUI extracts the same results as previous top-k high
utility pattern mining methods under the same circumstances.
This proves the correctness of ITHUI and shows that ITHUI
guarantees the correctness of mined results in an incremental
environment.

IV. PERFORMANCE EVALUATION

A. EXPERIMENTAL SETTINGS

We performed various experiments and analyzed the perfor-
mance of the proposed ITHUI algorithm, which is based on
an efficient list structure. ITHUI is the first top-k high utility
pattern mining method to efficiently process accumulated
incremental databases, and the latest studies on top-k high
utility pattern mining are all static algorithms that cannot pro-
cess incremental databases. Therefore, the recent list-based
top-k high utility pattern mining algorithms FTKHUIM [50],
THUI [39], and TKO [37] were used for comparisons, and
we modified them to operate on incremental databases for
fair tests. The modified algorithms are marked with ‘-I’, and
for each incremental step, they treat the entire accumulated
incremental database as a static database and scan it twice.
This can show that ITHUI can handle accumulated incre-
mental data more efficiently than static approaches. Although
there are sliding window-based top-k high utility pattern
mining approaches, they are unsuitable for handling entire
accumulated incremental databases. All algorithms used for

VOLUME 12, 2024

C. Lee et al.: Incremental Top-k High Utility Pattern Mining and Analyzing

IEEE Access

-“©-ITHUl -A-THUI-I

500
180

< 140
120
100
80
60
40
20
0

TKO- -=-FTKHUIM-I |

e

Runtime (sec

1 50 100 500 1000
K

(a)

-“©-ITHUl -A-THUI-I TKO-lI -=-FTKHUIM-I |

Runtime (sec)

1 50 " 100 150 200

(c)

(d) on Bms-pos.

| ©-ITHUI -A-THULI
220 -
60 — =
e e i
30
20
10
0

TKO-l -=-FTKHUIM-I |

Runtime (sec)

1 50 K 100 500 1000

(@

“©-ITHUl -A-THUI-I
00

2500
2000
1600
1200
800
400
0

TKO-1 -=-FTKHUIM-I ‘

Runtime (sec)

1 50 100 150 200
K
(c)

FIGURE 8. Runtime evaluation under varied k values with one database insertion: (a) on Chess, (b) on C

(d) on Bms-pos.

performance evaluations were implemented in C/C++, and
experiments were conducted on a computer with an Intel
i7-6700K CPU @ 4.00 GHz and 32GB of RAM running
Windows 10 64-bit operating system.

We used four real datasets and one synthetic dataset group
for our experiments. Table 3 shows the characteristics of
each dataset. |[D| denotes the number of transactions, Tye

VOLUME 12, 2024

-©-ITHUl -A-THUI-I
5500

4000 -
—~ 2500 L/ﬂ—”’ﬂ’/_/ﬂ_’—"é
1000 & — —
750 o S S S

600
450
300
150

0

TKO- -=-FTKHUIM-I |

Runtime (sec

1 50 100 150 200
K

(b)

-©-ITHUl -A-THUI-I TKO-I -=-FTKHUIM-I ‘

850
650 ﬁ/a/ﬂ
T 450
§ e e
<320
‘*S 240
2160
80
0

1 50 K 100 150 200
(d)
FIGURE 7. Runtime evaluation under varied k values with four database insertions: (a) on Chess, (b) on Connect, (c) on Accidents,

| -o-ITHUI - THUH
2000

: e
1200 /ﬂ//zr—"’ﬁ""
400 Z

=

TKO-l -5-FTKHUIM-I |

300
200
100

0

Runtime (sec)

1 50 " 100 150 200

(b)

-©-ITHUl -A-THUI-I
300

170
120
90
60
30
0

KO-l -E-FTKHUIM-! |

Runtime (sec)

1 50 « 100 150 200
(d)

ct, (c) on Accident

represents the average transaction length, and |I| means
the number of distinct items in the dataset. Bms-pos is a
sparse dataset with relatively short transactions and a large
number of items. Chess, Connect, and Accidents are dense
datasets with relatively long transactions and few items.
These real datasets can be accessed in the FIMI repository
(http://fimi.cs.Helsinki.fi). TS0I4DxK is a synthetic dataset

77615

IEEE Access

C. Lee et al.: Incremental Top-k High Utility Pattern Mining and Analyzing

TABLE 4. Runtime evaluation under the varied database insertions.

Chess Number of Database Insertions
(K=1,000) 1 4 8 12 16 20

ITHUI 24.045 63.782 109.477 151.578 196.296 237.768
FTKHUIM-I 37913 96.948 180.937 263.996 345.362 423.852
Connect Number of Database Insertions

(K=200) 1 4 8 12 16 20

ITHUI 241.348 603.523 1,022.75 1,444.33 1,993.66 2,359.26
FTKHUIM-I 259.775 645.937 1,190.94 1,704.68 2,272.26 2,785.17
Accidents Number of Database Insertions

(K=200) 1 4 8 12 16 20

ITHUI 984.578 2,506.42 4,000.49 5,781.46 7,737.57 9,792.36
FTKHUIM-I 1,772.03 4,429.15 8,448.11 12,025.5 15,903.8 19,810.1
Bms-pos Number of Database Insertions

(K=200) 1 4 8 12 16 20

ITHUI 22.049 52452 87.367 125.247 161.649 198.301
FTKHUIM-I 68.063 170.592 326.321 473.745 612.616 751.748

group that is used for the scalability test, where the number
of transactions grows from 200K to 1,000K. TS0I4DxK is
obtained from the IBM generator. In all experiments, the
original database accounts for 90% of the entire database,
and the incremental databases occupy the remaining 10%.
The incremental databases are divided into equal parts. After
processing the original database, the algorithms handle each
part as the newly inserted data. For our runtime and mem-
ory usage tests using real datasets, we measured the results
in a situation where the incremental databases are treated
as four and one parts. In short, we measured the runtime
and memory usage performance of the algorithms when
the number of database insertions was both four and one.
Furthermore, we simulated a situation where the number of
database insertions increased and compared the performance
of ITHUI and the recent FTKHUIM-I using the four real
datasets. Upon database insertion, the proposed algorithm
scans only the newly inserted data, whereas THUI-I, TKO-I,
and FTKHUIM-I scan the entire accumulated database twice
since they were designed for static environments.

B. RUNTIME TEST

In this subsection, the results of the runtime test for each
algorithm are analyzed. Fig. 7 shows the runtime perfor-
mance of each algorithm for the four real datasets with
four database insertions. The results of the runtime test on
Chess are presented in Fig. 7(a). The k value, which is
the number of patterns that the user wants to extract, was
increased from 1 to 1,000. As k increased, the runtime of
ITHUI increased slightly, while the runtime of THUI-I and
TKO-I grew rapidly. When the k value was greater than
500, the runtime of FTKHUIM-I also rose sharply, and
the gap between FTKHUIM-I and ITHUI increased. Unlike
TKO-I, ITHUI, FTKHUIM-I and THUI-I can reduce the
upper-bound during the mining process by considering the
utility information in the transactions where the combined
pattern cannot appear. As a result, they required less run-
time than TKO-I. Fig. 7(b) shows the runtime results for

77616

TABLE 5. Memory evaluation under the varied k values.

K
Chess 1 50 100 500 1,000
TTHUI _ 12.922 1409 14355 1727 _ 20953
THUI-L _ 21.164 24422 25156 29.863 31.789
TKO1 26781 27559 28.152 29293 29.094

FTKHUIM-1 22469 235 22832 24637 27.809
K

, Comnect 1 50 100 150 200

5 T ITHUIL 407363 43525 43882 441.777 433918

£ T THULI _ 751203 767574 799.441 811387 814.484

£ TKOI 755699 756918 757.727 758332 758.504

3 FIKHUIM-I 476434 512973 515344 521.003 535477

<= . K

T Accidents 1 50 100 150 200

S TITHUI 723672 772906 78173 782.934 783.105

S 7 THULI 139238 1,52426 1,556.04 1,623.9 1,639.22

N TTTKOT 139543 148212 148229 1,50039 1.500.93

FTKHUIM-I 1,513.5 1,654.04 1,659.82 1,654.85 1,647.05

2 K
ms-pos 1 50 100 150 200
ITHUI _ 158.023 185.887 187.746 189.402 190.109
THUL-I 152727 244469 252332 254969 256.75
TKO-T 222.023 226.895 227352 227324 227414

FTKHUIM-1 217.047 419207 431.098 43552 438457
K
Chess 1 50 100 500 1,000
ITHUI 12523 14.176 14531 16918 20.859
THULI 20793 24.188 25551 29.285 31.016
TKO-I 26.68 27445 27594 28891 28.832
FTKHUIM-1 2232 22.125 22.652 2477 27.398
Connect K
1 50 100 150 200

S T ITHUL 407.051 425879 431.820 433.355 430.773

§ T THULL 750328 763.555 794418 798.867 812.29

& TKO 752285 753375 75384 754.102 753801

g FIKHUIM-I 462121 496043 496488 499.801 515453

:; Accidents K

§ 1 50 100 150 200

S T ITHUI 71927 77198 784406 779.902 786.273

S~ THULI _ 1,351.10 1,526.71 1,534.57 1553.13 1,558.78
TKO-I 1,388.95 147541 147523 149341 1,493.09

FTKHUIM-I 1,491.54 1,648.55 165452 1,656.93 1,658.19
Bms-pos K

1 50 100 150 200

ITHUI _ 157.801 185.094 187.484 188.547 189.379

THUL-I 151379 241.09 248965 251.996 253.379

TKO-T _ 223.051 226562 226.875 227.008 226.996

FTKHUIM-I 214.715 415516 428.168 431.766 430.219

Connect. Here, k grew from 1 to 200. ITHUI, FTKHUIM-
I and THUI-I, which utilize the LIU structure, had better
runtime performance than TKO-I for all £ values. ITHUI,
FTKHUIM-I, and THUI-I efficiently raise the minimum
utility threshold by using the actual utilities of the ordered
and contiguous patterns managed in the LIU structure and
estimating the utilities of patterns that are not stored in
the LIU structure. Moreover, ITHUI can efficiently process
incremental data with a single database scan through the
restructuring and restoring procedures. Although the run-
time gap between ITHUI and FTKHUIM-I is not great,
if the number of incremental databases increases, the runtime

VOLUME 12, 2024

C. Lee et al.: Incremental Top-k High Utility Pattern Mining and Analyzing

IEEE Access

TABLE 6. Memory evaluation under the varied database insertions.

Chess Number of Database Insertions
(K=1,000) 1 4 8 12 16 20
ITHUI 20.859 20.953 21.293 2091 21281 21.344

FTKHUIM-I 27.398 27.809 28.848 30.402 30.066 30.062
Connect Number of Database Insertions
(K=200) 1 4 8 12 16 20
ITHUI 430.773 433.918 439.574 444.406 440.82 443.305
FTKHUIM-I 515.453 535.477 526.156 545.793 547.289 550.18
Accidents Number of Database Insertions
(K=200) 1 4 8 12 16 20
ITHUI 786.273 788.105 790.578 792.281 800.438 797.488
FTKHUIM-I 1,658.19 1,647.05 1,666.74 1,680.43 1,698.33 1,697.99
Bms-pos Number of Database Insertions
(K=200) 1 4 8 12 16 20
ITHUI 189.379 190.109 190.98 190.754 192.27 192.344
FTKHUIM-I 430.219 438.457 439.523 439.441 440.434 441.328

gap between them becomes greater. Fig. 7(c) represents the
results of the runtime test performed on Accidents, where k
increased from 1 to 200. As the k value grew, the optimal
minutil decreased, so all algorithms processed more patterns
and required more runtime. Nonetheless, ITHUI showed the
best runtime performance out of all algorithms. The runtime
results for Bms-pos are shown in Fig. 7(d), where k increased
from 1 to 200. ITHUI had the best runtime performance,
followed by FTKHUIM-I, TKO-I, then THUI-I. Bms-pos
is a large, sparse dataset with lots of items, so many items
belong to the result patterns. As a result, as k increased
and more patterns were extracted, the runtime gap between
ITHUI and the others increased, while ITHUI showed the
smallest increase in runtime. Fig. 8 shows the runtime per-
formance of each algorithm for the four real datasets with
one database insertion. As seen from the line charts, the
overall trend is analogous to that of the runtime test with
four database insertions. However, the runtimes of all algo-
rithms decreased because the number of database insertions
and mining requests decreased from four to one. Nonethe-
less, it is clear that ITHUI’s runtime performance exceeds
those of FTKHUIM-I, THUI-I and TKO-I. Finally, Table 4
shows the results of the runtime test with a varied number
of database insertions, where the values represent seconds.
The test compares the runtimes of the proposed incremental
ITHUI algorithm and the recent static FTKHUIM-I algorithm
to demonstrate the performance of ITHUI in a situation where
the number of database insertions increases. In this test, the
k value was set to 1,000 for Chess and 200 for the others,
which are the largest k values used in the runtime test with
varied k values. Likewise, the incremental database portion
was also set to the same 10%. As seen from the table, ITHUI
is faster than FTKHUIM-I in all experiments, and the runtime
gaps increase as the number of database insertions increases.
For example, in Connect, when database insertion occurred
once, the runtime difference was around 18 seconds, and
when it occurred twenty times, the difference was around
426 seconds. In conclusion, the runtime test demonstrates that

VOLUME 12, 2024

-©-ITHUI -A-THUI-I TKO-I -E-FTKHUIM-I
40000
'g 30000
B
g 20000 -
=
<
& 10000 ;
. gyt
200K 400K 600K 800K 1000K
Number of transactions
(a)
EITHUI ETHUI-I TKO-1 B FTKHUIM-I
5000
@
S 4000
(]
¥ 3000
v
=]
> 2000
£
§ 1000 -
0 ~ T 1
200K 400K 600K 800K 1000K
Number of transactions

(b)
FIGURE 9. Scalability evaluation on T5014DxK: (a) Runtime scalability,
(b) Memory scalability.

ITHUI has better runtime performance than previous methods
under the same conditions and that the proposed techniques
are highly effective for handling accumulated incremental
databases.

C. MEMORY USAGE TEST

In this subsection, we measured the peak memory usage in
MBs occupied by each algorithm while extracting the top-k
high utility patterns from each dataset. The top half of Table 5
shows the results of the memory usage test performed on
the four real datasets with four database insertions. In each
dataset, the range of k values was the same as that used in
the runtime test. In the dense datasets, which include Chess,
Connect, and Accidents, as the k value increased, the peak
memory usage became larger. For Chess, THUI-I required
less memory than TKO-I when k£ was under 100 but spent
similar or more memory when k was over 500. In addition,
FTKHUIM-I shows better memory efficiency than THUI-I
and TKO-I. On the other hand, ITHUI always needs the
least memory space, regardless of the k value. For Connect,
when k& was set to 1, ITHUI consumed 407.363 MB of
memory, unlike other compared algorithms, which required
at least 16% more memory. Increasing the k value means
that the optimal minimum utility threshold for extracting
the result patterns becomes lower, and more patterns must
be processed. Nevertheless, ITHUI had about 1.23 times,
1.87 times and 1.74 times better memory usage performance
than FTKHUIM-I, THUI-I and TKO-I, respectively, when
the k value was the highest at 200. The memory usage results
measured for Accidents also showed that ITHUI had the best
memory usage performance with varying k values. When
the k value was the highest at 200, the static algorithms,

77617

IEEE Access

C. Lee et al.: Incremental Top-k High Utility Pattern Mining and Analyzing

FTKHUIM-I, THUI-I, and TKO-I, occupied more than 1,500
MB of memory, but ITHUI required 788.105 MB of mem-
ory. Lastly, the sparse dataset, Bms-pos, is a large dataset
with a large number of distinct items. For this dataset, the
proposed ITHUI algorithm showed efficient memory usage
in the experiments. Moreover, as k increased, the memory
usage of FTKHUIM-I and THUI-I quickly increased, while
ITHUI increased relatively slowly. Compared with TKO-
I, the proposed algorithm required less memory for all &
values, and when k was the highest at 200, TKO-I required
approximately 20% more memory space than ITHUI. The
bottom half of Table 5 shows the results of the memory usage
test performed on the four real datasets with one database
insertion. The results were very close to those of the memory
usage test with four database insertions. This is because in
both tests, the entire accumulated database is processed in
the last incremental step, where the peak memory usage is
measured. Lastly, Table 6 shows the results of the memory
usage test with a varied number of database insertions. This
test was conducted in the same way as its runtime test coun-
terpart. Results show similar results to the previous memory
usage tests, since the peak memory is measured when the
entire database is fully inserted. Nonetheless, the proposed
ITHUI algorithm consumes the least amount of memory
across all four real datasets in a situation where the number
of database insertions increases. In summary, ITHUI had
the overall best memory usage performance in accumulated
incremental database environments across the k values and
number of database insertions.

D. SCALABILITY TEST

In this subsection, we analyze the results of the scalability
test using the TS0I4DxK dataset group presented in Table 3.
The number of database insertions was set to four, following
the previous runtime and memory usage tests. Fig. 9 repre-
sents the scalability performance of the algorithms, where
the k value was set to 100. Fig. 9(a) presents the results of
the runtime scalability test. As the number of transactions
increased, the runtimes of each algorithm also increased. This
is because the amount of data to be processed becomes larger
depending on the size of the database. In addition, since
ITHUI, THUI-I, TKO-I, and FTKHUIM-I are all list-based
algorithms, the number of tuples stored in their list structures
also increases when the size of the database grows. However,
while the runtime of THUI-I, TKO-I, and FTKHUIM-I rose
rapidly, the runtime of ITHUI grew slightly. This is because
ITHUI is an incremental algorithm that manages the global
lists by scanning the incremental data once, but the three
static algorithms scan the entire database twice whenever
new databases are inserted. In summary, ITHUI had the best
runtime scalability performance, regardless of the number of
transactions. The memory scalability performance of each
algorithm for T50I4DxK is shown in Fig. 9(b). Memory usage
also increased as the database size increased because the util-
ity list structure stored more utility information as the number
of transactions grew. ITHUI consumed less memory than

77618

THUI-I, despite the increase in the number of transactions.
Moreover, the gap in memory usage between THUI-I and
ITHUI increased as the size of the database became larger,
which signified that ITHUI has better memory scalability per-
formance. While TKO-I showed better memory performance
than THUI-I, ITHUI still always required less memory than
TKO-I for all database sizes. For FTKHUIM-I, it consumed
the most memory in all cases because of its relatively complex
list structure and additional data structures used for threshold
raising strategies. As a result, the proposed ITHUI algorithm,
which mines top-k high utility patterns from accumulated
incremental databases using a list structure, outperformed
the state-of-the-art static algorithms THUI-I, TKO-I, and
FTKHUIM-I in terms of scalability.

V. CONCLUSION

In this paper, we suggested a novel method for discovering
top-k high utility patterns from continuously accumulated
incremental databases. The suggested algorithm, ITHUI,
stores the minimum utility information of patterns by con-
structing list structures. Since the utility list holds the actual
utilities of patterns, candidate patterns are not created, and
thus additional database scans are not required. Next, when-
ever an incremental database is inserted, ITHUI updates and
restructures its global lists efficiently through a single scan.
Additionally, it constructs the LIU structure corresponding
to the changed TWU-ascending order through the introduced
restoring process and raises the minimum utility threshold
efficiently. Therefore, ITHUI is suitable for processing incre-
mental data. We evaluated the performance of ITHUI in
terms of runtime, memory, and scalability using diverse real
and synthetic datasets. The experimental results showed that
ITHUI processed incremental databases faster than state-of-
the-art static algorithms while also consuming less memory.
Moreover, ITHUI demonstrated great performance in a sit-
uation where the size of the database became larger. Our
future work is to devise effective and efficient techniques in
incremental top-k high utility pattern mining, such as itemset
pruning and threshold raising strategies, and also to develop
more practical methods for the concept of top-k in advanced
pattern mining areas.

REFERENCES

[1] W. Li, H. Zhang, J. Chen, P. Li, Y. Yao, X. Shi, M. Shibasaki,
H. H. Kobayashi, X. Song, and R. Shibasaki, ‘“Metagraph-based life pat-
tern clustering with big human mobility data,” I[EEE Trans. Big Data,
vol. 9, no. 1, pp. 227-240, Feb. 2023.

[2] Y. Chen, P. Yu, W. Chen, Z. Zheng, and M. Guo, “Meta-learning based
classification for moving object trajectories in mobile I0T,” IEEE Trans.
Big Data, vol. 9, no. 2, pp. 584-596, Apr. 2023.

[3] C.Zhou, J. Xu, M. Jiang, D. Tang, and S. Wang, “Mining top-k frequent
patterns in large geosocial networks: A mnie-based extension approach,”
IEEE Access, vol. 11, pp. 27662-27675, 2023.

[4] 1. Mavroudopoulos and A. Gounaris, “SIESTA: A scalable infrastructure
of sequential pattern analysis,” IEEE Trans. Big Data, vol. 9, no. 3,
pp- 975-990, 2023.

[5] C.Zhang, Q. Dai, Z. Du, W. Gan, J. Weng, and P. S. Yu, “TUSQ: Targeted
high-utility sequence querying,” IEEE Trans. Big Data, vol. 9, no. 2,
pp. 512-527, Apr. 2023.

VOLUME 12, 2024

C. Lee et al.: Incremental Top-k High Utility Pattern Mining and Analyzing

IEEE Access

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

Y. Cai, H. Che, B. Pan, M.-F. Leung, C. Liu, and S. Wen, “Projected
cross-view learning for unbalanced incomplete multi-view clustering,” Inf.
Fusion, vol. 105, May 2024, Art. no. 102245.

C. Lee, Y. Baek, J. C.-W. Lin, T. Truong, and U. Yun, “Advanced
uncertainty based approach for discovering erasable product patterns,”
Knowl.-Based Syst., vol. 241, Apr. 2022, Art. no. 108134.

M. Han, N. Zhang, L. Wang, X. Li, and H. Cheng, ““Mining closed high
utility patterns with negative utility in dynamic databases,” Appl. Intell.,
vol. 53, no. 10, pp. 11750-11767, 2023.

G. Li, T. Shang, and Y. Zhang, “Efficient mining high average-utility
itemsets with effective pruning strategies and novel list structure,” Appl.
Intell., vol. 53, no. 5, pp. 6099-6118, 2023.

Y. Baek, U. Yun, H. Kim, H. Nam, G. Lee, E. Yoon, B. Vo, and J. C-W. Lin,
“Erasable pattern mining based on tree structures with damped win-
dow over data streams,” Eng. Appl. Artif. Intell., vol. 94, Sep. 2020,
Art. no. 103735.

M.Z. A. Bhuiyan, J. Wu, G. M. Weiss, T. Hayajneh, T. Wang, and G. Wang,
“Event detection through differential pattern mining in cyber-physical
systems,” [EEE Trans. Big Data, vol. 6, no. 4, pp. 652-665, Dec. 2020.
W. Gan, J. C. Lin, P. Fournier-Viger, H.-C. Chao, V. S. Tseng, and P. S. Yu,
“A survey of utility-oriented pattern mining,” IEEE Trans. Knowl. Data
Eng., vol. 33, no. 4, pp. 1306-1327, Apr. 2021.

H. Kim, H. Kim, S. Kim, H. Kim, M. Cho, B. Vo, J. C.-W. Lin, and U. Yun,
“An advanced approach for incremental flexible periodic pattern mining on
time-series data,” Exp. Syst. Appl., vol. 230, Nov. 2023, Art. no. 120697.
J. Kim, U. Yun, E. Yoon, J. C.-W. Lin, and P. Fournier-Viger, ‘“One scan
based high average-utility pattern mining in static and dynamic databases,”
Future Gener. Comput. Syst., vol. 111, pp. 143-158, Oct. 2020.
C.Zhang,Z.Du, Y. Yang, W. Gan, and P. S. Yu, ““On-shelf utility mining of
sequence data,” ACM Trans. Knowl. Discov. Data, vol. 16, no. 2, pp. 1-31,
2021.

N. T. Tung, L. T. T. Nguyen, T. D. D. Nguyen, P. Fourier-Viger,
N.-T. Nguyen, and B. Vo, “Efficient mining of cross-level high-utility
itemsets in taxonomy quantitative databases,” Inf. Sci., vol. 587, pp. 41-62,
Mar. 2022.

T. Truong, H. Duong, B. Le, P. Fournier-Viger, and U. Yun, “Mining
interesting sequences with low average cost and high average utility,” Appl.
Intell., vol. 52, no. 7, pp. 71367157, 2022.

M. S. Nawaz, P. Fournier-Viger, U. Yun, Y. Wu, and W. Song, ‘“Mining
high utility itemsets with Hill climbing and simulated annealing,” ACM
Trans. Manag. Inf. Syst., vol. 13, no. 1, pp. 1-22, 2021.

A. Segura-Delgado, A. Anguita-Ruiz, R. Alcala, and J. Alcala-Fdez,
“Mining high average-utility sequential rules to identify high-utility gene
expression sequences in longitudinal human studies,” Exp. Syst. Appl.,
vol. 193, May 2022, Art. no. 116411.

Y. Liu, W.-K. Liao, and A. Choudhary, “A two-phase algorithm for fast
discovery of high utility itemsets,” in Proc. Adv. Knowledge Discovery
Data Mining, 9th Pacific-Asia Conf., vol. 3518, 2005, pp. 689-695.

V. S. Tseng, C.-W. Wu, B.-E. Shie, and P. S. Yu, “UP-growth: An efficient
algorithm for high utility itemset mining,” in Proc. 16th ACM SIGKDD
Int. Conf. Knowl. Disc. Data Mining, 2010, pp. 253-262.

V. S. Tseng, B.-E. Shie, C.-W. Wu, and P. S. Yu, “Efficient algorithms for
mining high utility itemsets from transactional databases,” IEEE Trans.
Knowl. Data Eng., vol. 25, no. 8, pp. 1772-1786, Aug. 2013.

C.-W. Wu, P. Fournier-Viger, J.-Y. Gu, and V. S. Tseng, ‘““Mining closed+
high utility itemsets without candidate generation,” in Proc. Conf. Technol.
Appl. Artif. Intell. (TAAI), Nov. 2015, pp. 187-194.

P. Fournier-Viger, C. Wu, S. Zida, and V. S. Tseng, “FHM: Faster high-
utility itemset mining using estimated utility co-occurrence pruning,” in
Proc. Int. Symp. Methodologies Intell. Syst., 2014, pp. 83-92.

S. Krishnamoorthy, “Pruning strategies for mining high utility itemsets,”
Exp. Syst. Appl., vol. 42, no. 5, pp. 2371-2381, 2015.

S. Krishnamoorthy, ‘“HMiner: Efficiently mining high utility itemsets,”
Exp. Syst. Appl., vol. 90, pp. 168-183, Dec. 2017.

A.Mondal, S. Saurabh, P. Chaudhary, R. Mittal, and P. K. Reddy, “A retail
itemset placement framework based on premiumness of slots and utility
mining,” IEEE Access, vol. 9, pp. 155207-155223, 2021.

J.M.-T. Wu, G. Srivastava, J. C.-W. Lin, Y. Djenouri, M. Wei, R. M. Parizi,
and M. S. Khan, “Mining of high-utility patterns in big IoT-based
databases,” Mobile Netw. Appl., vol. 26, no. 1, pp. 216-233, 2021.

U. Yun, H. Kim, T. Ryu, Y. Baek, H. Nam, J. Lee, B. Vo, and W. Pedrycz,
“Prelarge-based utility-oriented data analytics for transaction modifica-
tions in Internet of Things,” IEEE Internet Things J., vol. 8, no. 24,
pp. 17333-17344, Dec. 2021.

VOLUME 12, 2024

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(391

(40]

[41]

[42]

(43]

[44]

[45]

[46]

[47]

(48]

(49]

(50]

(51]

(52]

H. Nam, U. Yun, E. Yoon, and J. C.-W. Lin, “Efficient approach of recent
high utility stream pattern mining with indexed list structure and pruning
strategy considering arrival times of transactions,” Inf. Sci., vol. 529,
pp. 1-27, Aug. 2020.

H. Kim, U. Yun, Y. Baek, H. Kim, H. Nam, J. C.-W. Lin, and
P. Fournier-Viger, “Damped sliding based utility oriented pattern min-
ing over stream data,” Knowl.-Based Syst., vol. 213, Feb. 2021,
Art. no. 106653.

Y. Baek, U. Yun, H. Kim, H. Nam, H. Kim, J. C.-W. Lin, B. Vo, and
W. Pedrycz, “RHUPS: Mining recent high utility patterns with sliding
window-based arrival time control over data streams,” ACM Trans. Intell.
Syst. Technol., vol. 12, no. 2, pp. 1-27, Apr. 2021.

J. M.-T. Wu, Q. Teng, J. C.-W. Lin, U. Yun, and H.-C. Chen, ‘“Updating
high average-utility itemsets with pre-large concept,” J. Intell. Fuzzy Syst.,
vol. 38, no. 5, pp. 5831-5840, 2020.

H. Kim, C. Lee, T. Ryu, H. Kim, S. Kim, B. Vo, J. C.-W. Lin, and
U. Yun, “Pre-large based high utility pattern mining for transaction inser-
tions in incremental database,” Knowl.-Based Syst., vol. 268, May 2023,
Art. no. 110478.

C. W. Wu, B.-E. Shie, V. S. Tseng, and P. S. Yu, “Mining top-k high utility
itemsets,” in Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, Aug. 2012, pp. 78-86.

H. Ryang and U. Yun, “Top-k high utility pattern mining with effective
threshold raising strategies,” Knowl.-Based Syst., vol. 76, pp. 109-126,
Mar. 2015.

V. S. Tseng, C.-W. Wu, P. Fournier-Viger, and P. S. Yu, “Efficient algo-
rithms for mining top-K high utility itemsets,” IEEE Trans. Knowl. Data
Eng., vol. 28, no. 1, pp. 54-67, Jan. 2016.

Q.-H. Duong, B. Liao, P. Fournier-Viger, and T.-L. Dam, “An efficient
algorithm for mining the top-k high utility itemsets, using novel threshold
raising and pruning strategies,” Knowl.-Based Syst., vol. 104, pp. 106—122,
Jul. 2016.

S. Krishnamoorthy, “Mining top-k high utility itemsets with effective
threshold raising strategies,” Exp. Syst. Appl., vol. 117, pp. 148-165,
Mar. 2019.

C. Liu and C. Guo, “Mining top-n high-utility operation
patterns for taxi drivers,” Exp. Syst. Appl., vol. 170, May 2021,
Art. no. 114546.

C. Zhang, Z. Du, W. Gan, and P. S. Yu, “TKUS: Mining top-
k high utility sequential patterns,” Inf. Sci., vol. 570, pp.342-359,
Sep. 2021.

J.-W. Huang, B. P. Jaysawal, K.-Y. Chen, and Y.-B. Wu, “Mining frequent
and top-k high utility time interval-based events with duration patterns,”
Knowl. Inf. Syst., vol. 61, no. 3, pp. 1331-1359, 2019.

J. Liu, X. Zhang, B. C. M. Fung, J. Li, and F. Igbal, ““Opportunistic mining
of top-n high utility patterns,” Inf. Sci., vol. 441, pp. 171-186, May 2018.
J. Liu, K. Wang, and B. C. M. Fung, “Direct discovery of high utility
itemsets without candidate generation,” in Proc. IEEE 12th Int. Conf. Data
Mining, Dec. 2012, pp. 984-989.

X. Han, X. Liu, J. Li, and H. Gao, “Efficient top-k high utility itemset
mining on massive data,” Inf. Sci., vol. 557, pp. 382-406, May 2021.

J. M. Luna, R. U. Kiran, P. Fournier-Viger, and S. Ventura, “Efficient
mining of top-k high utility itemsets through genetic algorithms,” Inf. Sci.,
vol. 624, pp. 529-553, May 2023.

W. Gan, S. Wan, J. Chen, C.-M. Chen, and L. Qiu, “TopHUI: Top-k high-
utility itemset mining with negative utility,” in Proc. IEEE Int. Conf. Big
Data, Dec. 2020, pp. 5350-5359.

R. Sun, M. Han, C. Zhang, M. Shen, and S. Du, “Mining of top-k high
utility itemsets with negative utility,” J. Intell. Fuzzy Syst., vol. 40, no. 3,
pp. 5637-5652, 2021.

M. Ashraf, T. Abdelkader, S. Rady, and T. F. Gharib, “TKN: An efficient
approach for discovering top-k high utility itemsets with positive or nega-
tive profits,” Inf. Sci., vol. 587, pp. 654—-678, Mar. 2022.

V. V. Vu, M. T. H. Lam, T. T. M. Duong, L. T. Manh, T. T. T. Nguyen,
L. V. Nguyen, U. Yun, V. Snasel, and B. Vo, “FTKHUIM: A fast and
efficient method for mining top-k high-utility itemsets,” IEEE Access,
vol. 11, pp. 104789-104805, 2023.

H. Cheng, M. Han, N. Zhang, L. Wang, and X. Li, “ETKDS: An effi-
cient algorithm of top-K high utility itemsets mining over data streams
under sliding window model,” J. Intell. Fuzzy Syst., vol. 41, no. 2,
pp. 3317-3338, 2021.

W. Song, C. Fang, and W. Gan, “TopUMS: Top-k utility mining in stream
data,” in Proc. Int. Conf. Data Mining Workshops (ICDMW), Dec. 2021,
pp. 615-622.

77619

IEEE Access

C. Lee et al.: Incremental Top-k High Utility Pattern Mining and Analyzing

CHANHEE LEE received the M.S. degree in
computer engineering from Sejong University,
Seoul, South Korea, in 2023. He is currently with
Somansa. His research interests include data min-
ing, data analytics, database systems, and artificial
intelligence.

HANJU KIM received the B.S. degree in com-
puter engineering from Sejong University, Seoul,
South Korea, in 2023, where he is currently pursu-
ing the ML.S. degree. His research interests include
data mining, data analytics, database systems, and
artificial intelligence.

MYUNGHA CHO received the B.S. degree in
computer engineering from Sejong University,
Seoul, South Korea, in 2023, where he is currently
pursuing the M.S. degree. His research interests
include data mining, data analytics, database sys-
tems, and artificial intelligence.

HYEONMO KIM received the M.S. degree in
computer engineering from Sejong University,
Seoul, South Korea, in 2024. He is currently with
Hanwha Systems. His research interests include
data mining, data analytics, database systems, and
artificial intelligence.

BAY VO (Member, IEEE) received the B.Sc.,
M.Sc., and Ph.D. degrees in computer science
from the University of Science, Vietnam National
University, Ho Chi Minh City, Vietnam, in 2002,
2005, and 2011, respectively. He is currently an
Associate Professor and the Dean of the Faculty
of Information Technology, HUTECH Univer-
sity, Ho Chi Minh City. His research interests
include association rules, classification, mining in
incremental database, distributed databases, and

privacy preserving in data mining.

JERRY CHUN-WEI LIN (Senior Member, IEEE)

received the Ph.D. degree from the Department

of Computer Science and Information Engineer-

ing, National Cheng Kung University, Tainan,

. Taiwan, in 2010. He is currently a Professor

= with the Department of Distributed Systems and
. — o IT Devices, Silesian University of Technology,

; Poland. He has published more than 400 research

ﬂ : > . articles in refereed journals, international confer-

— ences, 12 edited books, and 33 patents (held and

filed, three U.S. patents). His research interests include data mining, soft

computing, artificial intelligence/machine learning, and privacy preserving
and security technologies.

PHILIPPE FOURNIER-VIGER received the
Ph.D. degree in computer science from the Univer-
sity of Quebec, Montreal, in 2010. He is currently
a Professor with the College of Computer Science
and Software Engineering, Shenzhen University,
China. He is also the Founder of the popular SPMF
Open-Source Data Mining Library, which has been
cited in over 430 research articles, since 2010.
He has published over 140 research articles in
refereed international conferences and journals,
which have received over 1300 citations. His research interests include
data mining, pattern mining, sequence analysis and prediction, text min-
ing, e-learning, and social network mining. He has received the title of
Youth 1000 Talent from the National Science Foundation of China.

UNIL YUN received the M.S. degree in computer
science and engineering from Korea University,
Seoul, South Korea, in 1997, and the Ph.D.
degree in computer science from Texas A&M
University, College Station, TX, USA, in 2005.
From 1997 to 2002, he was with the Multi-
media Laboratory, Korea Telecom, Seongnam-si,
South Korea. After receiving the Ph.D. degree,
’ he was a Postdoctoral Associate for almost one
year with the Department of Computer Science,
Texas A&M University. Then, he was a Senior Researcher with the Elec-
tronics and Telecommunications Research Institute, Gwangju, South Korea.
In March 2007, he joined the School of Electrical and Computer Engineering,
Chungbuk National University, South Korea. Since August 2013, he has
been a Full Professor with the Department of Computer Engineering, Sejong
University, Seoul. He has published more than 200 research articles in ref-
ereed journals and international conferences. His research interests include
data mining, information retrieval, database systems, artificial intelligence,
and digital libraries. Currently, he is an Associate Editor (Editorial Board
Member) of Knowledge-Based Systems, Plos One, and Electronics.

VOLUME 12, 2024

