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ABSTRACT Maintaining robust communication between UAV(Unmanned aerial vehicle) and host
computers is pivotal for ensuring the security and reliability of UAV in executing automated tasks. The
advent of 5G, the latest generation of mobile communication technology, presents an opportunity to establish
low-latency and high-reliability communication links between UAV and host computers. While automatic
flight schemes of UAV are typically calculated through three-dimensional path planning, existing schemes
often overlook the communication quality between UAV and the host computer during flight execution.
This study proposes a novel approach to three-dimensional path planning that integrates considerations
of 5G communication intensity into the traditional artificial potential field (APF) method. Utilizing ray
tracing method, the average 5G communication intensity within a given region is computed, and areas
with optimal average 5G communication quality are identified as 5G secondary gravitational points.
These points guide the UAV’s three-dimensional path toward regions with superior 5G communication
quality. To address the challenge of local minimum traps inherent in traditional APF methods, this study
proposes employing a fuzzy control algorithm to generate auxiliary forces, enabling UAV to avoid such
traps proactively. Simulation experiments conducted using MatlabR2023b validate the efficacy of the
proposed approach. Results demonstrate that the enhanced APFmethod effectively mitigates local minimum
problems, albeit with a marginal increase in average path length (13.7769%). Notably, the average path’s 5G
communication intensity experiences a substantial improvement (20.7919%), indicating that the algorithm
prioritizes enhancing communication quality at the expense of slightly longer paths. Moreover, in scenarios
with severe signal masking at the transmitter, the algorithm exhibits even greater improvements in average
path 5G communication intensity.

INDEX TERMS 5G, artificial potential field, three-dimensional path planning, ray tracing, fuzzy control.

I. INTRODUCTION
The aerial unmanned aerial vehicle (UAV), comprises a
fundamental system consisting of the UAV itself, a host
computer, and communication equipment facilitating com-
munication between the UAV and the host computer. Over
recent years, propelled by rapid advancements in the UAV
industry, the applications of UAV has diversified extensively.
From rudimentary transportation tasks, UAV has expanded
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their scope to encompass a myriad of complex missions,
including high-altitude inspection, agricultural and forestry
operations, geographic mapping, urban aerial photography,
and detection and rescue missions. To execute these mul-
tifaceted tasks efficiently, UAV necessitates high-precision
automatic control, entailing the development of automated,
efficient, and safe flight plans. The advent of the latest
cellular mobile communication network technology, 5G, has
changed UAV operations by enabling real-time transmission
of ultra-high-definition imagery and remote low-latency
control between UAV and host computers. However, it’s
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crucial to note that communication in the 5Gmillimeter wave
band primarily relies on line-of-sight (LOS) communication.
LOS obstacles, such as people, buildings, and structures,
pose a significant challenge as they attenuate signals, thereby
compromising communication quality. Regrettably, most
existing UAV three-dimensional path planning algorithms
focus solely on route length and safe obstacle avoidance,
neglecting the crucial factor of communication intensity.
Consequently, communication blockages may occur during
flight, posing security risks to the UAV’s automated flight
plans. Addressing this issue necessitates a holistic approach
to path planning that incorporates considerations of commu-
nication intensity to ensure uninterrupted communication and
enhance the overall safety and efficiency of UAV operations.

Path planning plays a critical role in defining the flight
trajectory of UAV. Among the commonly used three-
dimensional path planning algorithms are the Dijkstra
algorithm [1], A* algorithm [2], genetic algorithm (GA) [3],
particle swarm optimization (PSO) [4], ant colony algorithm
(ACO) [5], and artificial potential field (APF) [6]. APF,
owing to its simple principles and high computational effi-
ciency, is extensively employed in UAV three-dimensional
path planning. Despite not always generating the shortest
path, the APF algorithm excels in producing relatively
smooth flight paths for UAV, facilitating safer obstacle
avoidance with smoother trajectories. The fundamental
principle of APF involves simulating UAV movement within
a virtual potential field composed of gravitational and
repulsive components. In this virtual field, target points
exert gravitational forces on UAV, while obstacles exert
repulsive forces. As a result of the total force, UAV navi-
gates towards target points while circumventing obstacles.
However, APF suffers from a notable drawback: the potential
for falling into local minimum traps, where gravitational and
repulsive forces cancel each other, rendering UAV unable
to progress. To address this limitation, numerous solutions
have been proposed by researchers. In [7], virtual obstacles
are strategically placed near local minima points to steer
UAV away. Reference [8] proposes the simulated annealing
algorithm to escape local minima, while [9] combines the
Bug algorithm with wall-following techniques for the same
purpose. Additionally, [10] suggests establishing temporary
local target points to guide UAV away from local minima,
thereby ensuring continued progress along the planned
trajectory.

The accuracy of the 5G channel model significantly
impacts the performance of wireless communication sys-
tems, which, in turn, affects the communication quality
between UAV and host computers during flight operations.
Previous research efforts have extensively explored 5G
millimeter wave channel modeling, categorizing methods
into three main types: Stochastic Model, Semi-Deterministic
Channel Model, and Deterministic Channel Model. The
Stochastic Model achieves channel modeling by extracting
statistical characteristics from channel measurement data and

incorporating probability distribution models. This approach
considers environmental factors and model evolution effects,
yielding more accurate and effective predictions when
applied in environments similar to the model. Stochastic
channel models include the Geometric Stochastic Model
(GBSM) [11], Non-Geometric Stochastic Model (NGSM)
[12], Graph-Based Model, and Saleh-Valenzuela (SV) [13]
model. GBSM encompasses Regular-Shaped and Irregular-
Shaped models, while NGSM includes the Tapped Delay
Line and Clustered Delay Line models. Semi-Deterministic
channel modeling leverages Stochastic geometric scenes and
deterministic multipath relationships to describe channel
characteristics. This model requires less detailed scene
parameters and typically offers higher prediction accuracy
than Stochastic channel models. Semi-Deterministic channel
models include Map-based [14] and Quasi-Deterministic (Q-
D) [15] models. On the other hand, deterministic channel
modeling utilizes electromagnetic wave propagation prin-
ciples to determine signal strength in any communication
scenario. By employing principles such as reflection and
diffraction, the model calculates received signal strength at
specific positions on a 3D map with high accuracy. This
approach encompasses methods such as electromagnetic
simulation, ray tracing model [16], and point cloud model.

To ensure optimal communication between the UAV
and the host computer during flight operations, this study
proposes a novel approach: an APF three-dimensional path
planning algorithm that accounts for 5G communication
intensity. The algorithm identifies areas with superior com-
munication quality within the 3D map, designating them
as 5G gravitational points within the virtual potential field.
By integrating these points with APF, the UAV is steered
towards regions with enhanced communication quality while
navigating towards the target point. Moreover, to address the
challenge of local minimum traps, this study incorporates a
fuzzy control algorithm. This algorithm generates auxiliary
forces to prevent the UAV from getting stuck in local
minima, ensuring continuous progress along the planned
trajectory.

This article is structured as follows. The second section
delineates the fundamental principles and prevailing issues
associated with traditional APF. In the third section, the
basic principle of the ray tracing method is elaborated upon,
along with its application for calculating 5G communication
intensity. Moving on to the fourth section, optimization
techniques for addressing target unreachable scenarios,
refining the obstacle repulsion model, and mitigating local
minimum problems within APF are discussed. Additionally,
this section explores how to integrate considerations of
5G communication intensity into APF-based path planning.
In the fifth section, the proposed methodology is outlined,
with insights derived from simulation tests and accompa-
nying simulation results provided. Finally, the sixth section
offers conclusions drawn from the study’s findings and
outlines potential avenues for future research.

VOLUME 12, 2024 79239



Y. Tang et al.: Application of APF Method in Three-Dimensional Path Planning

II. ARTIFICIAL POTENTIAL FIELD METHOD
In traditional APF, the three-dimensional potential field is
divided into two components: the gravitational field and
the repulsive field. Within this virtual artificial potential
field, the target point generates a gravitational field, exerting
gravitational force on the UAV, while obstacles generate
a repulsive field, exerting repulsive force on the UAV.
As the UAV navigates towards the target point, it is con-
sistently influenced by gravity, with the strength of gravity
increasing as the UAV moves further away from the target.
Consequently, the potential energy within the gravitational
potential field increases proportionally. Ideally, the target
point possesses the lowest potential energy value in the entire
three-dimensional space, signifying the optimal position for
the UAV. Guided by a combination of gravitational and
repulsive forces, the UAV navigates towards the target point.
Along the trajectory to the target, the UAV autonomously
circumvents obstacles due to the repulsive forces exerted by
them.

The gravitational potential field generated by the target
point is defined as:

Uatt (X ) =
Katt
2

ρ(X ,Xd ). (1)

where X = (x, y, z) is the coordinate of the UAV, Xd =

(xd , yd , zd ) is the coordinate of the target point, ρ(X ,Xd ) is
the Euclidean distance from the UAV to the target point, and
Katt is the gravitational potential field constant.
The gravity of the UAV is the negative gradient of the

gravitational potential field as follows:

Fatt (X ) = −∇Uatt (X ) = −Katt · ρ(X ,Xd ) (2)

The repulsive potential field generated by the obstacle is
defined as:

Urep (X ) =


krep
2

(
1

ρ(X ,X0)
−

1
ρ0

)2

, ρ(X ,X0) ≤ ρ0

0, ρ(X ,X0) > ρ0

(3)

where X0 = (x0, y0, z0) is the coordinate of the obstacle,
ρ(X ,X0) is the Euclidean distance from the UAV to the
obstacle, ρ0 is the influence range of the obstacle repulsion,
and krep is the repulsion potential field constant.

The repulsive force on the UAV is the negative gradient of
the repulsive potential field as follows:

Frep(X )

= −∇Urep (X )

=

 krep

(
1

ρ(X ,X0)
−

1
ρ0

)
∇ρ(X ,X0)
ρ2(X ,X0)

, ρ(X ,X0) ≤ ρ0

0, ρ(X ,X0) > ρ0

(4)

The total force of UAV is the sum of the repulsive force
generated by obstacles and the gravitational force generated

by the target point as follows:

F(X ) = Fatt (X ) +

m∑
i=1

Frep(X ) (5)

There are two main problems in traditional APF, which
are Abbreviations Target Unreachability Problem and local
minimum problem.

A. ABBREVIATIONS TARGET UNREACHABILITY PROBLEM
When obstacles are situated close to the target point,
the abbreviations target unreachability problem may arise.
This issue stems from the interplay of gravitational and
repulsive forces. In (1), when the UAV approaches the
target point, the potential energy of the gravitational field
diminishes. Conversely, (3) indicates that as the UAV nears an
obstacle, the potential energy of the repulsive field escalates.
Consequently, if obstacles encircle the target point, the
potential energy of the repulsive field near the target may
outweigh the gravitational potential energy, leading the UAV
to veer towards regionswith ostensibly lower potential energy
rather than homing in on the target. Analyzing the forces
involved, obstacles in proximity to the target exert significant
repulsion on the UAV, particularly when gravitational pull is
minimal. This can result in the total force veering the UAV
away from the target. As the UAV maneuvers away from
obstacles and approaches the target anew, the gravitational
force may once again become overshadowed by repulsion,
perpetuating the cycle of non-convergence towards the target.

B. LOCAL MINIMUM PROBLEM
In APF, the local minimum problem is a classic issue. It arises
when the repulsive force acting on the UAV equals the
gravitational force in magnitude but opposes it in direction.
Under this condition, the total force experienced by the UAV
becomes zero, causing it to come to a standstill. This situation
commonly occurs when the UAV, obstacle, and target point
align on the same axis, with the obstacle positioned between
the UAV and the target. During the UAV’s trajectory towards
the target, there will invariably be a point where the total
force becomes zero. Unless additional external forces or
mechanisms are applied to propel the UAV forward, it will
remain stationary.

III. RAY TRACING METHOD
The ray tracing method stands as a cornerstone in determin-
istic channel model, leveraging principles from geometric
optics (GO) theory alongside uniform theory of diffraction
(UTD) to forecast radio wave propagation across diverse
environments and scenarios. Beginning with the identifica-
tion of the transmitter and receiver, this method launches rays
in myriad directions, computing various channel attributes
for each ray, including reception power, phase, delay, and
polarization.

The ray tracing method is primarily categorized into two
approaches: forward ray tracing method and reverse ray
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tracing method. Among these, the widely employed forward
ray tracing method is SBR (Shooting and Bouncing Ray),
whereas the commonly utilized reverse ray tracing method
is Image RT (Image Ray Tracing). In SBR, utilized in this
study to assess 5G communication intensity, the transmitter
emits rays uniformly in all directions within a specified angle.
These rays undergo various phenomena including direct
propagation, reflection, transmission, and diffraction within
the known environment. Upon intersecting with objects
in the environment, the ray generates channel ray beams,
predominantly exhibiting direct, reflected, transmitted, and
diffracted paths. When these ray beams meet preset prop-
agation conditions (such as reflection count, propagation
distance, power levels, etc.), new propagation paths are
generated. This process continues until the preset propagation
conditions are no longer met, at which point the calculation
of the ray’s propagation path ceases [17]. Subsequently, the
power received at the receiver end can be computed based
on the effective ray’s propagation path and the receiver’s
position.

The received power of each ray obtained by SBR is defined
as:

Pr =
PtGtλ2Gr
(4πd)2

∏
j

Rj

2[∏
k

Tk

]2[∏
l

Al
(
s′, s

)
Dl

]2

(6)

where Pt is the power of the transmitter, Gt is the antenna
gain of the transmitter in the direction of the ray path, λ is the
wavelength of electromagnetic wave, Gr is the antenna gain
of the receiver in the direction of the ray path, d is the total
length of the ray path propagation between the transmitter and
the receiver,Rj is the reflection coefficient of the jth reflection
of the ray, Tk is the transmission coefficient of the ray at the
kth transmission, Al

(
s′, s

)
is the propagation loss correction

factor of the diffraction path, Dl is the diffraction coefficient
of the lth diffraction of the ray.

The solution of the reflection coefficient as follows:

R =

[
R⊥ 0
0 R∥

]
(7)

where R⊥ is the vertical polarization reflection coefficient of
the incident plane, andR∥ is the parallel polarization emission
coefficient of the incident plane. These coefficients are
derived from Fresnel reflection and transmission equations,
as well as Snell’s Law [18]. The coefficients R⊥ and R∥ can
be expressed in terms of the incident angle (θi) and the relative
dielectric constant (εr ), which as follows:

R⊥ =
cos (θi) −

√
εr − sin2 (θi)

cos (θi) +

√
εr − sin2 (θi)

(8)

R∥ =
εr cos (θi) −

√
εr − sin2 (θi)

εr cos (θi) +

√
εr − sin2 (θi)

(9)

Similarly, the transmission coefficient T , the vertical
polarization transmission coefficient T⊥, and the parallel

polarization emission coefficient T⊥ are solved as shown:

T =

[
T⊥ 0
0 T∥

]
(10)

T⊥ =
2 cos (θi)

cos (θi) +

√
εr − sin2 (θi)

(11)

T∥ =
2
√

εr cos (θi)

εr cos (θi) +

√
εr − sin2 (θi)

(12)

The diffraction coefficient is computed using the UTD.
A widely utilized approach involves employing a heuris-
tic formula, often derived by analogizing the diffraction
coefficient of an ideal conductor wedge. This method is
particularly well-suited for computer simulations. One of
the most commonly adopted heuristic diffraction formulas,
proposed by Holm [19], is frequently utilized. The diffraction
coefficient (Dl) as follows:

D(l)
=

−e−
jπ
4

2n
√
2πk

cot γ (l)F
(
2kLn2sin2γ (l)

)
, l = 1, 2, 3, 4

(13)

γ (1)
=

[
π −

(
φ − φ′

)]
2n

, γ (2)
=

[
π +

(
φ − φ′

)]
2n

(14)

γ (3)
=

[
π −

(
φ + φ′

)]
2n

, γ (4)
=

[
π +

(
φ + φ′

)]
2n

(15)

L =
S ′S

(S ′ + S)
(16)

where k is the wave number, F (x) is the transition function.
The specific formula as follows:

F (x) = 2j
√
x exp (jx)

∞∫
√
x

exp
(
−jτ 2

)
dτ (17)

IV. IMPROVED ARTIFICIAL POTENTIAL FIELD METHOD
CONSIDERING 5G COMMUNICATION INTENSITY
A. IMPROVEMENT OF ABBREVIATIONS TARGET
UNREACHABILITY PROBLEM
In Section III, it is highlighted that a fundamental issue
in the traditional artificial potential field method is the
abbreviations target unreachability problem, stemming from
the fact that the potential field value at the target point may
not necessarily be the minimum value across the entire three-
dimensional space. (3) illustrates that as the UAV approaches
an obstacle infinitely closely, the potential energy value of the
repulsive field tends to reach ∞. To address this challenge,
it becomes imperative to propose a distance correction
factor [20] to the repulsion field function outlined in (3).
This adjustment aims to ensure that as the UAV nears the
target point, the potential energy value of the repulsion field
should ideally approach zero instead of ∞. Consequently,
this modification ensures that the potential energy value
at the target point becomes the minimum value across the
entire three-dimensional space. The enhanced repulsive field
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FIGURE 1. The modified force model.

function is expressed as follows:

Urep (X )

=


krep
2

(
1

ρ(X ,X0)
−

1
ρ0

)2

ρn(X ,Xd ), ρ(X ,X0) ≤ ρ0

0, ρ(X ,X0) > ρ0

(18)

where ρn(X ,Xd ) is the nth power of the Euclidean distance
from the UAV to the obstacle, which is added to the repulsion
field function as a distance correction factor.

The improved repulsion function as follows:

Frep(X )

= −∇Urep (X )

=

{
Frep1(X ) + Frep2(X ), ρ(X ,X0) ≤ ρ0

0, ρ(X ,X0) > ρ0
(19)

where Frep1(X ) and Frep2(X ) are defined as:

Frep1(X ) = krep

(
1

ρ(X ,X0)
−

1
ρ0

)
ρn(X ,Xd )
ρ2(X ,X0)

(20)

Frep2(X ) =
n
2
krep

(
1

ρ(X ,X0)
−

1
ρ0

)2

ρn−1(X ,Xd ) (21)

In (20) and (21), the direction of Frep1(X ) is from the
obstacle to the UAV, and the direction of Frep2(X ) is from the
UAV to the target point. The force model of UAV after the
modification of the repulsion function is shown in Fig.1.

In (20) and (21), as the value of n approaches the target
point where 0 < n < 1 and UAV are in proximity, ρn(X ,Xd )
tends towards zero, while ρn-1(X ,Xd ) approaches ∞. This
results in Frep1(X ) nearing zero and Frep2(X ) approaching∞.
Despite these converging trends, the potential energy value at
the target point fails to reach its minimum.

When n = 1, as the UAV approaches the target point,
ρn(X ,Xd ) tends towards zero. Simultaneously, Frep1(X )
approaches zero, while the magnitude of Frep2(X ) remains
constant. Despite this condition, the potential energy value
at the target point fails to reach its minimum.

When n > 1, as the UAV approaches the target point,
both ρn(X ,Xd ) and ρn-1(X ,Xd ) tend to zero. This condition

ensures that the total force acting on the UAV at the target
point becomes zero, and consequently, the potential energy
attains its minimum value within the entire three-dimensional
space. Therefore, it is advisable to choose n > 1 for the value
of n.

B. CALCULATION OF REPULSION FORCES FROM
CYLINDRICAL OBSTACLES
In practical UAV flight scenarios, encounters with obstacles
of irregular shapes are common. To streamline the com-
putational process, this study adopts a cylindrical obstacle
model for analysis. The side surface model of the cylindrical
obstacle is described as follows:

(xp − xc)2 + (yp − yc)2 = rc2, zp < zc (22)

where (xc, yc, zc) is the center coordinate of the bottom
surface of the cylinder, (xc, yc, 0) is the center coordinate of
the bottom of the cylinder, (xp, yp, zp) is the radius of the
cylinder, (xp, yp, zp) is the point on the side of the cylinder.

In traditional APFmethods, the calculation of the repulsive
force from obstacles typically involves computing the repul-
sive force exerted by a point relative to the UAV. However,
since the cylindrical obstacle model employed in this study
cannot be simplified to a point, an alternative approach is
adopted. This study utilizes the method of computing the
repulsive force from the nearest threat point to determine
the repulsive force exerted by the cylindrical obstacle on the
UAV [21].
The nearest threat point refers to the point Xt closest to the

UAVon the side surface of the cylindrical obstacle at the same
height as the UAV. The calculation of the nearest threat point
Xt as follows:

Xt = Xca + rc
X − Xca
ρ(X ,Xca)

(23)

where X = (x, y, z) is the coordinate of the UAV, Xt =

(xt , yt , zt ) is the coordinates of the nearest threat point, Xca =

(xc, yc, z) is the coordinate of the center of the cylindrical
obstacle at the same height as the UAV, rc is the radius of the
cylinder, ρ(X ,Xca) is the Euclidean distance from the UAV
to the center of the cylindrical obstacle at the same height as
the UAV. The calculation of the most recent threat point as
shown in Fig.2.
After calculating the nearest threat point, the calculation

of the repulsive force generated by the cylindrical obstacle
to the UAV is equivalent to the calculation of the repulsive
force generated by the nearest threat point to the UAV. Finally,
the calculation of the repulsive force on the UAV is modified
from (19) to (24) as follows:

Frep(X ) =

{
Frep1(X ) + Frep(X ), ρ (X ,Xt) ≤ ρ0

0, ρ (X ,Xt) > ρ0∥z > zc

(24)

where ∥ means that one of the conditions of ρ (X ,Xt) > ρ0
or z > zc is satisfied, ρ0 is the influence range of obstacle
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FIGURE 2. Calculation of the nearest threat point.

repulsion, ρ(X ,Xt ) is the Euclidean distance from the UAV
to the nearest threat point, Frep1(X ) and Frep2(X ) are modified
as follows:

Frep1(X ) = krep

(
1

ρ(X ,Xt )
−

1
ρ0

)
ρn(X ,Xd )
ρ2(X ,Xt )

(25)

Frep2(X ) =
n
2
krep

(
1

ρ(X ,Xt )
−

1
ρ0

)2

ρn−1(X ,Xd ) (26)

C. ADDRESSING THE INTENSIFICATION OF 5G
COMMUNICATION
To facilitate the creation of a three-dimensional path plan
leading to areas with optimal 5G communication strength,
this study integrates 5G gravitational points into the tradi-
tional APF framework. These 5G gravitational points exert
gravitational forces on UAV, directing it toward regions with
superior 5G communication capabilities. It is crucial to note
that once a sub-gravity point has fulfilled its guiding role
for the UAV, its gravitational force must be reset to zero
to prevent hindrance to the UAV’s navigation towards the
target destination. The gravitational force, denoted asF5G(X ),
exerted by a 5G sub-gravity point on the UAV as follows:

F5G(X )

=


−K5G · ρ(X ,X5G), else
0, ρ(X ,X5G)>ρ(X ,Xd )

&&
dρ(X ,X5G)

dX
> 0

(27)

where && means that the condition ρ(X ,X5G) > ρ(X ,Xd )
and the condition dρ(X ,X5G)

dX > 0 are established at the
same time, X5G = (x5G, y5G, z5G) is the coordinate of the
sub-gravity point, ρ(X ,X5G) is the Euclidean distance from
the UAV to the sub-gravity point, K5G is the potential field
constant of the sub-gravity point.

The selection of coordinates for 5G gravitational points is
contingent upon several factors, including the distribution of
5G communication intensity, the starting and target points
of the path, as well as the distribution of obstacles and

FIGURE 3. The schematic diagram for selecting 5G gravitational points.

other variables. When choosing 5G gravitational points, it’s
advisable to adhere to the following four conditions:

1. The coordinate of the 5G sub-gravity point should not
deviate entirely from the target point. It should be capable of
guiding the path in certain sections, while being set to zero in
areas where it might hinder progress.

2. When multiple 5G sub-gravity points are present, they
should be distributed reasonably and evenly along the path.
Otherwise, the guiding influence of each gravity point on the
UAV may diminish due to mutual interference.

3. The coordinate of the 5G gravitational point must
maintain a certain distance from obstacles. Failure to do so
can weaken the guiding effect of the 5G gravitational point
on the drone, owing to the spatial relationship between the
obstacle, the 5G gravitational point, and the drone.

4. As the gravity of the 5G sub-gravity point is proportional
to ρ(X ,X5G), when delineating the regional distribution of
5G communication intensity, it is advisable for the coordinate
of the 5G sub-gravity point to be situated in proximity to
areas with high 5G communication intensity. This ensures
that the sub-gravity point exerts a stronger attractive force,
effectively guiding the drone towards areas with optimal
5G communication intensity. The schematic diagram for
selecting 5G gravitational points as shown in Fig.3.

D. THE SCHEMATIC DIAGRAM FOR SELECTING 5G
GRAVITATIONAL POINTS
After the introduction of 5G gravitational points, the force
dynamics of UAV in three-dimensional space become more
intricate. The function representing the total force acting on
the UAV in (5) requires modification. The adjusted total force
function as follows:

F(X ) = Fatt (X ) +

m∑
i=1

Frep(X ) +

l∑
j=1

F5G(X ) (28)

where the definition of Fatt (X ) is provided in (2), the
definition of Frep(X ) is provided in (24). The definition
of F5G(X ) is provided in (27).

∑m
i=1 Frep(X ) signifies that

the UAV is within the influence range of m obstacles.
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∑l
j=1 F5G(X ) indicates that the UAV is influenced by l 5G

gravitational points.
A new force, denoted as Fo(X ), is introduced to signify the

UAV’s potency, excluding the gravitational pull exerted by
the target point. The expression for Fo(X ) as follows:

Fo(X )=
m∑
i=1

Frep(X ) +

l∑
j=1

F5G(X ) (29)

In scenarios where multiple forces act upon the UAV,
it remains susceptible to being ensnared in a local minimum
trap, characterized by the possibility of F(X ) = 0.

To prevent the UAV from falling into the local minimum
problem, it requires the addition of a new auxiliary force
to aid its escape from such situations. In this study, a fuzzy
control algorithm is employed to generate this auxiliary force.
In the intricate three-dimensional space, especially after the
incorporation of 5G gravitational points, the UAV’s forces
exhibit significant uncertainty. The fuzzy control algorithm
proves effective in handling such uncertain information.
In [22], a fuzzy control algorithm was proposed to generate
an auxiliary force, enabling an Automated Guided Vehicle to
evade local minima. However, this method was designed for
application in two-dimensional space and does not account
for the complexities of three-dimensional space.

In this study, the Mandani fuzzy algorithm is utilized to
determine the magnitude of the additional auxiliary force,
denoted as Ff (X ). The core concept of the Mandani fuzzy
algorithm revolves around constructing a fuzzy control
system. In this system, both input and output are obscured
or blurred. Precise input and output values are mapped
to discrete fuzzy variable subsets through membership
functions, thus replacing these exact values with fuzzy
linguistic terms. These fuzzy variable subsets typically
include: negative big (NB), negative small (NS), zero (ZO),
positive small (PS), and positive big (PB). A numerical scale
{−2, −1, 0, 1, 2} is commonly employed to correspond to
these five fuzzy variable subsets. A fuzzy control system
delineates the relationship between fuzzy input variables and
fuzzy output variables by designing a rule base. Following
the determination of fuzzy variable subsets and establishment
of the rule base, the fuzzy variable for the output value
can be derived through fuzzy reasoning based on the rule
base, after obtaining the fuzzy variable for the accurate input
value throughmembership functions. Subsequently, the fuzzy
variable for the output value is converted into a precise value
through defuzzification.

In this study, a dual-input and single-output fuzzy control
system is devised to dynamically adjust the magnitude of the
auxiliary force, thereby preventing the UAV from entering
local minimum points. The system takes two inputs: |Fd (X )|
and θd , θd is the angle between Fatt (X ) and Fo(X ). θd ∈

[−π, π]. The output of the system is
∣∣Ff (X )∣∣, with ∣∣Ff (X )∣∣ ∈

[−1, 1]. Fd (X ) is defined as:

|Fd (X )| =
|Fatt (X ) − Fo(X )|
|Fatt (X )| + |Fo(X )|

(30)

FIGURE 4. Membership function diagram (a).

FIGURE 5. Membership function diagram (b).

FIGURE 6. Membership function diagram (c).

TABLE 1. Fuzzy rule base.

The input and output of the fuzzy control system are
triangular membership functions, as shown in Fig.4, Fig.5,
and Fig.6.

In Fig.4, Fig.5, and Fig.6, Angle represents θd , Difference
represents |Fd (X )|, and Output represents

∣∣Ff (X )∣∣.
The fuzzy rule base as shown in Table.1.
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FIGURE 7. The direction of auxiliary force.

FIGURE 8. The direction of Ff (X ) in the case of Fatt (X ) and Fo(X ) reverse.

The fuzzy variable of the output value, derived through
fuzzy reasoning, is defuzzified using the centroidmethod [23]
to obtain the precise output value.

The direction of Ff (X ) is the direction of the angular
bisection vector of Fatt (X ) and Fo(X ), which as shown in
Fig.7.

In Fig.7, θa is the angle between Fatt (X ) and Ff (X ), θb is
the angle between Fo(X ) and Ff (X ), and θa = θb.
When Fatt (X ) is completely opposite to Fo(X ), Ff (X ) is

parallel to the xOy plane. The projection vector of Fatt (X ) on
the xOy plane is set to be Vatt , and the angle between Ff (X )
and Vatt is 90 Â◦, as shown in Fig.8
In conclusion, the force acting on the UAV as follows:

F(X ) = Fatt (X ) +

m∑
i=1

Frep(X ) +

l∑
j=1

F5G(X ) + Ff (X )

(31)

V. EXPERIMENT
A. APF ALGORITHM CONSIDERING 5G COMMUNICATION
FLOW
The flowchart of the artificial potential field algorithm
considering 5G communication as shown in Fig.9.

B. EXPERIMENTAL ENVIRONMENT AND MODEL
CONSTRUCTION
In this study, we constructed two maps measuring 400 ×

400 meters in MATLAB R2023b. In the simulation, the
carrier frequency is set to 50 GHz, the transmitting power
is 10 W, the antenna height is 25 meters, and the system loss
is 10 dB. The receiving power of the receiver is 10 W, with
an antenna height of 1 meter and a system loss of 10 dB. The

FIGURE 9. The algorithm flowchart of artificial potential field method
considering 5G communication.

simulation accounts for 3 ray reflections and 1 diffraction,
with a minimum receiving power of −140 dBm for the
ray. Obstacle material is concrete. To facilitate the selection
of 5G gravitational points, this study converts the unit of
signal receiving power to Android Signal Strength(asu).
The conversion relationship between ‘‘asu’’ and ‘‘dBm’’ as
follows:

asu = dbm + 140 (32)

The gravitational potential field constant Katt is set to be
0.03, the repulsive potential field constant krep is set to be
0.8, n in the improved repulsive field function is set to be 2,
the influence range of the obstacle repulsive force ρ0 is set to
be 2.5rc, rc is the radius of the cylinder, and the sub-gravity
point potential field constant K5G is set to be 0.015.
To ascertain the 5G communication intensity across var-

ious regions within the three-dimensional environment, this
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FIGURE 10. Improved APF.

FIGURE 11. Improved APF.

study adopts a fixed transmitter approach. It calculates the
5G communication intensity at discrete intervals across the
entirety of the three-dimensional space and uniformly divides
the region. Subsequently, the communication intensity at
each point within each region is computed, weighted, and
aggregated to derive a representative value for the 5G
communication intensity of that region. This methodology
is designed to facilitate the subsequent selection of 5G
gravitational point coordinates.

C. COMPARISON OF IMPROVED ARTIFICIAL POTENTIAL
FIELD METHOD
As shown in Fig.10, in the traditional APF, when the total
force of the UAV is zero, it will fall into the local minimum
problem and remain stationary, unable to reach the target
point. As shown in Fig.11, the improved APF can avoid
entering the local minimum point, and when the obstacle is
near the target point, the UAV can also reach the target point
normally.

D. COMPARISON OF IMPROVED ARTIFICIAL POTENTIAL
FIELD METHOD
This study constructed three-dimensional maps with 26 and
27 obstacles in matlabR2023b. For the convenience of
description, the map with 27 obstacles is named map A, and
the map with 26 obstacles is named map B. In the simulation,
the black path is obtained by APF without considering
5G communication, and the red path is obtained by APF
considering 5G communication.

Table.2 presents the coordinates for the starting point,
target point, base station, and three 5G gravitational points
across the subsequent 8 simulation diagrams. Meanwhile,

FIGURE 12. Common scenario(a).

FIGURE 13. Common scenario(b).

Table.3 outlines the step size and average 5G communication
intensity along the path derived from the APF algorithm
without accounting for 5G communication in these diagrams.
Additionally, Table.3 further details the path’s step size
and average 5G communication intensity when considering
5G communication. Moreover, Table.3 provides insights
into the path growth rate and the improvement rate of 5G
communication intensity.

Each grid data within Table.4, Table.5, Table.6, and Table.7
represents the average 5G communication intensity within
a 40 × 40 grid size on a 400 × 400 meters map. In these
tables, the columns correspond to the x direction of the three-
dimensional map, while the rows correspond to the y direction
of the map. Specifically, Table.4 and Table.5 are computed
using data from map A, whereas Table.6 and Table.7 are
derived from map B. The selection of 5G gravitational points
depicted in Fig.12 and 13 is based on the data presented
in Table.4, while 14 and 15’s selection of 5G gravitational
points relies on Table.5. Similarly, 16 and 17’s selection of 5G
gravitational points corresponds to Table.6, and the selection
of 5G gravitational points illustrated in 18 and 19 is informed
by Table.7.

Fig.12 and Fig.13 are derived from Map A, with their base
stations being identical. In Fig.12, the 5G communication
intensity along the path, as obtained by APFwith 5G commu-
nication taken into account, exhibits an increase of 16.6923%,
while the path itself experiences a growth of 9.0909%. The
amplification in 5G communication intensity surpasses the
diminishing effect of path expansion. Conversely, in Fig.13,
the 5G communication intensity along the path, obtained
through APF considering 5G communication, registers a rise
of 9.5508%, whereas the path grows by 10.5651%. Here,
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TABLE 2. Simulation coordinate point.

TABLE 3. Improve the comparison.

TABLE 4. Map A, Distribution of 5G communication intensity at the base station location
(
100, 225, 0

)
.

TABLE 5. Map A, Distribution of 5G communication intensity at the base station location
(
250, 100, 0

)
.

the augmentation in 5G communication intensity is eclipsed
by the adverse impact of path enlargement. This occurrence
can be attributed to the proximity of the coordinates of the
5G sub-gravity point to regions characterized by high 5G
communication intensity. The objective is to enhance the
attractiveness of the sub-gravity point and effectively guide
the drone towards areas with optimal 5G communication
intensity. The selection of the 5G gravitational point’s
position in Fig.12 aligns more closely with this principle.

Fig.14 and Fig.15 are derived from Map A, sharing
the same base stations. In Fig.14, the 5G communication

intensity along the path, as computed by APF with 5G
communication factored in, exhibits a notable increase of
20.2253%, while the path itself experiences a modest growth
of 4.0512%. Here, the enhancement in 5G communication
intensity outweighs the adverse impact of path expansion.
Conversely, in Figure 15, the 5G communication intensity
along the path, derived through APF considering 5G com-
munication, shows a considerable rise of 22.4996%, whereas
the path expands significantly by 26.8229%. In this scenario,
the increase in 5G communication intensity is overshadowed
by the substantial negative impact of path enlargement. This
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TABLE 6. Map B, Distribution of 5G communication intensity at the base station location
(
275, 50, 0

)
.

TABLE 7. Map B, Distribution of 5G communication intensity at the base station location
(
275, 350, 0

)
.

FIGURE 14. Common scenario(c).

FIGURE 15. Common scenario(d).

phenomenon arises due to the presence of multiple 5G sub-
gravity points. It is imperative that these points are reasonably
and evenly distributed along the path. Failure to do so may
result in the weakening of the guiding effect of each gravity
point on the drone, as they could potentially interfere with
each other. The distribution of 5G gravitational points in
Fig.14 adheres more closely to this principle.

Fig.16 and Fig.17 are generated from Map B, with
identical base stations. In Figure 16, the 5G communication
intensity along the path, as determined by APF with 5G

FIGURE 16. Common scenario(e).

FIGURE 17. Common scenario(f).

communication considerations, demonstrates a growth of
16.5071%, while the path itself expands by 19.2500%. How-
ever, the increase in 5G communication intensity is surpassed
by the negative impact of path growth. Similarly, in Fig.17,
the 5G communication intensity along the path increases by
20.4894%, while the path grows by 22.4615%. Again, the
gain in 5G communication intensity is overshadowed by the
adverse effect of path expansion. This phenomenon can be
attributed to the positioning of the 5G gravitational point
relative to obstacles. It’s crucial for the coordinates of the
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FIGURE 18. Severe signal masking scenario(a).

FIGURE 19. Severe signal masking scenario(b).

5G gravitational point to maintain a certain distance from
obstacles. Otherwise, due to the spatial relationship between
the obstacle, the 5G gravitational point, and the UAV, the
guidance provided by the 5G gravitational point to the UAV
may be compromised. However, in Fig.16 and Fig.17, there
is an abundance of obstacles around the starting point, which
weakens the effectiveness of the 5G gravitational points in
guiding the UAV.

Fig.18 and Fig.19, derived from Map B, share identical
base stations. In Fig.18, the 5G communication intensity
along the path, computed by APF with 5G communication
considerations, exhibits a substantial increase of 36.2820%,
while the path itself experiences a modest growth of
4.1971%. Here, the enhancement in 5G communication
intensity outweighs the negative impact of path expansion.
Similarly, in Fig.19, the 5G communication intensity along
the path increases by 24.0884%, whereas the path expands
by 13.7767%. In this case, the gain in 5G communication
intensity significantly surpasses the adverse effect of path
enlargement. This phenomenon arises due to the severe
obstruction of transmitter signals by obstacles, resulting in
significant variations in the 5G communication intensity
across different regions of the map. The presence of 5G
secondary gravity points plays a crucial role, leading to a
more pronounced increase in the average 5G communica-
tion intensity calculated along the path obtained through
APF considering 5G communication. This indicates that
the algorithm proposed in this study exhibits superior
adaptability and feasibility in scenarios with severe signal
masking at the transmitter. Conversely, when map obstacles
are evenly distributed, resulting in minimal differences in
5G communication intensity across regions, the proposed
algorithm may exhibit limitations. In such scenarios, the

improvement in 5G communication intensity is typically less
pronounced.

VI. CONCLUSION AND FUTURE WORK
In this study, addressing the common oversight in existing
three-dimensional path planning schemes which fail to
account for 5G communication intensity, an enhanced APF
algorithm is proposed which is incorporating 5G sub-gravity
points. Aiming at the local minimum traps inherent in
traditional APF algorithm, a fuzzy control algorithm is
proposed to enable UAVs to avoid the local minimum traps
in advance.

Using MATLAB R2023b, simulations of the proposed
algorithm are conducted and 8 sets of experimental data
across two maps are obtained. The simulation results show
that the average 5G communication intensity of the path
increases by 20.7919%, while the average length of the
path increases by 13.7769%. Notably, the enhancement
in average 5G communication intensity along the path is
more pronounced in scenarios with severe signal masking at
the transmitter. Simulation results show the feasibility and
adaptability of the proposed algorithm.

For future optimization endeavors, our focus will be on
designing a more reasonable algorithm to select optimal
5G gravitational point coordinates based on available map
and base station data. Additionally, utilizing a quadcopter
UAV for experiments in real urban environment is planned.
These experiments aim to validate the feasibility and efficacy
of the algorithm in real-world scenarios, thus advancing
our understanding and application of 5G-enabled UAV path
planning in urban settings.
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