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ABSTRACT Lithium-ion (Li-ion) batteries are used in electric vehicles to reduce reliance on fossil fuels
because of their high energy density, design flexibility, and efficiency compared to other battery technologies.
However, they undergo complex nonlinear degradation and performance decline when abused, making their
reliability crucial for effective electric vehicle performance. This survey paper presents a comprehensive
review of state-of-the-art battery reliability assessments for electric vehicles. First, the operating principles
of Li-ion batteries, their degradation patterns, and degradation models are briefly discussed. Subsequently,
the reliability assessments of Li-ion batteries are detailed using both qualitative and quantitative approaches.
The qualitative approach encompasses failure modes mechanisms and effects analysis, X-ray computed
tomography, and scanning electron microscopy. In contrast, quantitative approaches involve multiphysics
modelling, electrochemical impedance spectroscopy, incremental capacity and differential voltage analysis,
machine learning, and transfer learning. Each technique is examined in terms of its principles, advantages,
limitations, and applicability in Li-ion batteries for electric vehicles. Comparative analysis reveals that
qualitative methods are primarily used in the early design stages to assess potential risks and in
post-mortem battery analysis in the laboratory, whereas quantitative techniques such as machine learning and
transfer learning offer real-time prognostic health management and anomaly prevention. Additionally, the
quantitative techniques tend to be more cost-effective than their counterparts. The potential for consolidating
reliability methods through standardization of testing protocols, real-world data integration, controller area
network use, and policy regulation is highlighted to guide further research.

INDEX TERMS Capacity fade, causes of failure, data-driven, degradation trajectory, electric vehicle,
electrochemical impedance spectroscopy, failure modes mechanisms and effects analysis, incremental
capacity and differential voltage analysis, Li-ion batteries, machine learning, model-based, power fade,
qualitative analysis, quantitative analysis, remaining useful life, reliability, state of health, state of charge,
transfer learning, X-ray computed tomography.
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Energy Storage System.

Electric Vehicles.

Field Emission Gun Electron Microscopy.
Failure Mode Mechanisms and Effects
Analysis.

Greenhouse Gases.
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Long-Short-Term Memory.

Lithium Titanium Oxide.

Mean Absolute Error.

Machine Learning.

Maximum Mean Discrepancy.

Metric tonnes.
Nickel-Cobalt-Aluminum-Oxide.
Nonlinear Autoregression with exogenous
inputs recurrent neural network.
Nickel-Manganese-Cobalt.

Principal Component Analysis.
Plug-in Hybrid EV.

Prognostics and Health Management.
Poly-vinylidenefluoride.

Quality Control.

Reliability, Availability, Maintainability,
and Safety.

Resistor-Capacitor.

Region Of Interest.

Risk Prioritization Number.

Root Mean Square Error.

Remaining Useful Life.

Secondary Electrons.

Solid Electrolyte Interface.

Scanning Electron Microscopy.
Signal-to-Noise Ratio.

State of Charge.

State of Health.

Single-particle model.

SS-ANN  Spiral self-attention neural network.
P2DM Pseudo-2D model.

TL Transfer Learning.

X-ray CT X-ray Computed Tomography.

I. INTRODUCTION

With the deepening of the global energy crisis, depletion
of oil resource, and increased risk of air pollution and
global warming, governments and industry players in various
countries have proposed solutions to promote alternative
energy sources and encourage greenhouse gas (GHG) control
policies. Currently, many countries attach great importance
to solving GHG problems, particularly those related to
carbon dioxide (CO;) emissions. Fig.1 shows the amount
of CO; emissions from the four major energy-consuming
sectors. The transportation sector accounts for 25% of global
energy use [1]. In 2022, CO, emissions from energy-related
activities experienced a growth of 0.9%, equivalent to
321 metric tons (Mt). This increase led to a record high of
more than 36.8 gigatons (Gt) of CO;, emissions, with the
transportation sector accounting for 7.98Gt which is 2.1%
or 137Mt higher than the previous year due to the growth in
advanced economies [2].
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FIGURE 1. Global CO, emissions by sector from 2019-2022 [2].

Considering the rising emissions to the atmosphere,
transport electrification has been promoted to decarbonize the
transport sector, which mainly uses fossil fuel energy, such as
petrol and diesel [3]. Substituting conventional internal com-
bustion engine (ICE) vehicles with electric vehicles (EVs) is
the best option for reducing CO; emissions and their impact.
An electric vehicle is a term that describes a vehicle powered
by electricity or an electricity-assisted vehicle. Currently, the
market offers three types of EVs: pure battery EV (BEV),
hybrid EV (HEV), and plug-in hybrid EV (PHEV) [4]. The
main components of EVs are the battery pack, converter
(inverter), and electric motor, as illustrated by the simplified
EV drivetrain in Fig.2. Direct current (DC) power supply
from the battery pack is converted into alternating power
by the inverter, which is later converted into kinetic energy
by the electric motor, producing torque and rotation, which
are subsequently transferred to the transmission system
that propels the vehicle. The battery is the most sensitive
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FIGURE 2. Electric vehicle showing key components.

component of an electric vehicle drivetrain because of its cost
and weight; therefore, adequate research and development
are required. Among all commercially available batteries,
lithium-ion (Li-ion) batteries have distinguished themselves
by offering exceptional benefits [5], such as light weight,
high energy density, low self-discharge, high cycle life, and
absence of memory effect [6]. However, Li-ion batteries are
characterized by high initial costs. Despite the high initial
costs involved, Li-ion batteries are no longer suitable for
EVs once they reach 80% [7] of their original capacity
owing to various complex phenomena. These phenomena,
collectively known as battery aging, include capacity decay
and increased cell impedance, which cascade into power
fading [8]. Furthermore, for EVs to gain popularity and
substitute ICEs, batteries (Li-ion) must maintain high energy
capacity and power capability while ensuring safety for a
period of over 10 years [9].

A. LI-ION BATTERY AGING AND RISKS

The aging of Li-ion batteries involves various electrochem-
ical and mechanical processes that are heavily influenced
by operating conditions [8], battery chemistry, and the
environment. The key indicators (capacity and power) of
the performance of Li-ion batteries decline over time during
cycling, are often known as cycle aging [10], [11], [12],
[13], [14] and storage (calendar aging) [15], [16], [17],
[18], [19], [20]. Li-ion batteries are intricate systems that
are characterized by numerous degradation mechanisms.
In recent years, extensive research has been conducted to
improve the performance, increase the lifetime, and reduce
the safety hazards of Li-ion batteries. A detailed overview of
the aging mechanisms, aging stress factors, and degradation
modelling approaches for Li-ion batteries is presented in [21].
Han et al. [22] provided a comprehensive review of Li-ion
battery degradation during the entire cycle life. Their study
analyzed the internal aging mechanisms associated with
anode and cathode materials and with their influencing
factors that accelerates degradation from design, production,
and application perspectives. In [23], a review of the behavior
and empirical modelling of Li-ion battery aging is presented,
focusing on the effect and interdependence of the operational
stress factors. The review concluded that it is difficult
to generalize aging behavior based on the effects of the
operational conditions. In [24], [25], and [26], the stress
factors that cause degradation and aging mechanisms of
Li-ion batteries at the component level are discussed. This
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FIGURE 3. EV fire accidents caused or exacerbated by Li-ion battery:

(a) and (b) depict a Tesla Model 3 being involved in an explosion. [37];
(c) collision between a conventional car and EV accident resulting in fire
exacerbated by Li-ion battery in EV [38]; (d) Tesla SUV crashed into a
barrier, leading to explosion and fire of the Li-ion battery [39].

study is further explored in [22] and [27], where the authors
examined the degradation of Li-ion batteries at the cell and
pack levels. The stress factors that accelerate calendar and
cycling aging of Li-ion batteries have been reviewed in [11],
[28], and [29]. The modes of the aging phases were also
examined. Two parameters describe the age of batteries:
the beginning-of-life (BoL), which marks the initial usage
of the battery, and end-of-life (EoL), which is the point
in a battery’s lifecycle when it reaches a certain capacity
threshold, typically 80% or 70% of its nominal capacity, and
is no longer considered suitable for its intended use [30].
The aforementioned review papers only addressed the factors
influencing the aging and degradation of Li-ion battery packs
without curbing the attendant performance decline. Recently,
there has been a notable increase in the incidence of EV
fires and explosions, with many of these incidents linked to
onboard Li-ion battery packs. A series of such incidents has
been reported since the introduction of EVs into the mar-
ket [31], [32], [33], [34], [35], [36]. Typical EV fire accidents
are shown in Fig.3. The literature captures various causes of
Li-ion battery-induced fires and explosions in EVs, including
thermal runaway [40], excessive heat, conductive coolant,
external short circuits, high-speed collision deformation,
internal short circuits, battery pack piercing and deformation,
battery management system (BMS) failure, overcharging,
short circuits during charging, and loose contact wires. These
accidents, as described in the literature and depicted in
Fig.3, not only resulted in economic losses, but also posed
a severe risk to the reputation of the EV industry and public
confidence in Li-ion battery-related products.

B. IMPORTANCE OF BATTERY RELIABILITY ASSESSMENT
The reliability of Li-ion batteries has become an essential
issue for Original Equipment Manufacturers (OEMs) of EVs.
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Fig.4 shows the essential aspects of Li-ion batteries, which
were considered from 1994 to 2022 in published articles
(based on Scopus for Li-ion batteries with reliability as
keywords). According to Fig.4, reliability is strongly related
to other aspects of Li-ion batteries. It connects with Li-ion
components, operating conditions, and predictive methods.
Reliability is critical for assessing the overall behavior of
Li-ion batteries over their lifespan [41]. Therefore, reliability
assessment of Li-ion batteries plays an essential role in
EVs’ lifetime, design, maintenance, and their service life.
According to [42], there are two main perspectives for
improving or assessing reliability. One perspective is the
development of new Li-ion battery materials and material
modifications. In this regard, advances in the development
of high-energy, high-power cathode materials for Li-ion
batteries have been presented in [43], along with two
important aspects of material engineering modification for
cathode materials in Li-ion batteries: nanostructure synthesis
and surface modification. Cheng et al. [44] provided a
comprehensive review of research studies and advancements
in the design and synthesis of anode materials such as porous
carbon nanostructures, hollow carbon spheres, and nanos-
tructured silicon-based materials. They also highlighted the
importance of addressing the volume expansion, mechanical
properties, and electrolyte stability in the development of
anode materials for Li-ion batteries. A review of recent
progress in the development of nonaqueous electrolytes,
binders, and separators for Li-ion batteries, as well as their
impact on battery performance, is presented in [45]. The
development and modification of these Li-ion component
materials can improve the reliability of the battery pack
system by improving the reliability of the cells; however,
this is limited by the reliability of the battery cell, which is
at the mercy of current science and technology. The other
perspective is to assess the reliability of Li-ion batteries
through system design, including thermal management, fault
diagnosis and health prognostics. Very few studies have
comprehensively reviewed the concept of reliability of
Li-ion batteries in EVs in this regard. For instance, [46]
provides an extensive examination of the reliability and
safety of the major electrical components of EVs, including
Li-ion batteries, considering various perspectives related
to chemical, thermal, electrical, and mechanical issues.
In addition, the concept of reliability of Li-ion battery packs
was introduced in [26]. The study investigated the primary
failure modes, their mechanisms, and their effects on the
power and capacity degradation. To thoroughly explore the
reliability assessment of Li-ion batteries, Gandoman et al.
[47] considered both practical and technical aspects and
examined the reliability of a nickel-manganese-cobalt (NMC)
battery as a case study. The aforementioned study did not
provide a holistic approach to the reliability assessment of
Li-ion batteries in terms of evaluating the probability of
faults or degradation occurrences and their effects on the
available capacity and power and diagnosing or preventing
such occurrences. This paper presents a comprehensive
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review of state-of-the-art reliability assessments of batteries
in EVs, encompassing major areas such as fault diagnostics
and prevention, state of health (SOH) estimation, remain-
ing useful life and end-of-life-predictions, state of charge
(SOC) estimation, and degradation trajectory predictions.
This entails both qualitative and quantitative approaches
to reliability assessment. Failure modes mechanisms and
effects analysis, X-ray computed tomography, and scanning
electron microscopy are subordinates of the qualitative
approach. The quantitative approach consists of multiphysics
modelling and simulations, electrochemical impedance spec-
troscopy (EIS), incremental capacity and differential voltage
analysis (ICA/DVA), machine learning (ML), and transfer
learning (TL).

C. CONTRIBUTION

Owing to the lack of a comprehensive review of the literature
on the reliability of Li-ion batteries, this survey paper aims
to comprehensively examine and present state-of-the-art
techniques and methodologies for reliability assessment of
Li-ion batteries. The significant contributions of this study
are as follows:

« Exhaustive literature review: Through a thorough
and methodological literature review encompassing
research articles, we comprehensively explored topics
such as causes of failure/degradation, degradation mech-
anisms, degradation modes, and effects and methods
for assessing Li-ion battery reliability. By synthesizing
insights from diverse sources, we offer a comprehensive
understanding of the current research landscape in this
domain.

« Comparison of Techniques: A notable contribution of
this study involves conducting a comparative analysis
of diverse reliability assessment techniques. Through
this evaluation, we assessed the strengths, limitations,
and relevance of each method, in assisting researchers
and practitioners in making informed choices tailored to
their specific needs and criteria.

« Emerging trends and innovations: This survey high-
lights emerging trends and innovations in the field of
Li-ion battery reliability assessments. By identifying
novel techniques, such as machine learning-based pre-
dictive modelling, and transfer learning, we shed light
on the direction of future research and development in
the domain.

« Case studies and real-world applications: We present
a series of case studies and real-world instances
that demonstrate the applicability of these reliability
assessment techniques. These examples underscore the
practical significance of the discussed methodologies
and highlight their positive influence on enhancing the
safety, performance, and lifetime of Li-ion batteries.

The remainder of this survey paper is organized as follows.

Section II discusses the Li-ion battery composition and
operation in terms of charge and discharge, as well as its
various chemistries. The factors that degrade Li-ion batteries,
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FIGURE 4. Relationship of reliability with various significant aspects of Li-ion batteries.

as well as their modes, mechanisms, and effects, are presented
in Section III. A detailed examination of the qualitative and
quantitative approaches for evaluating the reliability of Li-ion
batteries are presented in Section IV along with their use
cases, advantages, and disadvantages. Section V provides
recommendations for accurately assessing the reliability
of Li-ion batteries. Finally, the conclusion is presented in
Section VI.

Il. LI-ION BATTERY AND ITS OPERATION

Similar to other batteries, Li-ion battery cells have four
main components: a positive electrode (cathode), negative
electrode (anode), electrolyte, and separator [48]. In addition
to the active components of Li-ion batteries are the current
collectors: copper foil and aluminum foil for anode and
cathode respectively, binders, and electronic circuits, tabs,
and shells [49]. In most commercial Li-ion battery cells,
the anode is composed of a carbonaceous material, typically
graphite, which is bonded to a copper current collector using
a polyvinylidenefluoride (PVDF) binder. The cathode, on the
other hand is typically made of a metal oxide material
adhered to an aluminum current collector with a PVDF binder
and a carbon additive to enhance electronic conductivity.
To prevent electrical short-circuiting, the electrodes are
separated using a polymer sheet that allows the transport of
ions. Finally, the cell is filled with an electrolyte consisting of
a lithium salt dissolved in an organic solvent, facilitating the
movement of ions within the cell [50]. Li-ion batteries store
electrochemical energy through intercalation of Li-ion (Li*)
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in anode and cathode materials. The reactions that occur
during the charge and discharge processes of Li-ion batteries
are illustrated using models (1)-(2) [49]. The cathode and
anode reactions are described as follows:

. charge . .
LiyMO ——— Li, MO, +xLi* +xe~ and (la)
discharge
charge
xLit + xe” 4 Li,C, =—— Li,;,C,, (1b)
discharge

where y, ,, and ; represent the atomic numbers, x indicates
the number of Li* with 0 < x < yandy < 1, MO is
the cathode material, and e is the electron, z > 0, C,
denotes the carbonaceous material with atomic number ,, and
different carbonaceous materials have different values of ,,.
For graphite, n, = 6, which is the number of Li™ that can
be intercalated into the graphite anode. The overall operating
process of Li-ion batteries is given by

charge . .
—— Li, yMO; + Li;;:C,,.

discharge

Li,MO; + Li,C,

@)

For brand-new Li-ion batteries, y = 1 and z = 0.

During the charging process, ions (Li') are de-intercalated
(extracted) from the cathode material, transverse the elec-
trolyte, and subsequently intercalate (inserted) between the
graphite layers in the anode. Meanwhile, electrons flow
from the cathode to the anode through the external circuit
(as depicted in Fig. 5). This process is reversed during
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FIGURE 5. Schematic illustration of charge and discharge operation of
Li-ion battery [51].

discharge. It is evident these Li-ion batteries function by
reversibly shuttling Li™ between the cathode and anode
materials. Consequently, the performance of Li-ion battery
is significantly influenced by the inherent characteristics
of the electrode materials. Among these materials, the
cathode plays a crucial role in determining the overall
performance of the battery [51]. Commercial Li-ion batteries
are often described based on Li-ion donors in the cathode.
Various cathode chemistries are combined with the anode
graphite to construct the battery. The cathode chemistries
employed in the industries include lithium iron phos-
phate (LFP), lithium-cobalt oxide, nickel-manganese-cobalt
(NMC), nickel-cobalt-aluminum-oxide (NCA), lithium man-
ganese oxide (LMO), and sulfur (S) [48]. Table 1 summarizes
the characteristics, advantages, and disadvantages of the
different Li-ion battery chemistries.

IIl. LI-ION BATTERY DEGRADATION

A. DEGRADATION CAUSES AND MECHANISMS
Degradation of the battery at various levels is referred to as
aging. The aging process of Li-ion batteries is a complex
combination of numerous electrochemical and mechanical
processes, that are strongly influenced by several internal
and macroscopic factors [55], such as temperature [5], [56],
[57], [58], [59], [60], Depth of Discharge (DoD) [61], [62],
overcharge [63], [64], [65], overdischarge [66], [67], and
time. In addition, degradation is induced in the design and
manufacturing stages because of cell inconsistency [27], cell
chemistry, and cell and pack design [22]. The electrochemical
and mechanical degradation mechanisms (the basic manner in
which the battery can degrade) affect different components of
the cell, including the electrodes, electrolyte, separator, and
current collectors [68]. These degradation mechanisms have
been extensively studied and reported in literature. Table 2
presents the various factors that influence the degradation
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mechanisms of Li-ion batteries as depicted in Fig.6, which
illustrates the common degradation mechanisms observed
in Li-ion cells. Of all the degradation mechanisms shown
in Fig.6, the formation and growth of the solid electrolyte
interface (SEI) is the most dominant. These mechanisms
and their origins are explained, and diagnostic techniques for
identifying these degradation processes are discussed in the
next section.

B. DEGRADATION MODES AND EFFECTS

In the aging analysis of Li-ion batteries, different degradation
mechanisms have been linked to the degradation modes that
contribute to power and capacity fading. Some researchers
have identified the loss of lithium inventory (LLI) and loss
of active materials (LAM) in the anode and cathode as
degradation modes [70], [71], whereas others have extended
this further to include an increase in internal resistance (IR)
[72], [73], which is inversely referred to as conductivity
loss (CL) in [74] and [75]. The most prevalent mode of
degradation in cell capacity fading is LLI. It is loss of usable
lithium within a cell resulting from side reactions, including
the formation and growth of the SEI film, lithium plating,
and the loss of lithiated active materials [76]. The loss of
active materials refers to the mode in which a portion of
the active material in an electrode becomes inaccessible for
lithium intercalation during charge/discharge cycles. It is
specific to each electrode and is divided into a LAMpg for the
positive electrode and a LAMNg for the negative electrode.
LAMpg can occur because of structural disorder, dissolution,
or loss of electrical contact [77], whereas LAMNE is caused
by factors such as particle cracking, loss of electrical
contact, or the presence of resistive surface layers that
block the active sites of the anode [78]. The degradation
associated with the decomposition of the binder or corrosion
of the current collector is described by the conductivity
loss mode [74]. Finally in the aging trajectory (trajectory
of battery degradation) [30], the effects of the degradation
mechanisms are manifested in capacity fade (reduction in the
usable capacity of the cell) and resistance increase, which
cascade to power fade (reduction of the deliverable power of
the cell after degradation) [79].

C. DEGRADATION MODELS

Degradation models are mathematical, physics-based,
or computational representations used to quantify and
analyze the degradation mechanisms and factors that
affect the performance and reliability of Li-ion batteries.
By developing a degradation model for Li-ion batteries,
researchers and engineers can gain insight into the underlying
processes, predict future degradation behavior, and devise
strategies to mitigate or manage degradation effects. Capacity
loss has been identified in the literature as the primary effect
of Li-ion battery degradation because it negatively impacts
both the remaining useful life and profitability of the battery.
Degradation models for capacity loss are usually classified
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TABLE 1. Comparison of cathode materials for Li-ion battery cells [26], [52], [53], [54].

Cathode Nominal Specific Energy Cycle Life Advantages Disadvantages
Material Voltage Capacity Density (Cycles)
V) (mAh/kg) (Wh/kg)
LCO 3.7 140 110-190 500-1000 Widespread application. Poor thermal stability.
High specific energy High safety risk.
Good cycle life.
LMO 3.8 146 100-120 1000 Excellent thermal stability. Low specific energy density.
Inexpensive. High capacity loss.
Improved safety. Relatively short cycle life.
Excellent power capability.
NCA 3.6 180 100-150 2000-3000 High specific energy. High cost.
Good specific power. marginal safety.
Good lifespan.
NMC 3.6 145 100-170 2000-3000 Adaptable to various High safety risk.
application.
High specific energy.
Suitable charging C-rate.
LFP 33 170 90-115 >3000 High current rating. Low specific energy density.
Long cycle life.
Good thermal stability.
Enhanced safety and tolerance.
Low self-discharge.
Sulfur ~ 2.1V ~ 1675 ~ 2600 variable High theoretical capacity. Capacity loss over cycles.
Low cost. Low electrical conductivity.
Electrolyte modifications
required. newline Polysulfide
shuttling.
Sulfur volume expansion.
TABLE 2. Degradation mechanisms and causes of Li-ion cell components. [24], [26].
Components | Degradation Mechanism | Causes
Solid electrolyte interface growth High state of charge (SOC), Elevated temperatures, frequent charging and
Anode discharging processes at high C-rates.
Lithium plating Low temperature, low SOC, high charging rates (C-rate)
Changes of the Active material Extraction and intercalation of Li-ions, gas evolution within graphite particles
Anode Contact loss Inadequate contact between active materials in the anode active material.
Structural changes and mechanical Lithiation and delithiation process, phase change in cathode oxides
Cathode stress

Active material dissolution

Dissolution of active materials, particularly in cathodes with managed layered oxide

structures.

Active material isolation

Formation of cracks, fracture of the binder, deterioration of the binder adhesion.

Copper dissolution and Aluminum

Current collectors .
corrosion

Overdischarge (for copper), overcharge (for aluminum)

Separator Tearing of separator Thermal or mechanical damage, presence of metallic particles, dendrite growth
causing internal short circuits.
Electrolyte Electrolyte decomposition and Flammable and unstable electrolytes, extreme operating conditions (typically

evolution of gases

temperature above 80°C).

into three categories: electrochemical, empirical, and semi-
empirical. Table 3 summarizes the degradation models.

IV. RELIABILITY ASSESSMENT TECHNIQUES

OF LI-ION BATTERY

Generally, reliability assessment refers to ensuring the relia-
bility and maintainability of systems by employing tools and
techniques to identify, analyze, and prevent potential failures
that could adversely affect performance and safety. It covers
subfields such as prognostics and health management (PHM),
which focus on system health, performance prediction,
and advanced diagnostics. It also encompasses reliability,
availability, maintainability, and safety (RAMS), which
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examines the overall group characteristics. Unlike RAMS,
PHM uses a detailed approach to monitor the individual
components [89]. In particular, a reliability assessment of
Li-ion batteries for EVs entails evaluating the probability of
the occurrence of faults/degradation and their impact on the
available capacity and power [41]. In addition, it incorporates
the concepts of the PHM and RAMS to ensure the optimal
performance of Li-ion batteries in EV. This section explores
the diverse techniques employed to assess the reliability
of Li-ion batteries. As shown in Fig. 7, a state-of-the-art
reliability assessment method that encompasses qualitative
and quantitative approaches is adopted in this study. The
application of these reliability techniques in BMS or in
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TABLE 3. Comparison of different Li-ion battery degradation models.
Model type Description Advantages Disadvantages
Electrochemical Electrochemical models simulates the
battery’s internal chemical parameters o Provides high fidelity modelling of the e Requires high experimental effort
such as lithium concentration in the aging phenomena of the battery cell and knowledge of the battery cell.
electrodes, kinetic energy, diffusion and [81]. ] o ' o Long calculation time [81].
charge transfer processes inside a e Model provides deep insights into
battery cell. [80]-[82]. degradation mechanisms.
o Captures the electrochemical reactions
in the battery
Empirical The empirical model is a statistical
model constructed from extensive o Simple model structure [85]. e Model parameter mismatch [85].
experimental data. It doesn’t require the e Few model parameters is required o Low generalization ability [84].
consideration of the battery’s internal [85]. o Extensive aging test needed to pa-
physical and chemical processes; rather e Possible to achieve a more optimal rameterize the model [86].
it focuses solely on processing and solution [86]. o Low robustness at -20°C [84].
analyzing experimental data to create a o The 1pterna1 aging mec'hamsm
mathematical model that describes and microstructure .evolutlon pro-
battery performance and behavior. [83], cess of the batteries cannot be
[84]. considered [87].
Semi-empirical A semi-empirical model falls between
theoretical and empirical models. It’s o High accuracy [87]. o Difficult parameter calibration
created by fitting or tuning certain e The electrochemical reaction process [85].
parameters using both known and side reaction process inside the o Requires specific operating condi-
experimental data and theoretical battery are simplified [87]. tion for each battery type [82].
models. Typically developing a o Fast computation time [81]. o Requires more laboratory tests
semi-empirical model involves ¢ Semi-empirical models have the capa- [82].
integrating experimental data with bility to extrapolate data based on their o Aging tests are difficult in the lab-
theoretical principles to enhance its mathematical functions [81]. oratory [82].
accuracy and practicality. [83], [84], o Attractive for health conscious energy
[217, [88]. management systems [81].

the laboratory during cell manufacture will enhance the
lifetime, design, maintenance, and service of Li-ion batteries
in EVs.

A. QUALITATIVE APPROACH

Qualitative techniques involve assessing the reliability
of Li-ion batteries based on descriptive and subjective
evaluations. Qualitative methods are useful for identify-
ing the potential risks and failure modes early in the

77910

design process. In this section, failure modes mecha-
nisms and effects analysis (FMMEA), X-ray computed
tomography, and scanning electron microscopy (SEM) are
examined.

1) FAILURE MODES MECHANISMS AND EFFECTS ANALYSIS
Failure Mode Mechanisms and Effects Analysis (FMMEA)
is a systematic approach used to identify potential failure
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FIGURE 7. Categories of reliability assessment techniques.

mechanisms and their models for all potential failure
modes while prioritizing these mechanisms [50]. This is
the cornerstone of the physics-of-failure (PoF) approach
for evaluating the reliability of systems, subsystems, and
components. In comparison to the conventional Failure Mode
and Effects Analysis (FMEA) [90], [91], [92], [93], which
is developed to identify and categorize failures with a focus
on mission success and safety, FMMEA sets itself apart
by considering failure mechanisms and their importance in
evaluating the potential risks associated with the system. The
four key components of the FMMEA principle are described
in Fig.8.

Failure cause is the ~ Failure mechanisms Failure modes are
underlying factor  are the processes  the observed
driven by internal or that lead to failures physical
external stressesin  througha manifestations of
the failure combination of failures.
mechanisms. physical, electrical,

chemical and

mechanical stresses.

Failure effects
indicates how the
failure mechanisms
affects the usability
of the device (Li-ion
battery)

FIGURE 8. Definition of key FMMEA features.

Some failures within systems, such as Li-ion batteries
have less impact and are inevitable, such as a gradual
capacity decline, whereas other failures are catastrophic,
such as thermal runaway, necessitating preventive actions.
One way to determine which failures to focus on is to
rank failure mechanisms based on their likelihood, severity,
and detectability. These mechanisms can be prioritized by
assigning scores of severity, occurrence, and detectability
and combining them to form an overall risk prioritization
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number (RPN). The RPN is obtained by multiplying the
severity, occurrence, and detectability levels. The final step
in prioritization entails categorizing failure mechanisms into
risk levels based on their RPNs. For instance, a failure
mechanism characterized by a high likelihood of occur-
rence, high severity, and difficult detection ranks higher
than other mechanisms. However, if a failure is easily
detectable, its ranking will not be as high as that of other
mechanisms. The criteria for classifying the likelihood,
severity, and detectability vary based on the expert judgment
and experience of the FMMEA team acquired from Li-ion
manufacturing, disassembling, reliability tests, and failure
studies [94]. The results obtained from FMMEA can offer
guidance for determining the parameters of Li-ion batteries
that need to be monitored in real-time or during usage.
This reliability method has been moderately utilized for
Li-ion batteries; however, it has significant potential for
assessing their reliability in the future. Hendricks et al. [50]
utilized the FMMEA approach to identify potential failure
modes, detection methods, and the underlying processes
responsible for failures in Li-ion batteries. In [95], FMMEA
was used to comprehensively understand battery failures
and associated risks. Significant risks include internal short
circuits, excessive heat generation, side ruptures, and issues
with thermal or battery management systems. These risks
play a crucial role in the initiation and propagation of thermal
runaways.

2) X-RAY COMPUTED TOMOGRAPHY

X-ray computed tomography (CT) is a non-invasive tech-
nique employed for the visual examination and qualitative
assessment of material structures and compositions, playing
a crucial role in both performance monitoring and quality
control during the manufacturing of Li-ion batteries [96].
It employs X-rays and a computer-aided tomographic process
to generate three-dimensional (3D) representations of the
scanned battery.

Fig.9 shows an X-ray CT scan applied for the detection of
Li-ion battery capacity. X-ray CT consists of two principal
components: X-ray Source and X-ray detector. After the
battery was charged and discharged by the electrochemical
performance system, it was projected onto a detector from
the X-ray source. When X-rays pass through a battery,
they undergo attenuation due to absorption and scattering.
The extent of attenuation is measured by a detector that
captures the remaining X-rays and forms a gray-scale two-
dimensional (2D) image [97]. However, this 2D image
offers limited information regarding the internal structure
of the battery due to the overlapping details of its various
components. A computer imaging system for X-ray CT
enables reconstruction of a comprehensive 3D model by
collecting a series of 2D projections acquired from different
angles. This reconstruction process is similar to assembling a
puzzle by analyzing X-ray information collected from various
perspectives.
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Several studies have utilized X-ray CT to gain insight
into various aspects of Li-ion batteries. For example,
Rahe et al. [98] utilized nano X-ray CT to reveal particle
cracks and current-collector corrosion on the cathode side of
a Li-ion battery. In [99], the assessment of the internal gas
evolution relied on X-ray CT and was applied to diagnose
degradation in conjunction with internal resistance analysis.
The study focused on the tomogram Region Of Interest
(ROI) volume to assess electrolyte decomposition, which
triggers internal gas evolution. The author’s implementation
involved accelerated aging experiments on two LFP batteries
at different C-rates. For the first battery, degradation is
primarily attributed to SEI formation and growth, whereas
the degradation of the second battery is linked to increased
charge transfer resistance and loss of lithium inventory.
This investigative approach provides insights into the impact
of rest time during the degradation diagnosis. However,
it may not be universally applicable to batteries with
different shapes, such as cylindrical and prismatic cells.
To ensure the safety of EV users who unintentionally
utilize Li-ion batteries outside the recommended temperature
ranges, Zhao et al. [100] employed external compression to
Nickel Cobalt Manganese at high temperatures for 10h and
conducted X-ray CT scans to analyze the electrode stack
structures. The X-ray CT revealed that the cell tested at 100°C
without compression experienced delamination at various
points and had deposits on the electrode surface. However,
localized delamination was not observed in compressed
cells. As shown in Fig.10, Vanpeene et al. [101] employed
the X-ray CT technology to scan silicon-based electrodes.
This allowed them to examine morphological characteristics
such as volume expansion, cracks, and changes in porosity.
Analyzing how these electrode traits transform throughout
cycling provides insights into the impact of various cycling
conditions on battery performance.

3) SCANNING ELECTRON MICROSCOPY

Scanning electron microscopy (SEM) is a microscopic
technique that allows the direct observation of the structural
evolution of active materials in Li-ion batteries. SEM
provides real-time insights into battery performance and
degradation mechanism identification, and assists in the
rational design of electrode materials [102] and invariably in
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reliability assessment. SEM operates by focusing a beam of
electrons generated by thermionic emission from a tungsten
filament, solid-state crystals, such as lanthanum hexaboride
(LaB6), or generated by a field emission gun made from
tungsten onto the Li-ion battery sample surface [103]. Elastic
or inelastic interactions occur when an electron beam hits the
sample surface. In inelastic interactions, secondary electrons
(SE) are emitted with energies that are different from those
of the incident electrons. Conversely, in elastic interactions,
electrons are deflected, which causes scattering. Electrons
deflected at angles greater than 90° are referred to as
back-scattered electrons (BSE). Subsequently, a specialized
detector captures the SE emitted by the sample and the
BSE. These collected signals are then employed to construct
an image of the sample’s surface or other information.
The SE has a relatively low energy (50eV), and can only
escape from the top few nanometers (nm) of the sample
surface. Consequently, the SE signals provide an accurate
representation of the sample surface topography. Image
contrast is achieved using surface features that obstruct
the emitted SE. BSE has a higher energy than SE and
deflects differently depending on the atomic number of
surface elements. Elements with higher atomic numbers
deflect a greater proportion of the incident electrons toward
the detector. Consequently, the BSE image reflects the
elemental composition of the sample. When the incident
electrons interact with the sample surface, they can emit X-
ray photons. Detecting these X-ray signals provides valuable
information regarding the elemental composition of the
surface using energy-dispersive X-ray (EDX) spectroscopy.
This complements the surface imaging obtained using SE and
BSE [104].

Operando and in-situ characterizations are two approaches
to SEM for real-time investigation of Li-ion batteries. Both
in-situ and operando characterization methods involve the
study of reactions under real-time conditions. However,
in situ characterization focuses on controlled experiments to
comprehend dynamic changes, whereas operando character-
ization specifically aims to analyze reactions during active
operation, particularly when matching charge and discharge
profiles. The use of SEM techniques in these approaches is
highly effective for understanding the interfacial reactions in
Li-ion batteries and devising strategies to improve battery
performance and reliability.

In recent years, researchers have investigated the
microstructure and morphology of Li-ion batteries using
SEM. For example, to fully understand the micro-scale
deformation and failure mechanisms of discharged battery
cell components, Zhu et al. [106], carried out nanoindentation
tests and in-situ tensile tests under SEM to determine the
elastic modules of the coating materials and the elastic-plastic
and fracture behavior of electrodes. Interrupted tests were
conducted on a polypropylene separator and its deformation
was investigated under SEM. The results revealed that the
cathode experienced surface micro-cracks before failure,
whereas the anode remained intact until later in the
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deformation process. The separator underwent distinctive
deformation stages, including fibril (the amorphous part of
the separator) elongation and pore formation, leading to
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the eventual onset of failure. For many years, silicon (Si)
has been regarded as a favorable element for enhancing
the energy capacity of Li-ion batteries. However, the use
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of Si as an anode for Li-ion batteries is predisposed to
large volume expansion/contraction during cycling which
is responsible for the cracking of the Si particles. The size
dependence of the Si properties of Si-based anode materials
has been identified as a potential approach for mitigating
the volume change. To investigate the effect of particle size
on volume change in Si-based anode batteries, authors in
[105] examined a 100nm particle size of Si and 2-10um
of Silicon oxide (SiO) based anode in in-situ SEM during
electrochemical cycling to provide new insight into the
microstructural evolution of the respective particles. The
electrodes using a nano-sized Si anode were observed in-situ
using a field emission gun electron microscopy (FEG-SEM)
whereas the larger SiO anode particles were examined
using a variable-pressure SEM. The SEM image in Fig.11
reveals that the nano Si electrode contained Si particles
with sizes ranging from 70 to 200nm, and with an average
particle size of approximately 100nm. As anticipated, the
in-situ SEM depicting the evolution of the electrode revealed
a significant change in the electrode volume throughout
the cycling process. Another notable observation from the
SEM is the electrochemical sintering (a phenomenon where
dispersed particles come together and merge, forming a
flocculation structure) of the particles occurring during the
cycling process. Because of this phenomenon, the electrode
exhibits increased rigidity, reaching a stage where it cannot
accommodate volume changes during cycling. This leads
to electrode fracture in the next cycle after the sintering,
eventually resulting in electrode failure. The SiO Was
used to limit the volume change of the active component.
Surprisingly, the results show that the volume change did not
originate from the particles themselves but rather from the
expansion of pre-existing voids between the particles when
carbon is present. These voids expand and contract during
cycling. Consequently, the study concluded that Si cannot
rival graphite unless cost-effective methods for synthesizing
clamped hollow nanostructures that can circumvent these
issues are developed for commercial use.

Lithium metal plating on graphite anodes in Li-ion
batteries causes capacity degradation and eventual battery
failure. In [107], an overcharge experiment was conducted
on a graphite anode, and the morphology and structure of
the graphite were analyzed using SEM. The study revealed
that the failure mechanism of graphite during overcharging
is similar to that of a lithium metal electrode. Specifically,
the deposited lithium reacts with the electrolyte, forming
a new SEI layer, which further inhibits accessibility in
subsequent cycles. Reference [108] provided a novel in-situ
SEM technique. This technique utilizes an ionic liquid as
the electrolyte within the SEM vacuum chamber, allowing
real-time monitoring of the morphological changes of the
tin dioxide (SnO;) anode, including both the active and
passive materials. The results showed that various active
degradation mechanisms, such as the formation of inter-
face layers, volume expansion, growth of protrusions, and
mechanically induced cracks in the electrode particles during
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cycling, were evident in the SnO, material. Additionally,
the electrochemical performance of the anode material is
significantly influenced by the particle size. The effect of
short-term discharge cycling on the performance of 21,700
Li-ion cells with NCA cathodes was examined in [109]. The
study aimed to identify the specific modes of performance
degradation. The study also systematically analyzed the
mechanisms responsible for capacity loss in six Li-ion cells
using SEM.

B. QUANTITATIVE APPROACH

Quantitative techniques involve the use of numerical data
and mathematical models to assess the reliability of Li-
ion batteries. It essentially entails knowledge-based and
model-based techniques, including multiphysics modelling,
Electrochemical Impedance Spectroscopy (EIS), Incremental
Capacity and Different Voltage analysis (ICA/DVA) machine
learning algorithms, and transfer learning. The techniques are
discussed in this section.

1) MULTIPHYSICS MODELLING

A Li-ion battery is an intricate electrochemical energy system
that encompasses various electrochemical reactions, mass
transfer, charge transfer, heat transfer, fluid dynamics and
interrelated processes. It is sometimes challenging to find an
effective solution for investigating the performance of Li-ion
batteries by using a simplistic single-field model. When
viewed through the lens of systems engineering, Li-ion batter-
ies emerges as complex dynamic systems that span multiple
scales and multiphysics. To effectively model and analyze
Li-ion battery systems, a multidisciplinary approach involv-
ing fields such as materials science, electrochemistry, heat
transfer, and fluid dynamics is indispensable. A multiphysics
model employs fundamental principles and equations drawn
from the aforementioned fields to forecast the performance
of a Li-ion battery system. These equations are concurrently
solved to account for the interactions between various
physical and chemical properties. Multiphysics modelling
also entails the coupling of two or more of the following main
models or other relevant features, as required by the modeller
to accurately represent the physical and chemical properties

of a Li-ion battery.
« Electrochemical models: Electrochemical models are

designed to represent the internal battery process,
particularly the charge transfer process, electrochemical
reactions, ion transport, and diffusion within electrodes
and electrolytes [110], [111]. They are formulated as
nonlinear partial differential equations, incorporating
fundamental laws such as Ohm’s law, Faraday’s first
law, the Butler-Volmer equation, and Fick’s law of diffu-
sion to depict the underlying electrochemical reactions
of batteries. Despite their accuracy and adaptability,
their complexity and lack of readily available parameters
limit their practical applications in BMSs. These models
primarily come in two forms: the single-particle model
(SPM) and pseudo-2D model (P2DM) [112].
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o Equivalent circuit models: The equivalent circuit
model (ECM) utilizes a combination of analog electrical
circuit elements to emulate battery dynamics, providing
noticeable flexibility and simplicity [113]. Based on
the level of simplification, representation of internal
dynamics, accuracy, and fidelity, ECM can be classified
into Thevenin, Norton, Single-RC network, multiple-
RC network, integer-order models, and fractional-
order models. ECM has been used in several varieties
to investigate the reliability of Li-ion batteries. For
example, Hu et al. [113] established a Li-ion battery
using a fractional-order model based on fractional-order
calculus. They devised a co-estimation method for SOC
and SOH with maximum steady-state errors within 1%,
even in the presence of noise and disturbances.

+ Thermal model: Electrochemical reactions and charge
transport within batteries generate heat during charging
and discharging [114], [115]. Excessive heat can be
unsafe and can reduce the battery performance. The ther-
mal model determines heat generation and propagation,
predicts thermal runaway, and is used to provide thermal
management functions to the battery [110].

o Fluid dynamics models: Fluid dynamics models of
Li-ion batteries focus on simulating and understanding
the movement of liquids such as the electrolyte within a
battery cell [42], [116]. These models are essential for
studying the heat transfer, ion transport, and distribution
of reactants within the battery, which affect their

performance, efficiency, and safety.
The limitations of experimental approaches have been over-

come by multiphysics modelling. Multiphysics modelling is
cost-effective because it simulates the battery behavior in a
virtual environment. Furthermore, it naturally yields insights
into the evolution of the physical and chemical properties of
battery systems over time. Typically, these models depict the
battery from a microscopic to macroscopic level, utilizing
variables such as concentration, voltage, current density, and
heat generation to describe its properties [117]. Multiphysics
simulations of Li-ion batteries are commonly conducted
using COMSOL Multiphysics [118], [119]. Typically, there
is a close match between the experimental and simulated volt-
age results [120], [121]. Some authors have also introduced
computational frameworks for modelling Li-ion batteries.
Newman, a contributor to the P2D electrochemical model,
devised the Dualfoil framework for Li-ion battery simula-
tion [122], another noteworthy framework is LIONSIMBA,
developed by Torchio et al. in MATLAB [123], which offers
faster computation times than COMSOL Multiphysics [124].
Kosch et al. introduced their framework, which employs
orthogonal collocation and the Lobatto ITIA method to reduce
the computational expenses [125]. Allu et al. introduced their
framework and demonstrated its suitability for various cell
geometries [126].

Recently, owing to advancements in multiphysics simu-
lation technology, numerous scholars have conducted reli-
ability analyses and optimization studies on Li-ion battery
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packs using these simulation tools. Xia et al. [127] proposed
an innovative reliability optimization approach for a Li-ion
battery pack that utilizes response surface methodology
and multiphysics coupling simulation consisting of an
electrochemical-thermal model for cells and a fluid dynamics
model for the battery pack to analyze the physical char-
acteristics during operation. In the study, a temperature-
dependent degradation model was used to represent cell
capacity fading, and randomness in the capacity fading
was modeled using stochastic distributions. Xia et al. [128]
established a reliability and lifespan assessment method for
Li-ion battery packs based on Multiphysics coupling models.
The proposed model, which couples the electrochemical,
thermal, SEI formation model of cells, fluid dynamics, and
the series-parallel circuit model, describes the coupling rela-
tionships of temperature and current between cells while also
considering the effects of the geometric structure and heat
dissipation method on the cell inconsistencies. Fig.12 depicts
the sub-models and their coupling relationships, with detailed
explanations provided in [128]. They also presented a lifespan
model that considers capacity degradation and percentile life.
Experiments were conducted on a test bench to validate the
proposed method. The outcomes are highly encouraging,
indicating that the battery degradation rate initially decreases
and then accelerates throughout its lifespan, and the thermal
management strategy, which involves periodically altering
the airflow direction, prolongs the lifespan of Li-ion battery
packs by 5.1%. Although the verification of the model was
limited to charge and discharge cycles without reflecting
complex real-world operational conditions, it still holds the
potential to conduct a thorough analysis of the processes
occurring inside the battery.

An electrochemical-thermal model was utilized to opti-
mize the design parameters of Li-ion batteries. This optimiza-
tion process considered factors such as the particle radius,
electrode thickness, volume fraction of active material, and
C-rate in [129]. In [130], a coupled Multiphysics model com-
prising mechanical, electrochemical, Internal Short Circuit
(ISC), thermal, and thermal runaway models was developed
to describe how Li-ion batteries deform, respond to ISC, and
experience temperature changes during drop-weight tests.
The model can effectively predict the reaction of Li-ion
batteries to dynamic loads at different impact energies and
SOCs. In [131], a pseudo-two-dimensional mathematical
model for Li-ion batteries was developed, incorporating
multiphysics transport processes and a model for SEI growth.
The model was validated using experimental data. The
simulation results reveal that the battery operating conditions
significantly affect the SEI layer formation. Higher charg-
ing/discharging rates accelerate battery capacity fading; how-
ever, effective surface cooling may mitigate capacity fading.
Simulations of different electrolyte salt concentrations in the
study show that increasing the salt concentration improves
Li-ion diffusion and stabilizes cell performance when facing
resistance due to ion consumption. To diagnose the capacity
fading of a Li-ion battery, Wang et al. [132] utilized
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a heterogeneous electrochemical-diffusion-induced stress-
coupled Multiphysics aging model established in [133]. The
Multiphysics aging model relies on the establishment of
parameter limits for battery near failure, as determined by
the battery model. The aging model also assesses the impact
of crack propagation owing to diffusion-induced stress and
the formation and growth of the SEI. The parameters are
determined using identification techniques, and the model
is validated against the measured data. Notably, using
parameters from a new battery to predict the terminal voltage
after 400 cycles resulted in a mean absolute error (MAE)
of just 14.8mV. This investigation is particularly relevant
in real-world battery applications because the continuous
monitoring of the identified parameters enables the online
diagnosis of battery failures. This allows for timely issuance
of an early warning signal as the battery approaches the
end of its operational life. Such practice holds significant
importance in ensuring that the battery maintains its required
performance and safety standards. In a previous study,
Yiding et al. [134], developed a comprehensive Multiphysics
model that combined mechanical, electrochemical, and ther-
mal factors to investigate the failure mechanisms of Li-ion
batteries. This model, rooted in structural damage, is utilized
to analyze the behavior of Li-ion batteries when subjected
to mechanical abuse during the severe short-circuit phase,
considering both the real 3D structure and the entire battery
level. Given the intricate nature of battery modelling and
the temperature inconsistencies during operation, a reliability
design method for Li-ion battery packs was developed in [42].
The method considers the thermal disequilibrium and relies
on cell redundancy. The method involves a comprehensive
Multiphysics model that integrates electric, thermal, and fluid
dynamics in a 3D structure. Additionally, it incorporates a
stochastic degradation model for batteries under real-world
dynamic conditions and a multi-state system reliability
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model for battery packs. The relationships between the
Multiphysics, degradation, and system reliability models
were used to assess the reliability of battery packs and provide
examples of various redundancy strategies. By comparing
the reliability of battery packs with different cell numbers
and configurations, several conclusions were obtained for
the redundancy strategy. More notably, reliability did not
monotonically increase with the number of redundant cells
for thermal disequilibrium effects. More use cases of the
Multiphysics model for reliability assessment can be found
in [128] and [135].

2) ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY

EIS is a vital tool for assessing battery dynamics, particularly
for Li-ion batteries. This is an accurate technique for simu-
lating such batteries. It involves applying a small-amplitude
sinusoidal current (galvanostatic) or voltage (potentiostatic)
signal to the battery at various frequencies and measuring the
impedance of the battery. This allows characterization of the
response of the battery to the applied signal. The impedance
spectrum of the battery can be obtained by performing the
process at different frequencies in the kilohertz (kHz) to
megahertz (MHz) range. This allows for the determination of
the impedance expression as well as the real and imaginary
components of the battery system, which are related by the
following equations [136]:

- Z _ @ _ U sin(wt) 3)
X i(t) I cos(wt — @)

Z' =|Z|cos(¢) )

z" = |Z|sin(¢) Q)

Z=N7+27" (6)

where U represents the magnitude of the voltage signal, /
represents the magnitude of the current signal, Z represents
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the absolute value of the measured impedance, Z' represents
the real part of the cell impedance at frequency w, Z” is the
imaginary part of the cell impedance at frequency w, and
¢ is the phase angle of the impedance. Fig.13 illustrates a
standard EIS plot for a Li-ion battery, with the real impedance
part on the horizontal axis and the imaginary impedance part
on the vertical axis, which is segmented into high, mid, and
low-frequency regions. This typical EIS graph depicts the
impedance, with the intersection of the curve with the real
axis signifying the ohmic resistance of the battery. The mid-
frequency curve, resembling a semi-circle, is linked to the
double electric layer between the electrode and electrolyte
of the battery. In the low-frequency range, the EIS curve
becomes a straight line, indicating a solid diffusion process
within the Li-ion active material particles [137].

Remarkable progress has been made in the use of
EIS to investigate the performance of Li-ion batteries.
Zhang et al. [60] developed an equivalent circuit model
(ECM) using EIS by integrating the charge transfer resistance
and solid electrolyte interface to map their relationships with
SOH (ratio of a battery’s current capacity to its nominal
capacity) [30] at different SOCs and temperatures. Model
parameters were established using the Hamilton Monte Carlo
(HMC) sampling technique. The charge transfer resistance
obtained via EIS and influenced by the temperature and SOC
was chosen as the impedance characteristic for estimating
the SOH using a probabilistic model. Fig.14 shows the
correlation between SOH and charge-transfer resistance. This
empirical study reveals that the EIS-based SOH estimation
method has a mere 4% error when simultaneously accounting
for both the temperature and SOC effects. However, specific
conditions such as 80% SOC at 30°C, yielded an even lower
error of 1.29%. This model enables a more precise evaluation
of the battery’s SOH, accommodating the changes in these
dynamic factors.

Temperature significantly influences the electrochemical
kinetics and substance transfer in Li-ion batteries. The
electrochemical impedance spectra of Li-ion batteries were
examined in [137] using fractional-order theory to estimate
the SOC. The effectiveness of this approach, which estimates
the SOC through EIS, was compared with the widely used
integral-order and electrochemical impedance models with
polarization resistance. The results demonstrate that the
proposed model yields a smaller root mean square error
(RMSE) at both —20°C and +25°C when compared to the
other two models. This distinction is particularly evident at
lower temperatures. Nevertheless, it is important to note that
this evaluation did not account for potential measurement
noise and random disturbances [138]. A single weak cell
within a module can negatively affect the output power
and overall performance of the entire module. To ensure
safety and cost-effectiveness, it is crucial to perform quality
control (QC) tests on individual cells before assembling them
into battery modules. Lambert et al. [139] demonstrated
the use of an EIS-based technique for QC testing at the
end of a Li-ion battery production line. This technique
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successfully distinguished between viable and non-viable
cells. The findings of the study indicate that EIS is a
suitable measurement method for determining cell state and
overall quality during various stages of cell manufacturing.
Koseoglou et al. [140] used dynamic EIS (DEIS) to identify
lithium plating in Li-ion batteries during charging. They
discovered that the impedance around 1Hz, associated with
the charge transfer in the EIS curve notably drops during
lithium plating. This technique allows the detection of lithium
plating onset without the need for specialized sensors or
intricate models, thus simplifying the process.
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FIGURE 13. Standard EIS pattern for a Li-ion battery [137].
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FIGURE 14. Relationship between SOH and charge transfer resistance
under temperature variations [60].

3) INCREMENTAL CAPACITY AND DIFFERENTIAL VOLTAGE
ANALYSIS

Accurate estimation of the states of the battery (SOC, SOH)
can contribute to the reliable and safe operation of the
battery, as well as extend its lifespan. Incremental capacity
(IC) and differential voltage (DV) methods are valuable
and non-destructive techniques used to identify degradation
modes, estimate the states of Li-ion batteries, and determine
their capacity. It can be implemented within a BMS for
effective diagnosis, monitoring, and analysis [73]. In IC and
DV analyses, the cell voltage plateaus are transformed into
clearly identifiable Zl—g (derivative of capacity with respect
to voltage) and ‘é—v (derivative of voltage with respect to
capacity) peaks and valleys on the IC and DV curves,
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respectively [141] and [142]. The IC curve is derived by
calculating the derivative of the battery discharge/charge
capacity with respect to the terminal voltage (V) for both pos-
itively and negatively polarized electrodes, mathematically
represented by Equation (7) [143]. The inverse of the IC gives
the DQ curve, as expressed by Equation (8) [144].
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The peaks and valleys in the IC and DV curves represent
the intercalation and de-intercalation processes respectively.
The characteristics of the extracted peaks, such as positions,
heights, areas [145] for the IC curve, as well as valley
decrease and capacity shift for the DV curve could serve
as indicators directly connected to the degradation process
of Li-ion batteries. Furthermore, the extracted features can
be utilized to monitor the health of the battery and its
states [146].

IC and DV analyses are commonly employed techniques
for identifying battery aging mechanisms and estimating
key important Li-ion battery parameters. Weng et al. [141]
estimated the battery SOH based on ICA by relating the peak
intensity of the IC curve to capacity loss. The results indicated
that the ICA technique can predict the SOH with an error mar-
gin of 1%. Authors in [147] employed an interpolation-based
IC curve acquisition method to approximate IC values within
a 3.8-4.0V voltage range. This technique uses charging
profiles to train a partial least square regression algorithm,
estimating the capacity of three commercial 18650-sized Li-
ion cells in real-time. Sun et al. [148] proposed a battery
capacity estimation approach employing a back-propagation
neural network with ICA features. Their work also integrated
a data-driven model with the Arrhenius model to enhance
accuracy. Itis important to note that the IC curve is influenced
by the charging conditions used in the experiment to estimate
the capacity of the battery. Whereas the above IC-based
capacity estimation approaches rely on standard charging
conditions (typically charging from 0% SOC with a 1/2C
current at 25°C), they do not capture the complex and varying
conditions of EV operation in which the batteries are sel-
domly discharged fully. To address this scenario, in addition
to the standard charging experiments conducted to establish
the relationship between the capacity and characteristics of IC
curves, an additional non-standard charging experiment was
conducted in [149]. The non-standard experiment involved
charging the battery under varying initial SOCs and at
different temperatures. The purpose of the experiments was
to examine the impact of the initial SOC and temperature on
the IC curves. Finally, in this study, the authors developed
an adaptive capacity estimation method based on the ICA.
Zheng et al. [142] transferred the traditional voltage-based
IC/DV curves to SOC-based IC/DV curves, which were
unaffected by changes in battery resistance and polarization
during aging. They introduced a joint estimation technique

77918

for battery SOC and capacity by utilizing three feature points
on IC and DV curves. This proposed approach stands out from
the others owing to its simplicity and easy implementation
without compromising accuracy. In addition, it possesses the
capability of extending the SOC and capacity estimation
technique from a single-cell level to a pack level, thereby
increasing its practical applicability. For more cases of IC/DV
analysis for reliability assessment, readers are encouraged to
peruse [73], [141], [143], [144], [145], [150], [150], [151],
[152], [153], and [154], [155].

Despite the promising results obtained from the above
literature, one prominent limitation of IC/DV analysis is
its high sensitivity to data noise, making it challenging to
accurately identify the peaks in the IC/DV curves owing
to measurement noise in the battery system [147], [156],
[157]. Prefiltering is typically required to address this issue.
Researchers have utilized Gaussian/Lorentzian filters [158],
[159], Kalman filters [149], moving average filters [160],
[161], the improved center least square method [162], and the
Butterworth filter [144] to attenuate the noise signal. As an
example, Fig.15 depicts the noise of the original IC curve
suppressed or smoothed with the application of a first-order
low-pass filter.

—— original curve

10+ ——filtered curve

dQ/dV (Ah/V)

| I
34 35 3.6 37 38 3.9 4 41 42
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FIGURE 15. Original IC curve and filtered IC curve [163].

4) MACHINE LEARNING TECHNIQUES

a: PRELIMINARIES

Machine Learning (ML) is a subset of artificial intelligence
(AI) and refers to a specific approach where computers can
learn and improve their performance on a task without being
explicitly programmed for the task. Instead of following a
fixed set of rules, machine learning algorithms learn patterns
and insights from data, enabling them to make predictions,
classify objects, or make decisions based on past experi-
ences [89]. It is a branch of computer science that focuses
on creating algorithms to derive valuable insights from the
data. Over the past two decades, it has been a prominent and
extensively researched field with diverse applications in both
industrial and academic sectors. ML algorithms have been
widely employed in various disciplines, including reliability
assessment, for which this study provides a comprehensive
overview. Machine learning algorithms typically partition
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a dataset into three main subsets: training, validation, and
testing datasets. The training dataset is utilized to optimize the
trainable parameters of the model (developed from machine
learning), whereas the validation dataset helps determine
the best hyperparameter settings and selects the final model
during the iterative process. The testing data is used to assess
the training quality of the model [164]. Generally, ML is
categorized into supervised, unsupervised, and reinforcement
learning [165]. Supervised learning is employed for two
main tasks: the classification problem, which predicts labels
(discrete values such as success or failure), and regression,
which predicts quantities (such as resistance or capacity
values) [166]. Unsupervised learning is mostly applied to
exploratory analysis, dimensionality reduction techniques,
and feature extraction [166]. Reinforcement learning (RL)
sets itself apart from supervised and unsupervised learning,
as it operates within a dynamic environment. Unlike other
methods that involve clustering or labeling data, RL seeks to
identify the optimal sequence of actions to achieve a favorable
outcome. This is accomplished by employing an agent, which
is a software entity, to explore, interact with, and learn from
the environment. An agent must balance exploration and
exploitation to make informed decisions. It uses a single
function to map state observations to actions, replacing the
need to separately control system sub-components [166].
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FIGURE 16. Machine learning techniques for reliability assessment of
Li-ion battery.
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b: ML TECHNIQUES FOR BATTERY RELIABILITY
ASSESSMENT

A complete family of ML techniques that have been
utilized for reliability assessment and implemented in the
BMS of Li-ion batteries is shown in Fig. 16. Each of
these techniques is briefly explained in [82], [167], [168],
[169], [170], and [171] to aid readers. ML has recently
garnered considerable interest in reliability assessment using
diverse approaches in Li-ion batteries for EVs. Selected
studies on different machine learning algorithms for the
reliability assessment of Li-ion batteries are presented
in Table 4.

These techniques are valuable tools for assessing the
reliability of Li-ion batteries in EVs to ensure safety and
efficiency throughout their lifespan. Whereas each technique
has specific uses, using a combination of these offers
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a more complete insight into Li-ion battery performance
in EV applications. The merits, limitations, and dominant
application areas of each reliability assessment technique are
highlighted in Table 5 to guide researchers and industrial
personnel in which methods to adopt.

5) TRANSFER LEARNING

Typically, ML algorithms are trained and tested using the
training and testing datasets from the same distribution.
However, this assumption often does not hold true in
practical scenarios. If there is a shift in the test dataset,
retraining the ML algorithm requires considerable fresh
training data, incurring significant expense and time to
sustain the accuracy [182]. To circumvent the potential
malfunction of ML algorithms when faced with a new
distribution in the test dataset, transfer learning (TL) has
emerged. TL involves transferring acquired knowledge from
a prior source dataset to facilitate the construction of models
for a new target dataset. A minimal amount of freshly
generated training data is sufficient to reconstruct the ML
algorithm, even if the data does not stem from a similar test
data distribution [183]. Transfer learning can be categorized
into three types based on the changes that occur when moving
from a source problem to a new target problem: inductive,
transductive and unsupervised [184].

Recently, TL has been applied to Li-ion batteries. For
example, Lu et al. [78] proposed a novel approach for
transferring degradation mode (DM) knowledge from syn-
thetic LFP battery datasets to real-world LFP batteries
using a deep-domain adaptation approach. The study used
a deep CNN architecture composed of a series of residual
blocks, called ResNet-50, to classify the DM for the LFP.
However, the classification accuracy was insufficient, and
the DM results were not utilized to further investigate SOH.
Che et al. [185] combined TL and Gated Recurrent NN
(GRNN) to predict the RUL of a Li-ion battery. In their
approach, GPR was used to optimize the threshold of the
health indicator (peak voltage at the change point between
the first two charging stages) to determine the EOL of
the battery. After optimizing these health indicators, they
applied TL and GRNN to predict the RUL. TL was used to
transfer relevant information from a source to a test battery,
thereby improving prediction accuracy. Although the results
demonstrated that the method could predict RUL with an
error of fewer than five cycles after fine-tuning, it highly
depended on the chosen health indicator, leading to inaccurate
RUL predictions. In [186], a semi-supervised self-learning
approach for predicting the lifetime of Li-ion batteries was
proposed. As shown in Fig.17, the method adopted by the
authors involves two main components: capacity estimation
and degradation prediction. In the capacity estimation
component, three health indicators (HIs) were extracted
from the partial capacity-voltage curve of the battery. These
HIs capture important information regarding the degradation
pattern of the battery. A capacity estimation model based on

77919



l E E E ACC@SS J. Omakor et al.: Battery Reliability Assessment in Electric Vehicles: A State-of-the-Art

TABLE 4. Machine learning algorithms application in reliability assessment of Li-ion batteries.

subsequent charging
operation of Li-ion battery
in electric vehicles.

Machine Learning Application Remarks Ref.

algorithm

Migrated Gaussian Predicting battery nonlinear [172]

Process Regression two-stage aging trajectory o Introduction of a data-driven model, migrated Gaus-

(GPR) considering the effect of the sian Process Regression for accurate prediction and
knee point. uncertainty quantification.

o Demonstrated outperformance of migrated-GPR
over zero-mean GPR for training before and after
the knee point.

« Effective prediction with just 30% initial data, sig-
nificantly decreasing experimental effort.

« Supports early maintenance and analysis for second-
life battery suitability.

K-means clustering Assessment of the impacts [173]

and Gaussian Naive manufacturing conditions o The proposed method has high throughput sample

Bayes (active material percentage, prediction.
liquid to solid ratio, and o It can be applied to varieties of Li-ion battery
coating gap between chemistries.
electrode and current « Electrode heterogeneity can be predicted with high
collectors) on electrode and precision.
prediction of electrode
heterogeneity.

Linear Principal Early detection of soft [174]
Component Analysis internal short circuit of o Although the linear PCA approach offers com-
(PCA) and nonlinear Li-ion battery. putational advantages, the nonlinear kernel PCA

Kernel PCA method’s high sensitivity and specificity allow for
earlier detection of internal short circuits.

« The method has the potential to early detect abnor-
mal temperature changes in jelly roll battery struc-
ture without the need for temperature sensors.

Hybrid of modified | Thermal runaway prognosis [175]
Long Short-Term based on abnormal heat o Thermal runaway predictive variable is limited to
Memory (LSTM) generation. temperature.
and Convolutional o The CNN-LSTM model accurately predicted battery

Neural Network temperature 8 minutes in advance, demonstrating a

(CNN) mean relative error of only 0.28%.

o Thermal runaway prediction was effectively
achieved with a 27-minute advance, enhancing the
method’s practicality.

eXtreme Gradient Detection of previous [66]

Boosting algorithm over-discharge and » High accuracy is achieved.

prevention of fault alarms « Sensitivity to sample data.
from being broken by

a neural network with LSTM layers was trained using HIs
and a limited number of labelled checkpoints. The model
reconstructs the historical capacity of the battery using the
HIs and available checkpoints. In the degradation prediction
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component, a degradation prediction model based on a neural
network with LSTM layers is trained using the reconstructed
capacities from the capacity estimation model. The model
was self-trained using the pseudo-values of the estimated
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TABLE 4. (Continued.) Machine learning algorithms application in reliability assessment of Li-ion batteries.

Machine Learning Application Remarks Ref.
algorithm
Nonlinear SOH estimation of Li-ion [176]
autoregressive with batteries under sensor The proposed SOH estimation approach holds
exogenous inputs measurements promise for industrial applications prone to random
recurrent neural unavailability. data unavailability.
network
(NARX-RNN)
NARX-RNN Long-horizon SOH and [177]
RUL prediction of Li-ion The algorithm achieved an RMSE within 3% and
battery. MAE within 2% for unseen data. This high level of
accuracy is crucial for reliable SOH estimation and
RUL prediction.
Low computational complexity.
Hybrid of Monte Preventive maintenance [178]
Carlo tree search and considering reliability. The algorithm is responsible for determining when
deep neural network. and which battery cells should be replaced.
It is 10 times faster and offering superior decision-
making performance than the game theoretical ap-
proach.
Feed-forward Prediction of aging [179]
migration neural trajectories of Li-ion It’s able to predict the aging trajectories without
network batteries. covering the knee point.
Stable results with random initialization.
It is applicable to various battery types without
needing electrochemical data.
Back-propagation SOH estimation of Li-ion [180]
neural network batteries under different The SOH estimation method relies on the accuracy
(BPNN) dynamic operating of equivalent circuit model and the fused features.
conditions based on feature Inaccuracies or limitations in these components,
extraction. could affect the accuracy of the SOH estimation.
SOH estimation method is independent of the accu-
racy of the SOC of the battery.
Lacks robustness and adaptability to extreme or
unfamiliar operating conditions.
The ternary hybrid SOH estimation of Li-ion [181]
of CNN, batteries without manual The CBAM helps reduce noise in the raw data and
convolutional block feature extraction. improves CNN’s ability to extract health features.
attention module Achieved high accuracy in SOH estimation.
(CBAM) and LSTM.
Spiral self-attention Real-time temperature [40]
neural network prediction for thermal fault Adaptable to various climates and operational con-
(SS-ANN) prognosis ditions.
Excellent temperature prediction aids in the early
detection of thermal anomalies.

capacity. This self-training process improves the accuracy of
future degradation predictions. The model also incorporated
a probabilistic dense layer to estimate uncertainty using

probabilistic predictions of future capacity. The proposed
method was evaluated for different application scenarios,
including batteries with different profiles and types. The
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Input

The inputs are the health
indicators (HIs) extracted
from the partial capacity-
voltage curve of the battery.

First LSTM layer

Capacity estimation

The first LSTM layer is used
to capture the sequential
information and patterns in
the input data

Second LSTM layer

The second LSTM layer is
also used to capture
******************** | sequential information and
patterns, building on the
output of the first LSTM
layer

Probabilistic dense layer

This layer is used to
introduce uncertainty into
the model by setting the
weights and biases as
distributions instead of
specific values

Distribution layer

This layer outputs the
predicted distribution of the
future capacity, providing a
probabilistic prediction.

Mean and standard deviation

The mean and standard
deviation are calculated to
provide the confidence
interval (CI) of the
predicted capacity curve,
allowing for a measure of
uncertainty in the
predictions.

Standard

Mean oz
deviation

FIGURE 17. Framework and training process of the lifetime model.

results showed that the method achieved an accurate lifetime
prediction with limited known labelled data. The mean
lifetime prediction error was less than 23 cycles, with only
three known checkpoints for battery aging under different
profiles. For different battery types, the errors were less than
50 cycles with less than 4.1% relative errors for long-lifespan
batteries and less than 20 cycles with less than 5.21%
relative errors for short-lifespan batteries. However, this
method demonstrated good accuracy with a small amount of
checkpoint data, obtaining these checkpoints in real-world
applications remains challenging. The limited availability of
labelled data can hinder the effectiveness of this method.
Feature-based SOH estimation has recently received con-
siderable attention, with researchers using different HIs,
such as voltage, current and time. To consider the rarely
utilized variable temperature of a battery as a health indicator,
the authors of [187] proposed a novel method for battery
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FIGURE 19. DNN-TL with no fixed-layer and 1 fixed-layer compared with
the stand-alone DNN model [183].

health prognosis using sensor-free differential temperature
(dT) voltammetry reconstruction and SOH estimation. The
proposed method uses a multi-domain adaptation approach
to improve the dT curve reconstruction and SOH estimation
accuracy. The framework presented in Fig.18 illustrates an
approach using a domain-adaptive end-to-end framework.
The capacity-voltage (Q-V) curve is transformed into a dQ-V
curve (forming the dQ sequence) and inputted into a neural
network. An LSTM layer extracted the hidden information
owing to the strong temporal relationships in the data. This
was followed by a fully connected layer that predicted the
dT sequence. The maximum mean discrepancy (MMD) loss
minimizes the domain differences between the source and
target batteries. The estimated dT and dQ sequences were
then used for SOH estimation, incorporating MMD loss to
reduce domain discrepancies before the final output. The
results revealed that under different scenarios, the mean errors
were less than 0.067°C/V for dT curves and 1.78% for
SOH. Compared with the conventional data-driven method
without TL, the proposed method reduces the error for the
dT curve reconstruction by more than 20% and the SOH
estimation error by more than 47%. In another study [183],
TL in conjunction with a Deep Neural Network (DNN) was
proposed for capacity estimation of Li-ion batteries using EIS
measurements as the input features to the base model. In the
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TABLE 5. Advantages and disadvantages of the different reliability evaluation techniques [97], [189], [190], [191], [192], [192], [193], [194], [195].

Techniques Main area of Advantages Disadvantages
Application
FMMEA Comprehensive
risk assessment Assesses risks and criticality of fail- Requires domain knowledge and ex-
and failure ure modes. pertise.
prevention for Helps prioritize and allocate re- Time-consuming process.
battery systems. sources for mitigation. Subjective assessment may poten-
Enhances understanding of battery tially lead to bias.
failure behavior. Limited to known failure mecha-
Facilitates design improvements and nisms.
risk reduction. Can be resource-intensive for detailed
Supports early detection and preven- analysis.
tion of failures. Lack of data support.
X-ray Internal structure
computed analysis, defect Provides detailed 3D internal struc- Radiation exposure can be a concern.
tomography detection, and ture. Equipment and setup costs can be ex-
quality control of Non-destructive technique. pensive.
battery cells and Detects internal defects and anoma- Complex data interpretation.
packs. lies. Requires large amount of data storage
Identifies thermal management is- and data analysis.
sues. Often requires the service of an expert
Aids in diagnosing degradation to operate scan equipment.
mechanisms. Subject to artifacts and noise.
Suitable for in-situ and post-mortem
analysis.
Scanning Identifying
electron contaminants or High-resolution imaging. High cost and complexity: SEM
microscopy impurities in Ability to conduct chemical analysis equipment is expensive and requires
battery materials, using energy dispersive x-ray spec- skilled operators.
investigating troscopy. Sample preparation can be time-
particle size and Crystallographic  analysis  using consuming and may introduce arti-
distribution, electron backscatter diffraction. facts [196].
analyzing the Minimal sample  manipulation
morphology of [196].
electrodes and
SEI,
characterizing
electrode
materials.
Multiphysics Capacity fade
modelling prognosis, State It considers various multi-faceted Creating and solving Multiphysics
of Health nonlinear paths that decrease the models can be complex requiring ad-
estimation, performance of Li-ion battery. vanced mathematical skills.
internal short Facilitates the optimization of Li-ion Simulation setup, execution, and
circuit and battery designs. post-processing can be  time-
thermal runaway Enables realistic simulations that consuming due to the complexity of
investigation. mimic real world conditions and be- models.
haviors [42]. Demands significant computational
resources, including high-
performance  computing  clusters
[42].
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TABLE 5. (Continued.) Advantages and disadvantages of the different reliability evaluation techniques [97], [189], [190], [191], [192], [192], [193], [194],

[195].

Techniques Main area of Advantages Disadvantages
Application
EIS Battery
performance Non-destructive technique. Complex computation (requires fit-
monitoring, Measures internal resistance and ting a model).
state-of-health impedance. Not universal (model dependent).
estimation, and Possibility for on-board implemen- Accuracy dependent on different
degradation tation subject to SNR and time in- sources: measurements and model.
analysis. variance. Complex hardware design and time-
Enables measurement at frequencies intensive signal injection processes.
and SOC.
Good measurement accuracy.
IC-DV Detection of
analysis capacity fade, Accuracy dependent mostly on the Long test duration (10h/cell).
electrode measurement. Some degradation modes may not be
degradation, and Possibility for on-board implemen- captured.
performance tation subject to C-rate. Sensitivity to measurement noise.
issues. Simple calculation. Complex data analysis and interpreta-
Universal (model independent). tion.
Limited to specific testing conditions.
Machine Data-driven
learning predictive Automates complex data analysis. Requires significant data for training.
algorithms maintenance, Handles large and complex datasets. Data quality and availability affect
remaining useful Identifies failure patterns not obvi- performance.
life estimation, ous to humans. Black-box nature limits interpretabil-
and anomaly Enables real-time monitoring and ity.
detection. prediction. High computational requirements for
Supports decision-making for main- complex models.
tenance. Model selection and parameter tuning
Provides insights into degradation complexity.
mechanisms. Vulnerable to bias if training data is
not diverse.
Transfer Battery health
Learning monitoring, fault Improved model performance. Transferring knowledge might lead to
diagnosis, and Requires less data for training new overfitting if not adjusted properly.
performance models. Dependency on source data quality.
optimization. Shortens development time by uti-
lizing existing knowledge.
Enhanced generalization: Can adapt
well to new or useen data.

study, the base DNN model was trained and validated using
a source dataset comprising EIS measurements and battery
capacity at 25°C and 35°C. Then, followed by retraining
and validation of the base model using the first 50% and
first 20% of the target dataset at 45°C. This created a new
DNN-TL model that carried the knowledge from the base
model. The DNN-TL model was then used to predict the
remaining portion of the target dataset (50% and 80%), which
were considered as missing data. The effect of the number
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of fixed layers on the DNN retention was also investigated.
Finally, the efficacy and comprehensiveness of the method
were evaluated by comparing it with a benchmark standalone
DNN base model without TL. Fig.19 depicts the performance
of the predicted capacity based on DNN-TL with no fixed
layer and one fixed layer compared with the standalone
DNN model and the true value of the capacity based on the
validation dataset. Evidently, the DNN-TL model followed
the true capacity value and outperformed the standalone DNN
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model. In addition, the DNN-TL model with no fixed layer
demonstrated outstanding performance compared with other
models, specifically the standalone base model. Generally,
the results showed that the DNN-TL model achieved high
accuracy in the estimation of the battery capacity, with an
MAPE of 0.605% and an average coefficient of determination
(R-squared) of 0.9683. However, only EIS measurements at
SOC 0% and 100% were tested in their approach, limiting
the effectiveness of the method across a wider range of SOC
values. Moreover, EIS measurements are noise-related and
hence require signal-processing techniques such as filtering.
TL has also been applied to health assessment in PHM
in [188]. The proposed framework integrates probabilistic
multi-task learning (2D convolutional neural network-Long
Short-Term Memory-Bayesian neural network and Kneedle
method) to predict battery knee, lifetime, SOH degradation,
and aging rate variations early. The health assessment
strategy involves the detection of different working condition
stages such as “green’ health region, “yellow” accelerating
aging region, and “‘red” fast aging region. This assessment
was based on the predictions of the knee slope, future
degradation curve, and variation rates of the degradation
curve. The framework also includes onboard prediction,
cloud-edge collaboration for model improvement, and TL
for model adjustment in onboard applications. The proposed
method combined different prediction tasks to improve
integrity. Simultaneously, it maintains accuracy, is flexible
for adjustment to additional practical requirements, and
can be extrapolated to other batteries aged under various
operating conditions. The results indicated that the proposed
method improves early predictions, sequence prediction
reliability, and detection of accelerated battery aging, thus
providing a suitable solution to facilitate practical applica-
tions and economizing resources by minimizing the need
for separate model construction. It also shows impressive
accuracy and provides advantages for integrating distinct, yet
interrelated prognostic tasks into future battery management
systems.

V. RECOMMENDATION

In light of the comprehensive analysis presented in this
survey paper on the reliability assessment of Li-ion batteries
for electric vehicles, several key recommendations have
emerged.

« Standardization of Testing Protocols: The devel-
opment and implementation of standardized testing
protocols for battery reliability assessments are cru-
cial. A unified approach would facilitate accurate
comparisons between different studies and ensure a
consistent evaluation across the automotive industry.
For example, standardized protocols can be used to
assess the performance and reliability of Li-ion batteries
under various operating conditions such as extreme
temperatures, high load demands, and rapid charging.
This can help manufacturers and researchers to identify
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potential weaknesses and optimize battery designs to
improve reliability.

o Integration of Real-World Data: Incorporating
real-world usage data from EVs can provide a more
accurate representation of battery performance under
various conditions. For instance, by collecting data on
driving patterns, charging habits, and environmental
factors, researchers can analyze the impact of different
usage scenarios on battery reliability. These data can be
used to validate reliability assessment techniques and
develop predictive models that account for real-world
conditions.

« Integration of Controller Area Network (CAN) for
enhanced assessment: CAN enables the seamless
exchange of information between different modules
within the EV, such as the battery pack, motor controller,
and charging system. This real-time data sharing allows
for a holistic understanding of the battery behavior under
various conditions, including temperature fluctuations,
load changes, and charge/discharge cycles. Utilizing
CAN-based communication, researchers can access
critical parameters such as voltage, current, temperature,
and state of charge with high precision and frequency,
enabling them to detect anomalies and deviations in
battery performance promptly.

« Regulatory Considerations: Policymakers and regu-
latory bodies should actively engage with researchers
and industry experts to establish guidelines that ensure
the reliability and safety of Li-ion batteries in EVs. For
example, regulations can mandate standardized testing
procedures, require the integration of safety features in
battery designs, and set performance benchmarks for
battery reliability. These regulations should evolve in
tandem with technological advancements to ensure the
continuous improvement of battery reliability in EVs.

VI. CONCLUSION

The degradation of Li-ion batteries in electric vehicles owing
to charging and discharging cycles and their abusive usage
highlight the necessity of assessing their reliability. This
assessment is crucial for the lifespan, design, maintenance,
and service of an electric vehicle. A comprehensive overview
of state-of-the-art battery reliability assessment techniques
was presented in this survey paper. Based on the synthesized
and critically examined nature of techniques, the type of
data used, and the way reliability assessments are conducted,
this survey paper categorized reliability assessment into two
groups: qualitative and quantitative approaches. Qualitative
methods such as failure modes mechanisms and effects
analysis, X-ray computed tomography, and scanning electron
microscopy have focused on understanding the potential
failure mechanisms and material structure/composition,
respectively. They are primarily used in early battery design,
risk identification, and post-mortem analysis; however, they
lack real-time applications in battery management systems.
Conversely, quantitative approaches, such as multiphysics

77925



IEEE Access

J. Omakor et al.: Battery Reliability Assessment in Electric Vehicles: A State-of-the-Art

modelling, electrochemical impedance spectroscopy, incre-
mental capacity analysis/differential voltage analysis,
machine learning, and transfer learning provide compre-
hensive real-time insights into battery performance. Elec-
trochemical impedance spectroscopy, incremental capacity
analysis and differential voltage analysis reveal aging-related
issues and nonlinear degradation within batteries but require
laboratory tests, the data of which can be used to train
and validate machine learning models. Machine learning
and transfer learning offer adaptable approaches for battery
management systems but demand more data and complex
computational resources. Quantitative methods are consid-
ered more cost-effective than qualitative methods in terms of
labor and equipment expenses. Recommendations to enhance
the reliability of Li-ion batteries in electric vehicles have been
suggested, including standardized testing, real-world data
integration, controller area network integration into battery
management systems, and regulatory considerations. This
survey paper serves as a valuable resource for researchers,
engineers, and policymakers in the field, providing insights
into the current landscape and guiding future efforts toward
achieving higher levels of battery reliability.
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