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ABSTRACT We propose a novel deep learning-based anomaly detection (AD) system that combines a
pixelwise classification network with conditional normalizing flow (CNF) networks by sharing feature
extractors. We trained the pixelwise classification network using synthetic abnormal data to fine-tune a
pretrained feature extractor of the CNF networks, thereby learning the discriminative features of the in-
domain data. After that, we trained the CNF networks using normal data with the fine-tuned feature extractor
to estimate the density of normal data. During inference, we detected anomalies by calculating the weighted
average of the anomaly scores from the pixelwise classification and CNF networks. Because the proposed
system not only has learned the properties of in-domain data but also aggregated the anomaly scores of
the classification and CNF networks, it showed significantly improved performance compared to existing
methods in experiments using the MvTecAD and BTAD datasets. Moreover, the proposed system does not
increase computations intensively since the classification and the density estimation systems share feature
extractors.

INDEX TERMS Industrial inspection, machine vision, deep learning, anomaly detection, synthetic defect
generation, density estimation, normalizing flow network, fine-tuning network.

I. INTRODUCTION
To detect abnormal (or defective) samples using supervised
learning, a sufficient number of abnormal samples are
required to train a network. However, it is often difficult to
acquire sufficient abnormal data because they rarely occur
for events such as quality control for industrial inspection [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], video surveillance [19], [20], disease
diagnosis using medical images [21], [22], [23], [24], and
abnormal electrocardiogram vital-sign detection [25], [26].
Therefore, anomaly detection (AD) methods, which train
a network using only normal data and detect test samples
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deviating from the normal data as anomalies, have been
widely studied [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26]. As a matter of fact, AD is very
challenging because a network trained using only normal data
may have difficulty detecting anomalies similar to the normal
data.

Methods for AD can be categorized into reconstruction-
based [1], [2], [3], [4], [5], [6], [7], [8], [19], [20], [21],
[22], [23], distance-based (or embedding-based) [12], [13],
[14], [15], [16], [17], [18], [27], and anomaly simulation-
based (or self-supervised learning-based) [8], [9], [10],
[11], [24], [28] methods. Reconstruction-based methods
train a network to reconstruct the input using only normal
data and identify anomalies based on reconstruction errors.
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The idea behind these methods is that the network does
not reconstruct abnormal data well because it was trained
using only normal data. Many researchers have investigated
these methods because they are simple and intuitive [8],
[12]. However, reconstruction-based methods have struggled
to detect abnormal data because they often reconstruct the
abnormal data well [29], [30], [31]. Many studies [3], [4], [5],
[6] have referred to this as an overgeneralization problem and
have endeavored to solve it.

Distance-based methods estimate the density of the fea-
tures of normal data and determine samples whose statistical
distances are larger than a certain threshold as abnormal
samples. Usually, these methods [12], [13], [14], [15], [16],
[17], [18] utilize a pretrained network for classification
of a large-scale dataset (e.g., ImageNet [32]) as feature
extractors. Thanks to the discriminative features of the
pretrained network, recent studies [15], [16], [17], [18]
reported that the methods show satisfactory performance
for some applications. However, we strongly believe that
the pretrained network is not effective in extracting suitable
features for AD for inspection of industrial products because
of the large domain gap between the industrial product and
ImageNet datasets.

To obtain discriminative features of the in-domain data,
anomaly simulation-based [8], [9], [10], [11], [24], [28]
methods have been studied to approximate real-world
abnormal data by generating synthetic abnormal data with
spatial irregularities. These methods train a network to
classify normal and synthetic abnormal data at the image
or pixel levels. Therefore, the network can elaborately
identify abnormal regions because it learns the discriminative
features of the in-domain data. However, they are limited
because synthetic abnormal data may not represent all the
manifestations of abnormal data in the real world. This causes
an overfitting problem, in which the network struggles to
detect anomalies in the test phase owing to biases in the
synthetic abnormal data [11].

Considering the limitations of existing AD methods,
we propose a method that combines a pixelwise classification
network with conditional NF (CNF) networks [33] by
sharing feature extractors to enhance performance for AD.
In addition, to effectively obtain discriminative features
from the in-domain data, we propose a hybrid training
algorithm that trains the pixelwise classification network
using synthetic abnormal data and trains the CNF networks
using only normal data. We expect the proposed method to
show improved performance for two reasons. First, we expect
to improve the performance of the CNF networks because
of the discriminative features of the in-domain data from
the fine-tuned feature extractor. Second, we believe that
aggregating the predictions of the pixelwise classification
and the CNF networks enhances the performance because
of the positive impact of network ensembles [34], [35],
[36] and collaborative effects. In addition, the proposed
method showed better performance than existing methods of
AD without significantly increasing the complexity of the

network thanks to the sharing of feature extractors of the
pixelwise classification and CNF networks. We empirically
demonstrate our arguments using various metrics and exten-
sive experiments on the MVTec AD [37] and Bean-Tech AD
(BTAD [38]) datasets.

The main contributions of this study are summarized as
follows:
• To the best of our knowledge, this study is the first
attempt to enhance the performance of AD by fine-
tuning the feature extractor of CNF networks by
pixelwise classification using synthetic abnormal data.
We experimentally demonstrated that the fine-tuned
feature extractor is helpful in the extraction of valuable
features for AD, owing to its discriminative ability and
in-domain knowledge. In addition, we confirmed that
the fine-tuned feature extractor by pixelwise regression
degrades performance for AD because it extracts only
normal features, even though a test image has anomalous
regions.

• We propose a network architecture that combines a
pixelwise classification network and CNF networks
through a shared feature extractor to improve perfor-
mance of AD. Moreover, to utilize their collaborative
effects, we propose a hybrid training algorithm that
trains the pixelwise classification network using syn-
thetic abnormal data and trains CNF networks using only
normal data. To the best of our knowledge, combining
the pixelwise classification network and CNF networks
with the shared feature extractor for performance
improvements has not been attempted for AD.

The remainder of this paper is organized as follows.
Section II reviews existing ADmethods. Section III describes
the proposed method in detail. Section IV presents the
results that empirically demonstrate our arguments through
extensive experiments. Finally, Section V summarizes and
concludes the study.

II. RELATED WORK
A. RECONSTRUCTION-BASED METHODS
Reconstruction-based methods identify abnormal data based
on reconstruction errors from a network trained to reconstruct
the input using only normal data. The underlying concept
of these methods is that representations learned only from
normal data may not describe the features of abnormal
data [29]. Many researchers [1], [2], [19], [20], [22] have
extensively utilized autoencoder structures and generative
networks because of their simplicity. Autoencoder structures
learn intrinsic features of normal data by compressing an
input image into low-dimensional embeddings to prevent
the copying of the input [1]. Generative networks for AD
are trained to generate normal data and detect anomalies
based on the quality of the generated fake images [2],
[19], [20], [21], [22]. However, these methods have an
overgeneralization problem in that the network reconstructs
or generates abnormal data well. Therefore, some researchers
[3], [4], [5], [6] have attempted to utilize in-painting methods
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for AD, expecting the network to consider the context of the
data to alleviate the overgeneralization problem.

Despite these attempts, researchers of the discriminatively
trained reconstruction anomaly embedding model (DRAEM)
[8] and masked swin transformer U-net (MSTUNet) [7]
have argued that reconstructive networks trained with only
normal data still have the overgeneralization problem.
They attempted to mitigate the overgeneralization problem
by utilizing synthetic abnormal data, thereby improving
the performance. Moreover, to prevent the problem of
overfitting to synthetic anomalies, they sequentially trained
a reconstructive network to reconstruct normal data from
synthetic abnormal data and a discriminative network to
predict synthetic abnormal regions from the concatenated
input of the reconstructed normal and synthetic abnormal
data. However, we believe that these methods still suffer from
the overfitting problem because the final prediction of the
system relies strongly on synthetic abnormal data.

B. DISTANCE-BASED METHODS
Distance-based methods estimate the density of the normal
features extracted from a pretrained network for classification
on a large-scale dataset (e.g., ImageNet [32]) and identify
abnormal samples based on statistical distances from the
normal data. Researchers have hypothesized that the discrim-
inative ability of the pretrained network is also helpful for
AD [27]. The patch distribution modeling method (PaDiM)
[12] is a method that estimates the distribution of each normal
feature vector as a multivariate Gaussian distribution without
an additional training process for AD. Some researchers
[13], [14], [15] have leveraged an NF network consisting
of a sequence of invertible transformations with parameters
determined by small network blocks to estimate the complex
distribution of normal features [33], [39]. The CNF frame-
work for AD (CFlow-AD) [15] utilizes CNF networks [33]
to estimate the distribution based on the position information
to improve the performance at the pixel level. However,
we believe that the pretrained feature extractor is not effective
in providing suitable features for AD to CNF networks
because of the domain gap between the ImageNet and in-
domain datasets.

In addition, some researchers [16], [17] applied the
knowledge distillation framework to AD by considering the
pre-trained network as a teacher network and training a
student network to mimic the feature maps of the teacher net-
work for normal data. Subsequently, anomalies were detected
based on the distance between the feature embeddings of the
teacher and student networks. The collaborative discrepancy
optimization (CDO) method [18] utilizes synthetic abnormal
data that are randomly generated by inserting rectangular
patches with random values sampled from a Gaussian normal
distribution into normal data. It trains the student network to
enforce l2 distances between the features extracted from the
student and teacher networks such that they are sufficiently
small for normal data and sufficiently large for abnormal data.

Similar to focal loss [40], this method utilizes an overlap
optimization module to correct the outliers in normal and
synthetic abnormal data during training. However, we argue
that these methods are not effective at considering in-domain
knowledge because they train the student network to mimic
the pretrained network on the ImageNet dataset. In addition,
we presume that CDO may be susceptible to overfitting with
synthetic abnormal data because it trains the student network
to discern synthetic abnormal regions from normal regions.

C. ANOMALY SIMULATION-BASED METHODS
Anomaly simulation-based methods generate synthetic
anomalous data using normal data and train a network to
classify them. Researchers who have studied these methods
generated synthetic abnormal data by applying random
transformations to normal data [9], [10], [11], [24], assuming
that the main characteristic of the anomalies is spatial
irregularity. Therefore, these methods are also known as self-
supervised learning-based methods because they learn data
representations by predicting the geometric transformations
of normal data [10], [11]. CutOut [9] randomly selects
rectangular patches of an input image and fills them in
gray. However, the appearance of the synthetic abnormal
data generated by CutOut is unrealistic and monotonous.
To generate realistic synthetic abnormal data, CutPaste [10]
randomly selects patches of a normal image and inserts
them into random regions of the image. Furthermore, some
researchers have proposed the natural synthetic anomaly
generation method (NSA [11]) using the Poisson image
editing method, which seamlessly blends one image with
another.

In addition to these methods, some researchers [8],
[28] have utilized another dataset to generate synthetic
anomalous data. DRAEM [8] proposed a method for
generating defect segments by applying a mask generated
using Perlin noise [41] to an image from a describable
texture dataset (DTD [42]). The memory-based segmentation
network (MemSeg [28]) developed this method to generate
more realistic synthetic defect data by adding the binarization
process of the image to separate the background from an
object for inspection. A network trained with synthetic data
generated using these methods can improve performance for
AD because it learns features distinct from normal data.
However, the network has an overfitting problem because
synthetic abnormal data may not cover the appearance of
abnormal data in the real world [11].

III. PROPOSED METHOD
This section introduces the proposed method that combines a
pixelwise classification network with CNF networks by shar-
ing feature extractors. We explain the synthetic defect data
generation method used to train the pixelwise classification
network, the network architecture of the proposed method,
and the hybrid training algorithm and score map aggregation
method used to enhance performance for AD.
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FIGURE 1. Synthetic defect data generation process in the proposed method.

A. SYNTHETIC DEFECT DATA GENERATION METHOD
We generated a synthetic defect dataset to train the pixelwise
classification network using MemSeg’s synthetic defect
image generation method [28] and a label-smoothing strategy
inspired by NSA [11]. In Fig.1, we describe the synthetic
defect data generation process based on the extent of the
differences in appearance between a synthetic defect image
and a normal image. Fig.1(a) shows the generation process
for synthetic defect data with apparent differences using
data (xa(1)) from another dataset (e.g., DTD [42]). Fig.1(b)
illustrates the generation process for synthetic defect data
with subtle differences using other normal data (xa(2)) from
the in-domain dataset.

To generate the synthetic defect data, we first generated
a pattern mask (Mp) using Perlin noise [41] to create
irregularities in the defect patterns [8], [28]. In addition,
we obtained an object mask (Mo) by applying Otsu’s method
[43] and morphological operations to the grayscale normal
image [28]. To prevent the generation of synthetic defects in
the background, we produced a synthetic defect mask (Md)
by applying an element-wise product of the pattern and object
masks [28]. The synthetic defect regions (sd) were randomly
sampled bymasking an image (xa) that was used as the source
of defect regionswith the defect mask [8], [28]. Subsequently,
we generated synthetic defect data (xs) by blending these
regions (sd) with the normal data (xn).

To assign the ground truth for the synthetic defect
data, we generated soft labels using the label-smoothing
approach inspired by NSA [11] to consider the extent of
abnormal appearances. One-hot encoding, which is typically
used as the ground-truth probability, can be unsuitable for
synthetic defect data because of the inconsistent quality of
randomly generated synthetic defects. To generate soft labels
(ts(1), ts(2)), we first normalized the input defect-free image

(xn) and the synthetic defect image (xs) between 0 and 1, and
calculated the differences in the RGB values. Subsequently,
we generated the pixelwise ground-truth probability of the
synthetic defects by applying the sigmoid function to
the averaged values of the color differences. Therefore, the
network can learn to distinguish synthetic defect regions
with subtle (xs(2)) and apparent (xs(1)) changes, as shown in
Fig.1. We expected this to prevent the network from making
incorrect predictions with high confidence during the testing
phase.

B. NETWORK ARCHITECTURE
1) OVERALL NETWORK ARCHITECTURE
We describe the overall network architecture of the proposed
method in Fig.2. The network used in the proposed method
consists of an encoder-decoder network for pixelwise clas-
sification and CNF networks for estimating the distribution
of normal data. We used this network architecture for the
following two reasons: First, the feature extractor fine-tuned
by pixelwise classification using synthetic defect data
improves the performance of the CNF networks because of
its discriminative abilities and domain gap reduction. Second,
the aggregated prediction of the pixelwise classification and
CNF networks improves the performance because of their
collaborative effects and the positive effects of network
ensembles [34], [35], [36].

We first constructed a pixelwise classification network to
fine-tune the pretrained network on the ImageNet dataset
to obtain in-domain knowledge and discriminative abilities.
We propagated multilevel feature maps with three different
resolutions from the encoder to the decoder using skip
connections [44]. In addition, to identify defects with small
regions and structural differences, we used three independent
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FIGURE 2. Network architecture of the proposed method comprising a U-Net structured network for pixelwise classification and CNF networks for
density estimation.

CNF networks for feature maps with different resolutions
conveyed by the fine-tuned feature extractor.

2) PIXELWISE CLASSIFICATION NETWORK
The convolutional blocks used to construct the pixelwise
classification network are shown in Fig.2. We used the pre-
trained WideResNet-50-2 [45] on the ImageNet dataset as
an encoder for the pixelwise classification network. The
encoder contains one input convolution block and four
bottleneck blocks. The input convolution block contains a
7×7 convolution layer with strides of 2, a batch normalization
layer, ReLU activation, and a max pooling layer with strides
of 2. The bottleneck blocks (N, c1-c2-c3) denote a set of N
bottleneck blocks, where c1, c2, and c3 represent the number
of output channels for 1 × 1, 3 × 3, and 1 × 1 convolutions
in the bottleneck block, respectively. The bottleneck block
was proposed in ResNet [44] to effectively learn features
in deep neural networks. This block comprises two 1 × 1
convolutional layers and a 3 × 3 convolutional layer. The
former 1 × 1 convolution layer reduces the number of
channels, whereas the latter 1× 1 convolution layer restores
the dimensions of an input feature. A 3 × 3 convolution
layer between the two 1 × 1 convolution layers can extract
a valuable feature from the compressed input feature.

We designed a decoder network to be symmetric to the
encoder but made it shallow by reducing the number of
channels to 1

4 of the number of channels for the encoder.
Therefore, the decoder contains four bottleneck blocks, one
transition block, and one output block. The transition block
reduces the number of channels using two combinations of
1 × 1 convolutional layers and ReLU activation. The output

block contains a 3×3 convolution layer, a batch normalization
layer, ReLU activation, and one convolution layer to reduce
the number of channels to the number of classes.

The loss function of the pixelwise classification network
using ground-truth probability with our label-smoothing
strategy is defined as follows:

Lcls = −
1

HW

H∑
i=1

W∑
j=1

C∑
c=1

tcij log p
c
ij, (1)

where pcij represents the predicted probability of class c for
a pixel at position (i,j); tcij represents the target probability of
class c, which is the smoothed label in the synthetic defect
regions; C is the number of classes; and H andW denote the
height and width of the output, respectively.

3) CONDITIONAL NORMALIZING FLOW NETWORK
The CNF network (fi) for a feature map (yi) receives feature
vectors (yki ) with channel dimension Ci at each position k
of the ith feature map and a position-embedding vector (cki )
with dimension D generated by using the unique sinusoidal
harmonics for its spatial location [15], [46]. Each CNF
network consists of six invertible blocks, each of which is
constructed as shown in Fig.3. First, the input feature vector
is split into two subvectors: (yki,1 and yki,2). Subsequently,
it generates the scale (ski,1, s

k
i,2) and shift (t

k
i,1, t

k
i,2) parameters

of each subvector by feeding the other subvector and the
position embedding vector into fully connected layers and
nonlinear functions to estimate complex distributions [15],
[47]. Therefore, the invertible transformation of the CNF
network can differ, even if the two feature vectors at different
positions are the same. This allows the network to estimate
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FIGURE 3. Invertible transform block of the CNF network of the proposed method.

FIGURE 4. Inference process of the proposed method.

the distribution of normal features by considering spatial
information, thereby enhancing the performance at the pixel
level [15].
We trained each CNF network using the loss function

by applying the negative log-sigmoid function to the
log-likelihood of the normal feature vectors to prevent
divergence [15], as in

Lnfi = −
1

mf

mf∑
k=1

log σ (log p(yki )) (i = 1, 2, 3)

= −
1

mf

mf∑
k=1

log σ (log p(zki )+ log | det (
∂zki
∂yki

)|)

= −
1

mf

mf∑
k=1

log σ (−
||zki ||

2
2

2
+ 1T ski + const.), (2)

where mf represents the size of the minibatch input feature
vectors for the CNF network, σ (x) is the sigmoid function,
1 is a vector with the same dimensions as the scale parameter

and all components of it are 1, and zki denotes the output
vector of the CNF network at position k for the ith feature
map.

C. TRAINING AND INFERENCE PROCESS
1) HYBRID TRAINING ALGORITHM
It has been reported that jointly training several networks
using the same input data results in performance improve-
ments in AD [10], [34], [35], [36]. Unlike these methods, the
proposedmethod is the hybrid training algorithm that induces
collaborative effects between pixelwise classification and
CNF networks. Alg.1 illustrates the hybrid training process,
which first trains the classification network with synthetic
defect data and then trains the CNF networks with defect-
free data. By training each network with different datasets,
we expect to obtain collaboration effects in which the
pixelwise classification network elaborately detects abnormal
regions and the CNF networks detect abnormal regions with
different appearances from the synthetic data. We also expect
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the discriminative and in-domain features extracted from the
fine-tuned feature extractor to enhance the performance of
CNF networks in AD.

Therefore, we first trained the pixelwise classification
network with synthetic defect data to fine-tune the feature
extractor of the CNF networks for discriminative features and
in-domain knowledge. As illustrated in Alg.1, we randomly
generated synthetic defect data for every Ns epoch to prevent
the network from overfitting to the synthetic defect data.
In addition, we fine-tuned the encoder after training the
decoder sufficiently to learn the discriminative features of
the in-domain data while maintaining the rich discriminative
features of the pretrained feature extractor. Subsequently,
we trained the CNF networks with the fine-tuned feature
extractor using only normal data, assuming that the CNF
networks trained with normal data were not biased towards
the synthetic defect data.

2) SCORE MAP AGGREGATION FOR INFERENCE
Fig.4 shows the inference process, i.e., weighted averaging
the anomaly scores from the pixelwise classification network
and CNF networks. We expect that the combined predictions
will enhance performance owing to the positive impact of
network ensembles [34], [35], [36] and the collaborative
effects induced by the hybrid training process. We illustrate
the detailed process used to obtain the anomaly score map of
each network and to aggregate the score maps in Alg.2.

Unlike for the anomaly score map of the pixelwise
classification network (Ap), postprocessing is necessary to
obtain the anomaly score map of the CNF networks (Anf)
because the outputs of the CNF networks are not normalized
in the range between 0 and 1. To achieve this, we first
calculated the log-likelihood (li,k ) of a feature vector (yki )
at the k th position of the ith feature map for normal data
as

li,k = log p(yki ) = −
∥zki ∥

2
2 + Ci log (2π)

2
+ 1T ski , (3)

where Ci represents the channel dimensions of the ith

feature map extracted from the fine-tuned encoder. Instead
of normalizing the log-likelihood li,k to a range between
0 and 1 for the test dataset (DTest ), as in CFlow-AD [15],
we calculated the maximum value (ui) of li,k from the training
dataset (DTrain) to normalize li,k as follows:

Z+b = {1, 2, . . . , b},

ui = max
j,k

l(j)i,k , ∀ j ∈ Z+
|DTrain|

∀ k ∈ Z+Si (4)

where l(j)i,k is the log-likelihood for the jth training image;
Z+b represents the positive integer set with an upper bound (b);
|D| denotes the number of elements in the set D; and Si is the
product of Hi and Wi, which represent the height and width
of the ith feature map extracted from the fine-tuned encoder,
respectively.

Algorithm 1 Training Process of the Proposed Method
INPUT
Dn = {xn(j)}

|Dn|
j=1 is a normal dataset used for training.

E(·; θE) is the shared feature extractor.
D(·; θD) is the decoder network for pixelwise classification.
fi(·, ·; θfi ) is a CNF network with the ith feature maps.
θEp parameters of the pretrained network on ImageNet.
Ns period to generate the synthetic defect dataset.
NpD , Np, Nf epochs for training the decoder-only, pixelwise
classification, and CNF networks, respectively.

Step1: Train the pixelwise classification network with Ds

1: Initialize θE by θEp

2: for e = 1, . . . ,Np do
3: if mod(e,Ns) == 1 then
4: Ds = {xs(j), ts(j)}

|Dn|
j=1 ←AnomalySimulation(Dn)

▷ generate synthetic defect dataset for training
5: end if
6: for j = 1 to |Ds| step mp do
7: (x, t)← sample minibatch of mp data from Ds
8: p← D(E(x; θE); θD)
9: Lcls← CrossEntropy(p, t) ▷ Eq.(1)
10: if e ≤ NpD then
11: θD← optimizer(Lcls, θD)
12: else
13: θE← optimizer(Lcls, θE)
14: θD← optimizer(Lcls, θD)
15: end if
16: end for
17: end for
18: θ̂E , θ̂D← θE, θD

Step2: Train CNF networks with Dn

19: for e = 1, . . . ,Nf do
20: for j = 1 to |Dn| step mnf do
21: x← sample minibatch of mnf data from Dn
22: (y1, y2, y3)← E(x; θ̂E )
23: for i = 1, 2, 3 do
24: Si← spatial size of yi
25: for ji = 1 to Si step mf do
26: (y, c)← {yki ,PE(k)}

min{ji+mf ,Si}
k=ji

▷ sample minibatch of mf feature vectors
and positional embedding vectors

27: z, s← fi(y, c; θfi )

28: Lnfi←−
1

mf

∑mf
k=1 log σ (1T ski −

∥zki ∥
2
2

2
)

▷ Eq.(2)
29: θfi ← optimizer(Lnfi, θfi )
30: end for
31: end for
32: end for
33: end for
34: θ̂fi ← θfi
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Algorithm 2 Inference Process of the Proposed Method
INPUT
DTrain = {xn(j)}

|DTrain|
j=1 denotes the training data set.

DTest = {x(j)}
|DTest |
j=1 denotes the test dataset.

E(·; θ̂E ) is the fine-tuned feature extractor.
D(·; θ̂D) is the trained decoder for pixelwise classification.
fi(·, ·; θ̂fi ) is the trained CNF network with ith feature maps.
w weight to balance the anomaly scores of the pixelwise
classification and CNF networks.

Step1: Obtain the anomaly score map (Ap) of the pixelwise
classification network

1: Ap← D(E(x(j); θ̂E ); θ̂D)

Step2-1: Obtain the maximum value (ui) of log p(yki ) for
DTrain to normalize the score of each CNF network

2: u1 = u2 = u3 = 0 ▷ Initialize ui
3: for j = 1 to |DTrain| do
4: (y1, y2, y3)← E(xn(j); θ̂E )
5: for i = 1, 2, 3 do
6: Si,Ci← spatial size, channel dimension of yi
7: for k = 1 to Si do
8: l(j)i,k ← log p(yki ) ▷ Eq.(3)

9: ui← max {ui, l
(j)
i,k} ▷ Eq.(4)

10: end for
11: end for
12: end for

Step2-2: Obtain the anomaly score map (Anf) of the CNF
networks with DTest

13: nmax = 0 ▷ Initialize nmax
14: for j = 1 to |DTest | do
15: (y1, y2, y3)← E(x(j); θ̂E )
16: for i = 1, 2, 3 do
17: Si,Ci← spatial size, channel dimension of yi
18: for k = 1 to Si do
19: l(j)i,k ← log p(yki ) ▷ Eq.(3)

20: n(j)i,k ← exp (l(j)i,k − ui) ▷ Eq.(5)
21: end for
22: N(j)

i = {n
(j)
i,k}

Si
k=1

23: N̂(j)
i ← interpolation(N(j)

i ) ▷ Eq.(6)
24: end for
25: N(j)

←
∑3

i=1 N̂
(j)
i ▷ Eq.(7)

26: n(j)max ← maxN(j)

27: nmax ← max {nmax , n
(j)
max}

28: end for
29: Anf = N− nmax ▷ Eq. (8).

Step3: Aggregate Ap and Anf

30: A = Anf + wAp ▷ Eq.(9)

We set the normal score (n(j)i,k ) of the feature vector for the

jth test image to the normalized l(j)i,k for the training dataset

by subtracting the maximum value (ui) and applying an
exponential function [15] as follows:

n(j)i,k = exp (l(j)i,k − ui), ∀ j ∈ Z+
|DTest |

(5)

where DTest denotes the test data set. Using the normal
scores (N(j)

i ) of the feature map, we obtained the normal
score map (N̂(j)

i ) of the ith feature map of the jth test image
as follows:

N(j)
i = {n

(j)
i,k}

Si
k=1 ∈ RHi×Wi ,

N̂(j)
i = g(N(j)

i ) ∈ RH×W , (6)

where H and W denote the height and width of the test
image, respectively, and g denotes the bilinear interpolation
function [15]. To finalize the normal score map (N(j)) of the
test image, we summed the normal score maps of each feature
map as follows:

N(j)
=

3∑
i=1

N̂(j)
i . (7)

Then, we acquired an anomaly score map (Anf) from the
CNF networks of a test image by subtracting the maximum
normal score across the test dataset from a normal score
map (N) [15] as follows:

N(j)
= {n(j)k }

S
k=1,

Anf = N−max
j,k

(n(j)k ), (8)

where S denotes the product of H and W .
Finally, we produced an anomaly score map (A) for the

proposed method using the weighted averaging anomaly
score maps of the pixelwise classification and CNF networks
as

A = Anf + wAp, (9)

where w is the weight balancing of the anomaly scores from
the pixelwise classification and CNF networks. To evaluate
performance for AD at the image level, we determined the
maximum value of the aggregated anomaly score map as the
anomaly score of the test image.

IV. EXPERIMENT
To verify the effectiveness of the proposed method, we com-
pared its performance with those of other methods such as
PaDiM [12], CFlow-AD [15], DRAEM [8], and CDO [18]
on the MVTecAD and BTAD datasets [37], [38]. We also
conducted ablation studies to empirically demonstrate our
hypotheses.

A. DATASETS
1) MVTecAD DATASET
We evaluated our method using the MVTecAD dataset
[37], which is a benchmark dataset for AD methods that
focuses on quality inspection in the industry. It contains
5,354 high-resolution color images with sizes ranging
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from 700 × 700 to 1,024 × 1.024 across 15 product
categories. The dataset comprises 12–60 normal test images,
30–141 defect test images, and 60–391 normal training
images for each category. In addition, the dataset contains
73 different defect types, including dents, scratches, contam-
ination, and structural differences. Therefore, owing to these
attributes, it is widely used to evaluate the generalization
ability of various AD methods.

2) BTAD DATASET
Similar to the MVTecAD dataset, the BTAD dataset [38]
is a benchmark dataset for AD methods used for quality
inspection in the industry. It contains 2,830 real-world images
of three industrial products showing body and surface defects.
The image resolutions of products 1, 2, and 3 are 1,600 ×
1.600, 600×600, and 800×600 pixels, respectively. There are
400, 1,000, and 399 normal training images for products 1, 2,
and 3, respectively. The dataset consists of 21-400 normal test
images and 41-200 defect test images for each product.

B. IMPLEMENTATION DETAILS
Each experiment and ablation study were conducted using
256×256 resized images for all categories in the MVTecAD
dataset and all products in the BTAD dataset. As mentioned
in Section III, we fine-tuned the pretrainedWideResNet-50-2
after sufficiently training the shallow decoder, which has a
symmetric structure with the encoder. To effectively acquire
in-domain knowledge without losing the rich discriminative
ability learned from the ImageNet dataset, we did not
update the sample mean and sample variance of the batch
normalization layers for the in-domain data. Every pixelwise
classification network had the same architecture for all
the experiments. Using the fine-tuned feature extractor,
we trained CNF networks that comprised a sequence of six
invertible transformations. To aggregate score maps from
the pixelwise classification and CNF networks, we manually
determined the balancing weightw for each category in a way
such that the AUPR score was maximized. Hyperparameters
such as the initial learning rate and training epochs for the
pixelwise classification and CNF networks for each category
of the MVTecAD dataset and each product of the BTAD
dataset are available on the GitHub website.1

We implemented and evaluated DRAEM for the
MVTecAD and BTAD datasets using the original source code
without modifications [8]. However, wemodified the original
source code of CDO to utilize the same feature maps as the
CNF networks in the proposed method for the BTAD dataset,
although we did not modify it for the MVTecAD dataset [18].
For PaDiM [12], the same modification was adopted for both
the MVTecAD and BTAD datasets. For a fair comparison,
we set the number of invertible transformations in CFlow-AD
to six and produced anomaly score maps for every method
using the same process as our method. PaDiM, CFlow-
AD, and CDO utilize the pretrained WideResNet-50-2

1https://github.com/seungmi-oh/AD-CLSCNFs

as a feature extractor, similar to the proposed method.
However, the DRAEM constructs its network architecture
without using the pretrained network [8].
Moreover, we conducted an ablation study to compare

the performances of CNF networks that use the pretrained
network, the fine-tuned network by pixelwise classification,
and a network fine-tuned by pixelwise regression to evaluate
the effectiveness of a feature extractor of the CNF networks.
To achieve this, we designed a reconstruction network with
the same architecture as the pixelwise classification network,
except that it did not use skip connections. We believe that
skip connections cause an overgeneralization problem in
reconstruction-based methods. The threshold (thanomaly) for
generating the prediction map for the defect regions was
set to the value that achieved the best f1-score, which was
calculated as the harmonic mean of precision and recall at
the pixel level. Each experiment was repeated three times
with random initialization to prevent overestimation by each
method.

C. PERFORMANCE METRICS
We selected three threshold-independent metrics to evaluate
our method: the area under the receiver operating char-
acteristic curve (AUROC), area under the precision-recall
curve (AUPR), and area under the per-region overlap curve
(AUPRO). The AUROC metric is the area of the true positive
rate (TPR)-false positive rate (FPR) curve, which is a useful
metric for evaluating general-purpose classifications. TPR (or
recall) quantifies the number of correct predictions for the
defective data from the total defective data, as in

TPR =
TP

TP+ FP
, (10)

where TP is the number of true positives, indicating correct
predictions for abnormal or defective data, and FP is the
number of false positives, representing incorrect predictions
for normal data.
FPR is the ratio of the number of incorrect predictions for

normal data to the total normal data:

FPR =
FP

FP+ TN
, (11)

where TN is the number of true negatives, indicating correct
predictions for normal data.

However, the AUROC metric can be less informative
for highly skewed datasets because it considers the correct
prediction of the majority class (i.e., normal) [48]. Therefore,
the AUPR metric is a superior method for classifying rare
events because it does not consider the correct prediction
of the majority class by constructing a curve with precision
(PRC) instead of FPR. The precision metric is formulated
using only the predictions for the minority class (i.e., defects)
as in

PRC =
TP

TP+ FN
, (12)

where FN is the number of false negatives, indicating
incorrect predictions for abnormal or defective data.
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TABLE 1. Experimental results of the CNF networks according to a feature extractor. (The value in bold type represents the best performance.)

The AUPRO metric is a region-based metric representing
the area of the PRO–FPR curve, unlike evaluation methods
at the pixel or image level, such as the AUROC and AUPR
metrics. The PRO metric is defined as

PRO =
∑
j

∑
s

|Pj ∩ Tj,s|
|Tj,s|

, (13)

where Pj denotes the set of pixels predicted as a defect in the
jth defective image and Tj is the set of pixels constituting the
sth defect segment of the jth defective image. It can effectively
evaluate the segmentation performance regardless of the size
of the defect segments because the PRO metric is calculated
as the expectation of the ratio of correctly predicted pixels to
ground-truth pixels for every segment.

D. EXPERIMENTAL RESULTS
1) MVTecAD DATASET
We conducted a comprehensive study of feature extractors
for CNF networks on the MVTecAD dataset using the
AUROC, AUPR, and AUPRO metrics. Table 1 shows the
performance of CNF networks with the pretrained feature
extractor (FEPRE), the fine-tuned feature extractor by pixel-
wise classification (FECLS), and the fine-tuned feature extrac-
tor by pixelwise regression (FEREG). The CNF networks
with FECLS (FECLS-CNFs) yielded the highest imagewise
AUROC (97.08%), pixelwise AUROC (98.28%), AUPR
(58.41%), and AUPRO (94.70%) averages for all categories
of the MVTecAD dataset. In contrast, the CNF networks
with FEREG (FEREG-CNFs) showed the worst performance.
This suggests that the discriminative ability of the feature
extractor is critical for improving the performance of CNF
networks in AD. The fact that FECLS-CNFs performed better

than CNF networks with FEPRE (FEPRE-CNFs) indicates that
FEPRE may not extract valuable features for AD owing to the
large domain gap. As a result, we empirically showed that
a fine-tuned feature extractor to identify synthetic abnormal
data is useful for improving performance of AD thanks to the
discriminative features of in-domain data.

To further confirm the effect of the feature extractor,
we visualized the score (Anf) and prediction maps (Pnf)
of CNF networks with different feature extractors in Fig.5.
As shown in the first rows of Fig.5, Anf of FEREG-CNFs
has too small anomaly scores in the defective regions to
identify all defects. However, both Anf of FECLS-CNFs and
FEPRE-CNFs accurately highlight all the defective regions.
This implies that FEREG-CNFs did not identify defect regions
with subtle differences because FEREG may extract normal
features from defective images. By contrast, the second
row of Fig.5 represents the necessity of in-domain features
for AD. Pnf of FEPRE-CNFs detected all three leads as
defects, in contrast to Pnf of FEREG-CNFs and FECLS-CNFs,
which correctly detected the defective bent lead. The last row
of Fig.5 shows that FECLS can help detect defective regions
with subtle differences thanks to its discriminative ability
and in-domain knowledge. Every Anf highlights the overall
screw object because the appearance of defects is difficult to
identify. Nevertheless, Pnf of FECLS-CNFs correctly detected
the defect regions. This supports our argument that in-domain
knowledge and discriminative ability are meaningful for
enhancing the performance.

We also conducted an ablation study to determine whether
the predictions of the pixelwise classification network and
CNF networks are complementary and whether sharing
feature extractors is beneficial for performance improvement.
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FIGURE 5. Anomaly score and prediction maps of the CNF networks with different feature extractors: (a) input image, (b) ground-truth image, (c) Anf
of FEPRE-CNFs, (d) Pnf of FEPRE-CNFs, (e) Anf of FEREG-CNFs, (f) Pnf of FEREG-CNFs, (g) Anf of FECLS-CNFs, and (h) Pnf of FECLS-CNFs.

TABLE 2. Experimental results of the proposed method for the MVTecAD
dataset.

We compared the performance of the proposedmethod (CLS-
CNFs-sFE), a network (CLS-CNFs-nsFE) that combined
the pixelwise classification network (CLS) and FEPRE-
CNFs (i.e., CFlow-AD) not sharing feature extractors, and
individual networks (CLS, FECLS-CNFs, and CFlow-AD).
In Table 2, we denoted the anomaly score map of the
CFlow-AD network as APRE

nf and that of CLS-CNFs-nsFE
as Ans. As illustrated in the table, aggregating the score maps
of the pixelwise classification and CNF networks enhanced
the performance compared to the individual networks for
all metrics regardless of whether the feature extractor was
shared. Notably, the AUPR metric, which is superior for
evaluating the discerning ability of imbalanced settings,
increases steeply for combined networks compared to indi-
vidual networks. This implies that the pixelwise classification
and CNF networks complement each other. Moreover,
the proposed method exhibits the best performance for
all metrics. This indicates that sharing feature extractors
improves the performance because FECLS enhances the
performance of CNF networks because of its discriminative
ability and in-domain knowledge, which is consistent with the
results in Table 1 and Fig.5.

FIGURE 6. Anomaly score and prediction maps of the pixelwise
classification network, CNF networks, and the proposed method for the
MVTecAD dataset: (a) input image, (b) ground-truth image, (c) Ap (d) Anf,
(e) A, and (f) P.

Fig.6 shows the qualitative results supporting our assump-
tion that the prediction of CNF networks mitigates the
overfitting problem of the pixelwise classification network.
As indicated in the first and second rows in Fig.6(c),
the pixelwise classification network assigned high anomaly
scores to the normal regions owing to the overfitting problem.
However, the anomaly score map (A) of the proposed method
highlights the defect regions and the prediction map (P) of
the proposed method correctly detects the defect regions
without false detection. This indicates that aggregating with
the prediction of CNF networks has a positive impact on
the avoidance of false detections in pixelwise classification
networks.

Moreover, the third and final rows in Fig.6 show that the
pixelwise classification network supports the CNF networks
to identify defective regions with high confidence. The CNF
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FIGURE 7. Histogram plot of the anomaly scores for the normal (TYP.)
and defect pixels (ANO.) of all test images, where ‘‘nf’’ and ‘‘nf+cls’’
denote the prediction of FECLS-CNFs and the proposed method
(CLS-CNFs-sFE), respectively.

TABLE 3. Computational time and memory size of the proposed method
compared to those of the CFlow-AD method.

networks have the limitation that the score map for an
object, which has similar appearances of normal and defective
regions, highlights the overall object with high anomaly
scores. The pixelwise classification network mitigates this
limitation by accurately detecting the defective regions
because it has learned subtle and distinct differences from
normal regions using synthetic defect data. Because of this
effect, the final anomaly score map of the screw becomes
more intuitive than that of the CNF networks.

We also plotted the histogram of the pixelwise anomaly
scores in Fig.7 to illustrate that the aggregated scores are
helpful in separating normal and abnormal samples. The
histogram (blue) of the anomaly scores for the normal test
pixels of FECLS-CNFs is almost identical to that of the
proposed method (green). However, the histogram (red) of
the anomaly scores of the proposed method for the test defect
pixels shifted in the direction distant from the histogram of the
normal pixels compared with that (purple) of FECLS-CNFs.
As a result, the distance between the modes of the histograms
for the proposed method increased compared to that of the
CNF networks. We believe that this is because the prediction
of the pixelwise classification network separates the normal
and defective samples.

We also compared the complexity of our method by
measuring the model size and inference speed using methods
in CFlow-AD [15] and CDO [18]. We measured the model
size as the size of the floating-point parameters for each
network [18]. And we set the batch size as 32 in measuring
the inference speed for a fair comparison [15]. Table 3 is

TABLE 4. Experimental results of the proposed method and existing
methods for the MVTecAD dataset.

measured in the same environment with an Intel(R) Xeon(R)
W-2245 CPU @ 3.90GH CPU, NVIDIA GTX 3090 GPU,
and 128GB RAM for a fair comparison. As indicated in the
table, the model size of the pixelwise classification network
(CLS) was almost the same as that of the encoder (FE)
because of the shallow decoder. Therefore, the proposed
method, which combines the pixelwise classification network
and CNF networks by sharing feature extractors, does
not significantly increase the complexity of the network
compared with CFlow-AD. However, the model size and
inference speed of CLS-CNFs-nsFE were 1.38× larger
and 0.88× slower than those of the CFlow-AD network,
respectively. Therefore, sharing feature extractors is better
than not sharing them, in terms of both the performance of
AD and network complexity.

To empirically demonstrate our arguments, we compared
our method with the existing methods for AD. As illustrated
in Table 4, the proposed method achieved the highest
imagewise AUROC (98.09%), pixelwise AUROC (98.59%),
AUPR (72.09%), and AUPRO (95.69%), averaged for all
categories of the MVTecAD dataset. The fact that the AUPR
values of CDO, DRAEM, and the proposed method are
higher than those of PaDiM and CFlow-AD supports our
argument that training a network with synthetic defect data is
beneficial for detecting defect regions owing to its discerning
ability. Additionally, we believe that the quality of the
synthetic defect data influences the performance, considering
the higher AUPR of DRAEM compared to CDO. The higher
AUPRO values of PaDiM, CFlow-AD, and the proposed
method compared to those of CDO and DRAEM support our
assumption that the prediction of the distance-based method
training with only normal data mitigates the overfitting
problem with synthetic defect data. As shown in Fig.8, CDO
and DRAEM did not detect some defective regions at all or
over-detected normal regions as defect segments owing to
the overfitting problem. Accordingly, it decreases AUPRO,
which is used to evaluate performance at the segment level.
As a result, the proposed method maintains the advantages of
each method by combining pixelwise classification and CNF
networks through a shared feature extractor.

2) BTAD DATASET
To investigate whether our arguments hold for other datasets,
we conducted experiments using the BTAD dataset. We com-
pared the performance of CLS, CFlow-AD, FECLS-CNFs,
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FIGURE 8. Anomaly score and prediction maps of the proposed method and existing methods for the MVTecAD dataset: (a) input image,
(b) ground-truth image, (c) A of DRAEM, (d) P of DRAEM, (e) A of CDO, (f) P of CDO, (g) A of the proposed method, and (h) P of the proposed method.

FIGURE 9. Anomaly score and prediction maps of the proposed method and existing methods for the BTAD dataset: (a) input image, (b) ground-truth
image, (c) A of DRAEM, (d) P of DRAEM, (e) A of CDO, (f) P of CDO, (g) A of the proposed method, and (h) P of the proposed method.

CLS-CNFs-nsFE, and the proposed method (CLS-CNFs-
sFE) to determine whether the predictions of the pixelwise
classification network and CNF networks are complementary
and whether the sharing of feature extractors is beneficial
for performance improvement. Table 5 shows that combining
the score maps of the pixelwise classification and CNF
networks improves the performance of all metrics, regardless
of whether the feature extractor is shared. This indicates that
the combined score map improves the performance because

of the positive impact of network ensembles. Notably, the
proposed method exhibited the best performance for all
metrics. This implies that the sharing of feature extractors
improves the performance because FECLS improves the
performance of CNF networks because of the discriminative
features of in-domain data, which is consistent with the
results of experiments on the MVTecAD dataset.

We also compared the performance of our method and
existing methods on the BTAD dataset to empirically
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TABLE 5. Experimental results of the proposed method on the BTAD
dataset.

TABLE 6. Experimental results of the proposed and existing models on
the BTAD dataset.

demonstrate our arguments. As shown in Table 6, the
proposed method achieved the highest average imagewise
AUROC (95.97%), pixelwise AUROC (97.12%), AUPR
(53.76%), and AUPRO (72.66%) for all products of the
BTAD dataset, which is consistent with the results of the
experiments on the MVTecAD dataset. Unlike the results for
the MVTecAD dataset, DRAEM and CDO did not perform
as well as CFlow-AD for all metrics. Because DRAEM
and CDO generate synthetic defect data without using in-
domain data, they may not be effective for the BTAD
dataset whose data have similar appearances of normal and
defective regions. Furthermore, Fig.9 indicates that CDO and
DRAEM fail to detect some defective regions or incorrectly
predict normal regions as defect segments owing to the
overfitting problem. The proposed method, on the other
hand, correctly detected defect regions as it has learned
the discriminative features from the in-domain data and
preserved the advantages of the pixelwise classification and
CNF networks by aggregating the score maps.

V. CONCLUSION
We propose a novel AD method that combines a pixelwise
classification network with CNF networks by sharing feature
extractors. We were able to fine-tune a pretrained feature
extractor by training the pixelwise classification network to
identify abnormal regions in the synthetic abnormal data.
By doing so, we expect the feature extractor network to learn
the discriminative features of in-domain data. After training
the feature extractor, we estimated the density of normal data
using the CNF networks. During inference, by aggregating
the anomaly scores from the pixelwise classification and
CNF-based density, we were able to mitigate the problem

of overfitting to the synthetic defect data. Furthermore,
we believe that network ensembles have a positive impact on
performance. In experiments using theMVTecAD and BTAD
datasets, the proposedmethod showed significantly improved
performance compared to existing methods. Further, in our
ablation study, it was confirmed that the performance of the
combined network is superior to that of individual networks
while the computation did not increase significantly thanks
to the sharing of feature extractors.
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