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ABSTRACT The relentless global population growth and the ever-increasing food demand pose formidable
challenges to the agricultural sector. Farmers grapple with the ongoing challenge of wildlife-induced crop
damage and human loss, which not only impedes food production but also exacerbates supply and demand
imbalances. However, the rise of TinyML enables Edge Al as a promising avenue for implementing
resource-efficient deep learning techniques on low-end edge devices. In this paper, we introduce an
innovative solution that harnesses the power of Edge Al using tinyML-based deep learning algorithms
in conjunction with the Internet of Things (IoT) for animal intrusion detection and deterrence system.
The proposed system is developed to create remotely managed defense system tailored to safeguard vast
agricultural expanses. It integrates a laser detection system and an AI-CAM with light weight deep learning
algorithms for animal intrusion detection and classification. This system also ensures efficient animal
deterrence and real-time monitoring for farmers, enabling them to assess the situation with the assistance of
an intelligent rover build using IoT. This work emphasizes on proposing a light-weight deep learning model
named EvoNet for animal classification. Results reveal that the proposed model achieves the highest accuracy
at 96.7%, surpassing other models presented in this paper. However, for edge devices where compact file
sizes are crucial, the model also offers comparable accuracy with file sizes as low as 1.63MB with the
help of pruning and quantization techniques. This conceptualized solution has the potential to revolutionize
agricultural wildlife management, ushering in a new era of crop protection and economic resilience.

INDEX TERMS Animal intrusion detection, attention mechanism, deep learning, edge Al, EvoNet,
intelligent rover, Internet of Things, sustainable farming, TinyML.

I. INTRODUCTION
In the evolving landscape of agriculture, transitioning from
Agriculture 4.0 to Agriculture 5.0 is marked by a significant
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paradigm shift [1]. This transformation is characterized by
the heightened integration of cutting-edge technologies such
as the Internet of Things (IoT), sensor networks, cloud
computing, edge Al, big data analytics, and the deployment of
physical robots. The collective utilization of these advanced
tools not only enhances productivity but also contributes
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TABLE 1. Estimated crop loss due to elephant depredation in south
india(some places like Pachhedoddi and Kanchalli).

TABLE 2. Statistics of crop damage in Kerala.

Wild Animals Crops % crop damage
Elephant Coconut, plantain, paddy 72
Gaur Mulberry, sandal 62
Sambar sapota 17
Wild boar Tapioca, tubers, paddy 16

Economic loss
Name of crop (Rupees/acre)
Pachhedoddi | Kanchalli

Mazie 36,000 6000
Ragi 9000 3600
Turmeric 25,000 8330
Groundnut 6750 4700
Others 7330 3670

to substantial economic growth, thereby revolutionizing our
daily lives.

The modernization of agriculture has proven to be instru-
mental in advancing various tasks through the integration
of IoT and machine learning. One notable example is the
application of machine learning for predicting soil types, soil
taxonomy, output quality, and nutrition levels [2]. Employing
algorithms such as k-Nearest Neighbors (kNN) and Logistic
Regression (LogR), these technologies enable accurate
and efficient predictions in the realm of agriculture. This
amalgamation of technologies signifies a holistic approach
towards precision farming, intelligent resource management,
and sustainable agricultural practices, ushering in a new era
of efficiency and innovation in the agricultural sector.

In the ever-changing landscape of agriculture, effectively
handling interactions with external elements like wildlife
remains a pertinent and ongoing challenge. In many regions,
the delicate balance between human livelihoods and the
survival of wildlife is facing a growing threat due to
socio-economic activities encroaching upon natural habi-
tats [3]. This encroachment has led to shrinking habitats
and reduced food sources for wild animals, forcing them to
venture into agricultural fields in search of sustenance. This
leads to a conflict between human needs and the survival
instincts of animals. Conservation and preservation efforts
find themselves grappling with the complexities of this
challenge, necessitating strategic interventions to mitigate
the widespread phenomenon of crop raiding and foster
harmonious coexistence. Mainly, crop raiding happens due to
the invading of wild animals into the farmlands and causing
damage to crops, presents a multifaceted challenge with
extensive ecological, economic, and social consequences.
This issue is especially prevalent in areas bordering forests.
Furthermore, these animal intrusions occur throughout the
various stages of crop growth, spanning from the planting of
seeds to the final harvest, resulting in substantial agricultural
losses. The implications of this issue extend beyond crop
damage, encompassing problems such as vehicular accidents,
disease transmission, environmental degradation, and harm
to ornamental plants. The severity of crop damage is a global
concern, as evidenced by a survey conducted in Kerala [4] and
Karnataka [5], India, revealing substantial financial losses
incurred by villages due to crop damage by wild animals as
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shown in Table 2 and Table 1. Even in the eastern coastal
region of Odisha, wild animals, including elephants, wild
boars, and deer, pose a formidable threat to agriculture,
causing substantial crop damage, often ranging from 50-
100%. In addition, incidents of human injuries reached
a staggering total of 7,381 cases, incurring compensation
expenses of Rs. 3.4 crores. These statistics underscore the
critical need for effective animal intrusion detection systems
to mitigate such human-wildlife conflicts and their associated
human and economic tolls.

In this context, our research is to develop effective and
sustainable solutions for animal intrusion detection and
deterrence system using edge devices in agricultural fields.
Accordingly, a novel system that leverages the power of
the IoT and deep learning for detection and deterrence
systems to mitigate the impact of wildlife incursions and
to minimize crop damage, promote ecological conservation,
and protect the livelihoods of farming communities. Our
approach to animal intrusion detection revolves around Edge
Al and TinyML, bringing computation closer to data sources
within the agricultural environment. This strategy optimizes
the deployment of modern IoT and AI applications for
effective intrusion detection. Our technologically-driven crop
protection system not only serves to safeguard crops but also
promotes ecological conservation and protects the livelihoods
of farming communities. By balancing the needs of human
communities and wildlife, we strive to foster coexistence and
advocate sustainable agricultural practices on a global scale.
The main contributions of this works are:

1) A deep learning-based IoT framework and hardware
system aimed at protecting crops from wildlife threats
using edge devices has been developed. Our system
remains in a dormant state until an early animal
intrusion is detected to reduce power consumption.

2) In this framework, these edge devices utilize a tinyML
based light weight deep learning model (EvoNet) for
animal detection and classification.

3) Our system comprises both static and dynamic com-
ponents. The static part is responsible for animal
detection, while the dynamic aspect is geared towards
tracking the animal with a intelligent rover. Addi-
tionally, the system empowers farmers with real-time
assessment capabilities through the intelligent rover
connecting through IoT.

4) Results reveal that the EvoNet model achieved the
highest accuracy at 96.7%, compared to other models
presented in this paper. However, for edge devices
where compact file sizes are crucial, the model offers
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comparable accuracy with file sizes as low as 1.63MB
with the help of pruning and quantization techniques.

The rest of the paper is organized as follows: Section II
presents the related work. Section III presents the animal
intrusion system. Section IV describes the proposed model
of the long-range surveillance intelligent rover. Section V
provides the deep learning algorithms for animal classifi-
cation. Section VI presents the results and discussions. The
conclusion is presented in Section VII.

Il. RELATED WORKS

In this section, a thorough overview of prior research efforts
dedicated to the development of real-time animal detection
systems is provided. These efforts encompass a diverse range
of technologies and methodologies. Our aim is to present a
comprehensive comparison that encapsulates the evolution of
approaches in this domain.

In the literature, several research works were proposed
innovative solutions using wireless sensor networks (WSN)
and AI based systems to safeguard the crops from the
wildlife threats. Mainly, the authors of [6] introduced
a WSN-based system tailored for tracking wildlife in
challenging environments. This system, designed according
to IEEE 802.15.4 standards, strategically deploys video
sensors connected to nodes for reliable target detection.
Similarly, the authors in [7] introduced a WSN based system
for crop protection against animal intrusions. It utilizes
sensors and devices like PIR sensors, sound generators,
and RF modules to detect intrusions and deter animals.
In [8], the authors examined the wide range use of WSNs
for agriculture monitoring which improves the quality and
productivity of farming. With the help of sensors, data
(i.e., humidity, carbon dioxide level, and temperature) is
gathered in real-time scenarios. The convergence of Internet
of Things (IoT) technology and image processing techniques
has revolutionized agricultural security. In [9], authors
explored a sophisticated system employing wireless sensors,
deep learning algorithms (MCNN and AlexNet), and GSM
modules. In [10], authors focused on the recent applications
of WSNs in agriculture research as well as classifies
and compares various wireless communication protocols,
and energy harvesting techniques for WSNs used in the
monitoring systems. The integration of IoT devices facilitates
real-time monitoring, allowing for instant image capture and
analysis. In [11], the authors examined a model that combines
IoT and machine learning to address the problem of animal
intrusion in agriculture. The model employs a Raspberry Pi,
along with various hardware components, for surveillance
and communication. In addition, the authors in [12] Smart
Agriculture application integrates Edge Computing, IoT, and
Al to safeguard crops from ungulate attacks using computer
vision and species-specific ultrasound emission. Evaluated
on diverse embedded platforms like NVIDIA Jetson Nano
and Raspberry Pi with Intel Movidius NCS, the system,
driven by YOLOv3, showcases superior detection accuracy.
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The study underscores the importance of tailored hardware-
software integration, showcasing the potential of innovative
technologies in Smart Agriculture. Similarly, A. V. Prabu
et al. proposed an IoT-based Crop Field Protection System
(ICFPS) that leverages deep learning techniques for feature
extraction, disease detection, and field data monitoring
[13]. In [14], the authors delved into assessing agricultural
losses and considered the practical importance and economic
feasibility of deploying acoustic equipment to deter wildlife
from encroaching on farmlands. Given the complex and
evolving nature of human-wildlife conflicts in agriculture,
there is a compelling need for a technologically-driven
crop protection system characterized by cost-effectiveness,
robustness, reliability, and ease of adoption by farmers.
If realized, such a system has the potential to strike a balance
between the needs of human communities and wildlife,
fostering coexistence and promoting sustainable agricultural
practices on a global scale.

In the existing research works [7], [9], [11], [12], a compre-
hensive approaches is proposed for employing IoT, WSNs,
and deep learning models are presented for safeguarding
crops against animal intrusion. These methodologies, exhibit
a limitation in affording complete flexibility to farmers
in assessing the situation firsthand. This work mainly
focusing on providing maximum flexibility to the farmers by
introducing a intelligent rover equipped with the capability
to provide a live video stream of the surrounding crop area
to the farmer. This innovative addition allows the farmer to
have real-time visibility and control over the situation. This
intelligent rover can be remotely operated through a wireless
IoT controller accessible from anywhere via the Internet.
This feature not only bolsters the protection of crops but
also empowers the farmer to actively monitor and assess
potential threats, particularly in the event of animal intrusion.
By leveraging the live video stream and remote control
functionality, farmers gain a more dynamic and responsive
means of safeguarding their crops.

Additionally, many of the suggested models prioritize
accuracy, although at the expense of increased compu-
tational power and cost of the hardware system. Some
models have incorporated complex detection mechanisms,
further elevating the overall complexity of the model.
While these approaches demonstrate commendable per-
formance, their resource-intensive nature raises concerns.
In contrast, our proposed model adopts a TinyML (Tiny
Machine Learning) approach which allows for execution
with minimal computational power, providing a balance
between performance and efficiency. The inherent advantage
of applying TinyML model lies in its ability to produce
results in a shorter time frame without compromising on
the quality of outcomes. However, TinyML model deliv-
ers satisfactory results when compared to the traditional
deep learning algorithms while demanding less computa-
tional resources. This efficiency is particularly valuable in
real-world applications where timely response to crop threats
is crucial.
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In addition, some of the existing models involve placing
poles throughout the field and deploying sensors extensively
to detect animal entry, incurring higher overall costs.
In contrast, our approach utilizes a boundary laser-based
system for detecting animal entry. This not only reduces
the financial burden but also enhances the efficiency of the
detection process. Moreover, a singular pole positioned at
the center is employed, equipped with speakers and lights
to deter animals. This alternative strategy proves to be more
cost-effective while still effectively addressing the challenge
of preventing animal intrusion.

Ill. SYSTEM MODEL

The proposed system model, depicted in Figure 1, is struc-
tured into three distinct modules: animal detection, animal
classification, and animal deterrence. Each module serves a
crucial role in addressing the challenge of managing animal
intrusion in agricultural fields.

A. ANIMAL INTRUSION DETECTION AND DETERRENCE
SYSTEM

The primary objective of the first module is to ascertain the
presence of animals within the field. Since animals move
unpredictably, several research works considered motion
sensors, such as PIR sensors, for motion detection [15].
However, PIR sensors have limitations, including lower
accuracy in motion detection, potential false triggers, limited
range, and inoperability at temperatures above 35 degrees
Celsius, which is common in many regions. To overcome
these challenges, a laser based boundary system is introduced
for early intrusion detection. We strategically place four
boundary poles at the field’s corners as shown in Fig. 2.
Each boundary pole are equipped with AI-CAM, along with
essential components like a laser diode and photo diode.
The laser diode establishes a perimeter around the field,
effectively covering all boundaries. Continuous signals are
transmitted from the each laser to the respective adjacent
photo diodes as shown in Fig. 2. This process forms a
laser boundary around the field, connecting all poles like a
rectangular security. In addition, the built-in camera of the
microcontroller serves as a surveillance camera to monitor the
environment. Likewise, total four cameras positioned around
the field for capturing the animal intrusions. When no animals
are present in the area, the laser line falls directly onto the
photodiode, sending a constant value to the microcontroller.
In this state, the camera remains inactive to conserve power,
enabling the system to operate for an extended period with
minimal power consumption. When an animal attempts to
breach this perimeter and enter the field, a disruption of
the laser barrier is detected by a microcontroller, confirming
the presence of the early animal intrusion into the field.
Simultaneously, the camera module captures images of
the intruding animal, which are subsequently subjected to
analysis through deep learning models to classify the type
of animal. Furthermore, a central pole is strategically located
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at the center of the field, which serves as a decision-making
device equipped with countermeasure options designed to
deter animals from entering the field. The central pole is
equipped with countermeasure devices, including a speaker
and a light, controlled by the ESP32 microcontroller as shown
in Fig. 4.

The microcontroller is equipped with a pre-trained deep
learning model implemented using TensorFlow Lite [16].
The images captured by the camera are fed into the deep
learning model for animal classification. Information about
the predicted animal is then transmitted to the central pole
using the ESP-NOW protocol, a communication protocol
used by ESP32 modules.The ESP32 NOW protocol was
chosen due to its low power consumption and integration
into the microcontroller. ESP32 NOW operates in the sub-
2.4GHz band and suits local network scenarios. It simplifies
data transmission with an efficient API, crucial for real-time
communication between boundary poles and a central pole
in our system. This setup enables quick responses to animal
intrusions, safeguarding the agricultural ecosystem. With
antenna integration to ESP32 it provided a practical 200-
meter range without packet loss, balancing cost-efficiency
and functionality [17], [18]. Upon receiving the animal
intrusion information, the central pole loud sounds using
speakers, while the light is primarily used at night to alert
the animal. To enhance the system’s effectiveness, recorded
sounds made by local farmers are used, as different animals
respond differently to various sounds. It’s worth noting
that these sounds are carefully chosen to ensure they do
not cause any harm to the animals. Based on the animal
classification information, the microcontroller selects the
appropriate sound to play on the speakers. Furthermore, the
central pole’s microcontroller is connected to Wi-Fi, enabling
it to leverage IoT capabilities. Using this connectivity, the
central pole sends instant notifications to the farmer by
ringing the buzzer on the controller.

When the farmer receives a notification regarding an
animal intrusion, they can activate the rover to assess the
situation. The rover is equipped with a wireless controller that
can be operated from anywhere, as long as it is connected to
Wi-Fi. Positioned at the front of the rover is a camera that
provides a live video stream to the farmer’s mobile device.
With the wireless controller in hand, the farmer gains control
over the rover’s movements and actions. They can survey the
field in real-time using the live video stream to determine
whether the animal has left the area. If it becomes evident
that the animal has not yet departed, the farmer can employ
high-pitched buzzers closer to the animals and encourage
it to leave the field. The detailed description regarding the
proposed model of the long-range surveillance intelligent
rover using IoT is presented in Section IV. In cases where
the situation escalates and becomes severe or beyond the
control of remote measures, the farmer has the option to take
necessary physical actions. This comprehensive approach
significantly reduces crop damage resulting from animal
intrusions.
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FIGURE 1. System model.

B. ANIMAL CLASSIFICATION

The second module of the system is focused on animal clas-
sification based on the images captured by the surveillance
camera. This classification is made possible by utilizing a
pre-trained tinyML based deep learning model, which is
loaded onto the microcontroller. Given the potential similar-
ities in the appearance of various animals, the chosen model
must exhibit a high degree of intelligence to achieve accurate
predictions. The process to attain high level of accuracy
involves three pivotal steps: The initial step involves the
selection of an extensive dataset that encompasses a diverse
array of animal classifications, ensuring a comprehensive
training set. The second step entails the careful choice of
a deep learning model suited for the task. In this context,
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the proposed model (EvoNet) is compared with DesnseNet,
ResNetV2-50, Inception, MobileNetV2, Efficientnet-BO and
EfficicentNet-B7. The selection among these models is
informed by their performance in the specific task of animal
type prediction. The third step involves the refinement of the
selected model to enhance its ability to accurately classify
the animal based on the input image. The more detailed
description regarding the deep learning models is presented
in Section V.

IV. PROPOSED MODEL OF THE LONG-RANGE
SURVEILLANCE INTELLIGENT ROVER USING IOT

To tackle the dynamic environments, our system needs
real-time assessment capabilities through the rover connected
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FIGURE 2. Assembly at boundary poles.

. Center Pole
. Photo Diode Receiver

FIGURE 3. Overview of placements of the poles.

. Boundry Pole
. Laser Transmitter

using IoT to the farmers. Thanks to the 5G connectivity
for providing the seamless internet provision in the rural
areas [19], [20]. Here, the rover and controller are seamlessly
connected through the utilization of IoT capabilities offered
by ESP32 modules. This connectivity empowers them to
communicate effectively over extended distances, transcend-
ing the limitations of physical proximity. The controller
initially connects to the internet, establishing a connection
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FIGURE 4. Assembly at central poles.
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FIGURE 5. Flow diagram of the working of the long range surveillance
rover.

to the database. Simultaneously, the intelligent rover is
also internet-enabled and linked to the same database as
shown in Fig. 5. As Bluetooth technology is not involved,
there is no requirement for the controller and rover to be
in close proximity. When a command is issued from one
of the joysticks on the controller, it is captured by the
ESP32 and transmitted to the controller’s database. This
transmission includes the corresponding ID number and a
timestamp. Each new command generated by the joysticks
is seamlessly appended to the database without overwriting
previous commands. Meanwhile, the ESP32 on the rover, also
internet-connected, becomes active and requests the latest
commands from the database. The database responds by
retrieving the commands with the lowest ID numbers and
dispatches them to the rover’s ESP32. The received command
is then relayed to the motor driver, responsible for precision
control of the rover’s motors. The motors execute the
command accurately, ensuring smooth and reliable mobility
of the rover. Additionally, a camera is positioned on the
front of the rover, mounted on top of a servo. This setup
enables high-definition live video streaming from an assigned
IP address. Consequently, users can observe the rover’s
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FIGURE 7. On field rover.

environment while controlling it, even when it is not within
the visible range. The servo’s design allows the camera
to rotate freely by 360 degrees, facilitating comprehensive
surveillance of the surroundings. Consequently, users can
maintain uninterrupted access to the rover’s operational
environment.

A. SYSTEM OVERVIEW DIAGRAM OF ROVER

The controller is equipped with an ESP32 as its central
component. Two 2-axis joysticks, a potentiometer and a
buzzer are connected to the ESP32 as shown in Fig 6. The
joysticks provide four different values for the movement of
the rover: front, back, left, and right. The push switch on
the joystick is used to enable the buzzers on the rover. The
buzzer on the controller rings when the animal intrusion
occurs in the field. The potentiometer enables the servo on the
rover to rotate 360 degrees. Once the controller is connected
to the internet, it sends the values from the joysticks and
the potentiometer to the database. In the database, these six
values are updated with an ID number and a timestamp.
The ID number is automatically incremented when new
commands are sent from the controller.

The rover is equipped with an ESP32 as its central
component. Connected to the ESP32 are a motor driver and
a servo. Four motors of the rover [21] are linked to the
motor driver, which is connected to the primary component
as shown in Fig. 7. Mounted on the servo is a AI-CAM
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for real-time video streaming as shown in Fig. 16 [22].
Additionally, buzzers and lights are present to deter animals.
Initially, the rover is connected to the internet. When the
ESP32 on the rover sends a request to the database for
commands, it retrieves the commands with the lowest ID
numbers first and transmits them to the ESP on the rover. The
ESP processes the data and relays it to the motor driver, which
then controls the motors based on the received commands.
Simultaneously, access to the assigned IP address of the
camera allows for streaming live video from the CAM.

V. DEEP LEARNING MODELS

In this work, we mainly focused on animal detection using
various deep learning algorithms (such as EfficientNet-
BO, EfficientNet-B7, and proposed model (EvoNet)) with
Attention Mechanism.

A. EfficientNet

EfficientNet is a convolutional neural network architecture
designed to achieve superior performance while maintaining
computational efficiency. This is characterized by a com-
pound scaling method that uniformly scales all dimensions
of depth, width, and resolution. This scaling strategy
allows EfficientNet to efficiently balance model size and
accuracy across various resource constraints, making it highly
versatile for deployment on different hardware platforms.
By leveraging depth-wise and point-wise convolutions along
with squeeze-and-excitation blocks, EfficientNet optimizes
model capacity. Additionally, it incorporates techniques like
dropout regularization and batch normalization to improve
generalization and training stability. With its state-of-the-art
performance on image classification tasks across different
scales, EfficientNet has become a popular choice for
applications where computational resources are limited or
efficiency is paramount.

EfficientNet-BO0 as the foundational model in the Efficient-
Net family, boasts an architecture renowned for its efficiency
and impressive performance [23]. Its structure is defined
by a series of convolutional and depth-wise convolution
layers grouped into blocks. These blocks increase in number
as the network’s depth escalates, making EfficientNet-BO
an effective feature extractor. These convolutions optimize
computational complexity by initially applying depth-wise
convolutions for individual input channels. The reduction
in parameters doesn’t compromise the model’s capacity
to capture crucial features. With a base resolution of
224 x 224 pixels, this architecture efficiently processes a
broad range of image-related tasks. It starts with a stem
convolution operation that processes input images with 3 x
3 convolutions, ensuring that the subsequent blocks extract
valuable information. EfficientNet-BO culminates in a global
average pooling layer, which reduces the feature maps to a
1D vector by aggregating the most important information.
The final touch is a fully connected layer with a SoftMax
activation function, generating a probability distribution
across the output classes.
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EfficientNet-B7 starts with a stem convolution operation,
which processes input images using 3 x 3 convolutions,
ensuring that vital information is extracted and preserved
throughout the network. The model’s base resolution of
224 x 224 pixels serves as a robust foundation for handling
a wide range of image-related tasks. It culminates in a
global average pooling layer, a pivotal component that
transforms the feature maps into a 1D vector by aggregating
essential information. The final layer is a fully connected
layer featuring a SoftMax activation function, responsible for
generating a probability distribution across the output classes.
EfficientNet-B7’s architecture is expertly designed to excel
in applications demanding complexity and performance.
Its extensive computational demands are balanced by its
remarkable ability to extract intricate features, making it
the ideal choice for tasks that require fine-grained detail
recognition and image analysis.

For comparative analysis, DenseNet, Inception,
MobileNetV2 and ResNetV2-50 models are used. DenseNet
Model, introduced the concept of dense connectivity,
where each layer is connected to every other layer in
a feed-forward fashion. Inception, emphasizes multi-scale
processing through the use of parallel convolutional pathways
of different kernel sizes within the same layer. MobileNet,
specifically designed for resource-constrained environments
such as mobile and embedded devices. ResNetV2-50 [24],
a variant of the ResNet architecture with 50 convolutional
layers, takes the center stage in the animal type prediction
module.

B. PROPOSED MODEL

EfficientNet models are excellent for image classification
due to their compound scaling capability. However, one
of the main drawbacks of the EfficientNet models is
that they require high computational resources to train,
although the requirements are considerably less compared
to other models such as DenseNet and Inception. How-
ever, the trained deep learning models deployed on edge
devices require low computational resources. Therefore, our
proposed model aims to develop an edge device-friendly
architecture by utilizing the pre-trained imagenet weights of
EfficientNet-BO. The proposed model is divided into three
parts. Firstly, the Base Model comprises pre-trained weights
from ImageNet. Secondly, an custom CNN architecture is
designed specifically for edge device-friendly layers. Lastly,
an Attention mechanism is incorporated to enhance feature
learning. This approach aims to leverage the strengths of
pre-trained weights while tailoring the model architecture to
suit the computational constraints of edge devices, thereby
facilitating effective image classification.

1) BASE MODEL

In the proposed model architecture, the EfficientNet-BO is
utilized as the backbone or base of the model. Its primary
function is to serve as a feature extractor by leveraging
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the pre-trained weights of ImageNet dataset. Setting the
layers of the base model to non-trainable ensures that
these learned features remain intact and unchanged during
training. We want to preserve the knowledge encoded in
these weights, as they capture general patterns in the dataset.
The subsequent CNN architecture, composed of additional
layers like SeparableConv2D and Dense layers, builds upon
the features extracted by the base model. During training,
the weights of these added layers are updated based on the
images from the dataset. By employing this strategy, known
as transfer learning, we benefit from the generalization power
of the pre-trained base model while fine-tuning the model
to perform well on the animal dataset. This approach is
particularly effective when we have limited computational
resources, as it allows us to leverage the knowledge learned
from large-scale datasets like ImageNet.

2) CUSTOM CNN ARCHITECTURE

The three main layers used to build the CNN architecture are
seprable convolutional layers, sparsely connected layers and
Residual Connection.

In traditional Conv2D layers, which are commonly used
in CNN architectures, each convolutional operation involves
a substantial number of multiplications, making them com-
putationally intensive. For example, if we aim to convert
a feature map from 7 x 7 x 64 to 7 x 7 x 128 using
a 3 x 3 kernel, the total number of calculations required
wouldbe 3 x 3 x 64 x 5 x 5x 128 = 1,843,200. However,
Separable Conv2D layers offer a more efficient alternative.
These layers break down the convolution operation into
two steps: depthwise convolution and pointwise convolution.
Depthwise convolution applies a separate convolutional
operation for each channel of the input feature map, reducing
the computational load. In the given example, the number
of multiplications required for depthwise convolution would
be 64 (number of input channels) x 3 x 3 (kernel size) X
5 x 5 (number of moves) = 14,400. Following depthwise
convolution, pointwise convolution combines the output
channels from the depthwise step using 1 x 1 kernels.
In our scenario, the number of multiplications for pointwise
convolution would be 128 (number of output channels) x
64 (number of input channels) x 5 x 5 (number of
moves) = 204,800. The total number of multiplications
for both depthwise and pointwise convolutions sums up to
14,400 (depthwise) + 204,800 (pointwise) = 219,200, which
is significantly lower compared to the traditional Conv2D
approach. This makes the Separable Conv2D layers more
computational efficient make it more compatible with for
Edge devices.

As illustrated in Figure 8, the combination of three separate
Separable Conv2D layers formed a sparsely connected layer.
Such layers are valuable for preventing overfitting, especially
in scenarios where limited training data is available. They
enable us to increase both the depth and width of the model
without significantly escalating computational requirements.
Moreover, the inclusion of a Gaussian Dropout layer further
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FIGURE 8. Architecture of EvoNet.

aids in mitigating overfitting by randomly dropping neurons
and introducing noise to the input data.

In the proposed model architecture, the residual connection
plays a pivotal role. By incorporating the output from the
feature extractor into the sparsely connected layer’s output,
the residual connection allows the model to retain valuable
information extracted by the base model from the input
images. By preserving this information through the residual
connection, the model can leverage both low-level and
high-level features more effectively for classification tasks.
Additionally, the residual connection serves as a form of
regularization by providing an alternate path for the gradient
to flow during training, thereby helping to prevent overfitting.
This regularization contributes to maintaining a balance
between model complexity and generalization performance,
ultimately leading to improved model robustness and perfor-
mance.
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3) ATTENTION MECHANISM
The attention mechanism is inspired by human visual
attention, where we selectively focus on certain regions
of an image while ignoring others. Similarly, in neural
networks, attention mechanisms allow the model to focus
on relevant parts of the input data while downplaying less
important regions. This can be particularly useful in tasks
where different parts of the input contribute differently to
the output. In the proposed model, attention weights are
computed using a group normalization layer followed by
a dense layer and softmax activation. Group normalization
is applied to normalize the feature maps produced by the
convolutional layers. This helps in stabilizing the training
process and making the model less sensitive to variations in
input statistics.

The normalized feature maps are then passed through a
dense layer followed by a softmax activation function. The

77715



IEEE Access

K. V. Reddy et al.: Edge Al in Sustainable Farming: Deep Learning-Driven loT Framework

TABLE 3. Image distribution between classes in the dataset.

Class Training Data | Test data Class Training Data | Test Data
Bear 150 26 Leopard 150 37
Brown Bear 150 39 Lion 150 39
Cattle 150 38 Lynx 150 25
Cheetah 150 35 Mule 150 15
Deer 150 39 Pig 150 37
Elephant 150 32 Rabbit 150 37
Fox 150 29 Raccoon 150 35
Giraffe 150 23 Sheep 150 25
Goat 150 33 Tiger 150 25
Horse 150 34 Zebra 150 31

dense layer allows the model to learn the importance of
different spatial locations within the feature maps. Softmax
activation ensures that the attention weights sum up to 1,
making them interpretable as probabilities. Once the attention
weights are calculated, they are used to compute a weighted
sum of the feature maps produced by the convolutional layers.
This is achieved through a dot product operation between
the attention weights and the feature maps. The resulting
weighted sum represents a focused representation of the input
data, where regions with higher attention weights contribute
more to the final representation. This mechanism allows the
network to focus on important regions of the input image
while suppressing irrelevant areas, potentially improving
classification performance.

C. DATASET

We imported a dataset that consists of different classes of
animals, including Bear, Goat, Cattle, and 17 more species
[25], totaling 4445 images as shown in Fig. 9 and the gathered
information has been labeled. The objective is animal
classification based on the images of the animals that may
not always be in ideal environments.To achieve better results
in prediction, a dataset was included containing images taken
in various environments, including nighttime, broad daylight,
and from different angles such as close-ups, long shots,
and top views. This diverse dataset allows the model to
train on a wide range of images under different conditions,
improving its accuracy in animal classification. Given the
similarity in appearance among many classes of animals,
three different deep learning models were considered for
animal classification: the “VGG” model, the “ResNet”
model, and the “EfficientNet”” model. This approach enables
us to evaluate the results across different models and choose
the best-performing one.

We divided the dataset into two parts: a training dataset
containing 80% of the data and a test dataset containing the
remaining 20% to remove the over fitting issue. The model
is exclusively trained on the training data, which allows it to
evaluate its performance on unseen data (the test data) during
each epoch of training. This iterative process aims to enhance
accuracy and ensure correct predictions when the model is
applied in real time. When we test the model on unseen data,
the images are not always in the correct orientation, and some
may undergo distortion. In such cases, predicting the animal
can be challenging. To address this issue, data preprocessing
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techniques, such as data augmentation are applied to the
training data. Data augmentation involves modifying certain
parameters of the training data images [26]. For example,
some images may be horizontally or vertically flipped, while
others may be distorted by resizing them to half their original
size as shown in Fig. 10. This process allows the model to
train on new and diverse data, contributing to the reduction
of overfitting. As a result, the model becomes more capable
of accurately predicting images in various conditions.

D. CHOOSING BEST LEARNING RATE

In deep learning, selecting an appropriate learning rate is a
critical hyperparameter. It significantly impacts the model’s
training dynamics, convergence speed, and ultimately, its
performance. An incorrect learning rate can lead to slow
convergence, divergence, or suboptimal results. To address
this, a learning rate scheduler is employed as a valuable tool
in the training process. Its primary purpose is to adjust the
learning rate dynamically during training to help the model
converge efficiently and achieve optimal performance.

In the context of the deep learning architecture for animal
detection, determining the best learning rate is paramount
due to the model’s depth and complexity. A learning rate
scheduler assists in fine-tuning this hyperparameter by
systematically varying the learning rate and monitoring the
model’s performance. The learning rate scheduler explores
a range of learning rates during training. It starts with a
range of potential learning rates and iteratively adjusts them
based on the model’s performance as shown in Fig. 11.
This exploration allows the model to find the learning rate
that optimally suits the task of animal type prediction.By
gradually adapting the learning rate, the scheduler can
overcome challenges like vanishing gradients or overshooting
the optimal solution. This adaptability enhances the model’s
convergence speed and stability, which is especially critical
in deep architectures like ResNet-50, EfficientNet.

E. CHOOSING HYPERPARAMETERS

The choice of hyper parameters plays a crucial role in the
performance of our deep learning model. First, the image size
was set to 224 x 224 pixels. This resolution was selected as
it strikes a balance between computational efficiency and the
model’s ability to capture intricate features within the images.
It ensures that the model processes a substantial amount
of visual data while maintaining manageable computational
requirements. For the batch size, we opt for 32. This batch
size determines the number of images processed in each
iteration during training. It was carefully chosen to optimize
the balance between model convergence and computational
efficiency. A batch size of 32 allows the model to learn
multiple images simultaneously, thus enhancing training
speed and efficiency.

e
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FIGURE 9. Sample images from the dataset.
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FIGURE 10. Image before and after data augmentation.

Regarding activation functions, SoftMax, represented in
Eq. (1), was utilized. SoftMax is a commonly employed
activation function, especially in multiclass classification
tasks. It converts the model’s output into a probability
distribution over multiple classes, making it well-suited for
our animal classification problem. The choice of optimizer
was Adam. Adam is an adaptive optimization algorithm
known for its effectiveness in training deep neural networks.
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It dynamically adjusts the learning rate for each parameter,
providing a powerful mechanism for efficient convergence
during training. The Adam optimizer was selected to ensure
that our model effectively learns and generalizes from
the training data while minimizing the risk of overfitting.
These hyperparameters collectively contribute to the overall
performance and reliability of our deep learning model
for animal intrusion detection. The Adam optimization
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FIGURE 11. Finding best learning rate.

algorithm combines the advantages of two other optimization
methods: RMSprop (Root Mean Square Propagation) and
Momentum. It’s known for its adaptive learning rate and
efficient convergence properties. The formula for updating
the weights using Adam optimization is as follows:
t=0
mg = vector of zeros for each parameter
vo = vector of zeros for each parameter

Parameter Updates (for Each Iteration t):
Calculate the loss gradient with respect to the parameters:

8t
t=t+1
my=p1-m_1+{0—PB1)- g
vi=Ba-vie1 + (1= B2) - (gD)

my
my = ——
t l—ﬁi
Vi
= — 2
Vi l—ﬁé ()

Update the parameters (weights) with the computed
moment estimates:
my

0 =601 —a - —— 3
t t—1 aﬁ—i—e 3)

VI. RESULTS AND DISCUSSION

In our comparative analysis of deep learning models
for animal classification, we observed distinctive perfor-
mance characteristics among several prominent models:
DenseNet, Inception, ResNet, MobileNetV2, EfficientNet-
BO, EfficientNet-B7 and proposed model, EvoNet. Figure 12
illustrates that the proposed model performed well compared
to all other models in terms of accuracy. EvoNet achieved
a training accuracy of 96.7% and a validation accuracy of
91.4%, demonstrating that the custom architecture helps
the model configure the weights to learn better features
in an image. Furthermore, the proposed model’s light
weightiness is compared to others with only 1.4MB of
trainable parameters. MobileNet and EfficientNet-BO are
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lighter, but have lower validation accuracy, achieving only
82.49% and 80.73%, respectively as shown in Table 4.
On the otherhand, DenseNet and EfficientNet-B7 are large
models, and their extensive architecture often leads to
overfitting due to limited training data availability. Finally,
both Inception and ResNetV2-50 are moderately sized with
training accuracy of 88.34% and 91.3%, respectively.

The choice of deep learning model significantly impacts
the performance of animal classification tasks. While other
models struggle to score accuracy, the proposed model
presents a balanced option, offering a practical trade-off
between accuracy and resource efficiency. But while choos-
ing the best model for the application in the real-world
scenarios, it is vital to consider a broader spectrum of metrics
beyond accuracy alone. In practice, the effectiveness of a
model is not solely determined by its overall accuracy, but
also by its ability to maintain a balance between various
performance indicators. Metrics like Precision, Recall, and
F1 score are equally instrumental in evaluating a model’s
capability to distinguish between true and false positives,
identify actual positive instances, and strike a harmonious
balance between these factors.

Precision, often regarded as a pivotal metric, delves into
the model’s capacity to make precise positive predictions
across different classes. In real-world applications, Precision
is of paramount importance, particularly when false positive
predictions can have substantial consequences. The Precision
can be obtained by,

.. TP
Precision = —— “4)
TP + FP
where TP and FP denote True Positive and False positive.
Recall, on the other hand, focuses on the model’s effec-
tiveness in capturing actual positive instances. It measures
the proportion of true positive predictions in relation to
all actual positive instances. This metric is vital when it
comes to ensuring that the system does not miss any relevant
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TABLE 4. Performance metrics of all models.

Parameter Precision Recall F1 Score Accuracy Average Trainable
Macro Weighted Macro Weighted Macro Weighted | Training | Validation | training time | Parameters
Model A A A A A A A A h Si
verage verage verage verage verage verage ccuracy ccuracy per epoc ize
DenseNet 0.85 0.85 0.83 0.83 0.83 0.83 73.53% 69.87% 78s 367.7MB
Inception 0.85 0.87 0.87 0.85 0.86 0.87 87.63% 81.39% 72s 24.25MB
ResNetV2-50 0.06 0.08 0.04 0.06 0.03 0.04 91.3% 80.073% 61s 17.82MB
EfficientNet-BO 0.84 0.87 0.88 0.86 0.86 0.86 88.34% 80.73% 33s 3.5MB
EfficientNet-B7 0.85 0.88 0.88 0.87 0.86 0.88 89.7% 82.81% 73s 129.71MB
MobileNetV2 0.84 0.86 0.88 0.86 0.87 0.88 88.77% 82.49% 36s 3.52MB
Proposed Model 0.89 0.88 0.88 0.89 0.88 0.88 95.02% 89.70% 23s 1.34MB
(EvoNet)
Proposed Model*
(EvoNet with 0.90 0.89 091 0.90 0.90 0.90 96.72% 91.47% 24s 1.40MB
Attention Mechanism)

* is the model that is picked for its best performance and light weightiness.

instances, as missing actual positive cases could have critical
implications. The Recall can be calculated by,

TP
TP+ FN

where FN is False Negative. F1 score, often considered the
balance between Precision and Recall, offers a more com-
prehensive perspective on the model’s overall performance.
It takes into account both Precision and Recall, seeking to
strike a harmonious equilibrium between minimizing false
positives and ensuring the identification of genuine positive
instances. The F1 score is particularly useful when there is a
need to manage a trade-off between Precision and Recall to
optimize the model’s efficiency in practical applications.

Recall = (5)

Precision - Recall
F1 score =2 -

— (6)
Precision + Recall

When analyzing these metrics, it becomes clear that
ResNetV2-50 is behind the rest of the models. It exhibits
lower Precision, Recall, and F1 scores, indicating that it
struggles not only in classifying animals accurately but
also in minimizing false positives and capturing actual
positive instances. Collectively, these metrics reflect the
model’s limited ability to make precise and comprehensive
predictions. ResNet, although it achieved a high accuracy
rate, surprisingly exhibits lower Precision, Recall, and F1
scores compared to other models. This discrepancy suggests
that, while ResNet excels in classifying animals correctly,
it faces challenges related to minimizing false positives and
capturing true positives. This discrepancy may arise from the
specific nuances of the ResNet model architecture, affecting
its ability to strike a balance between Precision and Recall.
The remaining models gave good metric scores with respect
to their accuracies.

The proposed Model emerges as the top performers in
terms of Precision, Recall, and F1 scores. This model not
only achieve high accuracy but also excel in making precise
positive predictions, capturing actual positive instances effec-
tively, and maintaining a balanced F1 score. The balanced
F1 score indicates that they manage the trade-off between
Precision and Recall skillfully. This balance positions them
as robust choices for animal classification tasks, highlighting
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TABLE 5. Accuracy of the each class for the proposed model.

Class TP | TN | FP | FN | Acc* Class TP | TN | FP | FN | Acc*
Bear 24 602 2 6 0.987 | Elephant 31 578 6 19 0.96
B;;’;”r“ 34 | 594 | 5 | 1 | 099 Fox 390 | 504 | 0 | 1 | 0998
Cattle 31 590 7 6 0.979 Giraffe 25 | 609 0 0 1
Cheetah 19 593 16 6 0.965 Goat 15 611 0 8 0.987
Deer 36 | 593 3 2 0.992 Horse 36 | 594 1 3 0.993
Leopard | 32 | 598 0 4 0.993 Rabbit 36 | 596 1 1 0.996
Lion 29 | 605 0 0 1 Raccoon | 35 | 599 0 0 1
Lynx 21 610 2 1 0.995 Sheep 25 600 0 9 0.985
Mule 19 | 598 14 3 0.973 Tiger 22 | 609 3 0 0.995
Pig 22 | 598 12 2 0.977 Zebra 29 | 601 2 2 0.993

Acc* denotes accuracy.

the importance of their architecture in achieving well-
rounded results. To further evaluate the model’s performance,
we tested the accuracy of each class with a total of
634 images, and the results are shown in Table 5. The
table is formatted as follows. For example, in the class
“bear”’, TP represents the number of images whose true
label is ““bear” and are detected as ‘bear’. TN represents
the number of images whose true label is not “bear” and
are detected as not ‘“bear”. FP represents the number of
images whose true label is not “‘bear” but are identified as
“bear”. FN represents the number of images whose true label
is “bear” but identified as not “bear”’. TP, TN, FP, and FN
have been calculated for all 20 classes to provide a more
comprehensive representation of the model’s performance.

A. TIME VS ACCURACY GRAPH

To test the efficiency of the model, it was evaluated using
634 test images. These test images comprise images with
different orientations, grayscale, and only partial visibility of
body parts, as shown in Figure 13. By conducting tests on
these images, we can assess how well the model performs in
real-world scenarios. As depicted in Figure 14, the proposed
model achieved an accuracy of 91.17% within a mere
5 seconds. This demonstrates that the model has effectively
learned the features of the images and exhibits high efficiency
in real-world scenarios. Following closely in terms of time
is MobileNet, which took 7 seconds but failed to provide
satisfactory accuracy. EfficientNet-BO, on the other hand,
performed commendably, delivering an accuracy of 87.43%
within just 8 seconds. However, the poorest performing
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FIGURE 13. Example of test images.
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FIGURE 14. Testing image recognition by the CAM on the Boundary poles.

model among all is DenseNet, managing only an accuracy of
77.08% and requiring almost 10 seconds. This is attributed to
the heavy parameters and depth of the model.

Overall, the proposed EvoNet model demonstrates strong
performance, highlighting the intricate interplay between
model architecture, fine-tuning strategies, and the inherent
complexities of integrating attention mechanisms within
CNN frameworks.

B. IMPLEMENTATION AND CHOOSING DEEP LEARNING
MODEL FOR TINYML

TinyML represents a groundbreaking field in the world of
machine learning. It acts as a bridge, allowing us to take
powerful deep learning and machine learning models and use
them in everyday devices. These devices range from small
processors like microcontrollers to specialized chips known
for their low power usage. TinyML has gained popularity
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TABLE 6. Comparison of basic requirements and Al-CAM specs.

Architecture Clock speed RAM
50MHz 100KB

240MHz 4MB

Basic Requirements 32-bit
AI-CAM 32-bit

because it’s cost-effective, energy-efficient, reliable with data
and respects user privacy [27]. Our decision to embrace
TinyML in our hardware is all about deploying models on
low-power gadgets. This approach ensures not only efficient
operation but also reliable results in real-world scenarios,
overcoming the limitations usually associated with deep
learning models that require powerful GPUs. However, not
all microcontrollers can handle TinyML models effectively.
Specific requirements need to be met, as outlined in the table
below. In our animal intrusion detection system, AI-CAM
microcontrollers were utilized for our boundary poles.

Among the deep learning models we evaluated in our
research, EvoNet performed the best. The light weight and
less computational power requirement with best accuracy
makes the EvoNet model a practical choice for TinyML
deployment, especially within the AI-CAM microcontroller
environment. The operational efficiency of the AI-CAM
matches well with the EvoNet model’s requirements, ensur-
ing a smooth process for animal intrusion detection while
minimizing any unnecessary delays in image predictions.
But while deploying the model in current state into the
AI-CAM is not possible as the size of the model is around
16.4MB. To reduce the weight of the model it is converted
into tensorflow lite version by using two techniques Pruning
and Quantization. But the trade-off comes as change in model
accuracy.

1) PRUNING

The main goal of the pruning is to eliminate unimportant
parameters namely weakest weights at end of each training
step. To prune the model TensorFlow Model Optimiza-
tion Toolkit(tmof) was utilized. Pruning usually follows a
schedule that determines when and how much to prune the
neural network during training. The scheduler operates on a
polynomial decay pattern. It requires an initial sparsity level,
a final sparsity level, a starting step for pruning, an ending
step for pruning, and the exponent for the polynomial decay.
With each step, the tmof removes less important parameters
to reach the specified sparsity level.

S = (S, — So) x (’_to)

te — 1o

Here, So and S, denote the initial and final sparsity,
respectively, while 7y and 7, represent the starting and ending
steps of pruning and the exponent of the polynomial decay
(). Before pruning begins, importance scores are computed
for each parameter in the network. These scores quantify
the importance of each parameter in contributing to the
overall performance of the network. Common methods for
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FIGURE 15. Testing image recognition by the CAM on the Boudary poles.
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FIGURE 16. Stream from the Al CAM on the rover.

computing importance scores include weight magnitude,
gradients, or activation values. Based on the computed
importance scores and the pruning schedule, the parameters
that are deemed less important are identified for pruning.
Once the less important parameters are identified, they are
pruned from the network. After pruning, the remaining
parameters in the network may need to be adjusted to
compensate for the removed connections.

2) QUANTIZATION
Quantization typically involves converting floating-point
values to lower precision integer values. This can sig-
nificantly reduce the model size by 4 times the original
size and require less computational power, making it more
efficient for deployment on hardware platforms with limited
computational resources embedded systems. There are many
types of Quantization techniques in that we opted for Post
training dynamic range quantization. In this, the model is
trained using floating-point precision, and then quantized to
lower precision values after training is complete.

By utilizing both pruning and quantization, the model’s
size is reduced by approximately 10 times the original
size, from 16.1 to 1.63MB. However, the trade-off is a
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reduction in the model’s accuracy from 91.4% to 90.1%,
which is quite common in the pruning process. Nev-
ertheless, it still provided good performance in animal
classification.

3) SHOWCASE OF SYSTEM RESULTS AND TinyML MODEL
As illustrated in Fig. 15, the image classification process
using this model yielded highly accurate predictions with
impressive percentages. This successful implementation of
the TinyML model is a pivotal component of our animal
intrusion detection system, which has proven to be highly
effective. Fig. 16 provides a r instrumental in allowing users,
such as farmers, to monitor their fields and surroundings
remotely. The real-time glimpse into our system’s capabilities
by showcasing a live video stream captured by the rover.
This feature is video stream provides valuable insights
into the current field conditions, ensuring prompt response
to any potential threats. Fig. 16 further emphasizes the
system’s proficiency by demonstrating the animal detection
process via the rover’s camera module while it patrols the
field. These results collectively reinforce the robustness and
efficiency of our integrated IoT and TinyML-based animal
intrusion detection system, providing a reliable solution
for safeguarding crops from wildlife threats in real-world
agricultural scenarios.

VIi. CONCLUSION AND FUTURE WORK

In this paper, an innovative system for animal intrusion
detection is presented, harnessing the power of deep learning
models within a TinyML framework. The results demonstrate
that the proposed EvoNet model has performed better while
maintaining its lightweight nature, which is important for
TinyML models as they operate with limited computational
resources. This balance between improved performance and
efficient resource utilization is crucial for deploying models
in resource constrained environments such as edge devices.
Future work in this domain could explore the integration
of additional sensors for more comprehensive intrusion
detection, as well as the implementation of advanced machine
learning techniques to handle various types of intrusions
in critical situations. This could involve modifying the
base models with different types of attention layers or
changes in the backbone structure to efficiently improve the
performance of the models. Additionally, the development of
a user-friendly interface and mobile application to facilitate
real-time monitoring and control is a promising avenue for
further system enhancement.
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