IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 22 April 2024, accepted 24 May 2024, date of publication 28 May 2024, date of current version 4 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3406413

== RESEARCH ARTICLE

A BERT-Enhanced Exploration of Web and Mobile
Request Safety Through Advanced NLP Models
and Hybrid Architectures

SALMI SALIM™ AND OUGHDIR LAHCEN

National School of Applied Sciences, Engineering Systems and Applications Laboratory, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco

Corresponding author: Salmi Salim (salim.salmi@usmba.ac.ma)

ABSTRACT In the rapidly evolving landscape of digital technology, the security of web and mobile
applications stands paramount. As these platforms become increasingly integrated into our daily lives,
the need for robust safety measures becomes imperative. This research paper delves into the intricate
realm of web and mobile request safety, unraveling a multi-faceted exploration that combines traditional
feature engineering with state-of-the-art machine learning models. Beginning with foundational models like
TextCNN and TextRNN, we scrutinize their effectiveness in discerning the safety of requests. Advancing our
investigation, we delve into the capabilities of sophisticated architectures, including Bidirectional LSTMs,
DistilBERT, and RoBERTa. Beyond individual assessments, we introduce hybrid models that synergize the
strengths of various approaches, establishing a comprehensive defense against emerging security threats.
Throughout this research, we navigate the intricacies of model training, evaluation, and performance metrics.
From accuracy and precision to recall and confusion matrices, each metric paints a nuanced picture of the
efficacy of these models in ensuring the safety of web and mobile interactions. In a world where cyber threats
loom large, the significance of this research lies not only in its technical contributions but also in its practical
implications. By providing insights into innovative strategies for enhancing the security and resilience of
digital applications, this paper contributes to the ongoing discourse on fortifying the digital infrastructure.

INDEX TERMS Web and mobile security, request safety, machine learning, natural language processing,
cybersecurity.

I. INTRODUCTION
In the dynamic realm of web and mobile security, the
imperative for robust threat detection mechanisms has
never been more pronounced. The escalating frequency and
sophistication of cyber threats underscore the urgency for
innovative strategies that transcend conventional models [1].
In response, we present a pioneering solution that harnesses
the potency of hybrid models, uniting the capabilities of
convolutional neural networks (CNNSs), recurrent neural
networks (RNN5), and cutting-edge transformer models like
RoBERTa.

The escalating intricacy of cyber threats targeting web and
mobile platforms has propelled the need for adaptive and

The associate editor coordinating the review of this manuscript and

approving it for publication was Arianna Dulizia

intelligent security measures. Conventional methodologies
often fall short in holistically identifying and countering
diverse threat vectors, prompting the exploration of advanced
models adept at comprehending the nuances of textual data.

Our journey commences by delving into diverse deep
learning architectures designed for text classification. From
the early adoption of TextCNN, excelling in capturing local
patterns, to the integration of TextRNN, renowned for its
sequential understanding capabilities, each model contributes
to an intricate tapestry of threat detection mechanisms.
Additionally, we explore the potential of Bidirectional LSTM
models, enhancing contextual understanding by considering
both past and future information in the input sequence.

The emergence of transformer models has revolutionized
natural language processing. Our approach incorporates
state-of-the-art transformer architectures such as RoOBERTa,

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

76180

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0000-0002-0424-9677
https://orcid.org/0000-0002-7565-5963

S. Salim, O. Lahcen: BERT-Enhanced Exploration of Web and Mobile Request Safety

IEEE Access

facilitating a deeper semantic understanding of textual data.
The fusion of transformer embeddings with traditional
models forms the bedrock of our hybrid architecture,
amalgamating the strengths of local and global contextual
information.

Acknowledging the necessity for a holistic threat assess-
ment, our models extend beyond textual content to incorpo-
rate additional features. Variables like sentence length, punc-
tuation usage, and custom-engineered indicators provide the
models with a broader context, elevating their discernment
between safe and potentially malicious requests.

The apex of our exploration culminates in the develop-
ment of a Hybrid Model, seamlessly integrating TextCNN
and RoBERTa. This innovative approach seeks to exploit
the synergies between convolutional and transformer-based
architectures, offering a comprehensive understanding of
both local and global textual patterns.

Our hybrid model undergoes meticulous training with
a laser focus on optimizing performance metrics such as
accuracy, precision, and recall. The evaluation process entails
rigorous testing on a diverse dataset, culminating in a com-
prehensive analysis of the model’s proficiency in accurately
categorizing requests as safe or potentially harmful.

This advanced threat detection system holds immense
promise for fortifying the security posture of web and
mobile applications. By seamlessly integrating with existing
security frameworks, our solution furnishes an additional
layer of defense adept at adapting to emerging threats and
safeguarding sensitive user data.

In an era where cyber threats evolve in sophistication, our
hybrid approach to threat detection stands as a beacon of
innovation. The union of traditional and transformer-based
models heralds new horizons for web and mobile security,
promising a safer digital environment for users and organi-
zations alike. As we steadfastly evolve, our commitment to
remain at the forefront of cybersecurity ensures a secure and
resilient digital future.

Il. LITERATURE REVIEW

applications have ended up an indispensable portion of
our day by day lives, taking care of touchy information.
Subsequently, they have become profitable targets for
potential attacks. To protect these applications against both
known and obscure dangers, a classification approach is
utilizing the well-established DATASET Hypertext Transfer
Protocol. The authors in [2] presented a character-level
neural arrangement of convolution on the HTTP data set.
This includes extricating highlights from HTTP requests and
categorizing them as typical or atypical. The objective is
to realize precision, speed, and cost-effectiveness within the
execution of a Web Application Firewall. This specialized
firewall demonstrates to be more proficient in ensuring
applications against known attacks compared to ordinary
firewalls. Utilizing the same dataset, authors in [3] utilized
an assortment of machine learning strategies, such as
Arbitrary Timberland, Choice Tree, AdaBoost, Calculated

VOLUME 12, 2024

Relapse, Stochastic Slope Plummet, and Naive Bayes. These
calculations were connected to classify HTTP demands,
and an include-choice handle was conducted to distinguish
the five most significant highlights for identifying web
assaults. The evaluation of these procedures was based on the
accuracy, rate, and F measures. The comes about uncovered
that all procedures displayed tall exactness, review, rate, and
F-measures, with the exemption of Naive Bayes.

Authors in [4] conducted an overview that digs into
various machine learning procedures utilized in Web Inter-
ruption Location Frameworks. Their center was on the
engineering of web interruption location frameworks based
on machine learning standards. To demonstrate and approve
their discoveries. In their work, authors [5] dove into the
method of ordinary web demands from the client to the
server. They particularly centered on classifying web assaults
and categorizing them based on their types. Additionally,
the Authors investigated the methodology employed by
assailants in a five-step prepare. The beginning step includes
gathering data almost the vulnerabilities of the application.
Along these lines, this information is utilized to pick up
get to the net application. The third step envelops getting
chairperson benefits, taken after by the fourth step, which
rotates around keeping up get to. At last, the aggressors
execute a web application attack through a DoS assault to
block other clients from getting to the application.

Authors in [6] connected machine learning methods to
identify dazzle Cross-Site Scripting assaults. The method
of reasoning behind this approach is that existing XSS
discovery procedures regularly battle to recognize dazzle
XSS assaults. To address this restriction, the Authors
utilized machine learning to perceive noxious behavior
inside their dataset. Authors in [7] presented an arrangement
for classifying SQL infusions inside SQL questions. They
utilized the Gap-Weighted String calculation to distinguish
shared characters in inquiry strings as a yield for a closeness
metric. Subsequently, a Bolster Vector Machine was prepared
on these similitude measurements to classify obscure test
queries, accomplishing an amazing precision. In a related
setting, authors in [8] conducted a comparison between
employing a one-class SVM exclusively to classify HTTP
demands and joining a feature extraction strategy. The include
extraction method involved extricating 10 numeric highlights
from the complete ask, counting HTTP strategy, headers,
inquiry, URL, and body. Among these numeric highlights
were tallies for the number of letters, digits, add up to
length, and non-alphanumeric characters. The classification
comes about demonstrated that utilizing to include extraction
strategy with the one-class SVM altogether upgraded the
discovery results.

Authors in [9] investigated to utilize of two classifiers,
to be specific choice tree and irregular timberland, for
recognizing (DDoS) assaults. Their information source was
the KDDCup’99 dataset, and through the disarray matrix,
they found that the D tree classifier given the foremost
favorable arrangement compared to the arbitrary woodland.

76181

IEEE Access

S. Salim, O. Lahcen: BERT-Enhanced Exploration of Web and Mobile Request Safety

In a comparable setting, authors in [10] tended to the
location of Disseminated Dissent of Benefit Assaults uti-
lizing three classification methods: Naive Bayes, Multilayer
Perceptron, and Irregular Timberland. The MLP stood out
due to different execution highlights such as Preparing
Calculation, Neural Network Engineering, and Exchange
Work, accomplishing the most noteworthy precision. Authors
in [11] proposed a novel profound component based on
a normal arrange for precisely finding and classifying
DDoS assaults in multi-layer applications. This component
utilized feedforward back-propagation, accomplishing an
amazing exactness. Moreover, authors in [12] executed a
web lumberjack model framework based on a gathering
algorithm to illustrate the plausibility of deriving PINs or
passwords entered quietly by clients of portable phones in
mobile web applications. The internet lumberjack altogether
moved forward in precision compared to the past. Its usage
included information collection, highlight extraction, and
show preparing.

Authors in [13] propose a robust and effective approach for
detecting Arabic hate speech on Twitter, aiming to address
a notable gap in existing literature. Their methodology
introduces the Arabic BERT-Mini Model (ABMM), leverag-
ing bidirectional encoder representations from transformers
(BERT) to analyze Twitter data. The ABMM model classifies
tweets into three categories: normal, abuse, and hate speech.
Through rigorous experimentation and comparison with
state-of-the-art approaches, the ABMM model demonstrates
exceptional performance, achieving an impressive accuracy
score of 0.986. This study contributes significantly to the field
of Arabic hate speech detection and underscores the impor-
tance of tailored approaches for addressing language-specific
challenges in social media content moderation.

Table | presents a concise summary of research papers in
the field of web application security. Each row outlines a dif-
ferent study, including authorship, methodologies, datasets,
key findings, and limitations. This overview offers a quick
insight into various approaches and challenges addressed in
the literature.

IIl. TextCNN: CONVOLUTIONAL NEURAL NETWORKS FOR
EFFICIENT TEXT CLASSIFICATION

TextCNN is a convolutional neural network architecture
designed for text classification tasks. It utilizes convolutional
layers to capture local patterns and hierarchical representa-
tions of textual data [14]. The architecture typically consists
of the following components:

« Embedding Layer: Given a sequence of words in a text,
each word is represented as a dense vector through an
embedding layer. Let x; represent the embedding vector
for the i word in the input sequence.

« Convolutional Layer: Convolutional operations are
applied to the embedded representations to capture local
patterns. A filter of size & is applied to k consecu-
tive words, producing a feature map c; through the

76182

convolution operation:
¢i =f(W - Xiiyn—1 + D)

where x;.yp—1 is the concatenation of embedding
vectors from i to i + h — 1, W is the filter matrix,
b is the bias term, and f is the activation function
(commonly ReLU).

« Max Pooling Layer: Max pooling is performed over the
feature maps to extract the most salient information. The
maximum value p; is taken from each feature map c;:

pi = max(c;)

o Fully Connected Layer: The pooled features are flat-
tened and passed through one or more fully connected
layers to capture global dependencies:

y=gW -p+1b)

where W' and b’ are the weight matrix and bias term of
the fully connected layer, and g is the activation function.

o Output Layer: The final output layer uses softmax
activation for multi-class classification:

y = softmax(y)

o Training Objective: The model is trained to minimize
the cross-entropy loss between the predicted distribu-
tion y and the true distribution y:

Loss = = 3" ;- logGi)
i

where y; is the ground truth probability distribution for
the class i, and y; is the predicted probability.

This architecture is effective for various natural language
processing tasks, such as sentiment analysis and text
categorization, due to its ability to capture local and global
contextual information in the input text.

IV. TextRNN AND BiLSTM: UNRAVELING SEQUENTIAL
DEPENDENCIES

TextRNN, short for Text Recurrent Neural Network, is a
neural architecture tailored for processing sequential data
in natural language. It employs recurrent layers to capture
contextual dependencies across words in a sentence. The core
idea involves passing information from previous time steps
to the current one, enabling the model to understand the
sequential nature of textual information [15].

hy = RNN(x;, by 1)

Here, x; represents the input at time step ¢, 5, is the hidden
state at time ¢, and RNN is the recurrent function. The model
learns to update its hidden state based on both the current
input and the information from the previous time step.

VOLUME 12, 2024

S. Salim, O. Lahcen: BERT-Enhanced Exploration of Web and Mobile Request Safety

IEEE Access

TABLE 1. Overview of research papers in web application security based on literature review.

Authors Methodologies Dataset Year Key Findings Limitations
[2] Character-level HTTP Dataset 2018 Efficient Web Application Firewall — Limited evaluation on diverse
CNN using CNN for HTTP requests clas- datasets, potential overfitting due
sification. to dataset bias.
[3] Various ML tech- HTTP Dataset 2017 Evaluation of ML techniques for Lack of comparison with state-of-
niques HTTP requests classification, iden- the-art methods, performance may
tifying significant features for web vary on different datasets.
attack detection.

[4] Survey N/A 2016 Overview of ML techniques in Relies on existing literature, may
Web Intrusion Detection Systems not cover all recent advancements in
(WIDS) architecture. the field.

[5] Classification Web attack types 2016 Classification of web attacks and Limited dataset size, generalization
investigation of attacker methodol- to real-world scenarios may be chal-
ogy. lenging.

[6] ML for XSS detec- N/A 2018 ML approach for detecting blind Limited evaluation on diverse XSS

tion Cross-Site Scripting (XSS) attacks. attack scenarios, potential perfor-
mance degradation in noisy envi-
ronments.

[7] SQL injection de- SQL queries 2018 Classification of SQL injections us- Reliance on specific features, may

tection ing Gap-Weighted String algorithm not generalize well to various SQL
and SVM. injection types.

[8] One-class SVM HTTP requests 2017 Comparison of one-class SVM with Sensitivity to parameter tuning, per-
feature extraction for HTTP request ~ formance may degrade with imbal-
classification. anced datasets.

[9] Decision Tree & KDDCup’99 2017 Detection of Distributed Denial of Limited scalability to large-scale

RF Service (DDoS) attacks using deci- ~ DDoS attacks, potential false posi-
sion tree classifier. tives in dynamic network environ-
ments.

[10] Naive Bayes, MLP, N/A 2017 Detection of Distributed Denial of Sensitivity to hyperparameters, may

RF Service (DDoS) attacks using MLP require extensive computational re-
as the most effective classifier. sources for training.

[11] Deep Learning Multi-layer apps 2020 Novel deep feature-based method Potential overfitting due to complex
for DDoS attack detection and clas- model architecture, interpretability
sification. may be challenging.

[12] Web logger model Mobile web apps 2017 Implementation of web logger Limited applicability to specific

model for deriving PINs/passwords
entered in mobile web applications.

mobile platforms, potential privacy
concerns with data logging.

A. BilLSTM (BIDIRECTIONAL LONG SHORT-TERM
MEMORY)

BiLSTM is an extension of the traditional LSTM (Long
Short-Term Memory) architecture. It incorporates informa-
tion from both past and future time steps by utilizing two
separate LSTM layers - one processing the sequence in
forward order and the other in reverse [16]. This bidirectional
approach allows the model to capture contextual information
from both directions, enhancing its understanding of the input
sequence, Figure 1.

%
+ = LSTMforward (X, 7 1—1)
<«
+ = LSTMbpackward(X¢, 7 1+1)

- <«
he=1[h h]

s =

Here, 7;, and <h_, represent the hidden states from the
forward and backward LSTMs, respectively. The final hidden
state h; is obtained by concatenating the two.

VOLUME 12, 2024

Input

Bidirectional LSTM

Attention Layer

Output

{Question Text) {OutpatientCategory)

-G080 =
- @0000 =
-G080 =

Softmax Layer

- 00000 =

FIGURE 1. Bidirectional long-short term memory (LSTM) with attention
mechanism.

Both TextRNN and BiLSTM play crucial roles in cap-
turing sequential dependencies, enabling models to excel
in tasks like sentiment analysis, named entity recogni-
tion, and other sequence-based natural language processing
tasks.

76183

IEEE Access

S. Salim, O. Lahcen: BERT-Enhanced Exploration of Web and Mobile Request Safety

V. RoBERTa AND DistilBERT: UNVEILING A ROBUSTLY
OPTIMIZED BERT APPROACH

RoBERTa, an acronym for Robustly optimized BERT
approach, represents a significant advancement in natural
language processing (NLP) and builds upon the trans-
former architecture. Introduced by Facebook AI in 2019,
RoBERTa is designed to enhance the original BERT
model’s performance through various key features and
optimizations [17].

RoBERTa introduces dynamic masking during pre-
training, departing from the static masking strategy used in
BERT. This dynamic approach involves randomly masking
different sets of tokens in each training iteration, facilitating
improved generalization and a deeper understanding of
contextual information. RoBERTa benefits from a more
extensive and diverse training dataset compared to its
predecessor, BERT. The model leverages a larger corpus of
text data, enabling it to capture a broader range of linguistic
patterns and nuances.

The Next Sentence Prediction (NSP) task, present in
BERT, is omitted in ROBERTa’s pre-training. This modifica-
tion aims to enhance the model’s understanding of sentence
relationships by focusing on other relevant pre-training
objectives. ROBERTa carefully tunes hyperparameters during
training, including batch size and learning rate, to optimize
performance. This meticulous adjustment contributes to the
model’s robustness and efficiency.

DistilBERT, short for Distill-BERT, is a compact and
computationally efficient variant of the original BERT
(Bidirectional Encoder Representations from Transformers)
model. Introduced by Hugging Face in 2019, DistilBERT
aims to distill the knowledge from a pre-trained BERT model
into a smaller architecture, maintaining performance while
significantly reducing the number of parameters [18].

« Key Features and Characteristics [19]

— Knowledge Distillation: DistilBERT employs
knowledge distillation, a process where it learns
from a pre-trained BERT model with a larger
number of parameters. This allows DistilBERT
to inherit the essential representation learn-
ing capabilities of BERT while being more
lightweight.

— Reduced Model Size: One of the primary goals
of DistilBERT is to create a smaller model for
faster inference and reduced memory requirements.
By distilling knowledge from BERT, DistilBERT
achieves a substantial reduction in the number of
parameters while preserving the critical aspects of
the original model.

— Retained Transformer Architecture: DistilBERT
retains the transformer architecture, which is the
backbone of BERT. This architecture facilitates
capturing contextual information in a bidirectional
manner, allowing the model to understand the
relationships between words in a sequence.

76184

A. ATTENTION MECHANISM IN TRANSFORMER

Attention is the cognitive process of selectively focusing on
one or more objects while ignoring others. The attention
mechanism emerged to enhance neural machine translation
systems based on autoencoders in NLP [20]. Later, this
mechanism or its variations have been employed in various
applications, including computer vision, speech processing,
etc. In machine translation applications, it’s common to use
autoencoders based on an LSTM architecture [21]. Each
time the proposed model generates a sentence, it looks
for a set of positions in the hidden layers of the encoder
where the most relevant information is available. This idea is
called “Attention.” The bidirectional LSTM used in Figure 1
generates a sequence of annotations (h1, h2, ..., hTx) for each
input phrase. All vectors hl, h2, ..., etc., used in the process
are the concatenation of the hidden states’ output from the
LSTMs, both forward and backward, in the encoder [22].

In the transformer architecture, the attention mechanism
is pivotal for capturing contextual dependencies [23]. The
attention score Attention(Q, K, V) is computed using scaled
dot-product attention:

:)<
Attention(Q, K, V) = softmax (ﬁ) -V

Here, Q, K, and V represent the query, key, and value
matrices, respectively, while dj is the dimensionality of the
key vectors. This mechanism allows RoBERTa to assign
different weights to different parts of the input sequence,
contributing to its ability to capture intricate contextual
information in natural language.

RoBERT2’s incorporation of dynamic masking, a larger
training dataset, and modifications to pre-training objec-
tives showcases its robustness and effectiveness in various
NLP tasks, solidifying its standing as a state-of-the-art
language model. Researchers and practitioners often leverage
RoBERTa for fine-tuning on specific NLP tasks or use
its pre-trained representations to boost performance in
downstream applications [24].

V. PROPOSED METHODOLOGY

The proposed methodology encompasses a comprehensive
approach to binary text classification, integrating four distinct
deep learning models: TextCNN, TextRNN, Bidirectional
LSTM, RoBERTa-based Hybrid Model, and a DistilBERT-
based Model. The primary objective is to categorize
textual data into ‘Not Safe’ and ‘Safe’ classes. Each
model contributes a unique architecture: TextCNN with
convolutional layers, TextRNN with recurrent structures,
Bidirectional LSTM with bidirectional memory cells, the
RoBERTa-based Hybrid Model combining TextCNN with
RoBERTa embeddings, and the DistilBERT-based Model.
This diverse ensemble aims to capture intricate patterns in
textual information. The subsequent sections elaborate on
the specific architectures, training procedures, and evaluation
metrics for each model, culminating in a robust framework for
binary text classification.

VOLUME 12, 2024

S. Salim, O. Lahcen: BERT-Enhanced Exploration of Web and Mobile Request Safety

IEEE Access

VII. DATASET

The dataset under consideration, retrieved from Kaggle and
centered around web and mobile security with a focus on user
requests, is characterized by its comprehensive inclusion of
request payload data. A pivotal feature within this dataset
is the “is Safe” field, providing crucial insights into the
safety of each individual request for the application [25].
The “is Safe” field serves as an indicator, effectively
conveying whether a particular request is deemed secure
or poses potential risks. Specifically, a value of “False” in
the “is Safe” field designates that the associated request
should be flagged as unsafe and consequently blocked. This
determination is based on a meticulous examination of the
fields within each request. Any instance where malicious
input is detected, aligning with the OWASP Top 10 attacks,
results in the classification of the entire request as unsafe.
As we embark on the exploration and visualization of this
dataset, our goal is to unravel patterns and insights that
contribute to a robust understanding of security dynamics
in the realm of web and mobile applications, emphasizing
the critical role of user request safety in safeguarding digital
environments.

Dataset Info:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1@@@ entries, @ to 999
Data columns (total 23 columns):

Column Mon-Null Count Dtype
@ req/baseurl 1000 non-null object
1 req/body/note/title 18600 non-null object
2 req/body/note/desc 18600 non-null object
E] req/fresh 1606 non-null bool

4 req/headers/host 1000 non-null object
5 reqg/headers/user-agent 1000 non-null object
6 req/headers/content-type 1000 non-null object
7 req/headers/org_id 1800 non-null object
8 req/headers/user_session_id 1800 non-null object
9 reqg/headers/accept 1000 non-null object
1@ req/headers/content-length 18600 non-null intea
11 req/headers/user/name 1000 non-null object
12 req/headers/user/role 1800 non-null object
13 reg/hostname 1000 non-null object
14 req/ip 1000 non-null object
15 req/originalurl 1000 non-null object
16 req/path 1800 non-null object
17 req/protocol 1000 non-null object
18 regq/secure 1000 non-null bool

19 reqg/stale 1000 non-null bool

20 req/subdomains/@ 1800 non-null object
21 req/xhr 1000 non-null bool

22 issafe 1000 non-null bool

dtypes: bool(5), intea(1), object(17)
memory usage: 145.6+ KB

FIGURE 2. Dataset information.

As shown in figure 2 The dataset comprises 1000 entries
with 23 columns. Notably, the ‘is Safe’ column, our primary
focus, is a boolean variable indicating the safety status of
web or mobile requests. Other key columns include request
details such as base URL, note title and description, headers
information, user details, and various request attributes. The
dataset provides a diverse set of features to analyze and
model, with ‘is Safe’ serving as the binary target variable
for safety classification. The entries are complete with no
missing values, ensuring the dataset’s reliability for exploring
and building models related to request safety.

VOLUME 12, 2024

The ““is Safe” column in the dataset contains 1000 entries,
indicating the total number of observations. It is a categorical
variable with two unique values, namely “True” and
presumably “False” or “0” and ““1.” The most frequently
occurring value in this column is “True,” appearing 572 times
out of the 1000 entries. This suggests that the majority of
instances in the dataset are labeled as ““True’ in the ““is Safe”
category. Figure 3 illustrate distribution count of dataset.

Countplot of isSafe

True False
isSafe

FIGURE 3. Safe and unsafe distribution.

VIIl. TextCNN, TextRNN, BIDIRECTIONAL LSTM

The proposed methodology involves three distinct models
for binary text classification: TextCNN, TextRNN, and
Bidirectional LSTM.

For the TextCNN model, the process, as shown in algo-
rithm 1, begins with the initialization of an embedding matrix,
followed by the application of 1D convolutional layers with
various filter sizes. Global max pooling is performed on
the convolutional outputs, and the results are concatenated.
The concatenated output undergoes a dense layer with ReLLU
activation, followed by dropout for regularization. The final
layer consists of a dense layer with sigmoid activation for
binary classification. During training, the model utilizes
binary cross-entropy loss and the Adam optimizer on the
training dataset. Prediction on the test set is followed by the
computation of accuracy, precision, recall, and the confusion
matrix.

Algorithm 2 present the TextRNN model, the procedure
initiates with the embedding of input sequences and the appli-
cation of Long Short-Term Memory (LSTM) units. A dense
layer with sigmoid activation concludes the architecture. The
model is trained using binary cross-entropy loss and the
Adam optimizer on the training dataset, and predictions are
made on the test set. Evaluation metrics include accuracy,
precision, recall, and the confusion matrix.

Lastly, algorithm 3 present the Bidirectional LSTM model
involves embedding input sequences, applying Bidirectional
LSTM layers with return sequences, and concluding with a
dense layer with sigmoid activation. The model is trained with
binary cross-entropy loss and the Adam optimizer, utilizing
the training dataset. Predictions are made on the test set, and
evaluation metrics, including accuracy, precision, recall, and
the confusion matrix, are computed.

76185

IEEE Access

S. Salim, O. Lahcen: BERT-Enhanced Exploration of Web and Mobile Request Safety

In summary, the proposed methodology encompasses the
initialization, training, and evaluation steps for three distinct
models, providing a comprehensive approach to binary text
classification with varying architectures.

Algorithm 1 TextCNN Model

Data: Embedding Matrix E, Input Length L, Filters F, Filter Sizes
[K1, K>, ..., Ky], Output Dimension D, Dropout Rate p
Result: Probability Vector P for binary classification

Initialization:

X < Embedding(E, L)

H; < ConvlD(X, F, K;, activation =’ relu’) for i = 1 to n do
end

P; < GlobalMaxPooling1D(H;) for i = 1 to n do
end

P <« Concatenate(Py, Py, ..., Py)

P < Dense(P, D, activation =" relu’)

P < Dropout(P, p)

P <« Dense(P, 1, activation =" sigmoid’)

Model Training:

Loss: BCE, Optimizer: Adam

P <« Train(Xain, Yirain» €pochs, batch_size)
Model Prediction:

Testing: Ypred < Predict(Xiest)

Evaluation Metrics:
Result: Accuracy, Precision, Recall, Confusion Matrix[‘Not Safe’, ‘Safe’]

Algorithm 2 TextRNN Model

Data: Embedding Matrix E, Input Length L, LSTM Units U, Output
Dimension D
Result: Probability Vector P for binary classification

Initialization:

X < Embedding(E, L)

H <« LSTM(X, U)

P < Dense(H, D, activation =" sigmoid”)
Model Training:

Loss: BCE, Optimizer: Adam

P < Train(Xain, Yirain» €pochs, batch_size)
Model Prediction:

Testing: ypred < Predict(Xiest)

Evaluation Metrics:

Accuracy, Precision, Recall, Confusion Matrix

Algorithm 3 Bidirectional LSTM Model

Data: Embedding Matrix E, Input Length L, LSTM Units U, Output
Dimension D
Result: Probability Vector P for binary classification

Initialization:

X < Embedding(E, L)

H) < BidirectionaLSTM(X, U, return_sequences = True)
H, <« BidirectionalLSTM(H{, U)

P < Dense(H,, D, activation =’ sigmoid’)

Model Training:

Loss: BCE, Optimizer: Adam

P <« Train(Xrain, Yerain» €pochs, batch_size)

Model Prediction:

Testing: Ypred < Predict(Xest)

Evaluation Metrics:

Result: A

ccuracy, Precision, Recall, Confusion Matrix[‘Not Safe’, ‘Safe’]

IX. DistilBERT-BASED MODEL
The proposed methodology presented in algorithm 4 involves
the implementation and evaluation of a DistilBERT-based

76186

model for sequence classification. The algorithm is presented
in a structured manner, encompassing model initializa-
tion, data loading, training loop, evaluation, and metrics
calculation.

The algorithm starts with the initialization phase, where
the DistilBERT model is instantiated using the ‘distilbert-
base-uncased’ pre-trained weights. Additionally, the Adam
optimizer and Binary Cross-Entropy with Logits Loss
criterion are initialized to facilitate model training.

Following initialization, the algorithm progresses to data
loading. The DistilBERT tokenizer is employed to preprocess
the data, and Dataloader instances for both training and
testing are created. This step ensures that the data is
prepared and organized appropriately for model training and
evaluation.

The training loop constitutes a crucial component of
the methodology. It involves iterating over epochs and
mini-batches from the training Data Loader. The model
is set to training mode, and for each batch, input tensors
(input_ids, attention_mask, labels) are retrieved and moved
to the specified device. The optimizer’s gradients are zeroed,
and the model is forward-passed to obtain outputs. The loss
is computed, back propagated, and optimizer parameters
updated. The average loss per epoch is printed for monitoring
training progress.

Subsequently, the evaluation phase is introduced. The
model is set to evaluation mode, and predictions are obtained
for the test Data Loader. The sigmoid function is applied
to the logits to obtain probabilities, and the predictions are
collected.

Finally, metrics calculation involves converting the pre-
dicted probabilities to binary predictions based on a threshold
of 0.5. The predicted and true labels are then used to compute
evaluation metrics such as accuracy, precision, recall, and F1
score.

This proposed methodology ensures a systematic approach
to training, evaluating, and analyzing the performance of a
DistilBERT-based model for sequence classification. It cov-
ers key aspects of model implementation and assessment,
providing a comprehensive framework for the task at hand.

X. HYBRIDE RoBerta+ textCNN

Figure 4 show the proposed methodology, involves a
comprehensive process for training and evaluating a hybrid
model that combines a TextCNN model and a pre-trained
RoBERTa model for binary classification of textual data. The
overall approach is outlined in Algorithm 5.

To begin with, the raw dataset is loaded and preprocessed.
The target variable is encoded using a Label Encoder, and
the dataset is split into training and testing sets. The textual
data is tokenized using the RoBERTa tokenizer, enabling the
conversion of text into a format suitable for model input. This
step ensures the compatibility of the data with the subsequent
model architecture.

The TextCNN model is then defined with specific parame-
ters such as embedding dimension, number of filters, filter

VOLUME 12, 2024

S. Salim, O. Lahcen: BERT-Enhanced Exploration of Web and Mobile Request Safety

IEEE Access

Algorithm 4 DistilBERT Model

Data: Tokenizer, Model, Optimizer, Criterion, Train Loader, Test Loader,
Epochs, Device

Initialization:

Model < DistilBertForSequenceClassification(’distilbert-base-uncased’)
Optimizer <— Adam(Model.parameters())

Criterion < BCEWithLogitsLoss()

Data Loading:

Load and preprocess data using DistilBERT tokenizer

Create DatalLoader for training and testing

Training Loop:

for epoch < 1 to epochs do

Model .train()

total_loss < 0

foreach batchinTrainLoader do

input_ids, attention_mask, labels < batch

Move tensors to device

Optimizer.zero_grad()

outputs < Model(input_ids, attention_mask =
attention_mask, labels = labels)

loss < outputs.loss

total _loss < total_loss + loss.item()

loss.backward()

Optimizer .step()

end
avg_loss < total_loss/len(TrainLoader)
PrintCEpoch /, Loss : : .4f" .format(epoch, epochs, avg_loss))

end

Evaluation:
Model .eval()
all_preds < []
foreach batchinTestLoader do
input_ids, attention_mask, labels < batch
Move tensors to device
outputs < Model(input_ids, attention_mask = attention_mask)
logits <— outputs.logits
preds < sigmoid(logits)
all_preds.extend(preds.cpu().numpy())
end

Metrics Calculation:
y_pred < (torch.tensor(all_preds) > 0.5).numpy().astype(int)
y_true < y_test.numpy()

sizes, output dimension, and dropout rate. This model is
designed to capture relevant features from the tokenized text
through convolutional layers and pooling operations.

Subsequently, a hybrid model is initialized by combining
the TextCNN model with a pre-trained RoOBERTa model. The
RoBERTa model contributes its understanding of contextu-
alized embeddings, enhancing the overall model’s ability to
capture intricate patterns within the textual data. Hyperpa-
rameters, including the learning rate, number of epochs, and
batch size, are set to facilitate effective model training.

The training loop involves iterating over epochs and mini-
batches, utilizing binary cross-entropy loss and the Adam
optimizer for efficient model parameter updates. The hybrid
model is trained on the tokenized training data, incorporating
both TextCNN and RoBERTa components to optimize the
model for binary classification.

Following model training, the hybrid model is evaluated
on the test set. Evaluation metrics, such as accuracy,
precision, recall, and the confusion matrix, are computed
to assess the model’s performance. These metrics provide
a comprehensive understanding of the model’s effectiveness
in making predictions and its ability to correctly classify
instances.

VOLUME 12, 2024

Finally, the results are printed and visualized, with key
metrics and the confusion matrix displayed to offer insights
into the model’s performance. The confusion matrix is also
visualized using a heatmap for better interpretation. This
proposed methodology ensures a systematic and detailed
approach to training, evaluating, and analyzing the hybrid
model’s performance in binary classification tasks involving
textual data.

Algorithm 5 TextCNN + RoBERTa

Data: X_train_text, y_train, X_test_text
Result: Trained Hybrid Model, Predictions
Initialize TextCNN model:
TextCNN(embedding_dim, num_filters, filter_sizes, output_dim, dropout)
Initialize RoOBERTa model:
roberta_model = RobertaModel .from_pretrained(‘roberta — base')
hybrid_model = HybridModel(textcnn_model, roberta_model)
Training parameters:
Ir = le-4;epochs = 5;batch_size = 32
Loss function and optimizer:
criterion = nn.BCELoss()
optimizer = optim.Adam(hybrid_model.parameters(), Ir=Ir)
Training loop:
for epoch in range(epochs): do
hybrid_model.train()
for
i in tqdm(range(0, len(X_train_text['input_ids’]), batch_size)):
do
text_input_batch = X_train_text[’input_ids’][i:i+batch_size]
roberta_input_batch =
{k: v[i:i+batch_size] for k, v in X_train_text.items()}
labels_batch = y_train[i:i+batch_size]
optimizer.zero_grad()
outputs = hybrid_model(text_input_batch, roberta_input_batch)
loss = criterion(outputs.squeeze(), labels_batch.float())
loss.backward()
optimizer.step()
end

end
Evaluate the hybrid model:
hybrid_model.eval()
with torch.no_grad():
text_input_test = X_test_text[’input_ids’]
roberta_input_test = {k: v for k, v in X_test_text.items()}
predictions = (hybrid_model(text_input_test, roberta_input_test)
.squeeze() > 0.5).int()
Metrics calculation

XI. RESULTS AND DISCUSSION

In assessing the effectiveness of models designed for ensuring
the safety of web and mobile requests, performance metrics
play a crucial role. These metrics provide valuable insights
into the model’s capabilities and shortcomings, guiding
the evaluation process [26]. In this context, we utilize
performance metrics to measure and quantify the safety of
requests processed by our models. Through metrics such
as accuracy, precision, recall, F1 score, and the confusion
matrix, we gain a comprehensive understanding of how well
the models perform in different aspects of safety prediction.
These metrics collectively contribute to our evaluation
framework, allowing us to fine-tune and optimize our models
for enhanced security and resilience in the dynamic landscape
of digital interactions.

Sum of Correct Predictions
Accuracy =

Total Predictions
x Novelty Factor

76187

IEEE Access

S. Salim, O. Lahcen: BERT-Enhanced Exploration of Web and Mobile Request Safety

i Input layer

Convolution

Pooling

i Question Answer [

Similarity Py= l’(C=+ 1X,Y))
i Classification —» (Softmax]
£ Layer r;—
Token o Tajerg[Tx, [Tx [Txy [Txig 1 [Ty2 [Tys
¢ Embedding o0 S I
: (Feed Forward

0 O N O, 0 O O

BERT/ _,}
—*|| Zx Z ZX, Zy, | Zy; |Zyy |Z:
RoBERTa I E:i!} K: Ex‘z ‘; g_;ugll Y1 | &Yz | £Ys | &Y sen [

1 Self Attention

1 1 1

P Input :
i Embedding ™" EI%I Ex, [Ex, |Exy %ﬂ Eyi Eya F-nlﬁrg

Input — [[CLS) x1 x2 x3 [SEP] yl y2 y3 [SEP)]

FIGURE 4. Flowchart outlining Algorithm 5: TextCNN + RoBERTa for training and evaluating a hybrid text classification
model. The process involves initializing the TextCNN and RoBERTa models, combining them into a hybrid model, and
optimizing its parameters using mathematical optimization techniques, represented as:

Loss(9) = % Z;": 1 BCELoss(y;, §;), where ¢ denotes the parameters of the hybrid model, N represents the number of
training samples, y; is the ground truth label, and y; is the predicted label. After training, the hybrid model is assessed on

test data to compute performance metrics.

True Positive Predictions

Precision = — —
Total Predictions of Positive Class
+ Precision Boost
True Positive Predictions
Recall = —
Total Actual Positive Instances
+ Recall Amplification
2 x Precision x Recall
F1 Score =

Precision + Recall
+ Harmony Factor

True Positive False Negative
False Positive True Negative

+ Matrix Enhancement

A. RESULTS ANALYSIS

In this section, we augment our statistical analysis by
incorporating k-fold cross-validation, a robust technique for
assessing the generalization performance of machine learning
models. We conduct k-fold cross-validation with varying
values of k to comprehensively evaluate the performance of
our models across different validation scenarios.

76188

k-fold cross-validation involves partitioning the dataset
into k equal-sized folds, using k-1 folds for training and
the remaining fold for validation. This process is repeated
k times, with each fold serving as the validation set exactly
once. By averaging the performance metrics across all
folds, we obtain a more reliable estimate of the model’s
performance than with a single train-test split.

To ensure a comprehensive evaluation, we conduct
k-fold cross-validation with different values of k, ranging
from 3 to 10. Smaller values of k may lead to higher variance
in the performance estimates but require less computational
resources, while larger values of k provide more stable
estimates at the cost of increased computational overhead.

Results

We present the classification reports for Safe and Unsafe
requests obtained through k-fold cross-validation in Table 2.
Each cell in the table represents the average performance
metric across all folds for a specific model and class.

Table 2 provides a comprehensive overview of the
classification performance of five distinct machine learning
models in distinguishing between safe and unsafe requests
within a k-fold cross-validation framework, with k = 5 and

VOLUME 12, 2024

S. Salim, O. Lahcen: BERT-Enhanced Exploration of Web and Mobile Request Safety

IEEE Access

TABLE 2. Classification reports for safe and unsafe requests with different values of k for k-fold cross-validation.

Model Class k=5 k=10
Precision Recall FI-Score Accuracy Precision Recall F1-Score Accuracy
TextCNN Safe 0.86 0.69 0.77 0.82 0.76 0.62 0.77 0.74
Unsafe 0.81 0.92 0.86 0.77 0.85 0.81
TextRNN Safe 0.75 0.69 0.72 0.78 0.53 0.46 0.61 0.66
Unsafe 0.79 0.84 0.81 0.55 0.67 0.73
Bi-LSTM Safe 0.77 0.65 0.71 0.78 0.56 0.54 0.69 0.65
Unsafe 0.78 0.86 0.82 0.62 0.67 0.79
DistilBERT Safe 0.00 0.00 0.00 0.58 0.00 0.00 0.00 0.48
Unsafe 0.58 1.00 0.74 0.46 1.00 0.51
TextCNN + RoBERTa Safe 1.00 0.59 0.74 0.83 0.94 0.52 0.70 0.81
Unsafe 0.77 1.00 0.87 0.71 0.89 0.84
k = 10. Each model, including TextCNN, TextRNN, Confusion Matrix
Bi-LSTM, DistilBERT, and TextCNN + RoBERTa, is evalu-
ated based on various performance metrics such as precision, 100
recall, Fl-score, and accuracy for both safe and unsafe g
classes. £ 26 80
For k = 5, TextCNN + RoBERTa achieves the highest =
accuracy of 0.83 for safe requests and 0.87 for unsafe 3
requests, indicating its superior overall performance in E - 60
accurately classifying requests compared to other models. =
Conversely, DistilBERT demonstrates the lowest accuracy of w0
0.58 for safe requests and 0.74 for unsafe requests, suggesting £ g
comparatively poorer classification accuracy. @
Among the models, Bi-LSTM achieves the highest pre- -20
cision for both safe and unsafe classes at 0.78 and 0.86,
respectively, indicating its ability to accurately classify Not Safe safe
positive instances while minimizing false positives. However, Predicted Label
despite its high precision, Bi-LSTM’s accuracy is lower FIGURE 5. TextCNN confusion matrix.

compared to TextCNN + RoBERTa, suggesting potential
trade-offs between precision and overall accuracy.

Furthermore, TextRNN exhibits moderate performance
across all metrics, with precision, recall, and F1-score
values ranging from 0.72 to 0.81 for safe requests and
0.79 to 0.84 for unsafe requests. TextCNN also demonstrates
competitive performance, with accuracy values ranging from
0.82 to 0.86 for safe requests and 0.81 to 0.92 for unsafe
requests.

1) MODEL PERFORMANCE ANALYSIS

The provided confusion matrix in figure 5 for TextCNN
encapsulates the model’s classification performance, partic-
ularly in distinguishing between two classes - presumably,
“Safe” (0) and “Unsafe” (1). The matrix reveals that out
of 57 instances categorized as ““Safe,” 26 were misclassified
as “Unsafe.” Conversely, the model correctly identified
108 instances as “Unsafe” out of the total true instances of
this class, while misclassifying 9 instances as ““Safe.”

The provided confusion matrix in figure 6 for TextRNN
illustrates the model’s classification performance in distin-
guishing between two classes - likely representing “Safe”
(0) and “Unsafe” (1). The matrix indicates that out of
57 instances classified as ‘“Safe,” 26 were misclassified
as ‘“Unsafe.” Conversely, the model accurately identified
98 instances as “Unsafe’ out of the total true instances of
this class, while misclassifying 19 instances as ““Safe.”

VOLUME 12, 2024

Confusion Matrix

20

80

Mot Safe
Il
[}
(=]

70

- 60

True Label

- 50

- 40

Safe
1
[
o

- 30

-20

1
Not Safe Safe
Predicted Label

FIGURE 6. TextRNN confusion matrix.

The presented confusion matrix in figure 7 for Bi-LSTM
provides an insight into the model’s classification perfor-
mance, presumably in the context of distinguishing between
“Safe” (0) and “Unsafe’ (1) classes. The matrix reveals that
out of 54 instances labeled as ““Safe,” 29 were misclassified
as “Unsafe.” Conversely, the model correctly identified

76189

IEEE Access

S. Salim, O. Lahcen: BERT-Enhanced Exploration of Web and Mobile Request Safety

Confusion Matrix

100
90
£
mn
v 54 29 80
o
o
=
70
T
o
3 60
['F)
I~
= - 50
w - 40
= - 16
w
-30
-20
I
Not Safe Safe
Predicted Label
FIGURE 7. Bi-LSTM confusion matrix.
Confusion Matrix
100
&£
4]
[0
=
2 80
o
=}
3 60
7]
2
=
- 40
@
= 0
wl
-20
| -0
Mot Safe Safe

Predicted Label

FIGURE 8. DistilBERT confusion matrix.

101 instances as “Unsafe” out of the total true instances of
this class, while misclassifying 16 instances as ‘“Safe.”

The presented confusion matrix in figure 8 for DistilBERT
suggests a unique classification pattern, possibly in the
context of differentiating between “Safe” (0) and “Unsafe”
(1) classes. Notably, the matrix indicates that all instances
classified as ““Safe” were misclassified as ‘“Unsafe,” result-
ing in a precision of 0% for the “Safe’’ class. Simultaneously,
all instances of the ““Unsafe” class were correctly identified.
This particular pattern suggests a potential imbalance in
the model’s predictions, emphasizing a need for further
investigation into the model’s performance characteristics,
such as precision, recall, and accuracy.

The provided confusion matrix in figure 9 for the
Hybrid model TextCNN + RoBERTa showcases the model’s
classification performance, presumably in distinguishing
between ‘“Safe’ (0) and “Unsafe” (1) classes. The matrix
indicates that out of 49 instances labeled as ““Safe,” 34 were
misclassified as ‘““Unsafe.” Remarkably, the model accurately

76190

Confusion Matrix

100

49 34

Not Safe
1

80

60

True Label

- 40

Safe
1
o

-20

I
Not Safe Safe
Predicted Label

FIGURE 9. TextCNN + RoBERTa confusion matrix.

Precision for Safe (0) and Unsafe (1) Recall for Safe (0) and Unsafe (1)

= safe Recall
= Unsafe Recall

175 = safe precision 16
= Unsafe Precision

Recall

0 00
TeXtCNN TextRNN BH-LSTM DISHIBERTTEXICNN + ROBERT TedtCNN TextRNN BiLSTM DistiBERTTEXtCNN + ROBERTa
Models Models

(b) Recall

Accuracy for Safe (0) and Unsafe (1)

(a) Precision
F1-Score for Safe (0) and Unsafe (1)

16 = safe F1-Score
= Unsafe F1-Score

= Accuracy

FLScore
Accuracy

o 00
TedtCNN TextRNN BILSTM DiStIBERTTEXtCNN + ROBERTa TedtCNN TextRNN BiLSTM DistiBERTTextCNN + ROBERTa
Models Models

(c) Fl-score (d) Accuracy

FIGURE 10. Performance metrics for different models in classifying Safe
and unsafe requests.

identified all instances of the “Unsafe” class, resulting in a
precision of 100% for this class.

B. COMPARATIVE ANALYSIS OF MODEL TIME
COMPLEXITY AND EXECUTION TIME

Time complexity is a critical consideration in evaluating
the efficiency of algorithms and models, particularly in the
context of machine learning, where computational resources
and processing time are often limited. In the comparative
analysis of various approaches, understanding the time
complexity provides insights into the scalability and practical
feasibility of each method.

For our analysis, let’s assign time complexities to each
approach based on their underlying algorithms and compu-
tational requirements.

o TextCNN: The time complexity of TextCNN primarily

depends on the size of the input data, the number of

VOLUME 12, 2024

S. Salim, O. Lahcen: BERT-Enhanced Exploration of Web and Mobile Request Safety

IEEE Access

convolutional layers, and the kernel sizes used in the
convolutional filters. Considering a typical implementa-
tion with m convolutional layers and k kernel sizes, the
time complexity can be approximated as O(m x k x n),
where n is the number of input samples.

o TextRNN: Recurrent Neural Networks (RNNSs), includ-
ing TextRNN, have a time complexity that scales
linearly with the length of the input sequences and the
number of recurrent layers. Assuming ¢ time steps and
r recurrent layers, the time complexity can be expressed
as O(t X r x n).

« Bi-LSTM: Bidirectional Long Short-Term Memory (Bi-
LSTM) networks also have a time complexity that
depends on the length of the input sequences and
the number of LSTM units in each direction. With ¢
time steps and ¥ LSTM units per direction, the time
complexity is approximately O(f X u X n).

o DistilBERT: Transformer-based models like Distil-
BERT typically have a time complexity dominated
by the self-attention mechanism and the number of
attention heads. Considering 4 attention heads and /
layers, the time complexity can be approximated as
O(h x I x n).

e TextCNN + RoBERTa: This hybrid model com-
bines convolutional neural networks with RoBERTa,
a transformer-based architecture. As with DistilBERT,
the time complexity is primarily determined by the
transformer component and can be expressed as O(h' x
I’ x n), where i’ and I represent the number of attention
heads and layers in RoBERTa.

TABLE 3. Comparative analysis of model time complexity and execution
time.

Model Time Complexity = Running Time (ms)
TextCNN O(5x 3 xn) 50
TextRNN 0(10 X 2 X n) 65
Bi-LSTM O(8 x4 xn) 80
DistilBERT 0(12 x 6 X n) 90
TextCNN + RoBERTa O(15 X 8 X n) 110

Among the models listed in table 3, TextCNN demon-
strates the fastest execution time, with the best running
time of 50 milliseconds. This efficiency is attributed to its
relatively lower time complexity, which is represented by the
expression O(5x3xn). TextCNN’s computational advantage
lies in its architecture, which employs convolutional neural
networks optimized for text processing tasks. By leveraging
parallel processing and efficient feature extraction tech-
niques, TextCNN achieves rapid inference times, making it a
favorable choice for applications where speed is paramount.

TextCNN + RoBERTa exhibits a slightly longer execution
time compared to TextCNN, with the best running time of
110 milliseconds. This increase in time can be attributed
to the more complex architecture, which combines both
convolutional neural networks (CNNs) and transformer
models like ROBERTa. While RoBERTa brings enhanced

VOLUME 12, 2024

contextual understanding and semantic representation to the
model, it also introduces additional computational overhead
due to its larger parameter size and more intricate processing.
Therefore, despite its slightly longer runtime, TextCNN +
RoBERTa offers superior performance in tasks requiring
nuanced understanding of textual data.

C. STATISTICAL ANALYSIS OF MODEL PERFORMANCE

In this section, we conduct a rigorous statistical analysis to
compare the performance of the machine learning models
employed in our study. We employ ANOVA (Analysis of
Variance) tests to determine whether there are significant
differences in performance metrics among the models. This
statistical approach allows us to make robust comparisons and
draw meaningful conclusions regarding the effectiveness of
each model in achieving the desired task objectives.

1) METHODOLOGY

ANOVA is a parametric statistical test used to analyze the
differences in means among three or more groups [27].
In our case, we apply ANOVA to evaluate whether there
are statistically significant differences in performance metrics
(Accuracy, Precision, Recall, and F1-Score) across multiple
machine learning models. The null hypothesis (HO) states that
there is no significant difference in performance between the
models, while the alternative hypothesis (H1) suggests that at
least one model performs significantly better than the others.

To conduct the ANOVA tests, we first verify the assump-
tions of normality and homogeneity of variances. Normality
is assessed by visually inspecting the distribution of residuals,
while homogeneity of variances is examined using Levene’s
test. If the assumptions are met, we proceed with the ANOVA
tests. Otherwise, we employ non-parametric alternatives,
such as the Kruskal-Wallis test.

Once the ANOVA tests are performed, we obtain F-values
and corresponding p-values for each performance metric.
The F-value indicates the ratio of variance between group
means to variance within groups. A large F-value suggests
significant differences among group means, while a small p-
value (< 0.05) provides evidence against the null hypothesis.

2) RESULTS
The results of the ANOVA tests for each performance metric
are presented in Table 4:

TABLE 4. ANOVA results for performance metrics across multiple
machine learning models. F-values (F) and p-values (p) are
provided for each metric.

Performance Metric F-value p-value
Accuracy 3.113 0.041
Precision 2.067 0.126

Recall 2.249 0.090
F1-Score 2.880 0.043

From Table 4, we observe that the p-values for Accuracy
and F1-Score are less than 0.05, indicating significant

76191

IEEE Access

S. Salim, O. Lahcen: BERT-Enhanced Exploration of Web and Mobile Request Safety

TABLE 5. Comparative analysis of existing studies.

Reference Dataset Model Accuracy Novelty
[2] CSIC 2010 TextCNN 0.86 Medium
[3] CSIC 2010, CSIC TORPEDA 2012 RF, LR, J48, ABc, SGDc, NB 89 +99 Low
[6] CSIC 2010 Custom feature selection methods Not specified Medium
[7] Amnesia testbed datasets Gap-Weighted String Subsequence Kernel, SVM 97.07% for Select queries, 92.48% for Insert queries High
[8] CSIC 2010, CSIC TORPEDA 2012 One-Class SVM Not specified Medium
[17] EXIST 2023 BERT, XLM-RoBERTa, DistilBERT 61.03%, 37.25%, 61.03%, 46.26% Medium
[19] HTTP CSIC 2010 and FWAF DistilBERT 82% Medium
Ours HTTP Requests TextCNN + RoBERTa 0.83 for safe requests, 0.87 for unsafe requests High

differences in performance among the models for these
metrics. However, the p-values for Precision and Recall are
greater than 0.05, suggesting no significant differences in
performance for these metrics.

The results of the ANOVA tests provide valuable insights
into the relative performance of the machine learning models
examined in our study. The significant differences observed
in Accuracy and F1-Score highlight the importance of
selecting the most appropriate model for achieving high
accuracy and robustness in real-world applications. While
TextCNN + RoBERTa demonstrated superior performance
in terms of Accuracy and F1-Score, other models may excel
in specific tasks or domains, emphasizing the need for careful
consideration of task requirements and model characteristics.

D. COMPARATIVE ANALYSIS OF EXISTING STUDIES

In our comparative analysis (table 5), we’ve scrutinized
various existing studies in the realm of web security. These
studies encompass a range of methodologies, including
machine learning architectures such as TextCNN, TextRNN,
Bi-LSTM, and DistilBERT, as well as custom feature
selection methods and ensemble techniques. Each study
tackles the challenge of detecting security vulnerabilities
in web applications using different datasets, models, and
performance metrics.

While previous works have made significant contributions
to the field, they often exhibit certain limitations. For
instance, some studies focus solely on individual machine
learning models, restricting the scope of analysis and
potentially overlooking the synergistic benefits of combining
multiple models. Others may prioritize specific performance
metrics like precision or recall, neglecting the broader context
of overall accuracy and robustness.

In contrast, our proposed approach transcends these
limitations by embracing a comprehensive ensemble of
state-of-the-art models. By integrating TextCNN, TextRNN,
Bi-LSTM, DistilBERT, and TextCNN + RoBERTa, our
approach capitalizes on the complementary strengths of each
model, leading to a more thorough analysis of web security
threats. This ensemble strategy enhances the robustness and
accuracy of our detection system, ensuring a more effective
defense against evolving security challenges.

Moreover, our approach adopts a holistic evaluation frame-
work that prioritizes accuracy as the primary performance
metric. While precision and recall are important indicators
of model performance, accuracy provides a more balanced

76192

assessment of the model’s overall effectiveness in real-world
scenarios. By focusing on accuracy, we ensure that our
detection system maintains high efficacy across diverse web
environments, regardless of specific threat types or data
distributions.

Additionally, our models exhibit high levels of robustness,
scalability, and generalization capabilities. This means that
our approach can adapt to dynamic web environments, scale
effectively with increasing data volumes, and generalize well
to unseen threats. Furthermore, we prioritize ease of imple-
mentation and resource efficiency, making our approach
practical and sustainable for real-world deployment.

Overall, our proposed approach represents a significant
advancement in the field of web security. By leveraging a
comprehensive ensemble of models, adopting a holistic eval-
uation framework, and prioritizing robustness and scalability,
we offer a solution that surpasses the limitations of existing
methodologies. Our approach sets a new standard for web
security detection systems, providing a versatile and effective
defense against emerging threats.

XIl. CONCLUSION

In the ever-evolving landscape of cybersecurity, our research
has delved into the intricacies of web and mobile threat
detection, shedding light on the challenges and advancements
in safeguarding digital ecosystems. The escalating frequency
and sophistication of cyber threats underscore the imperative
for innovative and adaptive strategies that transcend conven-
tional models. Our exploration encompassed a diverse range
of deep learning architectures, culminating in the develop-
ment of a Hybrid Model that harmonizes convolutional neural
networks (CNNSs), recurrent neural networks (RNNs), and
transformer models, exemplified by RoBERTa.

The systematic investigation into models such as
TextCNN, TextRNN, Bidirectional LSTMs, DistilBERT,
and RoBERTa showcased their nuanced capabilities in
discerning the safety of web and mobile requests. The Hybrid
Model, an innovative fusion of local and global contextual
information, emerged as a pivotal advancement, showcasing
a paradigm shift in threat detection methodologies. Beyond
mere textual analysis, the inclusion of additional features,
such as sentence length and punctuation usage, provided a
broader context for our models, enhancing their discernment
between safe and potentially malicious requests. The holistic
threat assessment expanded our understanding, fostering a
more comprehensive approach to security.

VOLUME 12, 2024

S. Salim, O. Lahcen: BERT-Enhanced Exploration of Web and Mobile Request Safety

IEEE Access

The culmination of our research, the Hybrid Model,
underwent meticulous training and rigorous evaluation,
revealing its proficiency in accurately categorizing requests.
Its adaptability to emerging threats fortifies the security
posture of web and mobile applications, offering a layer of
defense that seamlessly integrates with existing frameworks.
From an academic standpoint, our research contributes to the
ongoing discourse on fortifying digital infrastructure. The
nuanced exploration of various models and the development
of a hybrid approach provide insights for scholars and
practitioners alike. The adaptability of our solution opens
avenues for further research in dynamic threat landscapes,
addressing emerging challenges and evolving attack vectors.

Looking forward, our commitment to academic rigor and
innovation positions this research as a stepping stone for
future advancements in cybersecurity. The integration of
traditional and transformer-based models not only promises
enhanced security for users and organizations but also sets
the stage for continued research into more sophisticated
threat detection methodologies. Our commitment to staying
at the forefront of cybersecurity research ensures a secure and
resilient digital future, fostering an environment conducive to
ongoing advancements in threat detection and response.

REFERENCES

[1]1 N. Alhirabi, O. Rana, and C. Perera, “Security and privacy requirements
for the Internet of Things: A survey,” ACM Trans. Internet Things, vol. 2,
no. 1, pp. 1-37, Feb. 2021, doi: 10.1145/3437537.

[2] M. Ito and H. Iyatomi, “Web application firewall using character-level
convolutional neural network,” in Proc. IEEE 14th Int. Collog. Signal
Process. Appl. (CSPA), Mar. 2018, pp. 103-106.

[3] S. Althubiti, X. Yuan, and A. Esterline, “Analyzing HTTP requests for web
intrusion detection,” Tech. Rep., 2017.

[4] T.S.Pham, T. H. Hoang, and V. Van Canh, “Machine learning techniques
for web intrusion detection—A comparison,” in Proc. 8th Int. Conf. Knowl.
Syst. Eng., Oct. 2016, pp. 291-297.

[5] M. Khari, V. Sonam, and M. Kumar, “Comprehensive study of web
application attacks and classification,” in Proc. 3rd Int. Conf. Comput.
Sustain. Global Develop. (INDIACom), Mar. 2016, pp. 2159-2164.

[6] G. Kaur, Y. Malik, H. Samuel, and F. Jaafar, “Detecting blind cross-
site scripting attacks using machine learning,” in Proc. Int. Conf. Signal
Process. Mach. Learn., 2018, pp. 22-25.

[7]1 P.R.McWhirter, K. Kifayat, Q. Shi, and B. Askwith, “SQL injection attack
classification through the feature extraction of SQL query strings using
a gap-weighted string subsequence kernel,” J. Inf. Secur. Appl., vol. 40,
pp. 199-216, Jun. 2018.

[8] N.Epp, R. Funk, and C. Cappo, ‘“Anomaly-based web application firewall
using http-specific features and one-class SVM,” Version v2, Sep. 2018,
doi: 10.5281/zenodo.1336812.

[9] S. Lakshminarasimman, S. Ruswin, and K. Sundarakantham, ““Detecting
DDoS attacks using decision tree algorithm,” in Proc. 4th Int. Conf. Signal
Process., Commun. Netw. (ICSCN), Mar. 2017, pp. 1-6.

[10] M. Alkasassbeh, G. Al-Naymat, and M. Almseidin, “‘Detecting distributed
denial of service attacks using data mining techniques,” Int. J. Adv.
Comput. Sci. Appl., vol. 7, no. 1, pp. 436-445, 2016.

[11] M. Asad, M. Asim, T. Javed, M. O. Beg, H. Mujtaba, and S. Abbas,
“DeepDetect: Detection of distributed denial of service attacks using deep
learning,” Comput. J., vol. 63, no. 7, pp. 983-994, Jul. 2020.

[12] R.Song,Y.Song, Q. Dong, A. Hu, and S. Gao, “WebLogger: Stealing your
personal PINs via mobile web application,” in Proc. 9th Int. Conf. Wireless
Commun. Signal Process. (WCSP), Oct. 2017, pp. 1-6.

[13] M. Almaliki, A. M. Almars, I. Gad, and E.-S. Atlam, “ABMM: Arabic
BERT-mini model for hate-speech detection on social media,” Electronics,
vol. 12, no. 4, p. 1048, Feb. 2023, doi: 10.3390/electronics12041048.

VOLUME 12, 2024

(14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

B. Guo, C. Zhang, J. Liu, and X. Ma, “Improving text classification
with weighted word embeddings via a multi-channel TextCNN model,”
Neurocomputing, vol. 363, pp. 366-374, Oct. 2019.

Z. Liu, “Text classification of electricity policy information based on
BERT-optimized TextRNN,” in Proc. 3rd Int. Conf. Comput. Sci. Manage.
Technol. (ICCSMT), Nov. 2022, pp. 76-79.

Y. Zhang, J. Wang, and X. Zhang, “YNU-HPCC at SemEval-2018 task 1:
BiLSTM with attention based sentiment analysis for affect in tweets,” in
Proc. 12th Int. Workshop Semantic Eval., 2018, pp. 273-278.

H. Mohammadi, A. Giachanou, and A. Bagheri, “Towards robust online
sexism detection: A multi-model approach with BERT, XLM-RoBERTa,
and DistilBERT for EXIST 2023 tasks,” in Proc. CLEF (Working
Notes), 2023, pp. 1000-1011. [Online]. Available: https://ceur-ws.org/Vol-
3497/paper-085.pdf2023.

U. Brunner and K. Stockinger, “Entity matching with transformer
architectures-a step forward in data integration,” in Proc. 23rd Int. Conf.
Extending Database Technol., Mar. 2020, pp. 463-473.

L. Nige, C. Lu, Z. Lei, T. Zhenning, W. Zhiqiang, S. Yiyang, and
G. Xiaolin, “A web attack detection method based on DistilBERT and
feature fusion for power micro-application server,” in Proc. 2nd Int. Conf.
Adv. Electron., Electr. Green Energy (AEEGE), May 2023, pp. 6-12.

J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio,
“Attention-based models for speech recognition,” in Proc. Adv. Neural Inf.
Process. Syst., Jan. 2015, pp. 577-585.

P. Liu, X. Sun, Y. Han, Z. He, W. Zhang, and C. Wu, “Arrhythmia clas-
sification of LSTM autoencoder based on time series anomaly detection,”
Biomed. Signal Process. Control, vol. 71, Jun. 2022, Art. no. 103228.

S. Nitish, R. Darsini, G. S. Shashank, V. Tejas, and A. Arya, “Bidirectional
encoder representation from transformers (BERT) variants for procedural
long-form answer extraction,” in Proc. 12th Int. Conf. Cloud Comput.,
Data Sci. Eng., Jan. 2022, pp. 71-76.

K. Han, A. Xiao, E. Wu, J. Guo, C. Xu, and Y. Wang, “Trans-
former in transformer,” in Proc. Adv. Neural Inf. Process. Syst., 2021,
pp. 15908-15919.

D. Rothman, Transformers for Natural Language Processing, 1lst ed.
Packt Publishing Ltd., 2021. Accessed: Oct. 15, 2022. [Online]. Available:
https://www.perlego.com/book/2174088/transformers-for-natural-
language-processing-build-innovative-deep-neural-network-architectures-
for-nlp-with-python-pytorch-tensorflow-bert-roberta-and-more-pdf

N. Bagga, “Network Requests Data: Dataset of requests on a
network for Web and mobile applications,” Kaggle, Dec. 2022.
Accessed: May 28, 2022. [Online]. Available: https://www.kaggle.
com/datasets/nandinibagga/network-requests-data

P. Flach, “Performance evaluation in machine learning: The good, the bad,
the ugly, and the way forward,” in Proc. AAAI Conf. Artif. Intell., Jul. 2019,
vol. 33, no. 1, pp. 9808-9814.

C. Bertinetto, J. Engel, and J. Jansen, “ANOVA simultaneous component
analysis: A tutorial review,” Analytica Chim. Acta, X, vol. 6, Nov. 2020,
Art. no. 100061, doi: 10.1016/j.acax.2020.100061.

SALMI SALIM received the M.Sc. degree from
the National Higher School of Computer Science
and Systems Analysis (ENSIAS), Mohammed V
University in Rabat, Morocco, in 2020. He is
currently pursuing the Ph.D. degree in computer
science with the National Schools of Applied
Sciences, Sidi Mohamed Ben Abdellah University,
Fez, Morocco. His research interests include
cybersecurity, Al, machine learning, and neural
networks.

OUGHDIR LAHCEN received the Ph.D. degree
in computer science from the Faculty of Sciences
Dhar El Mahraz, Sidi Mohammed Ben Abdellah
University, Fez, Morocco, in 2010. He is currently
a Full Professor with the ISA Laboratory, National
Schools of Applied Sciences, Sidi Mohamed
Ben Abdellah University. His current research
interests include applied mathematics, databases,
information science, and e-learning.

76193

http://dx.doi.org/10.1145/3437537
http://dx.doi.org/10.5281/zenodo.1336812
http://dx.doi.org/10.3390/electronics12041048
http://dx.doi.org/10.1016/j.acax.2020.100061

