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ABSTRACT This paper presents a Reinforcement Learning (RL) framework for Command: Modern
Operations (CMO), an advanced Real Time Strategy (RTS) game that simulates military operations.
CMO challenges players to navigate tactical, operational, and strategic decision-making, involving the
management of multiple units, effective resource allocation, and concurrent action assignment. The primary
objective of this research is automating and enhancing military decision-making, utilizing the capabilities
of RL. To achieve this goal, a parameterized Proximal Policy Optimization (PPO) agent with a unique
architecture has been developed, specifically designed to address the unique challenges presented by CMO.
By adapting and extending methodologies from achievements in the domain, such as AlphaStar and OpenAI
Five, the agent showcases the potential of RL in military simulations. Our model can handle a wide range
of scenarios presented in CMO, marking a significant step towards the integration of Artificial Intelligence
(AI) with military studies and practices. This research establishes the groundwork for future explorations in
applying AI to defense and strategic analysis.

INDEX TERMS Reinforcement learning, military simulations, tactical and strategic AI, military decision
making, command modern operations.

I. INTRODUCTION
Reinforcement learning has been a key area in machine
learning (ML) demonstrating its ability to master a variety of
tasks, learning through interaction with the environment. The
initial triumphs in the domain were marked by the application
of RL to Atari games [1], offering a valuable ground
for the development of state-of-the-art algorithms. These
initial environments paved the way for RL’s progression
into more intricate and challenging domains, such as the
multi-agent, partially observable world of StarCraft II,
now a key benchmark in the field [2]. In this evolving
landscape, the Deep RTS simulator inspired by StarCraft II
was introduced as a resource-friendly alternative for RTS
simulations specifically designed for deep RL research [3].

The impressive achievements of RL agents, such as
AlphaStar in StarCraft II [4] and OpenAI Five agent in
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Dota 2 [5], have demonstrated their capability to handle
environments with huge state and action spaces, achieving
super-human performance. Despite these milestones, there
is a continuous need to expand the horizons of RL in the
RTS gaming realm as each new RTS game presents unique
challenges and offers valuable insights into ML algorithms.

A significant challenge in this domain is the computational
resources required for training RL agents in large-scale
RTS games. Creating agents with capabilities compara-
ble to AlphaStar in StarCraft II necessitates extensive
computational resources, often beyond the reach of many
research setups. This high computational demand restricts
the accessibility of advanced RL research to only those
with substantial resources and becomes a limiting factor
in the iterative process of experimentation and model
development. In response, environments like MicroGym [6]
have been introduced besides Deep RTS, targeting low-
resource research. MicroGym offers a simplified setting
where agents coordinatemultiple workers to collect resources
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and combat enemy units, encapsulating fundamental aspects
of RTS games.

There has been an increased need for AI in military
applications. While RTS games share many similarities
with military simulations, including partial observability and
multi-agent environments, they cannot fully replicate the
specific demands of real-world military operations.

The current study addresses this gap by introducing an
RL agent specifically designed for CMO, a complex RTS
game in the wargaming genre. This agent is equipped to
handle any scenario created within CMO. Utilizing CMO’s
scenario editor, the users can craft a variety of training
environments. This feature is particularly beneficial as it
enables the customization of scenarios to align with our
computational resources.

CMO differs from traditional RTS games by focusing
on tactical, operational scale, and strategic-level opera-
tions, rather than micromanagement. It presents a multi-
agent, cooperative, partially observable environment, where
multiple actions can be selected concurrently. While this
aspect adds to the game’s complexity, it also makes CMO
a candidate platform for developing advanced RL agents,
providing the opportunity to test different algorithms in a
complex dynamic setting.

Our contribution to the field is twofold. Firstly, we have
successfully developed a direct Application Programming
Interface (API) for CMO. To the best of our knowledge,
this is the first work to achieve a fully functional RL API
for the game. This API facilitates the interaction of RL
agents with CMO’s simulation environment, expanding the
horizon of RL in complex and realistic scenarios mirroring
real-world military operations. Secondly, we have designed
a novel neural network architecture inspired by notable RL
achievements such as AlphaStar and OpenAI Five. This
architecture is specifically designed to handle the multi-unit
control and simultaneous multi-action selection complexities
inherent in CMO.

II. RELATED WORK
The research of RL in military operations is considerably
less extensive compared to other domains. A recent study [7]
explores the potential of games and simulators for developing
AI inmilitary Command andControl (C2) tasks. They discuss
the parallels between complexmulti-agent scenarios in games
andmilitary operations, emphasizing the role of AI inmilitary
missions and impacting future battlefields. Reference [8]
combines a Multi-Agent System simulator with a network
emulator to create an accurate representation of battlefield
environments.

Research in this area has been characterized by simplifica-
tions, such as the use of grid maps or limited and controlled
environments. Reference [8] addressed the complexity and
dynamic nature ofmodernmilitary environments, by integrat-
ing multi-agent system simulators with network emulators.
Their work emphasizes the critical role of communication
networks in creating realistic military simulations.

One study simulated small-scale military engagements
in a grid world, training policy gradient RL agents to
combat static enemies on a 10 × 10 grid map [9]. Another
research compared Deep Q-Learning (DQL) and Actor-Critic
networks in simple ground combat scenarios, such as
rendezvous and obstacle avoidance, performed on an 80 ×

80 pixel map [10].
Further efforts have been made to improve multi-agent

dynamics in military simulations. One notable work uti-
lized an enhanced Multi-Agent Deep Deterministic Policy
Gradient (MADDPG) algorithm, augmented with supervised
learning, to train agents in grid-like environments with map
features. This resulted in improved win rates in general attack
scenarios compared to other algorithms [11]. Additionally,
a PPO [12] agent was trained to perform air defense
strategies in a digital battlefield created using Unreal Engine,
surpassing traditional C2 systems in their specified tasks [13].
AI in military training has also attracted attention [14].

One study employed a graph neural network to develop
adaptive non-player characters (NPCs) for military training
simulations focusing on NPC cooperations through behavior
prediction [15]. Another research integrated military doctrine
with multi-agent RL (MARL) to enhance decision-making
in simulations [16]. They demonstrated that the combined
model outperformed both the doctrine-only and MARL-only
methods using the StarCraft Multi-Agent Challenge (SMAC)
environment [17].

Despite these advancements, effectively addressing the
complexity of real-world military operations continues to be
a significant challenge.

According to our knowledge, only a few publications
have utilized CMO as an environment for their research.
The authors in [18] conducted their research using CMO,
specifically focusing on the simulation of various combat
operations. Notably, they did not employ RL methods in their
study. Instead, they utilized CMO to simulate 10,000 combat
operations related to the warning and reconnaissance mission
of an underwater manned/unmanned cooperative attack and
defense system.

Another study involved pre-training an RL agent on
a surrogate model before applying it in CMO for the
straightforward task of maneuvering a unit to a specific
location and evading enemy radar detection [19]. This
research, while providing proof of concept, faced challenges
in directly integrating with CMO due to the absence of a
suitable API. Consequently, their approach necessitated a
surrogate simulation environment model for training which
is a strong limitation.

In contrast, this research has successfully developed an
API that directly interfaces with CMO, enabling us to train
an RL agent on a broader range of military scenarios.
This advancement marks a significant step forward in the
application of RL within complex wargaming environments.

Given the limited work in strategic military RL and
the complexity inherent in CMO, researchers need to
draw inspiration from sophisticated RTS game agents like
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AlphaStar and OpenAI Five. For example [20] explored the
application of a similar network to AlphaStar. Their work
involved training the RL agent to function as a military
commander in a combat simulation ‘ReLeGSim’, showcasing
the agent’s ability to make tactical decisions and manage
units.

Both AlphaStar and OpenAI Five share several core
similarities, reflecting the nature of the RTS games they
were designed for. Both agents process in-game scalar and
pixel-based observations using LSTM cores within their
network. Their training involves asynchronous distributed RL
frameworks, utilizing thousands of CPU cores and GPUs,
to manage the extensive data and interactions of their game
environments. A significant part of their training involves
self-play, where the agents improve by competing against past
versions of themselves.

Despite these similarities, AlphaStar and OpenAI Five
have notable differences. AlphaStar’s training includes a
range of techniques such as TD(λ), V-trace [21], UPGO,
an initial phase of supervised learning, and a MARL algo-
rithm called the league. In contrast, OpenAI Five predomi-
nantly utilizes the PPO algorithm with Generalized Advan-
tage Estimation (GAE) [22]. Architecturally, AlphaStar is
more complex, integrating transformers, pointer networks,
and Multi-Layer Perceptrons (MLPs), whereas OpenAI Five
relies more on MLPs, increased computational resources,
and extended training duration (10 months compared to
AlphaStar’s 44 days).

This work analyzed and integrated various elements from
these advanced AI systems to make the most efficient use of
available resources.

III. COMMAND: MODERN OPERATIONS GAME
A. INTRODUCTION TO COMMAND: MODERN
OPERATIONS
CMO offers a comprehensive and detailed simulation of
post-WorldWar II to contemporarymilitary operations across
air, naval, and ground domains. The game provides an
intricate platform for the application of real-world military
strategies and tactics, underpinned by an extensive database
of historical and modern military hardware and systems. The
simulation engine is capable of handling a wide range of
military engagements, from localized encounters to large-
scale, global conflicts.

The game’s graphical user interface features a comprehen-
sive global view of the Earth, rendered with high-resolution
satellite imagery and detailed terrain maps, providing the
foundational environment for all in-game operations as
shown in Fig. 1. Players have operational control of various
military units, including aircraft, ships, submarines, ground
forces, and even strategic weapons, navigating them through
complex missions and scenarios.

Every unit within the game is modeled with high
fidelity to real-world specifications, covering aspects such as
weapon capabilities, fuel consumption, physical limitations,

FIGURE 1. Command: Modern operations.

sensor functionality, and authentic communication systems,
ensuring a highly accurate simulation.

CMO is equipped with a scenario editor that allows
players to create different scenarios, from historical battles to
virtual conflicts, providing the means for examining complex
military operations. This makes CMO not just a platform
for entertainment, but also a tool for military training and
strategic analysis [18].

The integration of CMO with an RL agent builds upon
the initial work found in [23]. Despite this starting point,
considerable challenges were encountered in advancing the
project. The task of efficiently setting up the API (a crucial
step for ensuring fast execution and effective training),
demanded substantial effort. The multifaceted nature of the
game provides an ideal testbed for advanced AI agents,
making our efforts highly beneficial.

B. GAME MECHANICS AND DYNAMICS
This RTS game features multi-sided scenarios, where the
player has the control of managing any side within a conflict.
Each side comprises several units and resources that must be
strategically managed to achieve scenario-specific objectives.

While multiplayer mode is available, CMO is primarily
played in a single-player format - often involving the
management of multiple sides in adversarial and cooperative
scenarios - similar to a self-played chess game. When
controlling a single side, the game presents a partially
observable environment, where information is limited to the
perspective of that side. While the player can switch views
and gain insights into different sides, each side independently
maintains its own limited and context-specific field of
observation. This property necessitates the use of recurrent
networks like LSTM.

The game operates in real-time mode, offering the
flexibility to pause and resume the simulation at any moment,
with the added option for accelerated play. This feature
enables rapid execution, a key factor for efficiently training
an RL agent. In practice, the agent will interact with
the game in a style similar to turn-based strategy games.

VOLUME 12, 2024 77503



A. Dimitriu et al.: RL Approach to Military Simulations in Command: Modern Operations

Specifically, upon pausing the game, the player or the RL
agent can simultaneously select multiple actions for each
unit of a side. This includes selecting actions, such as
moving, attacking, refueling, etc. (see in Table 6). This unique
characteristic distinguishes CMO from other games and
necessitates a slightly different architecture. This architecture
must account for the simultaneous prediction of multiple
actions per unit, representing a significant departure from
the more linear action selection processes observed in other
environments [4], [5].

The game is periodically paused at set intervals, such as
every 5 minutes to allow the agent to evaluate the situation
and make decisions. Importantly, each scenario has a defined
time span, and the game concludes either when this duration
elapses or when the primary objectives of the scenario are
met. A typical scenario could involve anywhere from 10 to
1000 turns or interactions, though the API has no strict upper
limit.

C. GAME COMPLEXITY AND CHALLENGES
CMO models realistic damage mechanics and resource
management, including ammunition, fuel, and unit repair.
It provides a diverse range of geographical landscapes,
from dense urban areas to seas and rugged terrain. The
game simulates real-world environmental conditions, such
as weather patterns, day-night cycles, and seasonal changes,
which impact visibility, unit mobility, and sensor effective-
ness. For instance, weather can affect sensor performance
and unit movement, while terrain impacts visibility and
mobility. CMO features advanced sensor and detection
systems ranging from simple reconnaissance equipment to
sophisticated radar and sonar systems that can be affected by
these environmental factors.

CMO has a large database, which includes thousands of
intensely detailed sensors, weapons, ground units, aircraft,
ships, submarines, and facilities. This diversity could raise a
significant challenge for the agent, requiring it to generalize
and adapt to the specific capabilities and limitations of many
equipment and technologies.

In CMO, while players have the flexibility to pause
and resume gameplay at any time, a decision was made
to implement a turn-based approach for agent interaction.
This method involves pausing and resuming the game at
predetermined fixed intervals, which are manually set for
each scenario. This allows the agent to process and respond to
in-game events in a structured manner while acknowledging
that alternative methods could also be viable. The length
of these intervals (further referred to as the ‘‘simulation
step’’) depends on the temporal scope of the scenario. For
instance, in scenarios with a condensed timeline, requiring
rapid and frequent decision-making, the interaction interval
might be 5 seconds. On the other hand, in more extended
scenarios, where strategic developments unfold over a longer
period, an interval of five minutes may be sufficient to enable
meaningful agent intervention without overlooking critical
events within the game.

Regarding the built-in AI functionality, CMO provides
an option for AI to control a side, but documentation
on its capabilities is sparse. Through experimentation,
it was observed that the built-in AI strategy is limited to
executing auto-attacks upon detecting enemy units. Given
this constraint, this research neglects the use of the built-in
AI and relies purely on self-play.

In this study, the decision was made to not utilize the
built-in AI functionalities of CMO. This choice was based
on the alignment of the AI’s characteristics with the specific
requirements of our experimental setup. Instead, the focus
was on developing and utilizing a self-play framework to fully
control the training and evaluation.

IV. PRELIMINARIES
PPO is a widely adopted policy gradient method that has
achieved success in a variety of tasks. It is a successor of
Trust-Region policy gradient (TRPO) [24] and is considered
one of the state-of-the-art algorithms. The choice of the PPO
algorithm, an on-policy learning method, was guided by
several considerations. Firstly, PPO offers a balance between
simplicity of implementation and stability of training, which
is particularly important given the complex nature of the
game. The decision was also influenced by the empirical
success of PPO in similar domains, including other RTS
games and multi-agent environments. The algorithm is also
proven to be effective in managing large state and action
spaces.

The algorithm’s key innovation is the clipped surrogate
objective function, which essentially prevents the policy from
moving too far from its current state.

For a given a policy πθ parameterized by θ and an action
at in state st , the policy’s probability ratio rt (θ ) is defined as:

rt (θ ) =
πθ (at |st )

πθold (at |st )
, (1)

that expresses the change in policy probability due to
updating parameters. Using this ratio, the PPO objective can
be formulated as:

LCLIP(θ ) = Êt

[
min

(
rt (θ )Ât , clip(rt (θ ), 1 − ϵ, 1 + ϵ)Ât

)]
(2)

where ϵ is the clipping threshold. The advantage estimation
Ât , is calculated usingGAE,which aims at balancing the bias-
variance trade-off in advantage computation, smoothing the
policy updates. The GAE is computed as follows:

Ât = δt + (γλ)δt+1 + · · · + (γλ)T−t+1δT−1, (3)

where δt = rt + γV (st+1) − V (st ) represents the
temporal difference error, γ is the discount factor, λ is
the GAE parameter, and T denotes the simulation horizon.
To further improve the training stability and reduce the risk of
large policy deviations, a Kullback-Leibler (KL) divergence
penalty is integrated into the objective function:

LKL(θ ) = Êt
[
KL

[
πθold(·|st ) ∥ πθ (·|st )

]]
, (4)
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This penalty is to further ensure, that the updated policy
remains in close proximity to the old policy, preventing
drastic changes that could harm the training process.

The final objective function combines these elements along
with a value loss term and an entropy bonus H to encourage
exploration:

L(θ ) = Êt [LCLIP(θ ) − c1LVF(θ ) − c2LKL(θ ) + c3H[πθ ](st )],

(5)

where LVF(θ ) is the squared-error loss (Vθ (st ) − V targ
t )2 and

c1, c2, c3 are the coefficients for each term in the loss function.

V. ARCHITECTURE
This section presents the neural network architecture of the
PPO agent, designed to play any scenario in CMO. A sim-
plified representation of the RL agent is illustrated in Fig. 2,
showcasing a shared network that processes the observation
through embeddings. This design is significantly influenced
by the architectures of OpenAI Five and AlphaStar. It should
be noted that replicating or adapting their model is far from
straightforward, given the complexity and depth of their
original architectures.

The input is structured into three categories. The first cate-
gory consists of scalar inputs, which include scenario-specific
information such as current time, number of units lost,
and number of contacts defeated. Unlike AlphaStar and
OpenAI Five, our model does not incorporate pixel-based
observations. Instead, entities in the scenario are categorized
into two groups: ‘units’ (own units) and ‘contacts’ (enemy
units), as they are commonly referred to in the game and
illustrated in Fig. 3

FIGURE 2. Simplified network architecture.

Further drawing from AlphaStar, transformer models are
employed to encode entity-type observations. These entity
encodings are then aggregated through a max pooling
operation and subsequently concatenated with the output of
the scalar encoder. This combined data is fed into an LSTM
network, as depicted in Fig. 3. The network’s value function is
determined by a simpleMLP that processes the LSTMoutput.

The architecture of the action head is more complex, com-
prising two primary components: the action type head and
the action argument head. This design of the action-selection
module tries to balance complexity with functionality,
as shown in Fig. 4 and described in sectionV-B inmore detail.

One of the key modifications in the architecture is
its capability to manage the multi-unit control dynamics
of CMO. Unlike traditional RTS games where the focus
might be on singular unit control or smaller groups, CMO
requires the simultaneous coordination of multiple units
of a side elevating the problem to a MARL challenge.
The network is designed in a way to handle the variable
number of units with transformers. The transformers allow
the network to dynamically adjust its focus and resource
allocation based on the situational demands of each unit in the
environment.

FIGURE 3. Core network.

Another aspect the PPO agent addresses is the multi-action
selection feature inherent in CMO. In the context of CMO,
when gameplay is paused, a player can assign a set of
actions to each unit; for example, navigating to a designated
location, adjusting the unit’s speed, firing a weapon to
a particular target, activating radars, deactivating sonars.
These are executed simultaneously once the simulation
is resumed. This multi-action selection mechanism differs
from the traditional RTS environments, where actions are
typically sequential or limited in parallel execution [4], [5].
Our agent is engineered to enable units to execute multi-
ple actions concurrently. To accommodate this, the agent
is engineered to output multiple actions for each unit
concurrently.

This architecture not only addresses the current require-
ments of CMO gameplay but also provides a scalable
framework capable of adapting to more complex scenarios
and future expansions.
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FIGURE 4. Policy network.

A. OBSERVATION SPACE REPRESENTATION
In the development of the PPO agent’s observation space,
a structured observation data approach was adopted. In the
context of CMO, the choice of using structured data over pixel
data is quite strategic and is informed by the following key
considerations:

• CMO’s gameplay interface offers a large amount of
data, accessible through interactive elements such as
unit selections or menu buttons. These interactions
trigger a display window that provides additional
information about the selected units, resources, or game
elements. This method provides access to a depth of
information that is not readily available in the GUI’s
visual representation. Therefore, relying solely on pixel
information would be insufficient, as they do not capture
the full spectrum of data necessary for the agent’s
decision-making processes.

• Traditional RL agents that play video games are usually
trained using pixel data [1], [2], [5]. However, CMO can
operate without graphical rendering through Command
Line Interface which presents a substantial advantage
for employing structured data. This not only reduces
the computational load but also reallocates more GPU
capacity for tensor operations, which is particularly
beneficial for setups with limited resources.

• CMO currently does not natively support the extraction
of pixel data from the game or GUI. This limitation
makes it impractical to use pixel data as the primary
source of information for RL agents.

Unlike pixel-based observations which is a visual snapshot
of the game state, structural observations require explicit,
programmatic extraction and processing of game data. This
procedure requires careful coding and integration to ensure
accurate and efficient extraction of the relevant information
from the game’s interface.

The observation space for each unit in the game is
composed of a set of features, such as unit health, position,
heading, weapon information, etc. A complete list of features
is shown in Table 3 for units, and in Table 5 for contacts.

B. ACTION SPACE DESIGN
Actions can be executed through the game’s Lua API,
which, despite having a limited set of commands, is versatile
enough to replicate nearly all functionalities accessible
through the game’s GUI. 13 fundamental actions commonly
used in a typical game scenario have been identified and
implemented, as listed in Table 6. Each action requires a
unique combination of arguments, which vary in type - from
categorical, discrete, and continuous - and in the number
of arguments needed. This kind of complexity is typical of
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advanced games. This is addressed in the model by dividing
the action space into two primary prediction tasks: action type
prediction and action argument prediction.

Generally, there are two basic approaches to implementing
this action composition. The first involves predicting argu-
ments in a single vector or ‘‘head’’, assigning a specific
position in the vector for each argument. The other one,
which we have adopted, involves using distinct ‘heads’ for
each action argument. This means the action arguments of
each action type are predicted by a separate, specialized
component in the model.

Both the action types and their corresponding arguments
are treated as independent of each other. While this assump-
tion may not fully reflect the intricate interdependencies
in reality, it greatly simplifies the calculation of the policy
gradient. Given the action at at time step t , it can be
decomposed into several distinct action types, denoted as
a1t , a

2
t , . . . , a

n
t . Each action type ait is further associated with

its own set of arguments ai,1t , ai,2t , . . . , ai,mit . The probability
of taking at given state st , represented by logπθ (at |st ),
is computed by summing the log probabilities of each action
type and its arguments as follows:

logπθ (at |st ) =

n∑
i=1

logπθ (ait |st ) +

mi∑
j=1

logπθ (a
i,j
t |st )


(6)

C. ACTION SELECTION HEAD
The action type network is designed to output a binary value
for each action type, utilizing a sigmoid activation function.
The binary output essentially represents a decision on
whether to execute a particular action or not. When an action
is selected (indicated by the network outputting a ’1’), the
corresponding action’s arguments are also chosen. As pointed
out by many [2], [5], [6] action masks are important factors
for efficient training in large action spaces. In the action-
type network, action masks are carefully implemented and
employed to dynamically adjust the network’s output space
based on the current state and feasibility of actions. For
example, if no contact is available for attacking, then the
attack entry in the action mask is set to zero, effectively
disabling this option in the network’s decision process and
allowing the network to focus on other feasible actions.

D. ACTION ARGUMENTS HEADS
In contrast to simpler games where a single argument head
might suffice for all the actions (for example which specifies
the direction at which the action is issued) such as in [4],
[5], and [20], CMO’s parameterized actions as well as
the multi-action selection nature requires a more tailored
approach. In this work, distinct heads have been implemented
for each action type, with each head responsible for predicting
the specific arguments required for that action. While it
requires manual configuration, it offers the flexibility to
connect and integrate different modules within the action

head and allows for a more nuanced and accurate prediction
of action parameters as outlined in [25]. The selected action
type is incorporated as input to each argument head. As noted
in [26], when continuous actions depend on a discrete choice,
the discrete action can serve as an input to the continuous
one. However, this setup prevents gradients from flowing
back through the sampled input. They propose a hybrid
TRPO algorithm as a solution. In our case, since action types
effectively act as masks for the arguments, there is no need
for gradient flowback in this simple context. While this work
have not yet explored alternative methodologies, this design
choice lays the groundwork for future research. Subsequent
studies may delve into different implementations, hoping to
uncover more efficient or effective ways to handle the action
space of CMO.

E. INTEGRATION WITH GAME ENVIRONMENT
The integration with the game environment operates through
a classic RL loop depicted in Fig. 5. At fixed intervals, the
game simulation is paused and the observation is extracted
from the game’s internal state. This observation is then
processed, and a scenario-specific reward is calculated. The
agent generates its actions based on the observation, which
are fed back into the game environment.

It is important to highlight that certain features are not
directly accessible through communicating with the game.
Static features like unit type, the properties of sensors and
weapons, are stored within CMO’s internal database. Since
these features remain constant during gameplay, fetching
them from the database in each step would be impractical and
would introduce undesired latency during rollouts. Therefore
these features are obtained before training, through our DB
interface as shown in Fig. 5

FIGURE 5. RL loop with a DB interface module.

Each scenario in CMO can present unique objectives,
ranging from straightforward tasks like annihilating enemy
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FIGURE 6. Distributed training with multiple workers.

units or defending an airbase to more intricate missions
such as safely extracting a unit from a hostile environment
or liberating a coalition side under military oppression.
These diverse objectives pose a challenge in defining a
universal reward function applicable across all scenarios.
Consequently, for each new scenario introduced to the agent,
a reward function must be manually defined to ensure that
the reward signal aligns with the specific objectives of the
scenario at hand.

VI. TRAINING AND IMPLEMENTATION
During the training and implementation phase of the PPO
agent, various strategies have been explored to optimize the
training process for speed and efficiency, enabling us to
conduct the training on a single PC.

To enhance the model’s performance the input features
are normalized and the categorical variables are embedded,
such as unit types and sub-types. For the LSTM networks
backpropagation through time (BPTT) [27] is implemented,
as a reasonable scenario is expected to be no more than 100-
200 steps. For sufficient exploration, entropy regularization
is incorporated in the loss function.

KL divergence was another component of the training
methodology. It was utilized by incorporating it into the loss
function to further regulate the policy updates as mentioned
before, which resulted in a more stable learning trajectory.

Beyond its role in the loss function, KL divergence was
also utilized as an early stopping criterion and as a learning
rate scheduler:

α =

{
αold · ηα, if KL[πθold(·|st ) ∥ πθ (·|st )] > KLthres

αold, otherwise

(7)

where α represents the learning rate, and ηα denotes the
learning rate decay factor, with 0 < ηα < 1. The learning
rate is adjusted only if the KL divergence between the new
and the old policy exceeds a predefined threshold KLthres.
This mechanism ensures that the learning rate is dynamically
scaled down to prevent large policy updates that could
destabilize the training.

This approach stemmed from the observation that KL
divergence tended to increase as the agent’s performance
improved, due to higher rewards and consequently larger
gradients. As the agent advanced in its training, the learning
rate set at the beginning of training gradually became too
aggressive for the later stages. By dynamically adjusting
the learning rate in response to KL divergence levels, the
training intensity keeps moderated, ensuring that the learning
rate remains appropriate, and proportionate to the agent’s
development.

To significantly accelerate the training process of the
PPO agent for CMO, a centralized distributed training
framework is developed. In this setup, multiple agents known
as ‘worker agents’ are tasked with collecting experiences
in parallel. Meanwhile, a central agent accumulates these
experiences, performs the parameter update, and sends the
updated parameters back to the workers in a synchronized
way. Instead of each worker performing a predetermined
number of episodes - such as in [28] where actions are
applied in batches across a fixed number of experiences -,
a more dynamic workload distribution is used. Once a worker
completes an episode, it decrements a shared episode counter,
until the collective episode count for a parameter update is
reached. The architecture of this framework is illustrated in
Fig. 6.
Lastly, given the computational resource constraints com-

monly faced by researchers, the promotion of the curriculum
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learning approach is suggested for scenarios with high
complexity [29]. This method allows us to progressively
train the agent on increasingly challenging tasks, making the
learning process more effective despite limited resources.

VII. EXPERIMENTAL SETUP
To assess the performance of the model and determine
appropriate hyperparameter intervals, a fundamental scenario
is established for testing. This scenario features two opposing
sides, each equipped with an Unmanned Aerial Vehicle
(UAV) and an artillery unit. The primary objective is to locate
the enemy’s artillery using the UAV and then eliminate it
using one’s artillery. The task unfolds within a designated
area, with each side’s starting position randomized in every
episode to test the agent’s generalization capability across the
entire area. The details of this scenario are outlined in Table 1.

TABLE 1. Scenario details.

The UAV is equipped with a 180◦ field of view sensor with
a range rrange = 6.5 km and can operate within a speed limit
of 120 km/h to 166 km/h

A. SCENARIO ANALYSIS
The reason for this scenario is the deduction of a simple
heuristic behavior that solves the task with nearly optimal
effectiveness. The task can be naturally segmented into two
phases: surveillance and elimination. Initially, the UAV is
responsible for locating the enemy unit. Once the target is
identified, the artillery must position itself within weapon
range for successful elimination. This translates to an
area exploration task for the UAV, which is a spiraling
movement in a continuous world. However, due to the
discrete simulation step (5 min. per interaction), the optimal
pattern changes. Fig. 7 illustrates an approach, where an
optimal hexagonal tiling of the map is assumed. Each
hexagon’s center is strategically positioned at a distance of
2rrange from its neighbors, aligning with the maximum range
of the UAV’s sensors.

The hexagon edges thus represent the outer boundary of the
UAV’s detection range, with the inner circle of each hexagon
corresponding to the UAV’s sensor range. The nearly optimal
trajectory, which involves some overlapping, is depicted in
Fig. 7. It involves moving between hexagon centers, and
upon completing a circle, transiting to the closest center
in the next hexagon layer. Such trajectory ensures a quick
average detection time of an unknown enemy unit, given

FIGURE 7. Hexagonal tiling-based exploration.

the constraints of the simulation step, the UAV’s speed, and
sensor range.

It is worth noting, that hexagonal tiling has been utilized in
other research for area exploration tasks [30], where agents
typically have six discrete movement options, corresponding
to moving into one of the adjacent hexagonal cells. In this
work, this hexagonal tiling serves as a theoretical baseline
for analyzing the task. However, our approach differs as the
agent is designed to predict continuous actions, including
the coordinates to move. If the agent learns to mirror this
movement pattern, it indicates a successful adaptation to
the task. Additionally, the task of elimination proves to be
straightforward. Due to the artillery’s weaponry, the enemy
can be eliminated within a single attack cycle.

B. REWARD FUNCTION
The reward function is structured to encourage behavior
alignedwith this strategy, utilizing the notationAi to represent
the area observed by the UAV at time step i. For the
surveillance task, the reward at any time step t is given by:

rsurveillancet =
Anewt

Amax · exp
(

−
dbaset

dmax

)
· exp

(
−
t
T

)
(8)

Here Amax
= r2rangeπ represents the maximum observable

area by the UAV at any given moment, used to normalize the
reward. Anewt = At \(

⋃t−1
i=0 Ai) indicates the newly discovered

area at time step t not overlapped with previously observed
areas. dbaset denotes the distance of the UAV from its starting
position, dmax is the max length of the exploration area to
normalize distances, and T is the maximum length of an
episode. This formula rewards the discovery of new areas,
incentivizing the agent to prefer closer points and explore
them in the right sequence.
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Upon successful detection or elimination of the enemy
target, a fixed reward rdetectiont = 1 and relimination

t = 2,
is awarded to reinforce these critical outcomes.

Once the enemy has been detected, the task changes
from surveillance to elimination. The reward rclosingt =

−dtarget/dmax, penalizes the distance to the target, encourag-
ing the artillery to get closer to it.

The total reward at time t , rt is a composite of the
individual rewards, shaping the agent’s behavior towards
effective surveillance and elimination.

rt = rsurveillancet + rclosingt + rdetectiont + relimination
t (9)

For the above scenario, 12 CPU cores and a GeForce
RTX 4090 GPU of a single machine were utilized to conduct
the training.

VIII. RESULTS
The outcomes of the training sessions, using the hyperparam-
eter settings detailed in Table 7, are illustrated in Fig. 8. The
agent underwent training utilizing shaped reward as defined
by Formula (9), a sparse reward scheme (awarding +2
for successful enemy elimination), and through curriculum
learning. Consistent with existing literature, our findings
confirm that using the shaped reward results in more effective
learning compared to the sparse reward setup. Specifically,
the sparse reward scenario achieved an average success rate
of 40% after 2 million environment steps (around 4 hours of
training). Conversely, both the shaped reward and curriculum
learning approaches reached an average success rate of
around 90%. In the curriculum learning approach, the agent
was initially trained on the surveillance component of the task
using the reward specified in Formula (8). This pre-trained
agent thenwas further trained on the full task using the reward
in Formula (9) to adapt its policy to the elimination task as
well. This allowed the agent to learn the elimination more
easily and effectively as the learning curve suggests.

FIGURE 8. Progression of scenario success rates (averaged across 3 runs)
under different training methodologies.

It was discovered that the learning rate and the loss
coefficients were critical hyperparameters that significantly

influenced performance. Adjustments to the entropy and
KL divergence coefficients resulted in noticeable changes
in the success rate. Additionally, the learning rate, the KL
divergence coefficient, and the parameters of the proposed
KL divergence-based learning rate decay (Formula 7)
required intensive experimentation to achieve a balance
between fast convergence and stability. A relatively large
initial learning rate combined with a small KL divergence
threshold led to a rapid decay in the learning rate and
therefore convergence speed. On the other hand, when paired
with a larger threshold, this configuration resulted in unstable
learning outcomes. It has turned out that an appropriate
KL threshold and decay parameter results in reasonably
stable learning, even with a relatively high learning rate.
This highlights the need for precise tuning in environ-
ments characterized by high-dimensional state and action
spaces.

FIGURE 9. Main phases of completing the scenario.

Fig. 9 captures the completion of the task by the agent,
which was trained on the shaped reward in a randomized
setup. Specifically, Fig. 9a illustrates the agent’s initial
exploratory behavior. While the UAV does not strictly follow
the hexagonal trajectory, it signifies the agent’s capability
to develop exploratory movements for detecting unknown
enemy units. Following the identification of an enemy unit,
the agent advances towards its target (Fig. 9b), engages in
combat (Fig. 9c), and successfully neutralizes the opponent
(Fig. 9d).
Interestingly, the agent trained through curriculum learning

demonstrated an improved spiraling movement, as revealed
in Fig. 10

These results emphasize the efficiency of curriculum learn-
ing even in this simple setup and highlight the adaptability of
the agent in learning exploration and engagement strategies
within CMO.
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FIGURE 10. Trajectory learnt by curriculum learning.

IX. CONCLUSION
This paper described the RL framework for CMO, an RTS
game for simulating military operations. Successfully devel-
oping an API for the game has enabled the agent to train
directly from in-game observations. This API offers a novel
tool for strategic military analysis and training. Our PPO
agent demonstrated its ability to generalize in a surveillance
and elimination task, where it has learned to perform the
area exploration on a close optimal trajectory. This initial
work provides an important platform for further research into
AI-driven military strategy.

Looking ahead, there is potential in refining and expanding
the agent’s architecture, exploring more complex scenarios,
and integrating advanced learning techniques to further
improve performance. Moreover, future work will investigate
the agent’s strategic depth and temporal adaptability by
allowing the agent to have precise control over action timing.
This would enable the agent to pause and choose the timing of
its actions with precision, mirroring the way a human player
would interact with the game at their discretion.

APPENDIX
INSIGHTS INTO OBSERVATIONS AND TRAINING
MECHANISMS
A. OBSERVATION
The observation space is designed to cover the critical
attributes necessary for the agent’s decision-making process.
Scenario-specific attributes and general information are
collected, which can be seen in Table 2. For each unit
within the game, a comprehensive set of features is extracted,
as detailed in Table 3. Each unit is capable of carrying
up to four distinct weapons, each characterized by specific
attributes such as effective ranges, outlined in Table 4.
Additionally, essential data on enemy units (contacts) are
gathered, detailed in Table 5. It is important to note that
the information on contacts is restricted to observable
characteristics, mirroring the limited information accessible

TABLE 2. Scalar features extracted from the game.

TABLE 3. Features extracted for each unit in CMO.

TABLE 4. Features extracted for each weapon in CMO.

to players during gameplay. This includes the exclusion of
details such as weapon information.

B. TRAINING FRAMEWORK
The training approach relies on carefully chosen hyperpa-
rameters (see in Table 7) and techniques to enhance the
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TABLE 5. Features extracted for each contact in CMO.

TABLE 6. List of implemented actions.

TABLE 7. Hyperparameters of the training process.

effectiveness of the model’s learning process. The following
methods are implemented:

• Parallel environments
• Shared networks for the critic and actor
• Generalized Advantage Estimation
• Curriculum learning

• Mini-batch update
• KL divergence penalty in the loss function
• KL divergence threshold-based learning rate decaying
• Entropy bonus in the loss function
• Normalized advantages
• Orthogonal initialization of weights and constant initial-
ization of biases

• Gradient clipping±4
√
vwhere v is the running estimate

of the gradient’s secondmoment before clipping, similar
to [5]

• Entropy coefficient annealing as emphasized in [31]
• PPO’s clip range annealing
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