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ABSTRACT In recent years, indoor mobile robots have played an increasingly important role in various
home,medical, commercial, and industrial applications. However, mirror surfaces commonly found in indoor
environments pose challenges to the localization and navigation of indoor mobile robots. In environments
with mirror surfaces, robots may misjudge the location of obstacles owing to laser reflections, leading to
accidental collisions or mission failure. In this study, a single 2D LiDAR was used to identify the location
of the mirrors in the environment, and to optimize the point cloud data and occupancy grid map using the
mirror locations. The main innovation is the use of the intensity information of the reflected laser beam and
the inherent symmetry of mirrors for real-time detection, including polygonal mirrors and mirrors without
contours. Currently, the method has been experimented with in several complex environments, the accuracy
of mirror identification exceeds 97%, and effectively modified the erroneous occupancy grid map.

INDEX TERMS Real time, intensity, symmetry, point cloud data, occupancy gird map.

I. INTRODUCTION
Currently, indoor mobile robots rely on Simultaneous
Localization And Mapping (SLAM) [1] for localisation
and navigation, such as laser SLAM [2], [3] [4], visual
SLAM [5], [6], [7], and multi-sensor fusion SLAM [8], [9],
[10]. This technology enables robots to construct maps and
determine their position in unknown environments in real
time. However, SLAM technology is affected by specular
reflections, which is a common but challenging problem.
Specular reflections can cause point clouds with incorrect
distances to be generated in the laser scan data, which can
mislead the SLAM system and prevent it from accurately
constructing a map or estimating the robot position, as shown
in Fig.1. However, today’s architectural styles are undergoing
significant changes, and one notable trend is the quest for
modernity and innovative design. Architects and designers
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are increasingly favoring the use of materials and elements,
such as mirrors and glass to create the exterior and interior
spaces of buildings. Therefore, it is crucial to address the
issues of positioning and building maps for indoor mobile
robots in mirrored environments.

The SLAM problem for environments with mirrors present
has had several solutions proposed, most of them relying on
3D LIDAR, multi-echo sensors or cameras to detect mirrors,
which are not only costly but also consume a lot of compute
resources.

In this study, an intensity-based real-time 2D LiDAR
mirror detection method was proposed with the aim of
optimizing real-time acquired point cloud data and occupancy
grid map. The method was divided into four stages:(1)
Obtaining the position of the mirror in the environment
based on the intensity information of the laser beam and the
inherent symmetry of the mirror surface. (2) Updating and
optimizing the mirror location. (3) The point cloud data were
optimized by modifying the distance information of the laser
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FIGURE 1. (a) The environment used to test the effect of mirrors on the
map; (b) The build map in this environment, with incorrect map
information in the red box; (c) The correct map after removing the mirrors.

beams directed at the mirrors. (4) Construct and optimize
the occupancy grid map using the open-source KartoSLAM
algorithm. The innovation of this method is that it can acquire
the location of mirrors in real time while optimizing the
point cloud data and occupancy grid map. The experimental
results show that the method exhibits a good performance in
a variety of complex environments, with an accuracy of over
97% for mirror identification. The main innovation is that
the method utilizes the intensity information of the reflected
laser beam and the inherent symmetry of the mirrors to
achieve real-time mirror recognition and remove erroneous
map information in real time. It uses only a single 2D LIDAR,
eliminating the need for expensive and complex 3D LIDAR
and multiple echo sensors, thereby making it more suitable
for inexpensive robots. The method performs correctly in
the face of polygonal mirrors and mirrors without contours,
with an improved percentage of detected mirrors compared
to other methods, in real time and at low cost.

Section II reviews state-of-the-art techniques for identify-
ing reflective surfaces.Section III provides the distribution of
intensity information of the laser beam directed at the mirror
and the symmetry property of the point cloud data generated
by the mirror.Sections IV-VII detail methods for identifying
mirrors and optimizing point cloud data and occupying grid
maps. Section VIII presents the results obtained by applying
the proposed method to various challenging environments.
Finally, conclusions and future work are presented in
Section IX.

II. STATE OF THE ART
Several previous studies discussed the use of a single sensor
for mirror detection. These methods can be categorized into
four types depending on the detection principle: deep learning
based, symmetry property based, bezel detection based, and
intensity based. The following is a review of the studies
related to each method:

A. BASED ON DEEP LEARNING
Deep learning is an important branch in the field of Artificial
Intelligence and has made remarkable progress. There are
many deep learning models with excellent feature learning
and classification capabilities for image processing and point

cloud processing, which have become powerful tools in
mirror identification tasks. Jiang et al. [11] proposed a
classifier based on a four-layer neural network using only 2D
LiDAR, which shows the probability of an object being glass
using the distance, intensity, and angle of incidence measured
by lidar as inputs. Mei et al. [12] proposed a glass detection
network, GDNet-B, which detects glass from images using
a single RGB camera. Tao et al. [13] based on classical
visual features, proposed a boundary-guided glass image
segmentation network based on classical visual features for
glass recognition. However, despite their excellent detection
results, these methods require expensive computational
resources.

B. BASED ON SYMMETRY PROPERTY
The symmetry property causes the point cloud data generated
by LiDAR to be symmetrical about the mirror. The mirror
position is determined based on this property. Yang and
Wang [14] measured the uncertainty in mirror prediction
using the Iterative Nearest Points (ICPs) algorithm, which
predicts the approximate location of the mirror by setting the
mirror length. Li et al. [15] used their own robot as a reference
point to obtain the position that is most likely to be the axis
of symmetry of the mirror by iterating over a multi-frame
point cloud. These two works are unable to achieve a better
recognition effect in complex mirror environments because
of the lack of determination of the approximate position of
the mirror, and thus, they need to set the length of the mirror
artificially or to obtain the mirror position through a large
number of iterations.

C. BASED ON BEZEL DETECTION
Several approaches have been proposed based on mir-
ror bezel detection to determine mirror location. Pu and
Vosselman [16] attempted to differentiate between facade
features (e.g., walls and roofs) to detect mirrors, and they
introduced knowledge about the size, location, orientation,
and topology of the features to identify these mirrored
windows in the identified segmented laser point cloud.
Hao et al. [17] proposed a point-based slicing-based window
localization algorithm to extract architectural walls from the
scene point cloud based on the surface area, normal direction,
topological relationship, and other features of the ensemble to
extract the building wall from the field point cloud. Finally,
the building facade was sliced horizontally and vertically
to obtain the window region. Wang et al. [18] detected
windows by combining bottom-up and top-down strategies
to extract facade planes from the LiDAR point cloud. The
point cloud was clustered into potential elevation regions
using principal component analysis (PCA) in the bottom-up
approach. The elevation planes were then extracted from the
potential elevation regions using Random Sample Consensus
(RANSAC) in the top-up method. However, these efforts
had difficulty detecting mirrors that were not embedded in
walls.
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D. BASED ON INTENSITY
Shiina and Wang [19] experimentally demonstrated that the
intensity of the received laser light is maximum when the
laser beam irradiation angle is close to the vertical angle of
the glass surface and utilized this property of the glass in the
environment. Wang andWang [20] recognized glass based on
the intensity of the laser beam reflected by specular surfaces
and combined it with existing SLAM algorithms to enable
the SLAM system to detect and localize glass in real time.
Although these efforts were successful in detecting glass,
there were no steps in detecting mirrors or modifying the
occupancy grid map.

Tibebu et al. [21] used the standard deviation of the laser
beam in the first stage to classify the points hitting an opaque
surface and passing through a glass surface. The second
stage uses the distance and intensity variations between
neighbouring pulses to improve the results of the first stage
and to estimate the width of the glass contour and finally
to modify the occupancy grid map. Weerakoon et al. [22]
were able to detect glass surfaces by examining the intensity
profiles of the laser scanning data and identifying intensity
peaks. They used the intensity threshold, intensity gradient
and profile width as the adjustable parameters. Local and
global optimization algorithms were designed to modify the
occupancy grid map. Overall, these two methods could locate
the glass surface but used more parameters to process the
intensity information.

Mora et al. [23] experimentally obtained the intensity
values of laser light at different incidence angles for three
materials: metal, glass, and marble, acquired the intensity
information, fitted the specular equation while the robot was
moving, and modified the laser data while modifying the
occupancy grid map. Although the method achieved good
results inmodifying the occupancy gridmap,mirror detection
and optimization were performed offline, and the entire
mirror region could not be directly acquired during the robot
motion.

E. WORK OF ARTICLE
In this study, we used a single 2D LiDAR to obtain the
position of the mirror surface in the environment by returning
the intensity information of the laser beam and the inherent
symmetry of the mirror. After obtaining the maximum value
of the intensity information, we processed the symmetric
point cloud and obtained the entire mirror surface within the
observation range in real time as the robot passed over it.
This approach eliminated the need for expensive and complex
3D LiDAR or multi-echo sensors. Using the acquired mirror
position, we were able to optimize the point cloud data
and occupancy grid map in real-time. The flowchart of the
proposed method is shown in Fig.2.

III. LASER COLLISION MIRROR FEATURES
A. INTENSITY INFORMATION
According to the principle of light reflection, when light
encounters the boundary of a medium, a certain portion of

FIGURE 2. A method based on four stages is proposed: mirror detection,
mirror update, point cloud data optimisation, running KartoSLAM and
modifying the occupancy gird map. The inputs to the method are
odometry data and laser scan data, and the outputs are optimised scan
data and occupancy gird map.

the light is reflected. The emitted laser beam conforms to
this property of LiDAR applications. There are two types
of reflection: (1) Diffuse reflection: when light hits a rough
surface, it is scattered in all the directions. When the LiDAR
is in operation, when the emitted laser beam touches a rough
surface, a part of the laser ray is reflected back in the
original direction and is received by the laser receiver; thus,
the LiDAR is able to detect the distance from the obstacle,
as shown in Fig.3(a). (2) Specular reflection: when the light
meets a smooth surface, the light will reflect at the same
angle. In LiDAR applications, after the laser beam reaches
a smooth surface, the distance to the obstacle cannot be
accurately determined because the laser light is reflected.
This is illustrated in Fig.3(b).

Based on the principle of reflection, we assume that
when the laser beam is incident perpendicular to a smooth
surface, all laser rays return and are received by the laser
receiver according to the original path, as shown in Fig.3(c).
In addition to the correct distance information, extremely
high laser intensity was obtained. We tested this in the
environment shown in Fig.4, where the LiDAR was placed in
front of amirror, and the intensity distribution of the vertically
incident and surrounding laser dots was obtained by adjusting
the distance between the LiDAR and the mirror. The LiDAR
intensity information used was an 8-bit output, and the range
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FIGURE 3. (a) Diffuse reflection from rough surfaces; (b) Specular
reflection from smooth surfaces; (c) Vertical smooth surface reflection.

FIGURE 4. Scene settings for measuring the value of the laser intensity at
the location of the mirror.

FIGURE 5. Plot of angle of incidence versus intensity values for five
different distances facing the mirror.

of the resulting intensity was 0-255, as shown in Fig.5. This
experiment successfully verified the hypotheses.

FIGURE 6. Scene setup for measuring the laser intensity value at the
location of the aluminium metal plate.

FIGURE 7. Plot of the angle of incidence versus the intensity value at four
different distances facing the aluminium metal plate.

In our experiments, we found that the laser beam also
returned more intense information when vertically incident
on metals with smooth surfaces. Therefore, we performed the
above experiment on a metal aluminum plate and obtained an
intensity distribution graph as shown in Fig.6 and Fig.7. The
probability of misjudging the mirror recognition was reduced
by detecting the characteristics of the environment that may
produce interference terms prior to the experiment. Compar-
ing the laser intensity distribution graphs corresponding to the
mirror and the metal aluminium plate, it could be observed
that within 3m, the laser intensity vertically reflected back
from the mirror was greater than 250, whereas the maximum
intensity generated by the aluminum plate did not exceed 250.

B. SYMMETRY PROPERTY
When mirrors are present in the environment in which the
LiDAR is scanned, the laser beam is reflected after hitting the
mirror, and the angle of incidence determines the direction
of reflection. The reflected laser ray reflected a portion of
the laser ray back to the laser receiver when it hit the rough
surface of an actual object. As a result, when resolving
and processing the received laser ray, the LiDAR system
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FIGURE 8. After the laser beam is reflected by the mirror, the error scan
point generated is symmetrical to an object in the actual environment.

FIGURE 9. Scenario setup for verifying symmetry properties.

mistakenly believes that the reflected ray is caused by a
virtual target behind the reflector, and thus incorrectly locates
the position of the target on the mirror of the actual object
instead of the real position of the mirror, as shown in Fig.8.

Based on this property, we attempted to compute multiple
pairs of symmetry points generated by the mirror, obtain
the symmetry axis of each pair of symmetry points, and
compute the intersection of the line where the laser beam
was located with this symmetry axis. We chose to perform
the experiment in an environment in which the generated
symmetry points were more characteristic, as shown in Fig.9
to reduce the errors that may be introduced by manual
labelling, as shown in Fig.10, where the position of the mirror
after restoration deviated somewhat from the actual mirror
position. Therefore, we need to determine the approximate
position of the mirror in advance using the intensity
information. The specific details are introduced later.

FIGURE 10. Manual labelling of recovered mirror positions (top) and
close-up view (bottom).

In the experiment in III-A, we found that the laser beam
directed at the polished metal also returned larger laser
intensity information. However, when the test was carried out,
the laser beam returned the correct distance information to
the aluminum plate of the metal placed vertically, as shown
in Fig.11. Free electron reflection occurs when the laser
beam hit the metal surface and interacts with free electrons.
At this point, the direction of the reflected laser beam was
opposite to that of the source laser beam, making the output
distance information correct. This was different from the
specular reflection from a smooth surface. LiDAR could
identify vertically placed metals correctly and we did not
think it is necessary to optimize them. Therefore, in this study,
we optimized the mirrors.

IV. MIRROR POSITION DETECTION
The task in the first stage is to obtain the specific position of
the mirror in the environment from the intensity information
of the laser beam returned by the lidar and symmetry
properties of the mirror. The laser scan data acquired by the
robot is based on the lidar coordinate frame, and the lidar
coordinate frame keeps changing while the robot is moving,
the mirrors in the environment are stationary. Therefore, the
last step in this phase is to transform the acquired mirror
positions into the world coordinate frame.
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FIGURE 11. Based on the laser scan obtained from the environment in
Figure 6, the position where the metal aluminium plate is located has
been marked with a blue box, and it can be seen that the output distance
information is correct.

We planarise the mirror, and based on the principle
described earlier that a laser beam illuminating the mirror at a
near-vertical angle returns high-intensity information, we can
effectively locate the straight-line position where the mirror
is located. For a given moment t in the lidar coordinate frame,
set up an intensity threshold to determine whether the mirror
exists and traverses the detection of the intensity value of
each laser beam. If the intensity value of the laser is greater
than the threshold, then it is judged that lidar detects the
existence of the location of the mirror. Based on the detection
point si,t , the equation for the line where the mirror is located
y = kM ,tx + bM ,t can be obtained, as shown in Fig.12 and
Eq.1 to 5:

θi = θ + i · 1θ (1)

xi,t = ri,t · cos θi (2)

yi,t = ri,t · sin θi (3)

kM ,t = −
xi,t − xlidar
yi,t − ylidar

(4)

bM ,t = yi,t − xi,t · kM ,t (5)

where
(
xi,t , yi,t

)
is the Cartesian coordinates of the detection

point si,t , (xlidar , ylidar ) is the origin of the lidar coordinate
frame, i is the index of the laser beam corresponding to
that detection point, θ is the starting angle of the laser
scan data, 1θ is the angular resolution, and ri,t is the
distance measurement of the laser beam corresponding to that
detection point.

After successfully obtaining the equation for the straight
line where the mirror is located, the next step is to obtain
lidar data points that are symmetrical about the straight
line based on the symmetry of the lidar data points at
both ends of the mirror. Because LiDAR generates small
position fluctuations when scanning or detecting a target, it is
numerically impossible to achieve a complete symmetry of
the two measurement points with respect to the line. The two
measurement points are allowed to be symmetrical within a
certain error margin. Specifically, assuming that the two lidar

FIGURE 12. Mirror line position acquisition based on si,t .

data points sn,t and sm,t are symmetrical with respect to the
line, they must satisfy the following three conditions:

(1) For the slope set, the minimum threshold kmin and the
maximum threshold kmax , satisfy kmin < kM ,t · kc,t < kmax ,
which indicates that the line connecting the two lidar data
points is perpendicular to the straight line where the mirror
is located.

(2) Satisfy dn,t · dm,t < 0, indicating that the two lidar data
points are not on the same side of the straight line where the
mirror is located.

(3) Set a threshold value of dmin, satisfying
∣∣dn,t ∣∣ > dmin

and
∣∣dm,t

∣∣ > dmin, which indicates that the two lidar data
points are not on a straight line where the mirror is located.

where kc,t is the slope of the line connecting the two lidar
data points, and dn,t and dm,t are the distances from the two
lidar data points to the straight line on which the mirror is
located (no absolute values are taken so as to make it easier
to differentiate their orientations with respect to the straight
line), and the following are the formulas for their calculation,
as seen in Eq.6 to 8:

dn,t =
kM ,t · xn,t − yn,t + bM ,t√

k2M ,t + 1
(6)

dm,t =
kM ,t · xm,t − ym,t + bM ,t√

k2M ,t + 1
(7)

kc,t =
yn,t − ym,t

xn,t − xm,t
(8)

Based on the above requirements, multiple pairs of
symmetry points are obtained after traversing all lidar data
at moment t. We selected the point furthest from the origin
of the lidar coordinate frame among the symmetry point
pairs, connected it to the origin of the lidar coordinate frame,
calculated the intersection points of the line segment with
the line where the mirror was located, and stored these
intersection points. Eventually, we obtained a group of points
on the line where the mirror was located. The number of
points is the same as the number of symmetry pairs, and most
of them are located in the actual mirror position in the lidar
coordinate frame. There may be some symmetric structures
in the real environment that cause some real lidar data points

VOLUME 12, 2024 74729



J. Zhu et al.: Real-Time Intensity-Based Mirror Detection

FIGURE 13. The orange triangles in the diagram mark valid decision
points, and the line segments in which they are located are judged to be
mirror segments.

to be symmetric about the straight line of the mirror, which in
turn causes some of the computed intersection points not to be
located at the actual mirror location. Therefore, we clustered
intersection points. If the distance between two intersection
points in the Cartesian coordinate system is less than the
threshold dlimit , we determine them as points on the same line
segment to ensure that all intersection points are located on
any one of the line segments. Finally, we obtained the line
segment where the detection point si,t was located as a mirror
line segment, as shown in Fig.13.

Once we have the first and last coordinates of the mirror
line segments

(
xM ,t,start , yM ,t,start

)
and

(
xM ,t,end , yM ,t,end

)
,

they are transformed to the world coordinate frame according
to the lidar pose (xt , yt , θt) to obtain the absolute position of
the mirror in the environment, as shown in Eq.9 to 12:

XM ,start = xM ,t,start · cos θt − yM ,t,start · sin θt + xt (9)

YM ,start = xM ,t,start · sin θt + yM ,t,start · cos θt + yt (10)

XM ,end = xM ,t,end · cos θt − yM ,t,end · sin θt + xt (11)

YM ,end = xM ,t,end · sin θt + yM ,t,end · cos θt + yt (12)

where
(
XM ,start ,YM ,start

)
and

(
XM ,end ,YM ,end

)
are the first

and last coordinates of the mirror in the world coordinate
frame, respectively.

The advantage of this mirror detection method is that once
the robot passes over the mirror, as shown in Fig.14, the
entire mirror can be instantly detected within the LiDAR
scanning range. Simultaneously, polygonal mirrors can be
split into multiple combinations of line segments with
different orientations, as shown in Fig.15.

V. MIRROR LOCATION UPDATE
For the mirror detection method introduced in Section IV,
when the robot is working, 1) multiple lidar data points
satisfying the intensity threshold may be detected at the same
moment, and the line segments generated based on them may
represent a single mirror or multiple mirrors. 2) For lidar data
points meeting the intensity threshold detected at different
moments, the line segments generated based on them may
also represent the same mirror. Therefore, the task in the

FIGURE 14. For longer mirrors, the method can detect the maximum
mirror length within the radar scanning range.

FIGURE 15. For the polygonal mirrors in the figure, three mirror line
segments, Pi Pj , Pj Pk , and Pk Pl , will be determined during detection.

second stage was to determine whether the line segments
generated based on these points were the same. Otherwise,
a completely new mirror is created in the world coordinate
system; if so, the mirror line segment is updated.

A. MULTIPLE MIRROR DETECTION
We considered the mirrors computed in the two cases to be
different mirrors. Specifically, these two cases are (1) two
mirror line segments that are approximately on a straight line
and do not overlap. (2) two mirror line segments on different
straight lines that do not intersect. The judgement of these
two cases is explained in the following description:

(1) For the newly detected mirror line segment, we deter-
mine whether it is approximately a straight line by the
minimum distance from the origin of the lidar coordinate
frame to the straight line where the segment is located and
the direction angle of the segment, as shown in Fig.16. The
specific calculation formula is given by Eq.13 to 16:

d⊥ =

√
x2
⊥

+ y2
⊥

(13)

θ = arctan
(

−
x⊥
y⊥

)
(14)∣∣d⊥,new − d⊥,old

∣∣ < εlength (15)

|θnew − θold | < εangle (16)

where εlength is the tolerated error in length, and εangle is the
tolerated angle error.
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FIGURE 16. The labels θnew , θold , d⊥,new and d⊥,old in the figure are the
variables that determine whether two mirror segments are in the same
straight line or not.

FIGURE 17. Comparison between the detected and actual mirror lengths
by this method.

For two mirror line segments that are approximately on
a straight line, it is determined that the segments do not
coincide if xnew,max < xold,min or xnew,min > xold,max .

(2) The same method as in (1) was used to determine
whether the two mirror line segments were on different
straight lines. When they are not in a straight line, they are
naturally in different lines.We used the Bentley-Ottmann [24]
algorithm to determine whether they were disjointed or not.

Here, we consider the case in which the old and newmirror
line segments are on different straight lines and intersect
because of error detection. Once this happens, we do not
process the obtained mirror segments, but wait for the input
of the correct segments.

B. SINGLE MIRROR UPDATE
Because lidar detects the same position at different moments
there may be small position fluctuations, resulting in a small
gap in the slope and intercept of the calculated specular
line segment for the same lidar data point. At the same

FIGURE 18. Line segment updating using least squares.

time, because of the effect of the lidar angular resolution,
the measurement points located farther away from the lidar
were sparser, resulting in the actual length of the acquired
mirror line segment being smaller than the actual length of
the mirror, as shown in Fig.17. Therefore, for the same mirror
line segments Pi,t−1Pj,t−1 and Pa,tPb,t acquired at different
moments, we updated and merged them to obtain new mirror
line segments.

Data points are first collected on a straight line
where Pi,t−1Pj,t−1 and Pa,tPb,t are located, denoted as(
x1p,t−1, y1p,t−1

)
and

(
x2q,t , y2q,t

)
, where p and q denote the

pth and qth data points on the two straight lines, respectively.
For the updated mirror straight line y = kupdatex+bupdate, the
following error function is available:

E(kupdate, bupdate)=
∑
p

(
y1p,t−1−

(
kupdatex1p,t−1+bupdate

))2
+

∑
q

(
y2q,t −

(
kupdatex2q,t + bupdate

))2
(17)

Minimising the error function gives the best-fit kupdate and
bupdate.
After obtaining the updated mirror straight line, the first

and last endpoints of Pi,t−1Pj,t−1 and Pa,tPb,t are made to be
the perpendiculars of the updated specular straight line, the
intersection of the perpendiculars and the straight line is taken
as the updated endpoint, and the two farthest points of the
updated mirror line segment are taken as the new endpoints.
As shown in Fig.18, the updated mirror line segment is
P̂c,t P̂f ,t .

By updating the mirrors, not only can the computational
increase in point cloud optimization due to mirror stacking
be reduced, but the length of the obtained mirrors can also be
constantly approximated to the actual length, thus improving
the detection accuracy.

VI. POINT CLOUD DATA OPTIMIZATION
For all the mirrors obtained in the second phase, which are
in the world coordinate frame, we want to stop outputting
incorrect distance information because of the mirrors during
the lidar detection. Therefore, in the third stage, we modified
the point cloud data returned by the lidar at the current
moment based on the mirrors.

To reduce the computational effort, we first computed the
indices nstart and nend of the coordinates of the first and last
coordinates of the mirror line segments in the laser scan data
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at the current moment k. We obtained the updated mirror line
segments based on the world coordinate system in V. Let the
current lidar pose be (xk , yk , θk). Next, we converted it to the
lidar coordinate frame, as shown in Eq.18 and 21:(
xM ,start, yM ,start

)
=

(
(XM ,start − xk ) cos θk − (YM ,start − yk ) sin θk ,

(XM ,start − xk ) sin θk + (YM ,start − yk ) cos θk
)

(18)(
xM ,end, yM ,end

)
=

(
(XM ,end − xk ) cos θk − (YM ,end − yk ) sin θk ,

(XM ,end − xk ) sin θk + (YM ,end − yk ) cos θk
)

(19)

where
(
xM ,start , yM ,start

)
and

(
xM ,end , yM ,end

)
are the first

and last coordinates of the mirror line segment based on
the lidar coordinate frame at the current moment k after
conversion, and

(
XM ,start ,YM ,start

)
and

(
XM ,end ,YM ,end

)
are

the first and last coordinates of the mirror line segment based
on the world coordinate frame.

nstart = (int)
arctan yM ,start

xM ,start
− θ

a
θ

(20)

nend = (int)
arctan yM ,end

xM ,end
− θ

a
θ

(21)

For each mirror line segment, we calculated the angular
range in the lidar coordinate frame. For any laser beam
within that range, if the laser scanning line segment produced
intersects with the mirror line segment, the laser coordinates
produced by the laser beam are replaced with the intersection
coordinates; otherwise, the original laser coordinates are
retained. If a laser scanning line segment intersects multiple
mirror line segments, we select the intersection coordinates
closest to the origin of the lidar coordinate frame for
replacement, i.e., the distance value corresponding to the
laser in the laser scan data is modified to the value of the
distance from the origin of the lidar coordinate frame to that
intersection, as shown in Fig.19.

VII. OCCUPY GRID MAP OPTIMIZATION
In the fourth stage, we use the open-source SLAM algorithm
Karto to implement map building, which is different from
the global matching methods of ICP [25] and NDT [26],
which adopt a sub-map based point cloud matching approach
to model and match each sub-map, thus reducing the
computational complexity and improving the efficiency of
matching. Optimized laser scan data were used as the input.
First, the output of the position transformation between two
consecutive moments was used as the input to the IV. When
the robot has not yet passed through the mirror, lidar incor-
rectly constructs the occupancy grid map through the mirror.
When the robot detects the mirror, the optimized laser scan
data no longer produce incorrect map information. Therefore,
we only needed to modify the previously generated erroneous
occupancy grid map at the moment of the mirror detection.
We searched for all occupation grids that were symmetric
about the mirror position within the lidar scanning range,

FIGURE 19. Three modifications of the laser ray collision with mirrors:
(a) the laser ray intersects with a single mirror, modifying the scanning
position to mark the red intersection; (b) the laser ray intersects with
multiple mirrors, modifying the scanning position to the nearest
intersection with a radar coordinate system, which is marked with a red
dot in the figure; (c) the laser ray does not intersect with mirrors,
retaining the original distance data.

FIGURE 20. For a single error occupied grid, the map modification
principle: (a) before modification; (b) after modification; (c) No occupied
grid and error occupied grid symmetry about mirrors.

obtained the symmetric occupation grid that was far away
from the robot, and set it to unknown. Simultaneously, the
free region in the line connecting it to all the points on the
mirror is unknown. As shown in Fig.20(a)(b). The points on
the mirror were obtained using the Bresenham line drawing
algorithm.

This optimization method allows the map data to be
modified in real time, although it has some drawbacks: (1)
it may set a small number of regions that are not generated
by the mirrors as unknown; (2) the method will not optimize
for incorrectly occupied grids generated by the mirrors if no
occupied grid symmetrical to them is generated outside the
mirrors, as shown in Fig.20(c); and (3) for the actual region
that has been set to unknown, the robot will need to rescan the
region to restore it to free. However, in practice, these three
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TABLE 1. Experiment 1: Mirror recognition results.

TABLE 2. Experiment 2.1: Mirror recognition results.

FIGURE 21. Experiment 2.1: Experimental environment.

FIGURE 22. Experiment 2.2: Experimental environment.

shortcomings have a small impact on the overall optimization
results. This method achieved good optimization results.

VIII. EXPERIMENTAL RESULTS
In this section, four environments with mirrors are built
and the performance of our method is compared with the
method proposed by Mora et al. [23] and Li et al. [15] in
these environments.In the demonstration of performance, the

TABLE 3. Experiment 2.2: Mirror recognition results.

FIGURE 23. Experiment 3: Experimental environment.

TABLE 4. Experiment 3: Mirror recognition results.

accuracy is the ratio of the length of the mirror calculated by
the algorithm to the actual length of the mirror.

A. EXPERIMENT 1: DARKROOM CORRIDOR, ELECTRONIC
INFORMATION LABORATORY BUILDING
In order to verify the performance of the method, we first
tested it in a simple environment, the darkroom corridor
of the Electronic Information Laboratory Building, where a
60cm*30cm mirror was attached to one of the side walls,
as shown in Fig.9. By allowing the robot to move slowly
along the specified path, a map constructed using the point
cloud before optimization and a map constructed using the
point cloud after optimization were acquired, as shown in
Fig.24(a).

In this experiment, our main purpose was to debug some
parameters in the method and find the relatively optimal
parameters for mirror identification, after continuous testing,
we set the intensity threshold in IV to 250, kmin to −1.07,
kmax to −0.93, dmin to 0.08, and dlimit to 0.03. In the test,
it was found that if the range from kmin to kmax is too large,
it will lead to an incorrect match between symmetric points
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FIGURE 24. Experimental results in four experimental environments: the first column is the original map, where the blue curve indicates the robot’s
movement path and inside the red circle is incorrect map information; the second column is the markers of the mirror’s location; the third column is
the optimised map.

and a small range will lead to some symmetric points being
difficult to detect. mismatch between them, and a range that
is too small can make some symmetry points difficult to
detect. If dmin is small, the two very close points on the line
where themirror is locatedwill be judged as symmetry points,
whereas a larger range will make it difficult to detect some
of the symmetry points that are actually generated by the
mirror.

B. EXPERIMENT 2: CLASSROOM, ELECTRONIC
INFORMATION LABORATORY BUILDING
In Experiment 1, we ensured that the robot was equipped
with basic mirror recognition and map building optimization
capabilities. In Experiment 2, we tested the robot in a more
complex environment by choosing a classroom in the Elec-
tronics and Information Lab Building, a relatively spacious
environment withmore obstacles and the presence ofmultiple
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symmetric objects. We conducted two experiments in this
environment to verify the effectiveness of the proposed
scheme for multiple mirror detection.

1) EXPERIMENT 2.1: TWO MIRRORS ON THE SAME LINE
We placed a mirror of 80cm*40cm and a mirror of
40cm*40cm on the same straight line, as well as a mirror
of 30cm*30cm further away, as shown in Fig.21. Through
testing, we set the parameters εlength and εangle to 0.15 and
2Â◦. The robot moved slowly along the blue trajectory, the
experimental results are shown in Fig.24(b).

2) EXPERIMENT 2.2: TWO MIRRORS PLACED FACE TO FACE
Four mirrors were placed face-to-face in the path of the
robot’s movement: 80cm*40cm, 40cm*40cm, 60cm*30cm,
and 30cm*30cm. also, a 30cm*30cm mirror was placed
farther away, as shown in Fig.22. Through testing, the mirror
was correctly identified and optimised for the point cloud and
map as the robot moved. Some of the incorrectly occupied
grids caused by mirrors were not completely removed from
the occupancy grid map, which we analyzed. The possible
reasons for this are described in Section VII, but the
optimization effect of the method can still be clearly seen,
as shown in Fig.24(c).

C. EXPERIMENT 3: STUDENT OFFICE, ELECTRONIC
INFORMATION LABORATORY BUILDING
To verify that our mirror recognition method can detect
mirrors lacking a bezel in a symmetric environment, a third
experiment was conducted, in which a small student office
was selected. Eight highly symmetric desks existed in this
area. To reduce the size of the build, we placed cardboard
at the entrance of the area. We built a cardboard box with
dimensions 50cm*40cm*40cm and pasted four mirrors with
dimensions 40cm*40cm around it as shown in Fig.23. The
robot builds a map along the blue trajectory. It can be seen
that it walked around the cardboard box twice, successfully
detecting the four mirrors during the first lap and eliminating
the resulting erroneous builds. However, some of the free
regions that were recognisedwere incorrectly set as unknown.
Therefore, during the second lap, the robot could detect
these regions by scanning them and resetting them free. The
experimental results are shown in Fig.24(d).

D. DATA RESULTS
The mirror detection results are summarized in Table 1234.
The detection accuracy was obtained from the mirror length
output using the method and the actual mirror lengths.
Overall, the results were greater than 97% accurate, although
the results would be better in a more confined and simpler
environment. We compared our results with those of state-
of-the-art work. The results show that the proposed method
improves recognition accuracy and real-time performance.
In addition, our method can make the occupancy grid map

more accurate which will greatly aid robot localization and
path planning.

IX. CONCLUSION AND FUTURE WORK
This paper describes an efficient mirror-detection method
that uses a single 2D LiDAR. By analyzing the intensity
values of the returned laser scan data, it is possible to
determine the linear position of themirror in the environment.
Next, the exact location of the mirror was back-calculated
by processing the symmetric point cloud generated by the
mirror. Finally, the point cloud data and occupancy grid
map were modified in real time to prevent the robot from
being disturbed by the erroneous environmental information
generated by the mirrors while working.

To validate the performance of the method, we constructed
three complex environments and compared it with those
proposed by Mora et al. [23] and Li et al. [15]. The
experimental results show that the proposedmethod improves
recognition accuracy and real-time performance.

Although the current method has improved in accuracy
and real-time, the method still has some shortcomings in
modifying the occupancy grid map, it is not able to com-
pletely eliminate the erroneousmap information generated by
mirrors, which is due to the fact that the map information at
the two ends of the mirrors is not completely symmetrical to
each other due to obstacle obstructions or the blind spot of
the lidar itself before the mirrors are recognised. In addition,
in degraded environments with a lack of features such as long
corridors and lobbies, the robot’s localization will be most
affected by erroneous radar information before the mirror
is recognized, and the point cloud’s features based on the
symmetry of the mirror will be blurred, which will affect the
effectiveness of mirror detection.

These problems may be solved by processing multiple
frames of previous lidar scan data simultaneously at each
moment in time, however, this results in a significant
consumption of computational resources.

In future work, we expect to calculate the probability of
identifying each lidar scan point in front of the mirror as
incorrect, which can be used to minimize the building of
incorrect map and also to make the robot’s localization more
accurate.
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