IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 26 March 2024, accepted 20 May 2024, date of publication 27 May 2024, date of current version 4 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3405957

== RESEARCH ARTICLE

Multi-Convolutional Channel Residual Spatial
Attention U-Net for Industrial and Medical
Image Segmentation

HAOYU CHEN “AND KYUNGBAEK KIM™, (Member, IEEE)

Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju 61186, South Korea

Corresponding author: Kyungbaek Kim (kyungbaekkim @jnu.ac.kr)

This work was supported in part by the Ministry of Science and ICT (MSIT), South Korea, under the Innovative Human Resource
Development for Local Intellectualization Support Program supervised by the Institute of Information & Communications Technology
Planning & Evaluation (II'TP) under Grant IITP-2023-RS-2022-00156287 (50%); and in part by IITP under the Artificial Intelligence

Convergence Innovation Human Resources Development grant funded by Korean Government (MSIT) under Grant
IITP-2023-RS-2023-00256629 (50%).

ABSTRACT Image segmentation has demonstrated immense potential in computer vision. In particular,
the U-Net architecture, built on fully convolutional networks, is highly suitable for image segmentation
tasks. Its encoder-decoder structure effectively captures both local and global features. This approach has
achieved remarkable outcomes across various sectors, most notably in medical diagnostics and industrial
quality control. However, U-Net, by employing skip connections, fuses different low-level and high-level
convolutional features between the encoder and decoder, limiting its ability to effectively integrate useful
features and harness contextual information. To address these feature disparities between the encoder and
decoder, this paper introduces a novel network structure named Multi-Convolutional Channel Residual
Spatial Attention U-Net (MCRSAU-Net). Designed for industrial and medical image segmentation, this
model is anchored on the U-Net architecture. It replaces the traditional skip connections with channel
attention residual paths featuring multiple convolutions, retaining more low-level features. Moreover, spatial
attention module is incorporated in the decoding path to ensure the model concentrates on crucial regions
of the input space, enhancing its segmentation capability across varied tasks. The proposed method was
subjected to 5-fold cross-validation and testing on three public datasets: Mvtec AD, CHASE DB1, and
Kvasir SEG. MCRSAU-Net achieved average Dice coefficients of 0.7755, 0.7651, and 0.8958 for defect
segmentation of bottles, woods, and tiles, respectively, with average accuracies reaching 0.9751, 0.9815, and
0.9841. For retinal blood vessel and colon polyp segmentation, it exhibited superior performance, achieving
average Dice scores of 0.8540 and 0.7053, and average accuracies of 0.9465 and 0.9195, respectively.
These results not only underscore MCRSAU-Net’s strong performance in image segmentation tasks but also
demonstrate its significant potential in addressing specific challenges encountered in industrial and medical
image segmentation.

INDEX TERMS Image segmentation, computer vision, deep learning, U-Net, attention.

I. INTRODUCTION especially in the industrial and medical domains, where

In recent years, with the continuous development of computer
vision and deep learning technologies, image segmentation
techniques have been widely applied in various fields,
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the use of image segmentation techniques provides novel
solutions to some complex segmentation issues.

Image segmentation technology is a significant area of
research within computer vision, primarily involving the
categorization of pixels using semantic labels, the segmen-
tation of individual objects, or both, to mark various object
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types at the pixel level [1]. Particularly, the application of
convolutional neural networks (CNNs) has shown significant
improvements and validated effectiveness in identifying
highly complex image patterns [2]. In the industrial sec-
tor, the applications of image segmentation technology
mainly include product surface defect detection, autonomous
driving, image synthesis, among others [3]. Especially
in product surface defect detection, image segmentation
technology can be employed to detect cracks, wear, and
other defects on product surfaces [4], such as in the fields
of steel surface defect segmentation [S5], wood surface defect
segmentation [6], fabric surface defect segmentation [7], and
ceramic tile surface defect segmentation [8].

In the medical field, image segmentation technology has
found widespread application in medical imaging analysis
[9], serving to boost both the efficiency and accuracy of
doctors’ diagnoses. Fundus fluorescein angiography (FFA),
a critical technique for assessing retinal diseases, benefits
from training on annotated FFA images using various CNN
networks to achieve automated standardized marking of FFA
images [10]. Circulating tumor cells (CTCs), which are
closely associated with the aggressiveness and metastatic
potential of cancer, can be automatically identified using
machine learning-based algorithms to minimize human error
and enhance accuracy [11]. Endoscopic examinations play
a vital role in diagnosing and treating tumor lesions, with
the pyramid ORB algorithm being used to stitch endoscopic
images together, addressing the issue of endoscopes often
failing to provide comprehensive information in a single
image [12]. In the domain of medical robotics operating on
human organs, soft tissue surface feature tracking methods
based on deep matching networks are employed for feature
matching in medical images [13]. Mathematical methods of
soft tissue modeling can simulate the surface and partial
internal features of soft tissues, enabling the model to perform
specific deformations for realistic simulation, thus facilitating
the application of tactile perception in medical robotics
operations on human organs [14]. Medical segmentation of
images such as CT and MRI allows for clearer identification
and quantification of various lesions [15], for instance,
in breast tumor segmentation [16], lung segmentation [17],
pancreas segmentation [18], kidney stone segmentation
[19], spine segmentation [20], and liver segmentation [21].
Furthermore, image segmentation technology is crucial for
surgical planning and intraoperative navigation [22].

Despite the significant achievements of image segmenta-
tion in industrial and medical applications, challenges persist,
such as dealing with complex backgrounds, improving
segmentation accuracy, and enhancing algorithm stability.
To address these challenges, we optimized the famous
U-Net framework in the field of image segmentation [23].
In this paper, we propose a new CNN, Multi-Convolutional
Channel Residual Spatial Attention U-Net (MCRSAU-Net).
It replaces U-Net’s skip connections with convolution kernels
of different kernel sizes and channel attention residual paths
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to capture features of different scales and automatically pay
attention to important channels, which tends to be more
effective for complex image segmentation tasks. We used
spatial attention mechanisms in the decoding path because
spatial information is often critical in image segmentation
tasks. With spatial attention mechanisms, the network can
automatically focus on important areas in space, allowing
the network to pass more important features in the skip
connections and reduce the influence of noise features.
Additionally, the network loss function employs a binary
cross-entropy loss function to handle segmentation tasks
in unbalanced scenes, thereby enhancing the network’s
segmentation capabilities. The main contributions of this
paper are as follows:

« Introduce channel attention mechanisms between mul-
tiple convolutions of various kernel sizes to adapt to
features of different scales.

« Incorporate multi-convolution channel attention resid-
ual paths to achieve deeper integration of attention
mechanisms.

« Systematically apply spatial attention in the decoding
phase to focus on important areas and extract salient
features.

The remainder of this paper is arranged as follows:
Section II reviews related work. Section III introduces the
proposed network. Section IV details the experimental setup.
Section V evaluates the experimental results. Section VI dis-
cusses the experimental scheme, and Section VII concludes
the paper.

Il. RELATED WORK

A. U-NET NETWORK

With the continual evolution of CNN, significant improve-
ments have been witnessed over traditional semantic seg-
mentation systems. Currently, semantic segmentation tasks
play a crucial role in image processing [24], [25], [26].
In 2015, Long et al. [27] were the first to introduce
a Fully Convolutional Network (FCN) into the seman-
tic segmentation network for end-to-end segmentation of
natural images, marking a significant shift from tradi-
tional machine learning-based methods to deep learning
approaches. In 2015, Badrinarayanan et al. [28] proposed
a deep learning network called SegNet, which performed
efficient feature learning and image reconstruction through
an encoder-decoder architecture and max-pooling indices.
Subsequently, Ronneberger et al. [23] proposed the U-Net
network, which utilized convolutional layers to perform
semantic segmentation tasks.

U-Net is an FCN-based network. Its structure is similar
to that of FCN and SegNet, utilizing encoders and decoders
as well as skip connections. This allows for more precise
segmentation on a small number of training images. The
U-Net network is characterized by its symmetrical network
design, where the left side is an encoder for obtaining
contextual information and the right side is a decoder
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FIGURE 1. MCRSAU-Net architecture.

for precise positioning and restoring the feature map size.
By duplicating and cropping the output feature maps of
the encoder and fusing them with the deconvolution feature
maps of the decoder, they are sent to the next layer for
upsampling. During the upsampling phase of the U-Net
network, numerous feature channels can pass contextual
information to higher resolution levels.

Most notably, in the U-Net network, skip connections
link the feature maps of each depth level of the encoder
directly to the corresponding depth level of the decoder.
The aim of this design is to combine low-resolution, high-
level contextual information and high-resolution, low-level
detailed information in the decoder section. Therefore, the
U-Net network has become the subject of research for
many scholars in the field of image segmentation, including
Attention U-Net [29], Residual U-Net [30], SA-UNet [31],
TransUNet [32] and DUCK-Net [33].

B. ATTENTION MECHANISM

In the field of computer vision, the concept of attention
mechanisms has become extremely important. The concept
of attention mechanisms is derived from the human visual
system, in which humans utilize cognitive information to shift
attention to relevant objects in the visual scene while ignoring
other information [34]. The primary purpose of introducing
attention mechanisms in computer vision is to guide deep
learning models to focus more on specific parts of the input
data, thereby processing a large amount of visual information
more effectively [35], [36]. For image classification tasks,
the model may need to focus on a certain object within the
image to disregard background noise. In image segmentation
tasks, it can help the model to reinforce features related
to the target object and suppress information related to
the background. This kind of attention mechanism can be
divided into spatial attention and channel attention [37].
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Spatial attention focuses on the spatial positions of the
feature maps, giving more weight to certain parts of the
image. On the other hand, channel attention focuses on
the channel dimension of the feature maps, enhancing or
suppressing certain features by discovering dependencies
between different channels. As proposed by Jiang et al. [38],
the Multi-scale Attention Convolutional Neural Network
introduces Depth CNN-based, Channel, and Spatial Attention
Residual Modules (CHARM) into the encoder and decoder
of the U-Net network framework to enhance the ability to
extract image features. However, it fails to effectively handle
the differences between the encoder and decoder caused
by traditional skip connections, and attention mechanism
processing after multiple convolutions may lead to some
important features extracted in the early convolutional layers
being ignored before they are fully utilized. Furthermore,
the self-attention mechanism in Transformer models has also
been widely applied in computer vision, allowing the model
to consider other parts of the input sequence when processing
each input part, thereby endowing the model with the ability
to capture global dependencies [39].

Ill. PROPOSED METHOD

We propose an image segmentation network, MCRSAU-
Net, designed for applications in the industrial and medical
domains. An overview of our proposed network is illustrated
in Fig. 1. In order to achieve improved image segmentation
performance, we have replaced the skip connections in
the U-Net architecture with multi-convolutional channel
attention residual paths. Additionally, we have incorporated
spatial attention modules into various stages of the decoding
path to aid the network in focusing on crucial areas
of interest. Detailed descriptions of each component of
the MCRSAU-Net network are presented in the following
subsections.
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FIGURE 2. Multi-channel attention residual path architecture.

A. ENCODER

In the MCRSAU-Net, the encoder is realized according
to the U-Net framework. The encoder section consists of
five main stages, each associated with convolutional layers
equipped with 32, 64, 128, 256, and 512 filters, respectively.
Primarily, two layers of 3 x 3 convolutions, ReLu activation
function, and 2 x 2 max pooling are adopted. At the onset
of each stage, a convolution operation is conducted on the
input, primarily aimed at extracting image features, thereby
effectively capturing both the contextual information and
intricate local details of the image.

B. MULTI-CHANNEL ATTENTION RESIDUAL PATH

The uniqueness of the U-Net architecture lies in the
incorporation of skip connections between corresponding
layers before max-pooling operations and after deconvolution
operations. Before each max-pooling operation, U-Net saves
the feature map of the corresponding encoder level and
connects it with the feature map of the respective decoder
level. The goal of this process is to retain the spatial
information lost in the encoder part and pass it on to the
decoder part, thereby achieving more precise segmentation
results. However, a feature disparity remains between the
encoder and decoder, and no existing theory proves they form
the best match for feature fusion. To this end, we propose
a multi-convolutional channel attention residual path to
minimize the information loss between the encoder and
decoder.

In the Inception architecture [40], multiple differently
sized convolution operations are used in parallel to better
capture the details and contextual information within an
image, thereby boosting network performance. As such,
we introduce 3 x 3,5 x 5, and 7 x 7 convolutional kernels
between the encoder and decoder to better learn features at
different scales. After each convolutional kernel, we add a
channel attention module to increase the weight of important
channels and reduce the weight of unimportant ones, thereby
facilitating automatic feature selection and enhancing feature
interaction. This setup enables the extraction of spatial
features at different scales and decreases the feature disparity
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between the encoder and decoder. Following the residual
learning network proposed in [41], we utilize residual
connections to alleviate the difficulty of network training
and preserve more learned features. Therefore, we introduce
residual connections in the path, apply Batch Normalization
(BN) layers [42], followed by a non-linear Rectified Linear
Unit (ReLU) activation function. The structure is illustrated in
Fig. 2. Finally, according to [43], it is speculated that as skip
connections continue, the difference value between features
decreases. In the bottom-up skip connections, we perform 1,
2, 3, and 4 consecutive multi-convolutional channel attention
connections, respectively, and use residual connections
to enable the network to gain more spatial information.
SE-Net [44] is an effective neural network architecture
which introduces a squeeze-and-excitation module capable
of adaptively calibrating the importance of each channel,
thereby optimizing the inter-channel relationship. Therefore,
introducing the channel attention module in the model can
enhance network performance and generalization ability. The
channel attention module in the multi-convolution channel
attention residual path is depicted in Fig. 3. Let’s assume that
the input feature is x, with the shape of 7 x w x ¢, where h is
the height, w is the width, and c is the number of channels. The
first step is to execute a squeeze operation, performing global
average pooling on the input feature to reduce the feature
dimension. The execution process of global average pooling
is as follows:

h ..
Zi:l Z;Vzl x[l,], C]

hxw

avg(c) = (H

where i, j traverse each spatial position.

Next, the features after average pooling are reshaped to fit
the input dimensions for the subsequent layer, resulting in
a tensor of shape 1 x 1 x c. The first FC layer performs
feature extraction and reduces dimensions, employing a
ReLU activation function. The second FC layer restores
the features to the original feature dimensions. The output
dimensions of the two FC layers are c/r and c respectively,
where r is the reduction ratio. Then, a sigmoid function is
used to compress the feature values between 0 and 1, which
can be understood as scoring the importance of each channel.
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A multiplication operation follows, where the result after
sigmoid activation is multiplied with the original input feature
for corresponding elements. This scales each channel of the
original feature with its respective weight, thus completing
the channel attention operation. The final output y of this
module is as follows:

w = o (wp - ReLU(w; - avg(c) + b1) + b2) . 2)
y=XQOw. 3)

where each channel’s weight is w, o represents the sigmoid
function, and the weights of the first and second FC layers
are w and wy, respectively, while b1 and b, denote the bias
terms.

Next, let’s assume that the input to the multi-convolution
channel attention residual path is 7, and the 3 x 3,5 x 5, and
7 x 7 convolutions are denoted by k3, k5, and k7 respectively.
The final output O of the multi-convolution channel attention
residual path is as follows:

01 = CA(ReLU(k3(1))). )
0, = CA(ReLU(k5(01))). 5
03 = CA(ReLU(k7(02))). (6)

O = BN(ReLU (I + 03)). 7

VOLUME 12, 2024

where CA represents channel attention, ® denotes element-
wise multiplication, and O, Oz, and O3 are the outputs of
the 3 x 3,5 x 5, and 7 x 7 convolutions with channel
attention, respectively.

C. DECODER
In the MCRSAU-Net, the decoder is augmented with a
spatial attention module on the basis of the U-Net framework,
as depicted in Fig. 4. The decoder part also consists of
five stages, each of which corresponds to convolutional
layers with 32, 64, 128, 256, and 512 filters, respectively.
Predominantly, it employs two layers of 3 x 3 convolution,
ReLu activation functions, and 2 x 2 up-convolution, with
the final step involving a 1 x 1 convolution and a sigmoid
activation function for pixel-level classification. The spatial
attention module is appended after the output from each
multi-convolution channel attention residual path, and before
the convolutional operations at each stage of the encoder.
This design allows the model to consider all features globally
and to focus on those important features beneficial for the
current task, thereby enhancing the model’s performance in
tasks such as image segmentation.

Suppose the input features to the spatial attention module
are denoted as e, having a shape of 7 x w x ¢, where h is
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(E) (F)

FIGURE 5. Example of image augmentation for the CHASE DB1 dataset.
Here, A represents the original image, B is after rotation, C is after
translation, D is after cropping, E is after scaling, and F is after flipping.

the height, w is the width, and c¢ is the number of channels.
Firstly, average pooling and max pooling are performed
on the channel dimension of the input features, which are
used to preserve uniform information and capture the most
prominent features in the spatial structure, respectively. These
operations result in two feature maps of the same size, each
with a channel count of 1 The process is outlined as follows:

1
eavelis 1 = = 2 Xlirj cl. ®)

emax[i, j] = max X[i, j, c]. 9)
C

where i, j traverse each spatial position.

The two pooling results are then concatenated on the
channel dimension and serve as the input to the convolutional
layer. In this way, the model can consider both the uniform
and the salient information of the spatial structure concur-
rently. Subsequently, a 7 x 7 convolution is used to obtain the
weights for each position. Following this, a sigmoid function
generates an attention weight map for each spatial position.
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This weight map re-weights the input features, emphasizing
important spatial regions and suppressing unimportant ones.
This weight map is then multiplied element-wise with the
original input feature map. The final output H is then
expressed as follows:

ws = o (k7(Concatenate(e,vg, €max)))- (10)
H =e O w;. (1)

where w; represents the weight for each spatial position,
k7 denotes a 7 x 7 convolution, o stands for the sigmoid
function, and © signifies element-wise multiplication.

IV. EXPERIMENTAL SETTINGS

In this section, we describe the three different types of
datasets used in our experiments, the preprocessing tech-
niques for segmentation tasks, the optimizer and loss function
used for training, and the k-fold cross-validation method.

A. DATASETS

In this experiment, we evaluated three publicly available
datasets from the industrial and medical fields: MVTec
AD [45], CHASE DBI1 [46], and Kvasir SEG [47]. Specific
descriptions are as follows:

1) MVTEC AD

The MVTec AD (Anomaly Detection) dataset is an industrial
image dataset for anomaly detection, released by MVTec
Software GmbH in 2019. This dataset contains 5354 images
of different types of industrial products (including bottles,
cables, capsules, wood, etc.) across 15 categories. Each
product type includes a set of normal samples and a set of
abnormal samples, with over 70 different types of defects.
In our experiments, we used images of abnormal samples
from the ““bottle,” “wood,” and “tile” categories for network
segmentation training.

The release of the MVTec AD dataset has significantly
advanced research in the fields of anomaly detection and
image segmentation, becoming one of the most widely used
public datasets for industrial anomaly detection. Automated
defect recognition in manufacturing and quality supervision
is crucial. Traditional manual inspection methods are not
only time-consuming but also inefficient, especially when
dealing with large-scale product inspections. The MVTec AD
dataset brings a diverse collection of defect images, pro-
viding valuable resources for developing and testing image
segmentation technologies capable of automatically detecting
and locating defects, addressing a significant challenge in
practical applications. This progress is particularly critical
for automated quality control, as the accuracy of image
segmentation directly affects the efficiency and reliability of
defect detection.

2) CHASE DB1

CHASE DBI is a lightweight image dataset for retinal
vessel segmentation. It consists of 28 color retinal images
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from 14 school-aged children, with each image measuring
999 x 960 pixels. Each image has been annotated by two
independent human experts.

Accurate analysis of retinal vessels is essential for diag-
nosing and monitoring various eye diseases such as diabetic
retinopathy, glaucoma, and hypertension. The high-definition
retinal images contained in the CHASE DBI1 dataset
lay the foundation for developing algorithms capable of
automatically performing such medical analyses, playing a
crucial role in improving the accuracy and efficiency of
early disease diagnosis. In the field of image segmentation,
given the complexity of retinal vessel structures, effective
segmentation algorithms need to handle various vessel widths
and branching structures while minimizing misidentification
of non-vessel structures. The CHASE DB1 dataset serves
as a benchmark to assess and compare the performance of
different algorithms.

3) KVASIR SEG

The Kvasir SEG dataset primarily consists of 1000 high-
quality gastroenterological endoscopic images, with sizes
ranging from 720 x 576 to 1920 x 1080 pixels. Each image
is accompanied by pixel-level annotations from a certified
radiologist.

Endoscopic detection is crucial for diagnosing and eval-
uating gastrointestinal diseases, and the Kvasir-SEG dataset
provides researchers with a rich inventory of high-quality
endoscopic images marked by experts, serving as an ideal
place for developing and testing innovative image segmen-
tation techniques. The dataset includes images of various
pathological states and degrees of lesions, facilitating the
development of algorithms capable of dealing with diverse
pathological features. Image segmentation models trained
using the Kvasir-SEG dataset can assist doctors in more
accurately identifying lesion areas, playing a key role in
advancing the application of deep learning technologies in the
field of medical image analysis.

B. PREPROCESSING AND TRAINING METHODS

We split the original 28 images from the CHASE DBI1
dataset into 19 images for training and validation, and
9 images for testing and visual comparison. Given the small
number of images for training and validation, we augmented
the 19 images used for training and validation to produce
285 enhanced images, including rotations, width and height
shifts, cropping, scaling, and horizontal flipping, as shown
in Fig. 5. Additionally, we used 900 images from the Kvasir
SEG dataset for training and validation, and 100 images
for testing and visual comparison. Within the MVTec AD
dataset, 56 images from the bottle category were used
for training and validation, and 7 images for testing and
visual comparison; 54 images from the wood category for
training and validation, and 6 images for testing and visual
comparison; 75 images from the tile category for training and
validation, and 9 images for testing and visual comparison.
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Finally, when training the network on the MVTec AD,
CHASE DBI1, and Kvasir SEG datasets, the size of the
input images (including the true labels) was adjusted to
224 x 224 pixels and normalized.

As the loss function, we used binary cross-entropy, as its
performance in binary semantic segmentation tasks has been
proven to be effective, as shown below:

1 < ) )
BCE = — > [yilogGi) + (1 —y)log(l =] . (12)
i=1
where N represents the number of samples, y; is the actual
label of the i-th sample (0 or 1), and ; is the model’s predicted
probability of the i-th sample being positive.

The MCRSA-UNet was trained using the Adam optimizer
[48] on these three datasets, with an initial learning rate set
at 0.001. The training periods for the MVTec AD, CHASE
DBI1, and Kvasir SEG datasets were 200, 50, and 150,
respectively. The batch sizes for the MVTec AD, CHASE
DB1, and Kvasir SEG datasets were set to 8. Generally, the
network trains faster with smaller batch sizes, as weights
are updated after each propagation. All networks were
implemented in Keras TensorFlow and trained on 2 NVIDIA
A100 SXM4 GPUs equipped with 40GB of memory
each.

C. K-FOLD CROSS-VALIDATION METHOD

We employed a 5-fold cross-validation method to evaluate the
performance of the networks used in our study. We divided
the datasets into five parts, using four parts for training and
the remaining one for validation in turn. For the MVTec AD
dataset, each time 45 images from the bottle category were
used for training, and 11 images for validation; 43 images
from the wood category for training, and 11 images for
validation; 60 images from the tile category for training, and
15 images for validation. For the CHASE DB1 dataset, each
time 228 images were used for training, and 57 images for
validation. For the Kvasir SEG dataset, each time 720 images
were used for training, and 180 images for validation. This
process was repeated five times, with a different part chosen
as the validation set each time, to ensure that each data point
had an opportunity to serve as validation data. At the end of
each fold, the network’s performance on the validation set
was evaluated and the scores were stored. Finally, the average
score across all folds was calculated. By evaluating the model
multiple times on different training and validation sets, a more
accurate estimate of the model’s generalization ability is
provided. This helps to reduce bias in the evaluation results
due to different ways of data splitting. In situations with
limited data, 5-fold cross-validation can make more efficient
use of available data, as each portion is used for both training
and validation, which is more comprehensive than simple
train-test splits. Additionally, we used the dice metric during
the validation phase and chose the set of model weights with
the highest dice score as the final trained model for testing
images.
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FIGURE 6. The segmentation results of MCRSAU-Net and other networks on selected test images across three categories: bottles, wood, and tiles are
presented. Herein, A refers to bottles, B to wood, and C to tiles.

TABLE 1. Comparison of average AC, PR, RE,and F1 between MCRSAU-Net and state-of-the-art methods within three datasets (bottle, wood, and tile)
using 5-fold cross-validation. The best performance is highlighted in bold.

Category Bottle Wood Tile
AC PR RE F1 AC PR RE F1 AC PR RE F1

U-Net [23] 0.9497  0.8261 0.5248 0.5879 09602  0.9593 0.1290  0.1975 09712 09352  0.7551 0.8229
Attention U-Net [29]| 0.9537  0.7706  0.6300  0.6904  0.9612  0.5798 03612  0.4063 0.9482  0.8309 0.6708 0.7057
Residual U-Net [30] | 0.9738  0.8983 0.7750  0.8295 0.9821 09223  0.7140  0.8011 0.9750  0.9023 0.8282 0.8625
SA-UNet [31] 0.9636  0.7541 0.8452  0.7936  0.9647 0.6681 0.7099  0.6632 0.9349  0.7331 0.8687 0.7728
TransUNet [32] 0.8582  0.0635 0.0796  0.0664 09162  0.5425 0.2345 0.2079 0.9425 0.7747 0.7127 0.7277
DUCK-Net [33] 0.9302  0.7435 0.7459 0.7225 0.9817 09162  0.7119  0.7975 0.9767 0.9380  0.8140 0.8627
SU-Net 09586  0.6729  0.6445 0.6519 09600  0.7602  0.1561 0.2227 0.9690 09470  0.7193 0.7994
MCRU-Net 09697  0.8472  0.7771 0.8025 0.9806  0.8965 0.7207 0.7898 0.8535 0.7916  0.8854 0.7784
MCRSAU-Net 0.9751 0.8983  0.7895 0.8387  0.9815 0.8984  0.7281 0.7972  0.9841 0.9537  0.8987 0.9247

V. EVALUATION AND RESULTS

A. EVALUATION METHODS

To evaluate the performance of the network, we utilized the
following four assessment metrics, namely Accuracy (AC),
F1-Score, Precision (PR), Recall (RE) and Dice Coefficient
(DC). Below are the definitions of four terms used to compute
these metrics.

o True Positive (TP): The sample labels that are correctly
identified by the network as positive.

o True Negative (TN): The sample labels that are correctly
identified by the network as negative.

« False Positive (FP): The negative sample labels that are
incorrectly identified by the network as positive.

« False Negative (FN): The positive sample labels that are
incorrectly identified by the network as negative.

AC is the proportion of samples correctly predicted over the
total number of samples.

TP + TN

= . (13)
TP 4+ FP + TN + FN

Precision (PR) is used to measure the proportion of
samples that are correctly predicted as positive out of all the
samples predicted as positive.

TP

R=— . (14)
TP + FP
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Recall (RE) is used to measure the proportion of actual
positive samples that are correctly predicted as positive out
of all the actual positive samples.

TP

E=———.

TP +FN

F1-Score is the harmonic mean of precision and recall.

Precision refers to the proportion of actual positive cases

among the predicted positive ones, while recall refers to the

proportion of positive cases correctly predicted out of all
actual positive cases.

(15)

2TP
2TP + FP + FN’
DC is computed as twice the size of the intersection of the

predicted and ground truth segmentation, divided by the sum
of the sizes of the predicted and ground truth segmentation.

_ 2 x |PRN GroundTruth|
"~ |PR| 4 |GroundTruth|

F1-Score = (16)

a7

B. INDUSTRIAL PART DEFECT SEGMENTATION

In industrial part defect segmentation, we compared
MCRSAU-Net against six U-Net and its variants: U-Net [23],
Attention U-Net [29], Residual U-Net [30], SAU-Net [31],
TransUNet [32], and DUCK-Net [33] using datasets from
three categories (bottle, wood, and tile) within the MVTec
AD dataset, where the number of filters in the convolutional
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FIGURE 7. The segmentation results of MRSAU-Net and other networks on a subset of test images from the CHASE DB1 dataset.

TABLE 2. Comparison of average DC between MCRSAU-Net and
state-of-the-art methods within three datasets (bottle, wood,
and tile) using 5-fold cross-validation. The best performance

is highlighted in bold.

Method DC
Bottle Wood Tile

U-Net [23] 0.5733 | 0.2124 | 0.7012
Attention U-Net [29] | 0.6305 | 0.4434 | 0.5575
Residual U-Net [30] | 0.7644 | 0.7697 | 0.8192
SAU-Net [31] 0.7052 | 0.6258 | 0.7136
TransUNet [32] 0.0781 | 0.1381 | 0.5744
DUCK-Net [33] 0.6550 | 0.7304 | 0.8064
SU-Net 0.5984 | 0.1868 | 0.7059
MCRU-Net 0.7200 | 0.7510 | 0.7523
MCRSAU-Net 0.7755 | 0.7651 | 0.8958

layers are 32, 64, 128, 256, and 512 respectively. We also
included comparisons with U-Net variants featuring a spatial
attention with multi-convolutional channel residual path (SU-
Net) and a multi-convolutional channel residual path without
spatial attention (MCRU-Net). All methods were trained and
validated using 5-fold cross-validation and the best network
set was used for visual testing on test images, with the average
score across all folds calculated to evaluate the networks,
ensuring the reliability and generality of the results.

Results, as shown in Table.1 and Table.2, indicate that
MCRSAU-Net surpasses its competitors in all aspects except
the RE metric in the bottle and tile categories. However, in the
wood category, its metrics are slightly below those of the
Residual U-Net [30], suggesting a need for deeper network
layers or adjusted attention mechanisms to better address the
complexity and details of wood textures. In the bottle dataset,
the average AC, PR, RE, F1, and DC values reached as high as
0.9751, 0.8983, 0.7895, 0.8387, and 0.7755 respectively. For
the tile dataset, they were 0.9841,0.9537,0.8987, 0.9247, and
0.8958, and for the wood dataset, they were 0.9815, 0.8984,
0.7281, and 0.7972 respectively.

The visualization of segmentation results in Fig.5 further
confirms the exceptional capability of MCRSAU-Net in
accurately identifying and segmenting industrial part defects.
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Especially in bottle defect segmentation tasks, MCRSAU-
Net not only accurately marks the defect areas but also
demonstrates higher segmentation precision and lower mis-
classification rates compared to other models. Moreover,
in tackling defect segmentation tasks for wood and tile com-
ponents, MCRSAU-Net’s results closely mirror the actual
conditions, thereby proving the network’s robust capability
in segmenting anomalous areas in industrial images.

C. RETINAL VESSEL SEGMENTATION

In the context of pediatric retinal vessel segmentation,
we compared the performance of MCRSAU-Net with SU-
Net, MCRU-Net, and other U-Net variants using the CHASE
DB1 dataset enhanced through data augmentation. All
compared methods were trained and validated using 5-fold
cross-validation, and the best network set was used for visual
testing on test images, with the average score across all folds
calculated to evaluate the networks, ensuring the reliability
and generality of the results. Results, as shown in Table.3,
demonstrate that MCRSAU-Net’s performance in pediatric
retinal vessel segmentation, in terms of average AC, PR,
RE, F1, and DC, were 0.9465, 0.9925, 0.7021, 0.8222, and
0.8540 respectively, slightly below MCRU-Net in RE and F1.
MCRSAU-Net significantly outperforms other comparison
networks. Results of MCRSAU-Net’s pediatric retinal vessel
segmentation are displayed in Fig.6. The segmented images
reveal our network’s precision in segmenting ocular vessels
more accurately than other networks. Importantly, compared
to other networks, ours performs better in segmenting the
ends of retinal vessels, recognizing and segmenting more
peripheral branches of retinal vessels, a feat unmatched
by other networks. Precise segmentation of retinal vessel
terminations holds significant clinical importance in the
diagnosis and treatment of eye diseases.

D. COLON POLYP SEGMENTATION

In this study, for the colon polyp segmentation task, we used
the widely cited Kvasir-SEG dataset to compare the com-
prehensive performance of MCRSAU-Net and its variants,
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TABLE 3. Comparison of average AC, PR, RE, F1, and DC between MCRSAU-Net and state-of-the-art methods within the CHASE DB1 dataset using 5-fold

cross-validation. The best performance is highlighted in bold.

Method AC PR RE F1 DC
U-Net [23] 0.9420 0.9609 0.6460 0.7725 0.7507
Attention U-Net [29] 0.9401 0.9494 0.6172 0.7479 0.7296
Residual U-Net [30] 0.9444 0.9798 0.6580 0.7872 0.8179
SAU-Net [31] 0.9451 0.9811 0.6977 0.8153 0.8101
TransUNet [32] 0.9323 0.9260 0.4845 0.6343 0.5874
DUCK-Net [33] 0.9457 0.9889 0.6772 0.8039 0.8250
SU-Net 0.9436 0.9721 0.6575 0.7844 0.7850
MCRU-Net 0.9465 0.9924 0.7024 0.8226 0.8525
MCRSAU-Net 0.9465 0.9925 0.7021 0.8222 0.8540

Input Ground Truth U-Net Attention U-Net Residual U-Net SAU-Net TransUNet DUCK-Net MCRSAU-Net

FIGURE 8. The segmentation results of MRSAU-Net and other networks on selected test images from the Kvasir SEG dataset are presented.

TABLE 4. Comparison of average AC, PR, RE, F1 and DC between MCRSAU-Net and state-of-the-art methods within the Kvasir SEG dataset using 5-fold

cross-validation. The best performance is highlighted in bold.

Method AC PR RE F1 DC
U-Net [23] 0.8785 0.6630 0.5282 0.5853 0.5138
Attention U-Net [29] 0.9032 0.7830 0.5673 0.6566 0.6173
Residual U-Net [30] 0.9329 0.8825 0.7010 0.7810 0.7742
SAU-Net [31] 0.9156 0.8594 0.6213 0.7063 0.6864
TransUNet [32] 0.8103 0.4812 0.6600 0.5250 0.4198
DUCK-Net [33] 0.9406 0.8853 0.7565 0.8156 0.8173
SU-Net 0.8944 0.7184 0.5918 0.6481 0.6263
MCRU-Net 0.9380 0.8935 0.7288 0.8018 0.7958
MCRSAU-Net 0.9195 0.7756 0.7365 0.7549 0.7053

including U-Net, SU-Net, MCRU-Net, and other U-Net
variants. To ensure the accuracy and broad applicability of
the evaluation, all models were trained and validated through
5-fold cross-validation, ensuring the robustness of the results.
Comparative results and visualization of segmentation effects
are summarized in Table.4 and Fig.8. MCRSAU-Net’s
average performance metrics for colon polyp segmentation,
including Accuracy (AC), Precision (PR), Recall (RE), F1
score, and Dice Coefficient (DC), reached 0.9195, 0.7756,
0.7365, 0.7549, and 0.7053 respectively. Compared to other
competitive networks in the field, although MCRSAU-Net’s
overall performance was not universally superior, under
specific optimal network configurations, its segmentation
accuracy for colon polyps was noticeably better than the
comparison group. A detailed analysis of the visualization of
segmented test images revealed MCRSAU-Net’s exceptional
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proficiency in precisely delineating the contours of individual
and multiple polyps. This finding not only reflects our
model’s advantage in capturing details but also highlights its
application potential in complex medical image processing
tasks.

E. COMPUTATIONAL COMPLEXITY

In this study, aside from focusing on the model’s segmenta-
tion performance, inference speed, and model size were also
considered crucial metrics for assessing the model’s suitabil-
ity for practical applications (such as industrial inspection
and clinical diagnosis). To comprehensively quantify com-
putational complexity, we employed Gigaflops (GFLOPs)
and inference speed (i.e., the time required by the model
to process a single image) as primary evaluation metrics.
Specific computational complexity results are summarized
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TABLE 5. Comparison of computational complexity.

Method U-Net Attention Residual SAU-Net TransUNet DUCK- MCRSAU-Net
[23] U-Net [29]  U-Net [30] [31] [32] Net
[33]
GFLOPs 18.50 19.34 19.59 14.93 55.97 33.13 101.35
Inference speed (ms) 8.39 9.90 8.88 8.27 13.93 15.04 13.64

in Table.5. The design of MCRSAU-Net incorporates multi-
convolutional channel attention residual paths, an innovation
that significantly enhances segmentation accuracy but also
increases the model’s computational burden. Specifically,
due to the numerous multi-convolutional channel attention
residual modules employed, there was a significant increase
in the overall computational complexity of the model.
In GFLOPs assessment, our network ranked 7th, reflecting a
relatively higher computational demand. In terms of inference
speed, our model ranked 5th in the comparison, indicating
that despite the model’s complexity, its processing speed
remains within a reasonable range. This balance reflects
our consideration of the trade-off between efficiency and
accuracy in model design.

F. ABLATION STUDIES

To deeply understand the role of each key component
in MCRSAU-Net, we added comparison networks, SU-
Net and MCRU-Net, for ablation studies in the MVTec
AD, CHASE DBI1, and Kvasir SEG datasets. The eval-
vation and comparison results in Table.1, Table.2, and
Table.3 indicate that adding spatial attention modules and
multi-convolution channel attention residual paths on top of
U-Net can enhance performance, especially with the addition
of multi-convolution channel attention residual paths, which
significantly improve performance. MCRSAU-Net, which
combines spatial attention modules with multi-convolution
channel attention residual paths, shows particularly out-
standing performance in the MVTec AD and CHASE DB
datasets. However, the situation is different in the Kvasir SEG
dataset. We found that compared to MCRU-Net, which only
incorporates multi-convolution channel attention residual
paths, the performance of MCRSAU-Net actually decreased.
This demonstrates that adding channel attention modules
after consecutive convolutions through multi-convolution
channel attention residual paths can increase the weight
of key channels while reducing the influence of secondary
channels, allowing for timely adjustments of the importance
of each convolution layer’s channel output, focusing the
network more on the most important parts and useful feature
channels at every stage. Although integrating spatial attention
mechanisms throughout the entire decoding phase of the
network did not result in as significant performance improve-
ments as expected, it indeed enhanced the model’s ability to
focus on important features under certain conditions.

VI. DISCUSSION
In this study, we introduce the MCRSAU-Net network,
a novel architecture that significantly improves the
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performance of image segmentation tasks across several
applications, including industrial part defects, retinal vessels,
and colon polyps. This advancement comes through the
incorporation of multi-convolutional channel attention
residual paths and spatial attention modules. Despite
MCRSAU-Net’s exceptional performance, its application in
medical contexts, particularly in decision-making diagnoses
or treatments, warrants careful consideration. The potential
disparities between model-generated and actual medical
images underscore the importance of caution to maintain the
accuracy and reliability of clinical applications. Therefore,
it is imperative to underscore that medical professionals
should corroborate medical decisions based on image
segmentation results from MCRSAU-Net, ensuring decisions
are informed by comprehensive medical knowledge and
clinical experience.

While the network demonstrates superior capabilities in
capturing intricate details and accurately delineating target
edges, it is not without its limitations. The increased com-
putational complexity and dependency on specific datasets
highlight potential constraints on the technology and datasets,
potentially limiting the model’s applicability and evaluation
of its generalization capabilities in resource-constrained
environments. Future research directions focus on optimizing
the network structure to alleviate computational demands,
broadening the model’s application across a wider array of
image segmentation scenarios, and addressing challenges
related to performance insufficiency and universality. Fur-
thermore, enhancements to the spatial attention module
in MCRSAU-Net aim to fortify its role in improving
segmentation accuracy by better focusing on key features,
given its variable effectiveness across different datasets.

To conclude, MCRSAU-Net offers significant contri-
butions toward advancing image segmentation technology
and expanding its applications. Future endeavors not only
pursue technological enhancements and optimizations but
also carefully consider the ethical application of these
advancements in real-world medical scenarios. Ensuring the
responsible deployment of artificial intelligence in healthcare
is paramount to safeguarding patient safety and improving the
quality of medical services. Additionally, ongoing research
delves into refining attention mechanisms and customizing
their application to various segmentation tasks, aiming to
maximize their efficacy in diverse scenarios and further
investigate the broad application prospects of MCRSAU-Net
in the medical field.

VIi. CONCLUSION
In this paper, we introduce an innovative U-Net network
architecture designed to bridge the feature disparity between
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the encoder and decoder. This is achieved by integrating
residual paths equipped with convolutional kernels of varying
sizes and channel attention, enabling the network to retain a
richer set of feature information. Furthermore, we incorporate
a spatial attention module within the decoder, allowing the
network to focus more intently on distinct spatial location
features within the input feature map. This not only amplifies
the network’s semantic comprehension of the image but also
bolsters its performance in tasks like image segmentation.
Our experiments on three publicly available datasets—
MVTec AD, CHASE DBI1, and Kvasir SEG—attest to our
network’s robust feature extraction prowess across an array
of intricate images, effectively segmenting images in both
industrial and medical contexts. Moving forward, we aspire
to refine our network to diminish its parameters, all the while
preserving its superior performance. Additionally, we intend
to train our network on a broader spectrum of images from
varied domains to craft a more universally adept image
segmentation network.
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