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ABSTRACT The development of autonomous vehicles has recently received substantial impetus, fueled
by researchers and industry personnel. The need for powerful steering control in autonomous vehicles
is critical for assuring the vehicle’s safety and reliability. Robust steering control allows for precise
and accurate maneuvering, allowing the vehicle to traverse complicated road conditions. Comparative
research on the certification of a robust steering system for autonomous vehicles is presented in this
paper. Traditional controllers (PD and PID) are compared with a modern Model Predictive Control (MPC)
controller that uses amulti-turn potentiometer and incremental encoder for position feedback. The controllers
are designed in MATLAB Simulink and deployed for real-time testing on a Speedgoat performance real-
time target Hardware-in-the-Loop (HIL) machine. The study focuses on evaluating the steering system’s
real-time performance in terms of accuracy and robustness. The novelty is that this work is carried out
in a real experimental modified electric vehicle and presents real-time results obtained using the HIL
machine and Rapid Control Prototyping (RCP) technique. The research covers a thorough examination
of the experimental hardware configuration, system identification, controller design, and data-gathering
technologies. A significant contribution of this research is the use of the HIL machine for real-time
performance testing of different controllers with different velocities and sample times, specifically in a speed
breaker scenario. To analyze each controller’s response, real-time data is logged at a high sampling rate of
0.1 milliseconds. The research contributes to the advancement of driverless vehicles by providing insights
into the optimal performance of steering systems. It also emphasizes the importance of real-time testing of
the robust performance of different controllers to ensure human safety in driverless cars.

INDEX TERMS Steering system, autonomous vehicle, model predictive control (MPC), rapid control
prototyping (RCP), hardware-in-the-loop (HIL), robust control.

NOMENCLATURE
PARAMETERS
Kp - Proportional Gain.
Ki - Integral Gain.
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Kd - Derivative Gain.
N - Filter Coefficient.
u(t) - Output of PID Controller.
U∗
t (x(t)) - Output of MPC Controller.

J - Cost Function.
Nc - Control Horizon.
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Np - Prediction Horizon.
Ts - Sample Time.

ABBREVIATIONS
CNN - Convolution Neural Network.
EPS - Electric Power Steering.
HIL - Hardware-in-the-Loop.
I/O - Input Output.
IC - Internal Combustion.
LQR - Linear Quadratic Regulator.
MPC - Model Predictive Controller.
PD - Proportional-Derivative.
PID - Proportional-Integral-Derivative.
PWM - Pulse Width Modulation.
RCP - Rapid Control Prototyping.
TTL - Transistor-Transistor Logic.

I. INTRODUCTION
The development of autonomous ground vehicles, also
referred to as self-driving cars or autonomous vehicles, has
significant implications and potential applications in future
smart and sustainable transportation. It is a very crucial
turning point in transportation, with implications for safety,
efficiency, accessibility, and environmental sustainability.
The ability to improve road safety is one of the key benefits
of autonomous ground vehicles. Human distractions are the
major source of accidents, and autonomous cars can reduce
or eliminate them by utilizing modern sensors, artificial
intelligence, and real-time data processing. Autonomous
vehicles, by reducing the need for human drivers, have the
potential to reduce accidents and save lives. Furthermore,
self-driving ground vehicles have the potential to improve
transportation efficiency. Because they can communicate
with other vehicles and with the infrastructure, these cars can
optimize routes, minimize traffic congestion, and reduce fuel
use.

The autonomous vehicle steering system can improve
safety, by eliminating driver errors. Its performance majorly
depends on the sensor’s resolution and its range. The
autonomous vehicle system receives feedback information
from LiDAR, radar, camera, steering angular position, and
velocity measurement sensors. Robust steering control in
autonomous vehicles is critical to guarantee the safe and
reliable functioning of self-driving cars. The capacity of an
autonomous vehicle to regulate its steering inputs reliably and
precisely in a variety of complex environmental conditions
is referred to as robust steering control. Improved safety
is one of the key advantages of precise steering control.
Autonomous vehiclesmust be capable of dealingwith unfore-
seen scenarios such as unexpected barriers, unpredictable
weather, or complex road terrains. Robust steering control
enables the vehicle to respond rapidly and efficiently to
these situations, assisting in collision avoidance and ensuring
the safety of passengers, pedestrians, and other vehicles on

the road. A robust steering control system provides better
performance for driver-less cars, in the presence of difficult
road conditions like uneven terrain, slippery roads, speed
breakers, potholes, heavy rain and snow.

In recent literature, different types of Model Predictive
Control (MPC) controllers are used for autonomous vehicle
robust steering control systems. The design of the MPC
controller that utilized lateral and steering angle deviation,
along with relative yaw angle to control steering angle for
collision avoidance based on the LiDAR data is presented
in [1]. MPC controller is used to compensate the side slip
for improving the tracking performance for higher speeds [2],
and its performance is evaluated based on the actuator’s
bandwidth [3]. A linear model-based path tracker using
an MPC controller by linearizing the sequence of future
steering angles has been discussed [4]. Three different types
of algorithms like Ziegler-Nichol’s, WAF-tune, and twiddle
are used to tune the PID controller gains to improve the
steering performance [5].

To ensure safe cooperation between humans andmachines,
several studies have proposed various methods to enhance
autonomous vehicle steering performance. Amodel reference
adaptive control approach is proposed by [6] to ensure
cooperation between humans and machines, which will give
robust performance for disturbances. A methodology for
ensuring a smooth transition between autonomous steering
control and driver input for low and high-speed maneuvers
is given in [7]. Small-gain theory and an iterative scheme
to learn and adapt to the driver’s steering torque, to jointly
operate the vehicle is analyzed in [8].

The design and development of an MPC controller
for high-speed accident avoidance is proposed in [9].
A hierarchical control architecture that consists of a decision-
making layer and a motion control layer, is validated with
hardware-in-the-loop (HIL) testing. Reference [10] presented
a new strategy that combines differential braking with
autonomous steering for collision avoidance using an MPC
controller to track the center line of the road and end the
swerving maneuver is discussed in detail. In case of steer-
by-wire system failure, [11] proposed a torque vectoring
system in conjunction with the VSC system as a redundant
measure to ensure the safety of the autonomous collision
avoidance system. Takagi-Sugeno (T-S) fuzzy model based
on a fuzzy Lyapunov control framework for automatic
lane keeping under varying system constraints such as
unknown crosswinds and varying road curvatures is presented
in [12]. Artificial neural networks such as ConvolutionNeural
Network (CNN) and Long-Short-Term-Memory Network are
used to predict the steering angle for lane keeping even during
poor visibility conditions [13]. A novel algorithm is proposed
for automated lane changing using yaw rate, steering angular
position, and steering wheel feedback torque from the electric
power steering (EPS) system [14].
A precise path-tracking control algorithm is proposed to

accommodate varying vehicle weight, weight distribution,
and velocity [4]. An optimal feedback controller is used
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to handle the tracking errors and a feedforward controller
is used to anticipate upcoming road turns to improve
the autonomous vehicle steering tracking performance [5].
A trajectory tracking algorithm is analyzed in [15], using
an MPC controller by considering a nonlinear multi-input
and multi-output system with independent wheel steering
capability. The adaptive steering controller [16] performance
ofMPC for autonomous vehicle steering systems is presented
in [17].

Addressing trajectory planning for autonomous vehicle
docking, [18] introduced an algorithm to determine the
optimal path for seamless docking. Reference [19] compared
the performance of Linear Quadratic Regulator (LQR) and
MPC controllers in various scenarios, such as lane changing,
perpendicular parking, and parallel parking, using a HIL
system. Reference [20] presented an autonomous vehicle
steering controller that utilizes an MPC controller to track
the desired path, considering disturbances and time-varying
parameter uncertainties. Reference [21] proposed a precise
trajectory tracking control algorithm suitable for network
delay in autonomous vehicles. To address vehicle stability
regarding longitudinal velocity and mass, [22] designed an
H-infinite robust controller that applies direct yaw moment
control and active front steering control. Reference [6]
developed a model reference adaptive controller capable
of achieving robust performance despite disturbances and
parameter uncertainties. [23] provided an insightful anal-
ysis of reference path-tracking control strategies and the
advantages and limitations of robust and observer-based
control strategies. Reference [24] contributed to this field
by presenting robust control policies. In the context of
lateral dynamics stability during maneuvers like single lane
changes and J-turns, [25] proposed an adaptive backstep-
ping control technique that effectively handles external
disturbances and parameter uncertainties. Furthermore, [26]
developed an adaptive two-layer control framework for a
two-axle autonomous bus to prevent sideslips and rollovers,
prioritizing safety, [27] designed a digital twin for safety
system of an electric vehicle where several test scenarios can
be simulated by tweakingmany system parameters to observe
the system state.

These recent studies have significantly advanced the field
of autonomous vehicle control, incorporating deep reinforce-
ment learning, trajectory planning, robust control algorithms,
adaptive control techniques, and various control strategies to
enhance vehicle performance, safety, and stability. Most of
the above works are carried out in a simulation platform or a
constrained experimental setup.

The novel highlights of this paper are,

• The physical vehicle is converted to a testbed and
the experiment is performed in the actual situational
cases for the evaluation of developed modern controllers
using the HIL machine for real-time control and data
acquisition which overcomes the limitations of other
works enclosed.

• This paper is also focused on the work of precise and
accurate maneuvering in complex and challenging road
conditions for autonomous vehicle safety and reliability
with the evaluation of the real-time performance of a
robust controller using HIL testing.

• A comparative study is also carried out in this paper
to validate a robust steering system for autonomous
vehicles by comparing traditional controllers (PD and
PID) with a modern Model Predictive Control (MPC)
controller.

The study utilizes a multi-turn potentiometer and incremental
encoder for position feedback. Performance tests at different
velocities and sampling times, particularly in a speed breaker
scenario, have been conducted.

The rest of this paper is organized into four sections. The
following Section II describes the hardware experimental
setup with the data acquisition system. Section III discusses
the system identification and design of various controllers
for steering system. Section IV provides the real-time
experimental results that are obtained for the various test
scenarios. Finally, the conclusion of the paper is presented
in Section V.

II. EXPERIMENTAL SETUP
The complete test setup utilized a 7-seater Maruti Suzuki
Versa car, equipped with a Speedgoat HIL machine and
a high-performance PC. This setup incorporated the high-
resolution 3D HDL-32E and VLP-16 Velodyne LiDARs,
along with the Intel D435 depth camera. These sensors
were employed for the perception, planning, and control
of autonomous vehicles. Fig. 1 illustrates the autonomous
vehicle with the speed breaker being examined and Fig. 2
shows the line diagram of the experimental setup. The test
bench setup in the vehicle is shown in Fig. 3. Furthermore,
this section covers the traction setup, steering setup, specifi-
cations of the HIL machine, data acquisition, noise removal,
and filtering methods.

A. TRACTION SETUP
A separately excited DC motor is used as a traction
motor with the specifications given in Table 1. The Kelly
KDH12801E motor driver serves to manage the armature
supply of the motor. The field supply is maintained at a
steady 12V, facilitated by a 72V to 12V DC-DC converter.
A Li-Ion battery pack, specified in Table 2, is utilized to fuel
the vehicle. The schematic diagram of the car is depicted in
Fig. 4. For precautionary measures, kill switches are affixed
on each side of the car. Moreover, a 72V DC to 220V AC
inverter caters to the power needs of the onboard desktop
units, and a 220V AC to 12V DC converter provides for the
vehicle’s low-voltage systems.

B. STEERING SETUP
The vehicle features a standalone EPS system, employing a
12V DC brushed clutch motor. This motor is rerouted and
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FIGURE 1. Autonomous car in front of the test speed breaker.

FIGURE 2. Line diagram of the experimental setup.

TABLE 1. Motor specifications.

TABLE 2. Battery specifications.

linked to a Cytron MDDS30 motor driver. It is supplemented
with an incremental encoder, boasting a resolution of

TABLE 3. Target hardware specifications.

1024 pulses per revolution, mounted on the steering column.
Moreover, a multiturn 10 k� potentiometer, geared to the
steering, facilitates the measurement of the steering position
via voltage conversion. The installation of the encoder and the
potentiometer are depicted in Fig. 5 (a) and (b), respectively.

C. HARDWARE-IN-THE-LOOP (HIL) MACHINE SETUP
All designed control algorithms are dispatched to a hardware
system for real-time testing. For rapid control prototyping,
we have utilized the Speedgoat performance real-time target
machine, with its specifications detailed in Table 3. This
robust machine carries out computations, actuation, and data
acquisition in real-time. It interfaces directly with MATLAB
Simulink version 2022b using the Simulink Real-Time Target
Packages.

IO133 is a sophisticated analog input and output module
(I/O), featuring 16 simultaneous-sampling analog input
channels with 16-bit resolution, and 8 analog output channels
with concurrent update and 16-bit resolution. Additionally,
it possesses 14 configurable digital I/O pins for Transistor-
Transistor Logic (TTL). It is predominantly utilized for rapid
control prototyping and HIL testing, as displayed in Fig. 6(a).
The module manages a traction motor through an analog
output ranging from 0 - 5V; with 0V indicating no power
flow and 5V representing the maximum power supply to
the traction motor. The steering motor operates through a
driver configured for 0 to 100% Pulse Width Modulation
(PWM). A 50% duty cycle leaves the steering motor
stationary, while alterations to 0% and 100% trigger anti-
clockwise and clockwise rotations respectively. The PWM
signal to the driver is dispatched via the HIL target machine
utilizing the IO133 module. Feedback from the steering
position is collected through a potentiometer, translating to
an analog value of 0 - 5V, wherein 2.427V corresponds
to the steering wheel’s central position. This data is fed
into the target machine using the IO133 module’s analog
input lines. Furthermore, the system interfaces with an
incremental encoder, linking its A and B pulses to the digital
I/O lines of the IO133 module within the target machine.
The arrangement of the HIL machine setup can be seen in
Fig. 6(b).

D. DATA ACQUISITION FROM STEERING MOUNTED
POTENTIOMETER AND ENCODER
The wiper pin of the steering’s potentiometer and the signal
pins A and B of the steering’s encoder are connected
to the Speedgoat HIL machine, which serves as a data
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FIGURE 3. Experimental test bench setup in a real modified electric car.

FIGURE 4. Circuit diagram of HV side of the vehicle.

FIGURE 5. Steering angular position acquisition sensors.

acquisition device. A Simulink model is created, and the
data is acquired using MATLAB Simulink’s data inspector
toolbox. To decode the encoder’s data, a pre-built block called
the quadrature shaft decoder is utilized, which converts the

FIGURE 6. Connection from the HIL machine setup.

A and B encoder pulses into radians. The linear property of
the potentiometer is employed to map the analog voltage of
the potentiometer to radians. For manual measurement, the
analog voltage corresponding to the zero radians position is
recorded as 2.427V, and the analog voltage for a full right
turn of the steering is measured as 0.299V, which corresponds
to 16.638 radians. By establishing a straight-line equation
between these two points, we determine the relationship
between the analog voltage and the steering’s position.

E. DATA FILTERING AND NOISE REMOVAL
The raw data that is directly obtained from the sensor consists
of a lot of noises due to the surrounding electrical interference
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FIGURE 7. Connection from the HIL machine setup.

as unprocessed, unfiltered data that is shown in Fig. 7 The
noise component is the data will spoil the signal quality and
will have a great impact in the accuracy of the signal. The
raw data should be filtered before using it for processing in
the control system application. A generalised low pass filter
with a cut-off frequency of 10 rad/sec has been designed as
a transfer function model which is given by Eq. (1). The raw
data from the steering block is fed to it as an input and the
filtered noise-less data has been obtained as an output of the
transfer function.

1
0.1s+ 1

(1)

III. METHODOLOGY
A. SYSTEM IDENTIFICATION
System identification involves the mathematical modeling
of a dynamic system by establishing a relationship between
its input and output. This process includes acquiring data
for the input and output signals, selecting an appropriate
model structure, estimating the system model using various
techniques, and evaluating the accuracy of the obtained
model. Obtaining the system model through first-principles
modeling can be challenging as the mathematical parameters
of a pre-designed system are difficult to determine. The
strategy outlined in this work is regarded as a black
box technique since it does not require knowledge of
the system’s physical dynamics. The system identification
toolbox in MATLAB Simulink has a basic feature that allows
researchers to tune the model’s parameters until the model’s
output closely matches the observed output. The flowchart in
Fig. 8 depicts the processes taken to obtain the system model.

1) STEERING SYSTEM DYNAMICS MODELING
The transfer function of a system represents the mathematical
relationship between the input and output. In this case, the
input is a voltage supply ranging from −12V to 12V, which
is applied to the electric steering motor connected to the
steering column. A voltage of −12V causes the steering
to rotate counterclockwise, while 12V rotates it clockwise,

FIGURE 8. Flowchart of the system model design.

with 0V representing the rest position. The output of the
system is the position of the steering in radians. To obtain the
transfer function, MATLAB’s system identification toolbox
is used to analyze the input and output data. The frequency
response modeling using the chirp signal [28] method is
chosen for its ability to provide rapid stability and transient
response information. Sinusoidal voltages with frequencies
ranging from 0.75 rad/sec to 1.5 rad/sec and a peak-
to-peak voltage of −12V to 12V are used as inputs to
the system. Both distinct frequency modeling and multi-
frequency modeling are performed using the same data
set in the system identification toolbox. Fig. 9 shows the
graph depicting the relationship between the input voltage
and angular position of the steering system for frequencies
ranging from 0.75 rad/sec to II rad/sec. The transfer function
parameters for the multi-frequency modeling, obtained from
MATLAB’s system identification toolbox are the gain of the
system k=4.730, damping ratio ζ=3.648 and the undamped
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natural frequency ωn=1.119. These parameters are plugged
into the Eq. (2) to get the final transfer function of the system
as given in Eq. (3).

θ(s)
V (s)

=
ωn

2k
s2 + 2ζωns+ ω2

n
(2)

θ(s)
V (s)

=
5.922

s2 + 8.164s+ 1.252
(3)

where θ (s) represents the angular position of the steering
system, and V (s) represents the steering motor’s input
voltage.

2) MODEL VALIDATION
Model validation plays a critical role in ensuring the accuracy,
completeness, and cleanliness of the obtained system model.
It is crucial to validate the system model to design the
controller with the desired specifications. The obtained
system model should be tested using multiple different data
sets to assess its validity, and it should demonstrate decent
and acceptable accuracy. If the model performs with good
accuracy and the model fit is satisfactory with the test and
validation sets, then it can be considered final for further
system processing. However, if the obtained model fails to
perform well or lacks a good model fit, the estimation of
the mathematical model equation, specifically the transfer
function, should be repeated while increasing the order of
the system. The obtained transfer function model as shown
in the Eq. (3) is verified with 2 different test data known as
the validation data set. The results show 78.65% as the best
fit for the system.

B. CONTROLLER DESIGN
1) DESIGN OF PD AND PID CONTROLLER
PID controllers are widely used in the field of control
engineering for regulating dynamics of the systems. They are
renowned for their simplicity, effectiveness, and versatility in
a wide range of applications. The developed system model
utilized the transfer function toolbox in Simulink. The output
from the PID controller block set serves as the input to the
transfer function. The output from the system is then fed
back to the sum block with a negative gain, forming a closed-
loop negative feedback system. A step input of 10 radians is
introduced into the system, and PID parameters, specifically
Kp (proportional gain), Kd (derivative gain), and Ki (integral
gain), were fine-tuned using the MATLAB’s real-time PID
auto-tuner, which relies on a system model-based approach,
focusing on system response tuning and transient response
tuning. After introducing the plant to the tuner, it linearizes
the system in preparation for tuning. Finally, the optimal
gains and the filter coefficient obtained from the toolbox
are Kp=28.446, Ki=2.11, Kd=4.699 and N=118.794. These
gain values are plugged into the Eq. (4) to form a PID
controller.

In system response tuning, the system’s rapid or gradual
response to the input is considered a design parameter.

In transient method tuning, the parameters of interest are the
system’s robustness and aggressiveness. Given the system’s
performance and response, the robustness and aggressiveness
of the controller were adjusted to the anticipated level, and
the relevant settings were applied. After achieving the desired
system response, the tuning parameters and Filter Coefficient
were extracted from the tuner. Saturation parameters were
established to confine the output of the PID controllers within
the maximum acceptable rating of the hardware, with an
Upper Limit = +12 and Lower Limit = −12 [9].

u(t) = Kpe(t) + Ki

∫ t

0
e(t)dt + Kd

de(t)
dt

(4)

where u(t) represents the output of the controller and e(t)
represents the error signal from the reference point.

Closed-loop transfer function of the system is calculated
by obtaining the Laplace transform for the Eq. (4) as shown
in Eq. (5) and by plugging in Eq. (5) to Eq. (6). The stability
analysis of the PID controller is performed by obtaining the
ZPK representation of the closed-loop transfer function of the
Eq. (6) as shown in the Eq. (7). From Eq. (7) it is observed
the locations of closed-loop poles are lying on the left of the
S-plane. So, the designed closed-loop system is stable.

C(s) = Kp +
Ki
s

+ Kd
N

1 + N 1
s

(5)

Y (s)
R(s)

=
G(s)C(s)

1 + G(s)C(s)
(6)

3474(s+ 5.689)(s+ 0.07511)
(s+ 5.221)(s+ 0.07481)(s2 + 121.7s+ 3800)

(7)

where, C(s) is the controller transfer function, R(s) is the
closed loop transfer function and G(s) is the plant transfer
function given by Eq. (3).

2) DESIGN OF MPC CONTROLLER
The MPC is a modern, rapidly evolving, high-performance
system known for its constraint satisfaction. However,
because there is no defined way for tuning the controller
parameters, creating an MPC controller is difficult. The pre-
diction horizon (Np), control horizon (Nc), input constraints,
weights, and sample time are among the parameters. We can
change the system’s performance parameters, such as the
controller’s robustness and aggressiveness, similarly to PID
tuning. Furthermore, the MPC controller’s state estimation
response, which determines the system’s weight, can be
modified [17].

Initially, the MPC structure is defined with a single manip-
ulated variable and a single input system. The physical system
constraints are outlined in Table 4. The MPC parameters
are tuned based on the closed-loop system behavior. First,
a longer Np is selected and a nominal Nc is selected along
with the input and output weights of the system. The behavior
of the system is monitored and the parameters are fine-
tuned manually. The rate weight on the input side is set
at 0.01353, while the output weight is fixed at 7.3890.
The system response was evaluated using various values for
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FIGURE 9. Frequency response modeling.

the prediction and control horizons. It is important to note
that the system’s robustness and stability increase with an
increase in Np. However, beyond a certain Np value, further
increases in this variable do not significantly impact the
system. Conversely, when the control horizon (Nc) increases,
the system’s aggressiveness also increases, but at the expense
of stability. In our case, the goal is to design a robust steering
controller. As a compromise, the value of Np is set higher,
Np=20 than the value of Nc, Nc = 2. This value of Nc
is chosen according to the general rule, 0.1Np ≤ Nc ≤

0.2Np. The MPC’s sampling time (Ts) is kept constant at
Ts=0.001 seconds, playing a crucial role in the computational
performance of the controller. These parameters are used
to design the MPC controller in MATLAB and the overall
representation and cost function of the MPC system in given
in Eq. (8) and (9) respectively.

U∗
t (x(t)) = argmin

Ut

N−1∑
k=0

q(xt+k , ui(t+k)) (8)

where Ut represents the optimization variable, x(t) is
measurement, xt+k is state constraints and ui(t+k) is input
constraints of the systems.

J =

p∑
i=1

week+i2 +

p−1∑
i=0

w1u1uk+i2 (9)

where J represents the Cost function, w is weights of the
system, e is error and 1u is controller action.

Closed-loop stability analysis of the MPC controller is
determined by the root locus method by obtaining the
total system’s transfer function including the controller as
discussed in Section III. From the obtained root locus it is
observed the locations of closed-loop poles are lying on the
left of the S-plane. So, the closed-loop system is said to be
stable.

C. SIMULINK SETUP AND DATA ACQUISITION
1) PIN CONFIGURATION
All electrical connections between the Speedgoat target
machine and the actual hardware are made through the

TABLE 4. MPC constraints.

Speedgoat’s terminal board. The encoder section of the
steeringwheel provides high-frequency digital pulses as input
to the system, while the steering’s multi-turn potentiometer
serves as the analog input. The steering wheel actuation is
achieved through the Cytron motor, which requires high-
frequency PWM digital signals as input. In the Simulink
environment, these pins are configured as shown in Fig. 10.
The Pin setup block is used to declare the analog and digital
inputs and outputs. A sampling time of 0.0001 seconds is
set for each block. The analog input to the system has a
maximum sample rate of 200 kSPS and is equipped with an
anti-aliasing filter with a −3 dB cutoff frequency. The digital
I/O lines operate at a Low Voltage-TTL level of 3.3V with a
5V tolerance [29]

2) IMPLEMENTATION OF PD, PID, AND MPC CONTROLLERS
The PID block in Simulink simplifies the system by directly
handling the steering’s position error in radians. The PID
output is limited to a range of −12V to +12V, as the input
voltage to the steering motor is proportional to the position.
Therefore, the PID controller’s output serves as the motor
voltage. To convert the voltage output from the PID controller
to PWM values, a mapping is applied. A voltage of −12V
corresponds to a PWMvalue of 0, while+12V corresponds to
a PWM value of 1. For example, a PWM value of 0.5 results
in 0V being applied to the steering motor. This mapping is
based on the steering motor driver’s datasheet and straight-
line equation that is represented by Eqs. (10)–(12). The PD
and the PID controller are implemented similarly, with the
inclusion of the Ki term in the controller’s gain. The control
structure of PID implemented in the MATLAB Simulink is
shown in Fig. 12. Fig. 11 shows the root locus for the designed
PID closed loop system with the desired specifications. The
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FIGURE 10. I/O configuration with HIL and Simulink.

FIGURE 11. Root locus of the closed-loop PID system.

poles location of the root locus matches with the ZPK form
of the closed-loop transfer function shown in Eq. (7).
To implement the MPC controller in Simulink, the actual

steering position angle is directly fed into the measured
output port of the MPC controller block. The desired steering
position reference is provided to the controller’s ref port. The
manipulated variable, which ranges from−12V to 12V, is the
output from the controller. This value is then converted to
PWM values, as the motor driver requires PWM to actuate
the motor [30]. The control structure of MPC implemented in
the MATLAB Simulink is shown in Fig. 13.

y− y1
y2 − y1

=
x − x1
x2 − x1

(10)

y− 1
0.5 − 1

=
x − 12
0 − 12

(11)

y = 0.0416666(x) + 0.5 (12)

where x represents the output voltage from the designed
controller, and y represents the steering motor driver’s input
PWM signal.

3) DATA ACQUISITION
All data from each block is logged using Simulink Data
Inspector with a sampling time of 0.0001 seconds. The
Speedgoat performance target machine ensures accurate and
high-resolution logging of data. Analog data is recorded with
a 16-bit resolution. The Simulink Data Inspector allows real-
time inspection of captured data and enables comparison with
time series data at multiple stages and runs simultaneously.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
The robustness of each controller is analysed by how well the
controller canmaintain at the given setpoint, when the vehicle
travels in a speed breaker. The results were obtained for two
different vehicle speeds along the power consumption of each
controller.

1) CLOSED-LOOP CONTROLLER’S STEERING
PERFORMANCE IN JACKED POSITION
The vehicle’s front wheels are lifted using two hydraulic
jacks, and the closed response was logged. The experimental
and simulated results for PD, PID, and MPC controllers,
along with the power consumed by the controller drive
system, are shown in Fig. 14 (a), (b), and (c), respectively.
It was observed that the MPC controller outperformed

the PD and PID controllers with a shorter settling time and
a steady-state error of less than 1%. The power consumed
by the MPC control drive was also lower compared to the
other controllers. The PD controller performed better than
the PID controller because the steering system had a constant
error, and the integral term of the PID controller added
up the error, making the controller system unstable. This
constant steady-state error and high-power consumption are
the reasons behind the performance of the PID controller. The
simulated results matched the experimental results perfectly,
validating the design of the PD, PID, and MPC controllers.

A. OPEN-LOOP RESPONSE
The behavior of the steering is logged for the open-loop
steering system. The results obtained for two different
velocities, 1 km/h and 2 km/h, are shown in Fig. 15 (a) and (b),
respectively.

The displacement of the steering at 1 km/h is significantly
smaller compared to the displacement at 2 km/h. A robust
controller must be developed to maintain the steering at the
respective angle, even when the vehicle encounters external
disturbances such as speed bumps, debris, and rough terrain.

B. REAL-TIME TESTING OF CLOSED-LOOP CONTROLLERS
PERFORMANCE WITH DIFFERENT SAMPLING TIMES
1) SAMPLING TIME OF THE CONTROLLER - 0.001 SEC
Closed loop responses with PD, PID, and MPC controllers
were logged using Simulink data inspector for two different
velocities, 1 km/h and 2 km/h. Fig. 16 (a) and (b) depict
the closed-loop response and power consumption of the PD
controller at these velocities.
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FIGURE 12. PID controller implementation.

FIGURE 13. MPC controller implementation.

At 1 km/h, the PD controller exhibits decent response;
however, at 2 km/h, the PD controller loses its robustness
and the response deviates. The power consumption remains
similar and constant for both velocities, with a maximum
requirement of approximately 40 watts and an average
requirement of around 15 watts. The closed-loop response
and power consumption of the PID controller are illustrated
in Fig. 17 (a) and (b) respectively.

The response of the PID controller, at a speed of 1 km/h,
has effectively maintained the steering position with a
maximum displacement of 0.1 radians. The controller’s
performance remains consistent even as the speed increases
to 2 km/h. Power consumption at these two speeds is similar
and constant. The peak power requirement is approximately
25 watts, with an average requirement of around 8 watts. The
closed-loop response of the MPC controller and its power
consumption are shown in Fig. 18 (a) and (b), respectively,
at two different velocities.

The MPC controller exhibits significant instability, partic-
ularly at the lower speed of 1 km/h. Additionally, the power
consumed by the MPC controller is high, with a maximum
demand of around 60 watts and an average of approximately
25 watts. This instability is primarily caused by small
disturbances on the steeringwheels due to the irregular terrain
of the road surface. Generally, the MPC controller requires
an accurately modeled system with included disturbances,
which necessitates estimating complex model coefficients.

2) SAMPLING TIME OF THE CONTROLLER - 0.002 SEC
The initial sampling time in the closed-loop response for all
the controllers was set to 0.001 seconds. Since the sampling
time depends on the microcontroller used in the actual
system, it is important to vary the sampling time and validate
performance. The sampling time for PD, PID, and MPC
controllers was increased to 0.002 seconds, and the results
were obtained at a constant speed of 1 km/h. The results,
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FIGURE 14. Validation of experimental (Jacked) and simulation
performance of different controllers for the steering system and their
control input.

FIGURE 15. Open-loop response.

showing the power consumed by the controller drive system
with the PD, PID, and MPC controllers, are presented in
Fig. 19 (a), (b), and (c) respectively.

The above results indicate that increasing the sampling
time decreases the performance of all the controllers and
increases the power consumption of the drive system.
Compared to MPC, the performance of the PD and PID
controllers is significantly poorer at higher sampling rates.

• Results demonstrated that the MPC controller surpassed
the PD and PID controllers in jack response, exhibiting
better performance and lower power consumption.
While the PD controller had a steady state error below
1% but a longer rise time than the MPC, the PID
controller experienced a steady state error exceeding
2%.

• During on-road testing at 1 km/h, all controllers aimed
to maintain a reference position of 0 rad. The PD

FIGURE 16. Steering angular position and control input of PD controller
with different vehicle speeds.

FIGURE 17. Steering angular position and control input of PID controller
with different vehicle speeds.

controller achieved an error of less than 1%, the PID
controller performed with an error below 2%, and the
MPC controller struggled with stability due to constant
disturbances. Power consumption was lowest for the
PID controller in this scenario compared to the PD and
MPC controllers.

• At 2 km/h, the PID controller outperformed the PD
controller, which experienced instability initially but
eventually recovered. The MPC controller exhibited
unstable responses but improved compared to the 1 km/h
results. Power consumption remained lower for the
PID controller when compared to the PD and MPC
controllers.

• At 1 km/h with an increased sampling rate of 0.002 sec,
the MPC controller excelled compared to the PD and
PID controllers, which lost stability. TheMPC controller
maintained superior power consumption compared to
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FIGURE 18. Steering angular position and control input of MPC controller
with different vehicle speeds.

FIGURE 19. Steering angular position and control input of different
controllers with speed as 1 km/h and sampling time of 0.002 seconds.

the PD and PID controllers, with the PID controller
peaking at 140 Watts due to instability.

V. CONCLUSION
The study compared PD, PID, and MPC controllers for the
autonomous vehicle’s steering system using real-time data
obtained from the HIL machine in a real modified electric
car under various test scenarios. The results highlighted
the strengths and weaknesses of each controller. The MPC

controller demonstrated superior tracking performance in
the absence of external disturbances. The PD controller
exhibited robustness against constant small disturbances,
while the PID controller performed well in the presence of
impulse disturbances. Power consumption varied among the
controllers, with the MPC controller consistently consuming
less power. Overall, the choice of controller depends on
the specific requirements and the ability to model external
disturbances.

Future research in autonomous vehicle development can
focus on advanced control algorithms beyond PD, PID, and
MPC controllers to enhance steering system performance.
Sensor fusion and perception can be explored to integrate
multiple sensors for improved accuracy. Safety measures
and redundancy mechanisms should be developed to ensure
fail-safe operation. Real-world testing and validation in
various driving scenarios can provide a comprehensive
evaluation. Human-machine interaction aspects, including
driver behavior and interaction interfaces, should be studied
for seamless collaboration. These research directions aim to
advance steering system performance, improve safety, and
enhance the overall development of autonomous vehicles.
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