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ABSTRACT With the integration of multiple energy sources into the power grid makes power quality
disturbances (PQDs) more complex. Dealing with power quality problems requires automatic classification
of PQDs. This paper proposes a novel semi-supervised Graph Convolutional Network (GCN) framework
based on Temporal Ensembling for PQDs classification. Considering both short-term and long-term features
of PQDs, a Visibility Graph (VG) based graph theory model was adopted to process PQDs to highlight
features. In the proposed semi-supervised framework, Graph Convolutional Network was designed to extract
features frommassive PQDs and classify PQDs automatically. Due to the fact that GCNbelongs to supervised
learning, it is necessary to label the data in advance. However, labeling is costly and easily lead to human
mistake. Therefore, this article introduces the Temporal Ensembling algorithm which provides pseudo labels
to reduce the amount of labeled data and has tolerance to incorrect labels. Simulation results prove that
the proposed method is capable of noise resistance, tolerates incorrect labels, and has high classification
performance in both single and composite PQDs.

INDEX TERMS Power quality, graph convolutional network, temporal ensembling, visibility graph.

I. INTRODUCTION
With the integration of diverse renewable energy sources into
the power grid and the increasing utilization of numerous
power electronic devices within the network [1], there is
a noticeable rise in voltage, current, and frequency fluctu-
ations in power systems [2]. These fluctuations pose new
challenges for the reliable and stable operation of the power
grid. Additionally, as power consumption expands, both
electricity consumers and electrical equipment require higher
power quality. Consequently, power quality issues have
gained greater attention [3]. The automated classification of
PQDs is of crucial importance in addressing power quality
problems [4].
In traditional approaches to classifying PQDs through

artificial intelligence or machine learning, the process
generally comprises three stages: feature extraction, feature
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selection, and feature classification. Sun et al. [5] effectively
employed the wavelet transform (WT) to extract performance
index features from the negative sequence components of
PQDs, leveraging the capabilities of feedforward neural
networks for accurate classification. Mahela et al. [6] utilized
multi-resolution analysis based on the S transform (ST)
to obtain diverse signal features, subsequently employing
decision trees for efficient feature classification. Sahani and
Dash [7] utilized Hilbert Transform (HT) to derive the
characteristics of PQDs, proposing a novel class-specific
weighted random vector functional link network classifier
for the recognition of PQDs. Huang et al. [8] employed the
short-time Fourier transform as a time-frequency analysis
tool to examine various types of PQDs. They then introduced
a Binary-SVM-based multi-label classification method to
classify mixed PQDs. Additionally, Cai et al. [9] applied
variational mode decomposition (VMD) to distinguish
between stationary and non-stationary PQDs, extracting
three statistical features from the instantaneous amplitude

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 75249

https://orcid.org/0009-0005-3711-4436
https://orcid.org/0000-0001-5458-9154
https://orcid.org/0000-0002-6257-8145
https://orcid.org/0000-0002-3156-1287


J. Cai et al.: Temporal Ensembling Based Semi-Supervised GCN for PQDs Classification

of the decomposition mode. Furthermore, they developed
a deep stochastic configuration network (DSCN) model
for PQDs classification. Samanta et al. [10] proposed a
down-sampled Kriging Interpolation (KI)-based empirical
mode decomposition (EMD) to enhance the accuracy and
speed of EMD operations. Subsequently, they employed
the extreme learning machine (ELM) for the classification
of PQDs, taking into account all the derived features
through the KI-EMD approach. These methods demonstrate
increased efficiency and accuracy compared to manual
classification. However, with the explosive growth of data in
smart grids and the increasingly complex problem of PQDs
classification [11], the above methods no longer meet the
needs as they separate feature acquisition, selection, and
feature classification.

Deep learning (DL), which has recently emerged,
can effectively address all the aforementioned problems.
DL seamlessly integrates feature extraction and classifi-
cation, automatically detecting relevant information and
categorizing data, while continuously updating its parameters
to optimize performance. DL is utilized in addressing
virtually every kind of problem. More recently, DL has been
frequently employed in tackling PQDs. Balouji and Salor [12]
used PQDs’ voltage images obtained from the power grid.
Shukla et al. [13] used GAF (Gramian Angular Field) to
convert PQDs series into an image. Both [12] and [13]
classify the PQDs images by using a two-dimensional
Convolutional Neural Networks (CNN). Wang and Chen [14]
proposed a novel full closed-loop approach to detect
and classify PQDs based on a deep convolutional neural
network. Wang et al. [15] selected LSTM as the DL
architecture to obtain the temporal features of the signal
and achieve PQDs classification. Deng et al. [16] utilized
Bi-GRU to extract deep features from PQDs and optimized
the shortcomings of the GRU algorithm. The proposed
methodology can determine the type of each element in
the input sequence, which is different from the existing
sequence-to-sequence model employing an encoder–decoder
network. Wang et al. [17] constructed a parallel network of
CNN-GRU, using CNN and GRU to extract short-term and
long-term features from PQDs, respectively, and improve
classification accuracy. Karim et al. [18] combined CNN
and LSTM to extract PQDs features in both time and
space, while incorporating SE modules within the CNN to
improve training efficiency. In the aforementioned research,
CNN excels at extracting short-term features, while RNN
excels at extracting long-term features. To simultaneously
capture both short-term and long-term features of PQDs,
a combination network is required. However, employing
both networks simultaneously would not only increase the
network’s running time but also raise the requirements for
equipment.

The VG, originally proposed by Lacasa et al. [19], trans-
forms time series data into a VG representation, by utilizing
the graph’s topological structure to depict both short-term and
long-term features of time series. This approach effectively

highlights significant structures and outliers within the
sequence. Therefore, it can be used to convert PQDs data to
obtain features. However, VG is graph structured data that
requires Graph Neural Network (GNN) to obtain its features.
In the realm of deep learning, the GCN, introduced by Kipf
and Welling [20] in 2016, has become a focal point for
research. GCN excels at extracting structural features from
graphs. Zheng et al. [21] usedGCN to predict traffic flowwith
the support of historical traffic flow datasets. This method
can accurately estimate the future traffic flow for specific
time periods and regions. Chen et al. [22] applied GCN to
analyze the compound structures, determining their toxicity
and predicting toxicity characteristics based on extensive
chemical databases. Zheng et al. [23] transformed PQDs from
one-dimensional time series into two-dimensional density
maps using Gramian Angular Field (GAF). Subsequently,
they employed GCN for the classification and recognition
of PQDs. However, the data graphs he used were all square
mesh graphs composed of pixel points, which were universal
for different PQDs and did not fully leverage the advantages
of GCN, thus hindering further learning of the network
model.

Methods for classifying PQDs primarily rely on supervised
learning [12], [13], [14], [15], [16], [17], [18], which requires
labeled data throughout the dataset. However, in practical
production scenarios, labeling data incurs significant costs.
In response to this challenge, researchers have turned their
attention to semi-supervised learning. The concept of Tempo-
ral Ensembling, introduced by Laine and Aila [24], revolves
around self-assembly principles. This algorithm strategically
introduces pseudo-labels to unlabeled data, filling in the gaps
left by missing real labels and alleviating the demand for
fully labeled datasets. Meel and Vishwakarma [25] applied
Temporal Ensembling to detect false news and addresses
the significant increase in the speed and quantity of false
news generated on social media, resulting in time-consuming
and expensive data labeling tasks. Ding et al. [26] utilized
Temporal Ensembling for detecting COVID-19 lesions,
resolving issues related to challenging data acquisition
and insufficient annotated data during emergency epidemic
situations. Shi et al. [27] employed Temporal Ensembling
in tissue pathology image analysis to tackle scenarios with
a large number of unlabeled sample images. Temporal
Ensembling proves effective not only in handling data
with insufficient labeling, but also in addressing potential
incorrect labels that may arise during manual labeling
processes.

Based on the above analysis, this paper proposes a
novel GCN semi-supervised framework based on Temporal
Ensembling for PQDs classification. The main contributions
of this article are as follows:

1) Convert the large voltage time series containing PQDs
information into a VG, which reflects short-term and
long-term features of PQDs by showcasing connection
modes and relationships between nodes, thereby high-
lighting significant structures and outliers within the
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data. Meanwhile, the feature input of the node adopts
a feature matrix composed of One-Hot Encoding and
sampled values. This matrix represents the sampling
order and values of the sampling points corresponding
to the nodes in VG. Subsequently, employ a multi-layer
stacked GCN to extract feature information from the
graph structure.

2) Temporal Ensembling algorithm is introduced for the
classification of PQDs, integrating both supervised
and unsupervised learning to facilitate the training of
datasets with a limited number of labeled samples,
thereby reducing expenses associated with manual
data labeling. Simultaneously, it demonstrates robust
tolerance for incorrect labels in the dataset, minimizing
the impact of such errors. Additionally, the algorithm
exhibits resistance to noise.

II. THE METHODS
A. VISIBILITY GRAPH
VG is an algorithm that converts time series into a graph.
Through calculations, it represents the short-term and long-
term features of the time series by utilizing the topological
structure of the graph. This structure includes information
such as the connection mode and relationships between
nodes, as well as the length of edges. The algorithm enables
the application of graph theory tools to characterize time
series, facilitating connections between time series analysis,
nonlinear dynamics, and graph theory. VG has the following
advantages:

1) Important Structural Discovery: In VG, crucial struc-
tural characteristics may manifest as distinct shapes,
connection methods, or clustering patterns compared
to typical nodes. Examples include periodicity, trends,
and other distinctive structures. These unique forma-
tions often signify important information or features
within the dataset, facilitating a deeper understanding
of the inherent correlations and structures within it.

2) Outlier Identification: Outliers in VG may manifest
as nodes with different connection patterns from
surrounding nodes or as nodes occupying special
positions in the graph. These outliers can represent
abnormal behavior or unusual data points within the
data. Observing these distinctive nodes in the graph
makes it easier to identify atypical behaviors in the
dataset.

The construction of the VG involves representing a time
series with bars, where the height of each bar is determined
by the corresponding value in the time series. If the line
connecting two bars is unobstructed by other bars, forming
what is referred to as a visibility line, the following visibility
criteria can be established: There are two points (ti, yi) and
(tj, yj). If i and j are adjacent points, visibility between these
two points must be satisfied. However, if there is another
point (tk , yk ) between i and j, the specific conditions for
visibility that must be satisfied by i and j are illustrated in
Figure 1.

FIGURE 1. Visibility diagram.

According to the similarity principle of triangles, the
values in the figure should meet the (1):

yk − yj
yi − yj

=
tj − tk
tj − ti

(1)

It means that k-th point should satisfy the following
inequality [27]:

yk < yj +
(
yi − yj

)
∗
tj − tk
tj − ti

(2)

There is visibility between points i and j, that is, there is
no vertical bar between i and j that blocks the line of sight
between the two points. Figure 2 and Figure 3 are examples
of one of the PQDs (swell) represented as a bar chart and
converted into a VG:

FIGURE 2. Bars of swell.

Points 12 and 16 serve as special nodes in the temporary
elevation, where they can see more points and occupy a
special position in the transformed VG. They can gather more
information and are also a topological feature of the graph.
This can identify swell in various PQDs. The VG converted
from other PQDs is shown in Figures 4 and 5. Figure 4 shows
the single PQDs, and Figure 5 shows the composite PQDs.
The outliers of PQDs will appear as special nodes in VG,
and the characteristics of each disturbance will be presented
in VG with a special topological structure.

B. NODE FEATURE
The input of GCN includes the topological structure of the
graph and the feature information of nodes. The One-Hot
Encoding is added as the feature value of the node. It is
essentially an identity matrix that can be used to record the
temporal order of each node in the original PQDs and as
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FIGURE 3. VG image converted from Figure 2.

one of the temporal characteristics of PQDs. An identity
matrix In×n is employed as a one-hot encoding matrix,
where n is the length of the time series and the number of
nodes in the graph. Additionally, the values of the sampling

points pi are represented as matrix P =


p1
p2
. . .

pn−1
pn

 in

node order and are combined to form a feature matrix

X =


1 0 . . . 0 0 p1
0 1 . . . 0 0 p2
. . . . . . . . . . . . . . . . . .

0 0 . . . 1 0 pn−1
0 0 . . . 0 1 pn

, serving as the feature input

for nodes

C. GRAPH CONVOLUTIONAL NETWORK
GNN is a neural network model specifically designed for
modeling graph data. It seamlessly integrates deep learning
with graph broadcasting operation algorithms and leverages
both node feature and graph structure information in the
neural network learning process. GNN has demonstrated
excellent feasibility and interpretability in deep learning
applications, particularly in graph analysis. GCN stands
out as the most widely used type of GNN. Given the
feature matrix X and adjacency matrix A, GCN performs
spectral convolution operations by considering nodes and
their first-order neighbors in the graph, as opposed to
the convolution operations in CNN, to capture the spatial
features of the graph. Additionally, GCN applies hierarchical
propagation rules across multiple layers of the network,
further enhancing its representation ability.

GraphG = (V ,E,X) is input of GCN, where V = (v1, v2,
v3, . . . , vn) is the collection of nodes in the graph, E is the

collection of edges in the graph.X = (

x1
x2
. . .

x3
xn

) ∈Rn×m is feature

matrix, where xi as the feature vector of vi,m is the number of
features of node. Define adjacency matrix A ∈ Rn×n, If there
are edges between nodes vi and vj , then Aij = 1, otherwise
Aij = 0.
Graph convolution is a technique that utilizes a local

first-order approximation to spectral graph convolution. The
propagation of node features within the hidden layer of
a specific layer, denoted as layer l, is determined by the
following formula.:

X (l+1)
= σ (ÃX (l)W (l)) (3)

where X (l+1) is output of l-th layer, X (l) is input of
l-th layer, W (l) ∈ Rm

(l)
×m(l+1)

is a learnable parameter
matrix determining the size of the l-th hidden layer node
feature matrix, σ (·) is nonlinear activation function. Ã =
D̂−

1
2 ÂD̂−

1
2 is a symmetric normalized adjacency matrix,

where Â,the self-loop adjacencymatrix, is obtained by adding
the identity matrix I to A, thus introducing self-loops for
each node. During the convolutional layer’s information
aggregation, it includes the information of the node itself.
D̂ = diag(d1, d2, d3, . . . , dn) is a degree matrix, where
di =

∑n
j Âij.

After convolution, the feature vector of the i-th node
is denoted as x(l+1)

i (x(l+1)
i,1 , x(l+1)

i,2 , x(l+1)i,3 , . . . , x(l+1)i,n ), where

x(l+1)
i,j is as follow:

x(l+1)
i,j =

∑n

k=1
ÃikX

(l)
kj (4)

x(l+1)
i,j is the j-th feature value of the i-th node after
convolution. If there is no edge between two nodes (Ãik =
0), the information of the k-th node is not aggregated to
the i-th node after convolution. If Ãik ̸= 0, indicating an
edge between the two nodes, node features are weighted and
summed based on the values in the normalized Laplacian
matrix Ã. According tomatrix multiplication and formula (3),
X (l+1) ∈ Rn×m

(l+1)
, therefore, the parameter matrixW (l) not

only influences the network’s training process to approach
the training target, but also affects the feature output of
nodes to meet the network requirements. The graph features
extracted by the network are represented by the feature values
of nodes. Base on formulas (3) and (4): the computational
complexity of GCN is calculated as O(nnml+nmlml+1) based
on the computational complexity of matrix multiplication,
where n is the number of nodes, ml is the number of
features per node in the l-th layer GCN, ml+1 is the number
of features per node in the l + 1-th layer GCN and the
hidden layer channel size of the l-th layer GCN. The number
of hidden layers can be set by oneself, and the input
node features only participate in the calculation in the first
layer of GCN. Therefore, the main factor affecting the
computational complexity of GCN is the number of nodes.
The more nodes there are, the more complex the calculation
becomes.

In summary, GCN leverages spectral graph convolution
to update node features. The convolution process involves
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FIGURE 4. VG of single PQDs.

FIGURE 5. VG of composite PQDs.

aggregating information from neighboring nodes based on
the normalized Laplacian matrix Ã. The parameter matrix
W influences both the network training outcomes and the

feature outputs of nodes, determining the ability to effectively
capture spatial features within the graph. Through this
process, GCN excel in extracting meaningful graph features,
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representing them through the updated feature values of
individual nodes.

D. TEMPORAL ENSEMBLING ALGORITHM
Temporal Ensembling is a semi-supervised learning
algorithm that combines supervised and unsupervised
learning. It can effectively train datasets with limited labeled
data and a large amount of unlabeled data, thereby reducing
the cost of manually labeling data. Meanwhile, Temporal
Ensembling can also handle incorrect labels in the dataset,
reducing the impact of such labels.

Temporal Ensembling runs as shown in Algorithm 1:

Algorithm 1
Parameter Initialization:
xi = training data
L = set of training input with known labels
yi = labels for labeled inputs xi, i ∈ L
w (t) = unsupervised weight ramp-up function
α = ensemble momentum, 0 ≤α ≤ 1
fθ (x) = Training parameters of neural networks
T = num epochs
Z←0[N×C]1 initialize ensemble predictions
z̃← 0[N×C]1 initialize unsupervised target vectors
for t in [1, T] do
for each minibatch B do
zi← fθ (xi∈B)1 output of neural network
Lossl ← − 1

|B|

∑
i∈(B∩L) log zi [yi]1 supervised loss

Lossu← 1
C|B|

∑
i∈B | |zi−z̃i| |

2
1 unsupervised loss

Losstotal ← Lossl+w (t) ∗Lossu1 total loss
update θ1 update network parameters

end for
Z← α ∗ Z+ (1−α) ∗z1 update temporal ensemble
z̃← Z

1−αt
1 bias correction

end for
return θ

Temporal Ensembling divides its training data into labeled
and unlabeled sets. Throughout the training process, the
algorithm computes supervised loss for the labeled data and
unsupervised loss for all inputs. At the conclusion of each
epoch, the algorithm aggregates the predictions (represented
as z) for all current data. It then updates and outputs a
temporary ensemble, Z, based on the formula (5):

Z = α ∗ Z+ (1− α) ∗ z (5)

where α is the weight parameter that controls the historical
ensemble Z and the current epoch’s ensemble z. During the
initial training, both Z and z were initialized as zero tensors
due to the absence of a historical ensemble from the previous
one. After the first epoch of training, Z = (1− α) ∗ z. Using
formula (6) to correct the startup deviation:

z̃ =
Z

1− αt
(6)

Therefore, Z is an ensemble representing the weighted
average of algorithm outputs from earlier epochs, giving
greater weight to the recent epoch’s outputs compared to
those from distant epochs. t represents the current training
epoch. The supervised loss function is denoted as Lossl(7),
which calculates cross-entropy [28] for the output of labeled
samples and their labels. B represents the dataset of the
smallest batch in each training iteration, while L denotes
the set of labeled datasets within the entire dataset. The
unsupervised loss function, denoted as Lossu(8), calculates
the mean square error between the output of the current
epoch and the historical ensemble output. C is the number
of classifications. The total loss function (9) is the weighted
sum of supervised and unsupervised loss functions:

Lossl = CrossEntropy (zi, yi) = −
1
|B|

∑
i∈(B∩L)

log zi[yi]

(7)

Lossu = MSE (zi,Zi) =
1

C |B|

∑
i∈B

| |zi − z̃i| |2 (8)

Losstotal = Lossl + w(t) ∗ Lossu (9)

The unsupervised component of the loss function is weighted
by the time functionw(t), which increases along the Gaussian
curve from zero, as shown in formula (10):

w(t) = exp[−5 ∗ (1−
t
T
)] (10)

where T is the number of epochs when the unsupervised loss
reaches its maximum weight. w(t) increases the proportion
of unsupervised components as the training iterates. Due
to w(t), the supervised loss factor dominates in the early
stages of training, thereby influencing both the learning
gradient and the overall loss of the framework. In the later
stages, unsupervised loss factors become more significant,
ultimately enabling the achievement of semi-supervised
learning.

III. POWER QUALITY DISTURBANCE CLASSIFICATION
BASED ON GCN WITH TEMPORAL ENSEMBLING
This paper constructs a semi-supervised learning framework
as shown in Figure 6 to classify PQDs. Firstly, the collected
PQDs are labeled as needed, with the unlabeled PQDs
are labeled as −1. The PQDs undergo VG conversion and
one-hot encoding before being input into the GCN for
feature extraction and classification. The GCN consists of
five parts. The first three parts are composed of a graph
convolutional layer and a normalization layer (BN) [29],
stacked together. The graph convolutional layer is used to
extract the features of the graph, and these extracted features
are then normalized through the BN layer to improve the
efficiency of network training. The activation function of
the GCN is the Rectified Linear Unit (ReLU) [30], which
can prevent gradient explosion and network overfitting. The
latter two parts comprise the global pooling layer and the
Linear layer. Through a global pooling layer, the data in each
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FIGURE 6. Proposed Semi-Supervised Learning Framework.

column of the node feature matrix is pooled. By summing
or averaging multiple features of a node, the N (number of
nodes) × M (hidden layer channels) matrix is transformed
into the 1×M matrix. This transformation enables the linear
layer to predict PQDs. The output of GCN is input to
Temporal Ensembling and subjected to loss calculation. The
supervised loss function calculates the loss based on the
predictions of labeled PQDs. All PQDs predictions will
be used to calculate unsupervised loss while updating the
historical ensemble of Temporal Ensembling. The two types
of losses are added by weight to form the final loss of the
framework, and the optimizer optimizes GCN based on it.

The hidden layer channel size of each GCN layer is set
to 64, and the ‘‘esp’’ parameter and attenuation coefficient
momentum in each BN layer is set to 1 × 10−5 and 0.1.
The global pooling layer used global_mean_pool. The input
parameter for the Linear layer is 64 (the number of hidden
layers in the graph convolutional layer), and the output is
13 (the number of types of PQDs). T is set to 20. The
supervised loss function adopts the cross-entropy function,
and the unsupervised loss function adopts the mean square
error function. The optimizer selected is Adam [31], with the
learning rate set to 5 × 10−3. The weight coefficient α set
to 0.6.

IV. SIMULATION AND ANALYSIS
A. SIGNAL GENERATION OF PQDS
Due to the strong randomness and complexity of PQDs in
distribution networks, there are differences between the data

simulated by MATLAB and the measured signals. Therefore,
we have integrated a PQDs generation system with signal

generation and data acquisition functions. The NI
USB-6259 serves as the signal-generating unit, while the NI
ELVIS II functions as the data acquisition unit, as illustrated
in Figure 7. The front panel of the experimental system
is depicted in Figure 8. By programming in LabView,
we control the NI USB-6259 to simulate the required
PQDs and then output them to the NI ELVIS II for signal
acquisition. 13 types of PQDs are generation, comprising
single PQDs (Swell, Sag, Harmonic, Interrupt, Oscillatory
Transient) and composite PQDs (Swell with Harmonic,
Sag with Harmonic, Interrupt with Harmonic, Oscillatory
Transient with Harmonic, Swell with Oscillatory Transient,
Sag with Oscillatory Transient, Swell with Oscillatory
Transient with Harmonic, Sag with Oscillatory Transient
with Harmonic). Using MATLAB and generative systems to
generate half of the data respectively, in order to improve the
generalization ability of the proposed framework. Each PQDs
has 160 sampling points, and each type of PQDs collects the
same number, with 13000 as the training set, 1300 as the
validation set, and 13000 as the testing set.

B. SIMULATION AND ANALYSIS OF PQDS
The computer configuration used for simulation are Intel(R)
Core (TM) i5-8300H CPU @ 2.30GH 2.30 GHZ, 16GB
DDR4 RAM, NVIDIA Geforce GTX 1050Ti.

Before verifying the advantages of the proposed network,
we compared GCN with traditional networks such as CNN,
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FIGURE 7. Experimental hardware framework.

FIGURE 8. Experimental software frame.

LSTM, and GRU. The simulation results, which is shown
in Table 1, suggest that both GCN and CNN exhibit higher
classification accuracy than LSTM and GRU in the absence
of noise, with rates of 99.9%, 98.5%, 97.5%, and 97.3%,
respectively. In the signal-to-noise ratio of 30dB and 40dB
noise, GCN shows better classification performance than
traditional deep learning networks, and surface GCN has
strong noise resistance. The confusion matrix of GCN is
shown in Figure 9 and the types of PQDs in the matrix
are given in the order shown in Table 3. The matrix shows
that GCN exhibits excellent classification ability in both
single and composite PQDs. Therefore, In the case where

the VG graph effectively captures the important structures
and outliers of PQD as different graph features, GCN can
maximize its network performance and perform well in PQD
classification.

TABLE 1. Classification accuracy of different methods in different SNRs.

GCN was utilized as the main network. We also compared
Temporal Ensembling with others semi-learning algorithms,
such as 5-model and mean-teacher. The simulation results,
which is shown in Table 2, suggest that Temporal Ensembling
and other two algorithms exhibit all have higher classification
accuracy in the absence of noise, with rates of 99.4%,
98.1% and 99.2%, respectively. In the signal-to-noise ratio
of 30dB and 40dB noise, Temporal Ensembling shows
better classification performance than other semi-learning
algorithms. In addition, 5-model requires the use of two
identical network structures to handle labeled and unlabeled
data separately and mean-teacher also needs to use a teacher
model and a student model, which means they need to
make two predictions each time they train, while Temporal
Ensembling only makes one prediction each time they train.
Temporal Ensembling is faster in training speed than the other
two algorithms.

TABLE 2. Classification accuracy of semi-learning algorithms in different
SNRs.

Based on the above, GCNwas utilized as the main network
and Temporal Ensembling as the semi-supervised learning
algorithm. Initially, the simulation results of GCN and GCN
with Temporal Ensembling were compared. Subsequently,
GCN with Temporal Ensembling was simulated under
varying noise levels, amounts of labeled data, and amounts of
incorrectly labeled data. The results of these simulations are
presented in Table 3. Notably, in all scenarios, the simulations
achieved exceptionally high classification accuracy, exceed-
ing 99%, with the exception of cases involving a significant
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FIGURE 9. Confusion matrix of GCN.

proportion of incorrect labels (80%), where the accuracy was
96.7%. A detailed simulation and analysis are presented in
the following sections.

1) GCN AND GCN WITH TEMPORAL ENSEMBLING
Figure 10 compares the loss and accuracy during training of
two different scenarios: GCN with all labeled data and GCN
with Temporal Ensembling where only 10% of the data is
labeled.

Both methods exhibit a rapid decrease in the loss
function followed by gradual stabilization. When trained
with fully labeled data, GCN achieved an accuracy of
99.8%. In contrast, GCN with Temporal Ensembling, which
utilized only 10% of labeled data, reached a training
accuracy of 99.6%. According to Table 3, the classification
accuracy of GCN for PQDs is reported as 99.9%. On the
other hand, with the reduced labeled dataset, GCN with
Temporal Ensembling achieved a classification accuracy
of 99.4%. While the simulation results indicate that GCN
outperforms GCN with Temporal Ensembling in terms of
accuracy, it is noteworthy that the latter relies on significantly
fewer labeled data. Despite a mere 0.5% difference in
accuracy, the ability to significantly reduce the amount
of labeled data while sacrificing only a small amount

FIGURE 10. Classification accuracy and loss curves of GCN and GCN with
Temporal Ensembling.

of accuracy is deemed acceptable in practical production
scenarios.

2) GCN WITH TEMPORAL ENSEMBLING IN DIFFERENT
AMOUNT OF LABELED DATA
Adjusting the number of labeled data in the dataset for
comparative simulation, the framework is trained using
datasets where labeled data accounts for 5%, 10%, and 15%
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TABLE 3. Classification accuracy of the proposed method.

of the total data, respectively. The loss and accuracy during
training are depicted in Figure 11.

When labeled data comprises 15%, 10%, and 5% of
the total data, the training accuracy is 99.8%, 99.6%, and
98.5%, respectively, accompanied by a rapid decrease in
loss. We then simulate the three trained frameworks using
a test set; the classification results are shown in Table 3.
The simulation results indicate that, as the proportion of
labeled data decreases, the classification accuracy also
decreases. Specifically, the accuracy is 99.0% when labeled
data comprises 5%, while it is 99.4% when labeled data
comprises both 10% and 15%. These frameworks exhibit high
classification performance under both single and composite
disturbances. Therefore, the proportion of labeled data can

be selected for framework training according to actual needs.
Although a large amount of labeled data ensures fast training
efficiency and high classification accuracy, it also entails a
corresponding increase in cost

3) GCN WITH TEMPORAL ENSEMBLING IN DIFFERENT
NOISES
Train the framework using PQDs datasets without noise and
with SNRs of 30dB and 40dB. Figure 12 shows the training
process curves for these conditions.

The training accuracy without noise is 99.6%, while with
SNRs of 30dB and 40dB, it is 99.4% and 99.3%, respectively,
accompanied by a decrease in loss. Subsequently, we simulate
the three trained frameworks using a test set, and the
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FIGURE 11. Classification accuracy and loss curves under different
number of labeled data.

classification results are presented in Table 3. The simulation
outcomes reveal that the classification accuracy is 99.4% in
the absence of noise, and 99.3% and 99.4% at SNR levels
of 40dB and 30dB, respectively. Furthermore, the framework
demonstrates high classification performance under both
single and composite disturbances, showcasing its robust
noise resistance.

FIGURE 12. Classification accuracy and loss curves under different noise.

4) GCN WITH TEMPORAL ENSEMBLING IN DIFFERENT
AMOUNT OF INCORRECT DATA
Temporal Ensembling has robustness against incorrect labels,
indicating its ability to effectively cope with incorrect or
noisy labels. With the help of Temporal Ensembling, GCN
is trained using datasets with incorrect labels. The proposed
framework is trained with datasets containing 20%, 50%, and
80% incorrect labels. T is set to 200, and the training process
curves are illustrated in Figures 13 and 14.

The final training results revealed a training accuracy of
99.6% when 20% of the labels were incorrect, 98.5% with
50% incorrect labels, and 96.7% with 80% incorrect labels.
The corresponding losses decreased to 0.105, 0.092, and
0.075, respectively. The simulation results for the proposed

FIGURE 13. Classification accuracy curve under different number of
incorrectly labeled data.

FIGURE 14. Loss curve under different number of incorrectly labeled
data.

framework are presented in Table 3. When 20% of the labels
were incorrect, the classification accuracy was 99.5%. With
50% incorrect labels, the accuracy was 98.2%, exhibiting
relatively low performance on swell, specifically with a
classification accuracy of 90%. When 80% of the labels
were incorrect, the classification accuracy was 96.7%, but it
performed poorly on swell and harmonic + swell, achieving
classification accuracies of 82.8% and 86.9%, respectively.

The figures illustrate that both the decrease in loss
and the increase in training accuracy during the early
stages of framework training are slow and fluctuate. The
supervised loss term enforces the mapping function to have
a specific value in the vicinity of labeled input data points.
In the initial stages of framework training, the supervised
loss function value constitutes a significant portion of the
total loss value and the incorrect labels can mislead the
supervised loss function, preventing the framework from
training correctly. On the other hand, the unsupervised loss
term encourages the framework’s mapping function to be flat
in the vicinity of all input data points. Sufficient correct labels
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in each class help anchor the clusters to the correct output
vectors through the supervised loss term. As the framework
progresses, the proportion of unsupervised loss functions
increases that make the total loss function enables the
optimizer to optimize network parameters towards accurate
training results, effectively training the framework. However,
incorrect supervised loss functions consistently impact the
total loss function, causing the training process curve to
fluctuate more noticeably as the number of incorrect labels
increases.

The above results are acceptable when a large number of
incorrect labels are used. The framework has demonstrated
a strong resistance to incorrect labels, as evidenced by our
results, allowing it to reduce the effort of human error.

V. CONCLUSION
This paper proposes a Temporal Ensembling based
semi-supervised GCN for PQDs classification:

(1) By converting PQDs to VG, the short-term and
long-term features f the time series are translated into the
topological structure of the graph. The significant structures
and outliers in PQDs are represented as characteristic
connection methods and specific nodes in the graph, effec-
tively addressing the challenges of feature extraction in
PQDs. The features of the nodes are encoded using one-
hot encoding, which can be used as one of the temporal
features of PQDs. GCN is employed to extract feature
information from the VG, encompassing both nodes and their
relationships, successfully capturing complex patterns and
structural information within the VG. Ultimately, this leads
to the accurate classification of PQDs. Through comparative
experiments with traditional deep learning networks such as
CNN, LSTM, and GRU, it has been demonstrated that, with
the assistance of VG, GCN exhibits stronger classification
performance and noise resistance.

(2) Temporal Ensembling is used for semi-supervised
learning. This algorithm uses the weighted sum of supervised
and unsupervised learning loss functions as the loss output
of the network framework, and optimizes the parameters
of the GCN. It enables semi-supervised training on limited
labeled PQDs, thereby reducing production costs. This
algorithm can stabilize the training process of the model
by introducing a temporal integration strategy. During the
training process, the algorithm not only focuses on the current
batch of samples, but also takes into account information
from previous batches, thereby reducing training instability
caused by data distribution differences between batches. the
algorithm calculates the weighted sum of each output and
historical set as pseudo labels for PQDs in the next round of
unsupervised learning. This makes the Temporal Ensembling
algorithm can better address these challenges and improve the
robustness of themodel when dealingwith datasets with noise
or inaccurate labels.

The proposed method combines the advantages of VG,
GCN, and Temporal Ensembling mentioned above to achieve
efficient classification of PQDs.

Future work on the classification of PQDs should center on
the utilization of models. The proposed deep semi-supervised
framework, being relatively lightweight and possessing swift
computational speed, holds promise for deployment on
embedded devices and integration into practical production.
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