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ABSTRACT Chemotherapy, a vital cancer treatment, operates by delivering drugs to target and eliminate
cancer cells in the patient body. Mathematical models like the log-kill, Norton-Simon, and Emax hypotheses
describe the growth/shrinking of the cancerous tumor due to the interaction and administration of the drugs
with the tumor. This paper proposes a robust control approach based on artificial time-delayed theory to
track the desired rate of change in tumor volume under model uncertainties and disturbances. The proposed
algorithm relaxes the assumption on a priori knowledge of disturbance bound and its derivative. Unlike
traditional methods, the control structure is simple, and the total disturbance is estimated by analyzing
the previous input and output of the feedback state and control variables. Thus, robustness is ensured
without relying on high-frequency switching or high gain. The stability analysis of the proposed scheme is
investigated based on the Lyapunov theory. Moreover, extensive simulation results with comparative analysis
affirm the efficacy of the proposed approach.

INDEX TERMS Cancer chemotherapy, cell-kill hypotheses, robust control, trajectory tracking, time-delayed
control.

I. INTRODUCTION
The severe disease of cancer, which is one of the most
potent killers of humans worldwide, is characterized by
imbalances in the processes of cellular growth (proliferation)
and programmed cell death, also known as apoptosis [1].
This imbalance, if untreated, leads to the development
of cancerous malignancies, such as out-of-control tumors,
blood-borne illness, and organ failure, among others. This
may result in the ultimate demise of the human due to these
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anomalies. Thus, effective treatment options for cancer are
a widely explored area in literature and practice for their
potential to save countless human lives [2], [3], [4], [5],
[6]. Although the size of a malignant mass is frequently
described with reference to the number of cells, nonetheless,
cancer cells generally multiply exponentially. The size of
the cancerous mass is assessed empirically as a volume,
and numerous methods of treating cancer patients have
developed over time. Surgery, chemotherapy, radiation, and
immunotherapy are all used to tackle and manage cancer
in humans. These can be used separately or in conjunction
with one another [7]. However, clinical chemotherapy is one
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of the most popular and effective cancer treatment options
that has grown in popularity and significance over the past
several years. Chemotherapy for cancer seeks to minimize the
presence of malignant cells after a specific amount of time or
perhaps completely eliminate them. A predefined amount of
drugs is injected into the patient’s body during chemotherapy,
either intravenously or orally. The goal of chemotherapy is to
either totally eliminate cancer cells or lower their number to
a safe minimum.

Chemotherapy is a powerful treatment that can have side
effects. The chemotherapy medications have an immediate
adverse effect of raising the body’s toxicity levels, which
damages healthy, normal cells. Therefore, choosing the right
medication dose is essential for the chemotherapy procedure
to destroy cancer cells effectively, and save as many healthy
and normal cells as possible. The use of control strategies
to develop effective approaches for cancer treatment has
gained traction in the last decade, as can be seen from
[7], [8], and [9]. Model-based control techniques are crucial
for manipulating drug consumption, which in turn, directly
affects the volume of the tumor in cancer treatment. In such
approaches, designing an efficient feedback controller is
impossible without a thorough comprehension of the process
dynamics that has to be regulated. Developing a mathe-
matical model that can accurately represent the physical
process is crucial. However, comprehending the complicated
biochemical interplay between chemotherapy medications,
immune cells, healthy cells, and dangerous tumor cells is
difficult. The literature uses a variety of mathematical models
to illustrate these intricate biological connections. Several
models have been created for the chemotherapy process’s
destruction of malignant tumor cells. Among these, widely
used cell-kill models include the nonlinear mathematical
models of log kill [10], Norton-Simon [11], and Emax [12],
which are discussed in this work. Each approach (Log-
kill, Norton-Simon, Emax) has unique strengths suited to
different scenarios. The best choice depends on the specific
question and the patient’s situation. For instance, the log-kill
model might be the most fitting for estimating initial tumor
reduction. The Norton-Simon model could be ideal when
predicting treatment response based on tumor size and
dosage. To optimize drug dosing while minimizing toxicity,
the Emax model offers a more realistic perspective.
Open loop unconstrained and constrained control have

been devised in [13] and [14], and based on these selected
theories, viable treatment plans vary in these study papers.
As a constrained medication delivery control for nonlinear
models, the bang-bang control approach has been applied
in [13], and it has also been demonstrated how to apply a
closed-loop scheme with a quadratic performance objective.
In [14] and [15], the optimal control issue is reconstructed
as a straightforward numerical problem where the control
variable is approximated by a constant value over a
predetermined time. Such open-loop control strategies are
employed during the chemotherapy procedure. Numerous

studies investigating the chemotherapy treatment process
use optimal control methodologies, as seen from [16] and
[17]. However, it is of utmost importance that analysis
and control design must take into account the uncertainties
impacting cancer models in order to ascertain the most
effective medication administration therapy. Process param-
eters, parasitic/unmodeled dynamics, and unknown external
perturbations are the sources of these uncertainties. Thus, it is
highly possible that some of the described control strategies
won’t work effectively under a range of operating situations
and in the face of uncertainty. Optimal and robust control
strategies are explored for cancer treatment in [18] and [19]
using model predictive and LMI-based control, respectively.
However, these methods are model-based control. In [20], the
effects of three cancer chemotherapeutic strategies: optimal
linear regulation, optimal control based on the variation
of extremals, and H∞ robust control have been reported.
Based on a linearized cell kill model, these controllers
were proposed, and therefore, only within a small radius
of the operating point where the nonlinear cell kill models
are linearized can the performance of these controllers be
assured.

Various robust control techniques are also investigated for
cancer treatment procedures, namely, adaptive control [21],
sliding mode control (SMC) [22], fractional order con-
trol [23], fuzzy control [24], extended Kalman filter [25], etc.
In [26], an adaptive and robust control technique is developed
that can effectively modify drug delivery schedules, with the
potential to reduce tumor growth. Further, a model reference
adaptive control (MRAC) strategy for personalized drug
delivery protocols in cancer treatment is proposed in [27].
Through state-dependent Riccati equations (SDRE) within
the MRAC framework, optimal drug delivery strategies are
determined for a particular patient with unknown parameters.
In [28], an adaptive control strategy is developed to reduce
the volume of cancerous cells and identify tumor parameters
online during the chemotherapy process. A fuzzy logic-based
finite time backstepping control for delivering cancer
immunotherapy drugs is proposed in [29]. This scheme
uses fuzzy logic to handle patient response uncertainties
and achieves faster tumor reduction. In [21], an enhanced
Kalman filter observer with an adaptive control technique is
reported. The controller modifies the medication dosages in
chemotherapy procedures and regulates the state of tumor,
immune, and normal cells. In the proposed study, three
kinds of cell-kill hypotheses are investigated. The control
scheme aims to follow a predetermined reference value of
tumor volume following chemotherapy administration for a
set amount of time. Further, the controller needs to tackle
exogenous disturbances and model uncertainties.

Utilizing the traditional control methodologies to design
an effective approach for tackling the problem of tumor
growth management under the effect of uncertainties and
having a highly nonlinear structure is difficult. The use of
nonlinear controllers in the biomedical field has increased
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significantly. SMC is one such nonlinear control method that
is simple in design, achieves faster system response, and
attenuates parametric uncertainties and external disturbances.
The SMC has been incorporated in various biomedical
research, such as the regulation of human blood sugar [30],
[31], artificial pancreas in type 1 diabetes patients [32],
cancer chemotherapy treatment [33], [34], [35], [36], etc.
However, the major issue with the SMC is input chattering
due to the switching function in the control law. The
higher-order SMC techniques were incorporated in [34], [36],
and [35] to address the chattering problem. However, the
formulation of control scheme then becomes complex as
it employs the exact differential observers to estimate the
higher-order state variables [37]. Besides, the SMC schemes
in [33], [34], and [35] assume a priori upper bound knowledge
of disturbance for designing the control law, which is not
always practically feasible.

In this regard, the technique of time-delayed estimation
(TDE) is proposed to estimate the uncertainties and the
unmodelled dynamics of the considered system to design a
time-delayed control (TDC) methodology [38], [39], [40],
[41]. This approach alleviates the conservative assumption
of apriori knowledge of upper bounds and also of bounded
uncertainties, provided the uncertainties are slowly varying
with respect to the control cycle. In the TDC strategy, the
uncertainties along with the unknown parts of the system
dynamics are effectively estimated utilizing the data from
prior instant through the use of an artificial delay, which is
introduced for the control law formulation in an otherwise
delay-free system.

The primary contributions of this work can be listed as

• Unlike the aforementionedmodel-based control schemes,
the proposed time delay-based control structure for the
nonlinear cell-kill models is model-free. With the use
of immediate past input and output information, the
proposed control is devised.

• The controller design doesn’t require prior information
about the bounds of uncertainties and disturbances.
Therefore, it relaxes the restrictive assumption of
uncertainties in the system model. Further, to estab-
lish the efficacy of the proposed control design,
it has been analyzed on multiple hypotheses of cancer
chemotherapy.

• A comprehensive theoretical stability analysis is pre-
sented using Lyapunov theory, which ensures tracking
capabilities and robustness against various uncertainties.
Further, Lyapunov analysis affirms a uniformly ulti-
mately bounded (UUB) stability.

• A detailed comparison with the state-of-the-art super-
twisting algorithm for the discussed problem is also
included in this work.

The rest of the paper is organized as follows: The
considered model is described in Section II, followed by the
formulation of the control law in Section III. The stability

analysis and the results are reported in Section IV and V,
respectively, while the conclusion is presented in Section VI.

II. MODEL DESCRIPTION
Mathematical modeling plays a pivotal role in cancer research
by providing a rigorous tool that can be utilized to influence
and enhance the efficacy of cancer treatment. Thus, the
chemotherapy process has been modeled in the literature
using dynamical systems as presented in [14] and [42]. Also,
based on in-vitro research, cell death was contemplated to be
proportional to the tumor population in some studies [10].
Instead of a fixed quantity, a constant percentage of the
tumor population was eliminated by a particular dosage of
medications. Therefore, it may be deduced that a malignant
tumor’s volume decreases more quickly when it has a big
population than when it has a relatively small population.

The log-kill mechanism is an alternate term for this
cell-killing theory, however this technique was unable to
adequately demonstrate the nature of cell death for humans
and certain experimental solid tumors. The growing process
of a tumor volume is expressed in the study using a particular
growth function (Gompertzian growth curve [43]). There
is an occurrence of a paradox with the log-kill hypothesis
regarding acute lymphoblastic leukemia and Hodgkin’s
disease, where the decrease in tumor volumewas seen to obey
a completely different function [11]. An alternative theory
was devised by [11], which suggested that the cell-kill was
related to the rate of tumor population growth.

Another theory put out in [12] that suggested an enzyme
should assimilate the tumor volume before chemotherapy
medications are delivered. The theory is known as the
Emax hypothesis. The metabolic process produces a saturable
function of cell-kill. Following is the generalized dynamics
of a cell-kill model:

dx
dt

= rx9(x) − 0(x, t) (1)

where, x is the tumor volume, r is the rate at which x
is expanding, 9(x) is the generalized growth function, and
0(x, t) stands for the drug’s pharmacodynamic effects. Here,
the Gompertzian type growth function is considered, and
mathematically it is stated as,

9(x) = ln(k/x) (2)

with k being the scaling factor. The mathematical expressions
of the 0(x, t) for the three cell-kill hypotheses are as follows:

0(x, t) =
δx
k
u(t), for log-kill hypothesis, (3a)

0(x, t) = δ9(x)u(t), for Norton-Simon hypothesis, (3b)

0(x, t) =
δx

x + λ
u(t), for Emax hypothesis (3c)

where u(t) represents the controlled usage of chemotherapeu-
tic medicines, constant λ is clinically observed, and δ is a
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constant proportional to the amount of drug use. For ease of
expression, the following transformations are employed:

x̄ = x/k, δ̄ = δ/k, λ̄ = λ/k. (4)

The aforementioned hypotheses (1), (2), and (3) can be
rewritten in terms of the transformed variable as:

For log-kill hypothesis,

dx̄
dt

= −rx̄ ln(x̄) − δx̄u(t). (5)

For Norton-Simon hypothesis,

dx̄
dt

= − ln(x̄) (rx̄ − δu(t)) . (6)

And for Emax hypothesis,

dx̄
dt

= −rx̄ ln(x̄) −
δx̄

x̄ + λ
u(t). (7)

The clinically determined starting condition for the tumor
volume is x̄(0) = x0.

III. CONTROLLER DESIGN
This section investigates a robust control strategy using TDC
for the cancer treatment procedure with cell-kill hypothesis.
According to clinical findings, a patient’s tumor volume
should decrease or reach a risk-free limit after chemother-
apeutic treatment. The standard practice recommends a set
amount of time for therapy. The tumor volume x(t) should
decrease along a targeted trajectory during the course of
treatment.
Control Objective: Given the three cell-kill models

(5)–(7), the proposed controller aims to track the reference
tumor growth trajectory x̄r (t) in the presence of perturbations
and model uncertainties without knowing their upper bounds.

The equations of three cell-kill based cancer chemotherapy
process models (5)–(7) can be expressed in a more general-
ized way as:

˙̄x = f (x̄) + g(x̄)u (8)

where x̄ ∈ R is the tumor volume and u ∈ R
is the controlled drug input. Moreover, in the presence
of unmodelled dynamics and/or unknown non-dissipating
disturbance (let’s say d(t) ∈ R), the system model (8) can
be redefined as

˙̄x = f (x̄) + g(x̄)u+ d(t) (9)

Assumption 1: The disturbance d(t) is bounded with an
unknown bound.

A. TIME-DELAYED CONTROL LAW
This section presents a robust tracking scheme such that the
tumor volume x̄(t) at time t follows a reference trajectory
represented as x̄r (t). For that, we first denote the error in
tumor volume as σ = x̄ − x̄r . Differentiating σ with respect

to time and substituting the expression for ˙̄x as (9), the error
dynamics is:

σ̇ = f (x̄) + g(x̄)u+ d(t) − ˙̄xr (10)

A function that merges the states and uncertainties is taken
as f̄ (x̄) = f (x̄) + d − ˙̄xr . The error dynamics (10) now is
expressed as

σ̇ = f̄ (x̄) + g(x̄)u (11)

Considering g(x̄) ̸= 0, let us assume ḡ(x̄) = g−1(x̄) and
multiply ḡ(x̄) to the both sides of (11) to obtain

ḡ(x̄)σ̇ = g1(x̄) + u (12)

where g1(x̄) = ḡ(x̄)f̄ (x̄). Adding and subtracting h(x̄)σ̇
in (12), we obtain,

h(x̄)σ̇ = ḡ1(x̄) + u (13)

where ḡ1(x̄) = ḡ(x̄)f̄ (x̄) + [h(x̄) − ḡ(x̄)]σ̇ and h(x̄) is a
user-defined positive function, which is discussed more in
detail in later section. The arguments of functions for (13) are
henceforth dropped in this work for the purposes of brevity.
Further, the parameters, which are explicit functions of time,
would from now on be represented as h(t) and ḡ1(t) instead
of h(x̄) and ḡ1(x̄). Therefore, (13) now is:

h(t)σ̇ (t) = ḡ1(t) + u(t). (14)

For deriving the stabilizing control, u(t) for (14), an artificial
time-delay philosophy has been utilized as

u(t) = h(t)v(t) − ĝ1(t), (15)

where the estimated value of ḡ1(t) is represented as ĝ1(t) and
the auxiliary input v(t), which is the closed loop feedback
control law is given as

v(t) = −Kσ (t) (16)

where K is the gain designed for the controller. Now,
utilizing (15) and (16), (14) can be re-written as

h(t)[σ̇ (t) + Kσ (t)] = ḡ1(t) − ĝ1(t)

⇒ σ̇ (t) + Kσ (t) = h−1(t)[ḡ1(t) − ĝ1(t)] (17)

Hence, the closed loop error dynamics is obtained as

σ̇ (t) + Kσ (t) = ξ (t) (18)

where ξ (t) = h−1(t)[ḡ1(t) − ĝ1(t)]. It should be noted
that when ξ (t) goes to zero, by selecting an appropriate
controller gainK , the closed loop system can be steered to the
origin. This would lead to an ideal tracking behavior of x̄r (t).
However, as ḡ1(t) is estimated by ĝ1(t), the estimation error
denoted by ξ (t) appears in (18). Also, ḡ1(t) can be expressed
by using (14) as

ḡ1(t) = h(t)σ̇ (t) − u(t) (19)

The TDE approach is used in this study to complete the
necessary estimation. The approach calculates the estimated
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FIGURE 1. Block diagram for the proposed ATDC scheme.

value ĝ1(t) using input-output measurement data and knowl-
edge of system dynamics. The ideal estimation is obtained
when ĝ1(t) is computed utilizing measurement data of the
current time instant t , as can be seen from the expression (19).
Such a need, however, shows the presence of control input and
other state measurements at that specific instant in time. In a
real-world setting, such an implementation is not possible,
and instead, it is possible to predict the consequences of
uncertainties by using measurement data from the immediate
previous instant of time. Without a doubt, such an approach
leads to a near-perfect estimate as the time difference between
the present and earlier timestamps approaches zero. The
estimated value is then represented as a time-delayed version
of the preceding instant as follows:

ĝ1(t) ≈ ḡ1(t − γ ) (20)

where γ is a small delay introduced artificially, representing
the difference between two consecutive time instances.
From (20), it can be intuitively concluded that introducing a
time-delay γ , which is small enough, would ultimately result
in a relatively smaller estimation error ξ (t). Since, in practical
applications, the sampling interval of the onboard processor
is the smallest time realizable. Thus, the time-delay γ is also
chosen to be the same for this work. Thus, the estimate in
time-delayed estimation philosophy is computed as

ĝ1(t) ≈ ḡ1(t − γ ) = h(t − γ )σ̇ (t − γ ) − u(t − γ ) (21)

Finally, for closed loop system (18), the control law is
obtained by utilizing (20) and (21) in (15) as

u(t) = h(t)v(t) − h(t − γ )σ̇ (t − γ ) + u(t − γ ). (22)

The schematic diagram for the proposed ATDC algorithm
is shown in Fig. 1. In this block representation, the innermost
loop gives the information of the immediate past value of
input u(t − γ ). While the middle loop updates the controller
with the immediate past value of error derivative term
σ̇ (t − γ ). The proposed controller also uses the current
error value σ (t), which is fed through the outermost loop.
The chemotherapy process is under the influence of model
uncertainties and disturbances as well.

IV. STABILITY ANALYSIS
The stability analysis for the error system in (18) on
application of the TDC law in (22), is derived in this section.

The following assumption has to be taken into consideration
for the implementation of the TDC-based control law.
Assumption 2: The lumped uncertainties f̄ (x̄(t)), very

slowly with time for the error dynamics described in (11)
and any variation appearing in v(t), which is the feedback
auxiliary input is bounded between successive instants of
time.

In real-time cases, a tumor in the human body does not
exhibit a sudden abrupt growth in a very short span of time.
By taking practical scenarios into consideration, it can be
concluded that Assumption 2 is a realistic constraint that
has been considered in this work. Such an assumption leads
to the boundedness of estimation error under the proposed
robust philosophy, which has been presented in the following
lemma.
Lemma 1: With Assumption 2 being satisfied, the esti-

mation error ξ (t) at any time instant t obtained as a result
of implementation of TDE scheme (20) and robust control
law (22), remains bounded when the following condition
holds ∥∥∥ḡ−1(t)h(t) − 1

∥∥∥ < 1, ∀ t ≥ 0. (23)

Proof: In terms of auxiliary input v(t), Equation (18) is
re-written to represent the estimation error ξ (t) as

ξ (t) = σ̇ (t)−v(t). (24)

With a factor ḡ(t) multiplied to both sides of (24) and
using (12), the above expression appears as

ḡ(t)ξ (t) = g1(t) + u(t) − ḡ(t)v(t). (25)

Now consider the input u(t) designed using TDC law (22)
with u(t − γ ) replaced with time-delayed version of
equation (12) as u(t − γ ) = ḡ(t − γ )σ̇ (t − γ ) − g1(t − γ ),
to yield

u(t) = h(t)v(t) −
{
h(t − γ ) − ḡ(t − γ )

}
σ̇ (t − γ ) − g1(t − γ ).

(26)

Next, the control input u(t) represented as (26) is used to
modify equation (25) as follows

ḡ(t)ξ (t) =
{
h(t) − ḡ(t)

}
v(t) + g1(t) − g1(t − γ )

−
{
h(t − γ ) − ḡ(t − γ )

}
σ̇ (t − γ ). (27)

The term {h(t) − ḡ(t)} v(t − γ ) is added and subtracted to
further modify the above expression as

ḡ(t)ξ (t) =
{
h(t) − ḡ(t)

}{
v(t)−v(t − γ )

}
+ g1(t)

−g1(t − γ ) −
{
h(t − γ ) − ḡ(t − γ )

}
σ̇ (t − γ )

+
{
h(t) − ḡ(t)

}
v(t − γ ). (28)

Note the auxiliary input in time-delayed form can be obtained
from (24) as v(t − γ ) = σ̇ (t − γ ) − ξ (t − γ ). Replacing the
expression of v(t−γ ) in the last term of the above expression,
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equation (28) is achieved as

ḡ(t)ξ (t) = −
{
h(t) − ḡ(t)

}
ξ (t − γ ) + g1(t) − g1(t − γ )

+
{
ḡ(t − γ ) − ḡ(t) + h(t)−h(t − γ )

}
σ̇ (t − γ )

+
{
h(t) − ḡ(t)

}{
v(t)−v(t − γ )

}
. (29)

Recall that the control law u(t) stands for the amount of
chemotherapeutic medicine that is required to be injected into
a patient body. Consecutive injection of two dosages of drugs
into the patient’s body and corresponding bodily response
in zero time duration is physically impossible, and hence,
the smallest time interval between two consecutive drug
injections should be a small scalar, at least in the time unit
of minutes. Thus, the possible selection of the time delay γ

should also be considered accordingly. In such a scenario, the
error system can be represented in the discrete-time domain
with time instant t and (t−γ ) denoted as k th and (k−1)th time
instant, respectively. In discrete-time domain, the expression
for ξ using (29) appears as

ḡ(k)ξ (k) = −
{
h(k) − ḡ(k)

}
ξ (k − 1) + g1(k) − g1(k − 1)

+
{
ḡ(k − 1) − ḡ(k) + h(k)−h(k − 1)

}
σ̇ (k − 1)

+
{
h(k) − ḡ(k)

}{
v(k)−v(k − 1)

}
. (30)

The factor ḡ−1(k) is multiplied to the left and right sides
of (30) to yield

ξ (k) = −
{
ḡ−1(k)h(k) − 1

}
ξ (k − 1)

+
{
ḡ−1(k)h(k) − 1

}
µ1(k − 1)

− µ2(k − 1)
{
ḡ(k − 1)−1h(k − 1) − 1

}
µ3(k − 1)

+
{
ḡ−1(k)h(k) − 1

}
µ3(k − 1) + µ4(k − 1) (31)

where

µ1(k − 1) =
{
v(k)−v(k − 1)

}
, (32a)

µ2(k − 1) = ḡ−1(k)ḡ(k − 1), (32b)

µ3(k − 1) = σ̇ (k − 1), (32c)

µ4(k − 1) = ḡ−1(k)
{
g1(k) − g1(k − 1)

}
. (32d)

Assumption 2 bounds the functions µ1(k− 1) and µ2(k− 1).
The user chooses the reference attitude trajectory x̄r (k) and
can design it to keep the reference time derivative ˙̄xr (k)
bounded. With this in mind, Assumption 2 ensures that the
error in the rate of tumor growth in volume µ3(k − 1) is
bounded using equation (11). Additionally, slowly varying
uncertainties, as considered in the TDE methodology, ensure
that µ4(k − 1) is bounded. Thus, one arrives at the following
condition that affirms the boundedness of the estimation error
ξ (k). ∥∥∥ḡ−1(k)h(k) − 1

∥∥∥ < 1, ∀ k ∈ Z+. (33)

The subsequent stability theorem is derived fromLemma 1,
which is stated as follows.
Theorem 1: The error dynamics (11) under the application

of the control (22) remains UUB stable.

Proof: Considering Lyapunov function as

V =
1
2
σ 2. (34)

The first time derivative of the above equation provides

V̇ = σ σ̇ . (35)

By replacing σ̇ with the closed-loop error dynamics (18),
equation (35) is seen to evolve as

V̇ = σ (−Kσ + ξ ),

⇒ V̇ = −Kσ 2
+ σξ,

⇒ V̇ ≤ −K ∥σ∥
2
+ ∥σ∥ ∥ξ∥ . (36)

Note that Lemma 1 already confirms that the estimation error
ξ obtained as a result of the implementation of time-delayed
estimation (20) philosophy remains bounded. Thus, V̇ can be
shown to be negative definite if the following condition is
satisfied

K ∥σ∥
2 > ∥σ∥ ∥ξ∥ ,

∥σ∥ >
∥ξ∥

K
= ℧. (37)

The closed-loop system (18) has UUB stability as it is
affirmed by the condition (37), and the stability bound is
given by ℧.
Remark 1: The residual bound ℧ is a function of estima-

tion error ξ and controller gain K . Consequently, increasing
the value of K and/or decreasing the sampling time γ can
further reduce ℧.
Remark 2: For accurate time delay estimation, it’s advis-

able to choose γ as small as possible. However, there’s a
practical limit to how fast a processor can actually take
samples. Therefore, γ is selected as the processor’s sampling
time. It’s important to remember that faster sampling (smaller
γ ) typically comes with a higher cost for the processor.
Therefore, γ is selected to be the sampling instant for the
processor. It is to be noted that the shorter the sampling time
of the processor, the higher its cost will be. There’s a trade-off
between accuracy and cost.
Remark 3: With low-cost processors having large sam-

pling intervals, raising the controller gains under the proposed
scheme will become necessary. However, it’s important to
recognize that setting the controller gain too high can lead
to excessive transients, potentially pushing systems toward
instability.

V. NUMERICAL ANALYSIS
This section demonstrates the simulation analysis of the pro-
posed TDC scheme for the aforementioned cell-kill hypothe-
ses (5)-(7). Moreover, this work compares the efficacy of the
proposed approach with the powerful super twisting variant
of the well-established robust control technique of sliding
mode control (ST-SMC) presented in [33]. Depending on
the recommendations made bymedical professionals, various
therapy lengths can be suggested. For this study, a 15-day
chemotherapy treatment course is adopted.

77176 VOLUME 12, 2024



R. Sarkar et al.: Robust Control for Cancer Chemotherapy

FIGURE 2. The response of the proposed TDC technique and the comparative ST-SMC technique for the log-kill hypothesis.

FIGURE 3. The response of the proposed TDC technique and the comparative ST-SMC technique for Norton-Simon hypothesis.

FIGURE 4. The response of the proposed TDC technique and the comparative ST-SMC technique for Emax hypothesis.

TABLE 1. Model parameters.

The desired tumor volume decay has the following
form [33]:

x̄r (t) = b+ (x̄(0) − b)e−at (38)

with a being the rate of tumor volume reduction and b being
the required steady-state level. These constant reference
values in (38) depend on how long a patient is treated. In [33],
parameter values of a and b are chosen as a = 0.4 and
b = 0.01 based on the chemotherapy treatment period of
15 days. Other parameters of all cell-kill models are tabulated
in Table 1. The expression of exogenous disturbance for the
cell-kill system is taken as d = 10−2

× (1 − sin(t)) [33].
The control parameter values of the proposed TDC

approach and the ST-SMC approach under different hypothe-
ses are illustrated in Table 2. The sampling time of the
processor has been considered to be γ = 0.01 sec.
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TABLE 2. Parameter values of controls under different hypotheses.

TABLE 3. Performance comparison for log-kill hypothesis.

TABLE 4. Performance comparison for Norton-Simon hypothesis.

A. COMPARATIVE PERFORMANCE WITH LOG-KILL
HYPOTHESIS
The performance of the TDC and ST-SMC strategies under
the log-kill hypothesis is compared in this subsection.
The behavior of tumor volume in a log-kill chemotherapy
procedure under ST-SMC and TDC schemes is demonstrated
in Fig. 2(a). The tumor volume tracking response in the
proposed TDC method has a faster convergence with a
lower maximum overshoot value than the ST-SMC design.
The tracking error response in Fig. 2(b) also validates
the superior performance of the TDC approach, where the
error state converges to zero within 0.2 days. Figure 2(c)
displays the control input or chemotherapeutic medication
given to the patient under two control approaches. Moreover,
other performance measures, like the amount of drug usage
(calculated through the area under the curve of Fig. 2(c)),
maximum overshoot, and convergence bound, are tabulated
in Table 3. These performance indices also indicate better
results for the proposed algorithm with the same amount of
drug usage.

B. COMPARATIVE PERFORMANCE WITH NORTON-SIMON
HYPOTHESIS
The simulation results of both the control schemes under
the Norton-Simon hypothesis are illustrated in Fig. 3. The
tracking performance of tumor volume under the proposed
controller is quicker with better transient error response than
the ST-SMC design, as shown in Fig. 3(a) and Fig. 3(b).
Moreover, the amount of medication usage (control input) is
also lesser in the TDC approach, as seen from Fig. 3(c) and
Table 4. Likewise, the TDC design performs better in other
measures as well, which are depicted in Table 4.

C. COMPARATIVE PERFORMANCE WITH EMAX
HYPOTHESIS
Figure 4 illustrates the comparative performance of TDC
and ST-SMC under Emax procedure. In the case of TDC

TABLE 5. Performance comparison for Emax hypothesis.

design, tumor volume reaches the desired trajectory more
quickly than ST-SMC, as shown in Fig. 4(a), and has a better
transient error behavior, as shown in Fig. 4(b). The controlled
medication input for the TDC and ST-SMC is shown in
Fig. 4(c). The comparative measure in Table 5 also indicates a
more proficient performance of the proposed controller over
TDC. The control response under all three cell-kill-based
models shows that the tracking of tumor volume is successful
even under the influence of unknown disturbance.

VI. CONCLUSION
The quantity of cancer cells within a patient’s body deter-
mines how serious their cancer is. Therefore, reducing these
cancer cell numbers is a primary goal of most therapeutic
methods. In this paper, three cell-kill based models for
cancer chemotherapy were investigated using the proposed
time-delayed control methodology to reduce the cancer
cells to zero. The designed control approach effectively
compensates for the effects of unknown disturbances and
the ambiguous parametric effect without knowing their
bounds. The performance of the proposed control approach
gives the predicted satisfactory results to the simulations of
three cell-kill models for cancer treatment function. In a
physical treatment method, chemotherapy medicines are
never administered continuously. However, the trajectory
of continuous-time control input will indeed be directed
toward choosing the medicine dose and distribution method
intermittently after a certain duty cycle. Thus inspiring a
new concept of hybrid chemotherapy treatment modeling in
the future. The extension of this research work will focus
on the effect of measurement noise on the performance of
cancer therapy medication diagnoses. The future extension
of this work will also explore the scalability of the proposed
algorithm to more complex scenarios with practical real-time
datasets.
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