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ABSTRACT In a novel application of 1D Convolutional Neural Networks (1D-CNN), this study pioneers a
tri-class classification framework for accurately forecasting the Remaining Useful Life (RUL) of milling
tools. By harnessing the 1D-CNN’s innate capability to analyze raw time-series data, we eliminate the
traditional bottleneck of extensive feature engineering. Our model undergoes rigorous validation using a
leave-one-out cross-validation method, catering to the constraints of a limited dataset. When optimized,
the model delivers compelling performance metrics: average accuracy, precision, and recall scores stand at
0.90 ± 0.02, 0.85 ± 0.12, and 0.87 ± 0.08, respectively. What sets this work apart is its dual utility: not
only does it excel in tool health assessment, but its output also serves as a diagnostic tool for experimental
setups. For instance, anomalies detected in the model’s predictions can act as early warnings for potential
sensor malfunctions. Additionally, the model’s performance metrics offer invaluable guidance in optimizing
experimental parameters, such as choosing the most efficient sampling rate. In summary, this study not
only establishes the robustness of 1D-CNNs in assessing milling tool health but also unveils their untapped
potential as diagnostic aids for fine-tuning experimental setups.

INDEX TERMS 1D-CNN, RUL prediction, CNC machining.

I. INTRODUCTION
Machining tool failures contribute to the surface roughness of
a workpiece and might also inflict damage on the computer
numerical control (CNC) machine. Given these risks, there
is a serious need to introduce prognostic technology capable
of estimating the remaining useful life (RUL) of the
machining tool, both for economic and safety considerations.
Generally, RUL prediction methods fall into three categories:
experience-based, physics-based, and data-drivenmodels [1],
[2], [3].

Experience-based models leverage expert knowledge to
establish rule-based prognostic systems. With access to
historical data or events, observed scenarios can be correlated
to RUL.While the rules in expert systems are usually straight-
forward and results are interpretable, these models may
struggle when faced with multifaceted failure characteristics.
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As a result, when inputs and outputs grow in number,
performance can degrade. Additionally, potential failure
modes might go unnoticed in experience-based systems [1].

Physics-based models pivot around understanding system
failure mechanisms, using this knowledge to mathematically
describe the degradation and failure processes. These models,
rooted in physical mechanics and fundamental principles, and
are useful in simple systems. However, for more intricate
systems where failure mechanisms remain unknown, they
might not be the best fit [2], [3]. Every physics-based
model is tailored to a specific system based on its unique
characteristics, making it less versatile. Furthermore, model
parameters often rely on empirical estimates from designed
experiments, introducing a degree of uncertainty. While
recent studies have sought to quantify and understand these
uncertainties [2], [4], addressing them remains a challenge.

When the complexity of failure mechanics complicates
RUL prediction in both experience-based and physics-based
methods, data-driven models emerge as viable solutions.
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These models exclusively are built on data observations,
aiming to discern statistical relationships between historically
observed data and their corresponding RUL [5]. Machine
learning (ML) techniques due to their data-driven nature,
have recently seen a surge in their application for RUL pre-
diction. Both conventional ML and advanced deep-learning
approaches have demonstrated remarkable efficacy in this
realmwhere these methodsmostly rely on regression analysis
for early failure detection [6], [7], [8], [9], [10]. Nevertheless,
regression models frequently encounter fluctuating accuracy
during the tool’s operational lifespan, which can result in
inaccurate predictions of its remaining useful life, and they
cannot provide a direct measure of the health state of the
milling tool [9], [11]. Therefore, this paper concentrates on
a classification-based approach for its distinct advantages in
early failure detection and in estimating the remaining life of
the tool.

The main contribution of this study is implementing a
lightweight 1D-CNN (one-dimensional convolutional neural
network) model for multi-label classification, particularly for
RUL prediction. We utilized time series data related to force
from a CNC machine, which underwent initial preprocessing
steps such as denoising and scaling before being inputted
into our proposed model. Additionally, we created labels
representing various states - healthy, transition, and failure -
derived from tool wear assessments using laser beam mea-
surements. As our model is lightweight, it is computationally
fast and has fast inference time which makes it suitable for
potential real-time implementation. From an experimental
perspective, this represents a notable advancement as these
labels (ground truth) are derived independently from the
time series data. Another key contribution of our study is
establishing a link between the outcomes of the trained model
and practical experimental settings. For instance, anomalies
identified in the model’s predictions could serve as indicators
of potential sensor issues. The paper is structured as follows:

Section II delves deeper into previous studies focused on
RUL prediction using data-driven techniques, particularly
highlighting the role of neural networks. Section III outlines
the specifics of the 1D-CNN approach, describes our
experimental setup, the nature of the raw data, and the
preprocessing steps involved. Section V details the model
training procedures and the approach to hyperparameter
optimization. Section VI presents the outcomes of our
training, discusses our findings, and assesses the model’s
accuracy. Finally, SectionVII summarizes the entire research,
offering insights into its importance and suggesting directions
for future investigations.

II. RELATED WORK
In recent years, there has been a marked increase in
the use of ML models for predicting RUL of machinery.
For instance, He et al. [6] combined empirical mode
decomposition with a support vector machine to estimate
RUL in aerial hydraulic systems. Similarly, Cheng et al. [7]

employed multidimensional feature extraction from multi-
sensor data, utilizing domains such as time, frequency, and
time-frequency to train a multi-class support vector machine.
Liu et al. [8] adopted multidimensional feature extraction
along with a light gradient-boosting machine to evaluate tool
wear values. Moreover, studies by [12] and [13] examined the
degradation sensitivity of various features in RUL prediction
over time, while [14] implemented a random forest model to
better quantify the impact of thermal error in RUL prediction.

Additionally, Gebraeel et al. [15] developed an RUL
prediction model using a feed-forward neural network for
bearings, and Niu et al. [16] integrated a 1D-CNN with
a long short-term memory (LSTM) algorithm for similar
purposes. Notably, although deep learning models like
CNN and LSTM are inherently adept at processing time
series data without manual feature engineering, these studies
primarily utilized conventional feature extraction methods.
This underutilization highlights a missed opportunity to
harness CNN and LSTM models to fully capture temporal
dependencies in time series data. Hence, [17] implemented a
BiLSTM model that directly processed time series data from
a CNC machine, achieving a root mean squared error of less
than 10%.

An et al. [10] introduced a novel hybrid model composed
of CNN, bi-directional, and uni-directional LSTM layers
(SUBLSTM). This model began with a CNN layer for local
feature extraction, followed by BiLSTM for encoding tempo-
ral information, and concluded with multiple fully connected
layers to enhance the output’s complexity. Designed for
regression tasks, this model attained up to 90% accuracy,
significantly improving early-failure prediction compared to
traditional ML models. However, the definition of ‘failure
mode’ was solely based on the data collected, without
independent validation measures. Wang et al. [11] utilized a
recurrent neural network, instead of an LSTM, to estimate
RUL of tools, emphasizing the integration of uncertainty
in predictions. Zhang et al. [18] also employed a CNN
model, using a Wiener process to detect tool wear and
establish different degradation stages corresponding to the
CNN output.

In another approach, several studies incorporated an
attention layer within their network architecture to boost effi-
ciency [19], [20], [21], [22]. The attention mechanism helps
allocate computational resourcesmore effectively, addressing
information overload challenges in LSTM architectures.
These models showed promising performance in predicting
the RUL of milling tools, although their regression results
demonstrated oscillations around true values.

Sun et al. [9] employed autoencoders, which excel in
reducing data dimensionality. After initially training a neural
network model with data from one tool, they applied transfer
learning to adapt another tool using the optimized weights
from the first. Despite its satisfactory performance, this
methodwas restricted to just one additional tool. A significant
benefit of this approach was the elimination of the need
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for target labels. Concurrently, Li et al. [13] retrained
a model named WearNet to estimate the wear states of
workpiece surfaces and correlate them to the RUL of the
milling tool. This method showed minimal uncertainty of
5%, but the correlation of workpiece wear to RUL was
determined heuristically. Another innovative study by [13]
applied a transfer learning approach to detect failure modes,
recommending the model for very limited data sets.

These studies collectively highlight the effectiveness of
neural networks in predicting the future state of milling tools,
though they fail to directly identify the health state of the tools
and exhibit oscillations around the ground truth, complicating
the identification of tool health. Additionally, they typically
rely on training deep networks with large time series data,
making them computationally expensive.

In our current study, with access to independent mea-
surements of the milling tool after each pass, we explore
the potential of developing a 1D-CNN for classification
tasks, as well as the feasibility of creating lightweight neural
networks for faster, more stable training. In the following
section, we explain the rationale behind our choice of the
proposed neural network.

III. METHODS AND MATERIAL
A. 1D-CNN
Convolutional Neural Networks (CNNs) have emerged as a
pivotal tool in pattern recognition [23]. Originally designed
for 2-dimensional data and widely used in image classifica-
tion and object detection, 1D-CNNs are adaptations tailored
for 1-dimensional data such as time series, offering notable
computational benefits [24]. A distinct attribute of 1D-CNNs
is their adeptness at extracting salient features, enabling
accurate predictions across a spectrum of applications, from
industrial equipment malfunction detection to human motion
analysis [25], [26], [27], [28]. Their streamlined parameter
configuration not only facilitates real-time model training but
also minimizes computational overhead. In the context of 1D-
CNNs, when an input data vector x of length N is convolved
with a kernel vector k of length L, the convolution for layer l
can be articulated as [29]:

clj = f

(
L−1∑
i=1

x l−1
i ∗ k lij + blj

)
(1)

In this context, x l−1
i represents the input, clj denotes the

output, k lij signifies an element of the kernel, and blj is the
bias value. The nonlinear function f serves as the activation
function, which acts upon the accumulated input values
multiplied by the kernel weights (see Fig1). In the 1D-CNN
framework, the convolution layer’s output undergoes a max
pooling process, with a kernel window u of length m being
stridden through.

In the suggested architecture, each convolution layer is
succeeded by a pooling process. This process serves as a
deterministic function aimed at downsizing the convolution
process’s output dimension. This could manifest as average

FIGURE 1. Schematics of a simple 1D-CNN network.

pooling, where the average value on the feature map is
computed, or maximum pooling, which identifies the feature
map’s peak values. The optimization procedure, rooted in
back-propagation, aligns with other DL network practices.

B. EVALUATION OF MODELS
To gauge the efficacy of the classifiers, we employed the
confusionmatrix. For a binary classifier, the confusionmatrix
provides insights into [30]:

True positives (TP): Instances correctly identified
as positive.
False positives (FP): Instances wrongly identified
as positive.
True negatives (TN): Instances accurately identi-
fied as negative.
False negatives (FN): Instances incorrectly identi-
fied as negative.

This framework can be extended to accommodate multi-
label classifiers. To delve deeper into model assessment,
we determined accuracy, precision, recall, and F1 score.
These metrics are defined as [30]:

Accuracy =
TP+TN

TP+TN+FP+FN

Precision =
TP

TP+FP
,Recall =

TP
TP+FN

F1 score =
2*Precision*Recall
Precision+Recall

We applied these metrics to appraise the models corre-
sponding to each tool.

IV. EXPERIMENTAL STUDY
A. EXPERIMENTAL SETUP
The data for this investigation was sourced from a 5 axis
HURON CNC milling located at the National Research
Council’s Automotive and Surface Transportation laboratory
at London Ontario. Fig 2 illustrates the drymilling procedure.
As depicted in the figure, the milling machine sweeps the
surface in three dimensions (Axes x, y, and z). Air jets
serve to regulate the temperature during milling. In this
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TABLE 1. The key parameters for the dataset is summarized.

operation, the tool advances along the y-axis, completing
one pass, and then progresses along the x-axis over the
surface with 51% radial depth until one layer is fully milled
(11 passes). Following this, the tool’s wear is assessed using
a in-machine laser probe (Renishaw Bloom sensor) at a
0.8 mm distance from the tip of the tool. The milling process
is then repeated until there are visible indicators, such as
burning chips, suggesting tool wear. In Figure 3, images of the
milling tool in both its pristine and deteriorated conditions are
presented. This cycle persists for each tool until clear signs
of tool degradation are evident. For this study, the milling
machine operated at a cutting speed of 3979 rotations per
minute (RPM) and a cut depth of 1 mm, while maintaining
a cutting velocity of 250 m/min, using a two-flute cutter
insert of type Kennametal ADKT103504PDERLCKC725M
on a 20mm diameter shank. Feed rate was kept constant
at 0.115mm/tooth. The workpieces used was 4030 stainless
steel, sized 150 mm length and 110 mm wide. Of note,
Kistler Type 9255C three component dynamometer was
used to collect the cutting forces. The charges from the
dynamometer was converted in to voltage using Kistler
LabAmp Type 5167A charge amplifier. Voltage signal from
charge amplifier was captured using a NI9215 card on a NI
cDAQ-9174 chassis and was recorded in to a computer at
2000Hz sampling rate using NI-LabVIEW. For our analysis,
we selected five sets of unique tool inserts and monitored
them until the point of complete wear when burning chips
were observed. A summery related to key parameters of the
data is provided in Table 1

B. DATA DESCRIPTION
The dataset was captured at a sampling rate of 2000 Hz
for each layer and was recorded using LabView Software,
saved in the .lvm file format. Using the Python pandas
library, we aggregated all the layers into a single data
frame for each tool. Each data frame is structured with
five columns: time step, force measurements Fx , Fy, and
Fz, along with the corresponding layer number. Of note,
each layer encompasses 11 passes. The transitions between
passes are identified by the milling tool’s absence from the
surface, which is indicated by zero force readings, thereby
distinguishing the end of one pass and the start of another.
For our analysis, we selected five unique tools and monitored
them until the point of complete wear. Figure 4 showcases the
raw Fx data for a singular layer, specifically associated with

FIGURE 2. Image of tool and work piece.

FIGURE 3. The visualization of the milling tool is presented as follows:
Panel a) displays the new tool, Panel b) illustrates the tool after it has
worn out (following six layers of tooling), and Panel c) shows a tool that
is completely worn out. Notably, the top right portion of the tool in Panel
c) has worn away entirely.

FIGURE 4. Raw data corresponding to tool number 4.

Tool number 4. This dataset encapsulates the tool’s motion
across one layer, featuring bi-directional sweeps in x and y
directions. The smaller data segments within the file indicate
each individual pass, which involves a full-length movement
in the x-direction.

After the completion of each layer for a specific tool,
we took measurements to assess the degree of tool wear.
These measurements were subsequently employed as labels
in the multi-label classification task. Tools with wear values
below 30 µm were designated as healthy, while those
with wear values ranging from 30 µm to 70 µm were
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identified as being in the transition phase. Tools with wear
values exceeding 70 µm were classified as being in failure
mode. Notably, the occurrence of visible sparks during the
experiment typically signaled that the tool had reached its
failure mode. Figure 5 depicts the wear of Tool number
4 across different layers, with each layer’s data labeled based
on the respective tool wear measurement.

FIGURE 5. The tool wear measurements for tool number 4 for each layer.

C. DATA PRE-PROCESSING
Each data layer is comprised of multiple passes, as depicted
in Fig 4. Each pass’s time series functions as a distinct input
for the DNN algorithm. As the tool moves from one pass to
the next during data collection, certain segments of the data
may become superfluous. This redundancy can be observed
in Fig 6, highlighted in red, for Tool number 4, layer two.

To segregate genuine data associated with each pass,
we implemented a straightforward rule-based technique.
Here, successive sets of 50 data points in the time series are
assessed based on their peak value. If this value surpasses 50,
these data points are added to an array. This array continues
to accumulate points as long as the 50-point sets fulfill
this criterion. However, once a deviation from this pattern
arises, the existing array is completed, and a fresh array is
initiated. Given that the primary data chunks, which represent
the actual pass, are substantially larger, it becomes simple
to identify and omit the smaller, redundant segments. This
ensures that each pass’s data can be efficiently input into the
proposed model. It’s important to note that all passes within
a particular layer share the same label.

FIGURE 6. The redundant part of data that occurred between passes are
within red ellipses.

Additionally, given that the tool is equipped with two
cutters, it interacts with the workpiece twice for each
rotation, resulting in a tooth passing frequency of 133Hz
(3979Rev/60sec × 2 flute). Before processing the data with
the DNN algorithm, we employed a 4th-order Butterworth
bandpass filter with a low-frequency threshold set to 130Hz
and a high-frequency threshold at 135Hz. After filtering,
the data was then adjusted by removing its mean and
standardizing to unit variance. Fig 7 showcases the filtered
and standardized data for Tool number 4, layer two,
associated with Fx . The DNN algorithm was fed with filtered
and standardized data across all layers and passes.

FIGURE 7. The original data along with the standardized, filtered data
have been graphically represented. For better visualization, the zoomed
section is also under-sampled (every 10th point has been sampled).

V. MODEL TRAINING
The model was built using Python and leveraged Keras,
an open-source library that provides a Python-based interface
for NN applications. To optimize the model’s efficacy,
we implemented several enhancements, including the imple-
mentation of batch normalization. Batch normalization is
designed to address internal covariate shift, a phenomenon
where the input distribution for each layer alters as the
network trains. By performing normalization on each layer’s
inputs, batch normalization not only speeds up the training
phase but also stabilizes it [31].

Model training had two steps. In the first step, via trial
and error we found a base model determining the structure
of NN model like number of layers and type of layers
used. The decision to keep the number of layers fixed
stemmed from our experimentation, where we observed that
increasing the number of layers did not yield performance
improvements. Instead, it tended to noticeably prolong the
training duration. Further elaboration on this can be found
in Section VI-B. This base configuration was the same for
all the tools within the leave- one-out validation process.
After establishing the base model, in the second step we
tuned the model. Hence, in our pursuit of the optimal NN
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design, we employed a random search for hyperparameter
tuning. This method allowed us to effectively explore the vast
and intricate hyperparameter landscape without the extensive
computational demands of a complete grid search. Our
experiments spanned various activation functions, notably
ReLU and tanh [32]. Also diverse optimization strategies
that included stochastic gradient descent (sgd), Adam,
Adaptive Gradient algorithm (Adagrad), and rmsprop [33],
[34], [35], [36] were tested. Moreover, a variety of kernel
and filter dimensions as shown in Table 2. For each tool,
we probed 50 distinct hyperparameter combinations. These
combinations were assessed using a validation subset, which
constituted 20% of our training data. The combinations that
yielded the highest accuracy were then chosen. To discern the
differences in chosen hyperparameters across various tools,
we reviewed the top three hyperparameter sets for each tool
and drew comparisons among them. Additionally, to hasten
the training process and mitigate overfitting, we implemented
Early Stopping with a patience setting of five and capped the
epochs at 500. The Categorical Cross-Entropy served as our
chosen loss function.

TABLE 2. Hyperparameter space of the random search.

VI. RESULTS AND ANALYSIS
A. BUILDING AND TRAINING
For each tool, the time series data corresponding to each
pass of every layer served as an independent input to the
model. It is noteworthy that the data for each pass is
three-dimensional, encompassing force measurements for
Fx ,Fy,Fz. The model employs a leave-one-out analysis
methodology for training. In this scheme, a single tool is
reserved for testing while the model is trained on data
from the remaining tools. For each tool selected for testing,
Table 3 provides the details on the number of training,
validation, and test data entries. This process is iteratively
conducted, ensuring each tool is isolated for testing at least
once. We present the training results for individual tools,
evaluating the model’s performance using metrics such as
accuracy, precision, and recall. An average score for these
metrics is also reported across all tools. Importantly, the
dataset is imbalanced: 69% of the data falls under the healthy
category, 14% under the transition phase, and 17% under the
failure mode. Consequently, precision and recall, along with
the analysis of confusion matrices, serve as more reliable
evaluation metrics compared to mere accuracy. Below, the
result of our hyperparameter tuning is discussed in detail.

1) HYPERPARAMETERS TUNING
Our assessment of hyperparameters was tailored to each tool,
where we examined the three most promising architectures
for every tool. This approach provided a better perspective
on the variability across different tools. In all evaluations,

TABLE 3. For each tool selected for testing, the numbers of entries in the
test, train, and validation sets are provided.

across all top-performing architectures, the ReLU activation
function consistently emerged as the best choice. Each
model was structured with five layers. There were observed
variations in filter sizes, kernel sizes, learning rates, and
optimization algorithms for different tools. The three top
architectures for each tool are documented in Table 11.
Notably, among optimization algorithms, RMSProp, and
AdaGrad frequently emerged as top choices. The flow chart
of the optimal network for tool number 1 is shown in Fig 8.

2) A GENERAL ARCHITECTURE
In contrast, a general model was trained for all tools,
characterized by a filter size of 32, kernel size of 3, and
a batch size of 32. This model was optimized using the
‘RMSProp’ algorithm with a learning rate of 10−3. The
rationale for this general model was its relatively swift
training time, thanks to the smallest filter and kernel sizes and
an efficient optimization algorithm. This made it independent
of any tool-specific nuances. It is worth mentioning that both
the AdaGrad and RMSProp algorithms have their founda-
tions in the stochastic gradient approach. While AdaGrad
approximates the loss function’s Hessian, RMSProp incor-
porates a momentum term, resulting in quicker optimization.
Several studies have emphasized the superior efficiency
and accuracy of momentum-based algorithms, especially
for high-frequency target functions [37], [38], [39], [40].
Consequently, RMSProp was deemed appropriate for our
general model.

This general model allowed us to compare a rapid
algorithm with the most optimal one. Comparing the
top-performing architectures with our standard model
revealed that, although the general model’s performance was
marginally lower, its architecture possessed commendable
generalization capabilities, making it apt for training across
all tools. A detailed comparison of accuracy, precision, and
recall between the optimal models and the baseline model is
presented in Table 4.

TABLE 4. Comparison of the performance of the optimal architecture
with a proposed general architecture.
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FIGURE 8. The flow chart of the neural network’s architecture used in this
study.

B. EXPLORING THE IMPACT OF NETWORK DEPTH ON
DNN PERFORMANCE
As one of the ongoing discussions in the field revolves around
the impact of network depth on the performance of DNNs.
To explore the influence of depth on our model’s efficacy,
we trained variants of our architecture with three, five, ten,
and twenty hidden layers. Importantly, these experiments
utilized an already-optimized neural network configuration.
The averagedmetrics of accuracy, precision, and recall across
all tools for different network depths are presented in Table 5.
Contrary to expectations, increasing the number of hidden
layers did not lead to a discernible improvement in the
model’s performance. In fact, networks with three and five
hidden layers demonstrated superior effectiveness. The lack
of improvement in model performance despite increased
network depth can be explained by multiple considerations.
Firstly, DNNs typically demand large datasets for effective
generalization, and a dataset of limited size could result in
overfitting in deeper architectures. Secondly, the additional
complexity brought by extra layers might be superfluous for
the given problem, especially if the problem itself is not
overly complicated. Thirdly, deeper networks are more prone
to challenges such as vanishing or exploding gradients, which
can hinder the optimization process. In light of these factors,
we found that architectures with three and five hidden layers
were best suited for our specific use case.

C. OPTIMIZING INPUT DATA SAMPLING FOR IMPROVED
MODEL TRAINING
A noteworthy observation pertained to the manipulation of
the input dataset. The original time series for each tool

TABLE 5. The average accuracy, precision, recall, and F1 score among all
tools for different numbers of hidden layers.

TABLE 6. The average accuracy, precision, recall, and F1 score among all
tools for different choices of under-sampling.

featured dimensions of 3 × 20800. To expedite the training
process, we explored the feasibility of under-sampling the
data. We adopted a straightforward method of selecting every
nth data point. Models were trained with n set to 0, 10,
20, 40, and 60, where n = 0 signifies no under-sampling.
As displayed in Table 6, the metrics of average accuracy,
precision, and recall across all tools for each n value are
presented. Notably, an n value of 60 led to a decline in
precision and recall, and also resulted in a substantial increase
in the standard deviation of these metrics. The data implies
that an under-sampling rate of n = 40 offers a balanced
trade-off, achieving high levels of accuracy, precision, and
recall.

D. FEATURE IMPORTANCE ANALYSIS FOR TOOL
PERFORMANCE PREDICTION
The input dataset includes three features: Fx ,Fy,Fz.
To assess the relative importance of each feature in the
learning process, separate models were trained using all
features, as well as individual ones—namely Fx , Fy, and Fz.
The average accuracy, precision, and recall across all tools
for each feature configuration are tabulated in Table 7. This
exercise yielded intriguing insights; notably, Fx emerged as
the most impactful feature, leading in accuracy, precision,
and recall metrics. Conversely, the low scores for Fz suggest
it may not offer significant informational value.

Upon deeper analysis of Fy, it was observed that for
Tools 1, 4, and 5, models trained with this feature yielded
performance metrics comparable to those achieved with Fx .
However, for Tools 2 and 3, the performance significantly
declined when trained solely on Fy (refer to Table 8 for
details).

It is worth mentioning that for models utilizing Fx ,
Tool 2 displayed a marked decline in both precision and
recall compared to other tools. A detailed examination
of its confusion matrix reveals this discrepancy (refer to
Fig 9, left panel). The matrix shows that seven time series
were misclassified as failure mode (highlighted in yellow)
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TABLE 7. The average accuracy, precision, recall, and F1 score among all
tools for different choices of feature.

TABLE 8. The accuracy, precision, and recall among all tools for Fx and Fy .

FIGURE 9. Left panel: Confusion matrix for tool number 2, that was
trained using Fx . Right panel: Confusion matrix for tool number 2, that
was trained using Fy .

when their true label was transition mode. Interestingly,
all seven instances belonged to layer 13, which had actual
tool wear of 69µm, just below the 70µm threshold set for
the failure mode. Given the closeness of this value to the
threshold, the misclassification is less concerning. In fact, the
model’s prediction suggests that these time series were more
characteristic of failure mode than of transition mode.

Additionally, 12 time series (circled in orange) were
incorrectly labeled as transitionmodewhen theywere, in fact,
in the healthy mode. Ten of these instances belonged to
layer 12, where the tool wear was 23µm, not too distant
from the 30µm threshold for transition. This is particularly
noteworthy given that the tool wear for previous layers was
below 11µm.

For Tool 2, as illustrated in Table 8, Fy yielded unsatis-
factory results. Further investigation into its confusion matrix
(see Fig 10, right panel) revealed frequent misclassifications
of instances as healthy, underscoring the feature’s ineffective-
ness for this particular tool.

Tool 3 also exhibited inferior performance when trained
using Fy. Upon examining the confusion matrices for models
trained onFx (Fig. 10, left panel) andFy (Fig. 10, right panel),
it is evident that the Fy-based model frequently misclassified
instances in the transition mode as healthy, and those in the
failure mode as transition. This pattern of misclassification
was also observed in Tool 2, suggesting that Fy may not
effectively distinguish between healthy and transition states,
as well as between transition and failure states.

FIGURE 10. Left panel: Confusion matrix for tool number 3, that was
trained using Fx . Right panel: Confusion matrix for tool number 3, that
was trained using Fy .

Notably, the performance metrics for models trained using
Fy for Tools 1, 4, and 5 were comparable to those for Fx .
The subpar performance for Tools 2 and 3 may be attributable
to faulty sensor readings for Fy. This can also explain why
models trained using all three features (Fx ,Fy,Fz) yielded
lower performance; the measurements in Fz and, for some
tools, in Fy act more as noise than as informative signals. It is
worth emphasizing that none of the models trained solely on
Fz showed high performance, further solidifying the notion
that Fz should be excluded from the model inputs as it likely
contributes more noise than useful information.

Tool 3 also exhibited inferior performance when trained
using Fy. Upon examining the confusion matrices for models
trained on Fx (Fig. 9, left panel) and Fy (Fig. 9, right panel),
it is evident that the Fy-based model frequently misclassified
instances in the transition mode as healthy, and those in the
failure mode as transition. This pattern of misclassification
was also observed in Tool 2, suggesting that Fy may
not effectively distinguish between healthy and transition
states, as well as between transition and failure states.
Summery of F1 score values for Fy and Fy is available in
Table 12.

E. COMPARISON WITH OTHER MODELS
In this section, we assess the three-layer 1D-CNN model we
have developed, which features a straightforward structure
facilitating fast training. We benchmark our model against
state-of-the-art models detailed in the literature. Notably,
given the frequent application of BiLSTM in processing
time series data, we have implemented the algorithm as
suggested by [17]. Additionally, we compare our model
with the SUBLSTM model, as detailed in [10], which
employs bi-directional, uni-directional, and 1D-CNN layers.
This comparison aims to determine if integrating LSTM
layers might improve performance. We were also interested
in exploring if attention-based models could offer better
outcomes. To this end, we implemented the attention model
described in [19], which incorporates an attention layer
into a deep LSTM framework. Moreover, we explored the
efficacy of the hybrid attention-based CNN-LSTM model
proposed in [21]. For each algorithm, we present accuracy,
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TABLE 9. Averaged accuracy, precision, recall, and F1 score among all
tools for different models is provided. The highest values are shown in
bold.

TABLE 10. The accuracy, precision, recall, and F1 score for Tool 5 based
on implementing different models is provided. Moreover, precision and
recall for each sub-class are shown. A: accuracy, P: precision, R: recall, P1:
precision for class 1, P2: precision for class 2, P3: precision for class 3, R1:
recall for class 1, R2: recall for class 2, R3: recall for class 3 The highest
values are shown in bold.

precision, recall, and F1 score, averaged across our dataset
(Table 9). The models evaluated demonstrated comparable
performance, with very similar accuracy, precision, recall,
and F1 score values. Despite these similarities, none of the
models exceeded the overall performance of our proposed
1D-CNN model.

Upon detailed examination of how the models perform
on individual tools, we observe that the more complex
models exhibit lower per-class precision and recall. While
these models effectively identify class 1 (healthy state),
they struggle to differentiate between transition and failure
modes. Specifically, for Tool Number 5, we have provided the
accuracy, precision, recall, and F1 score for each class across
all models. It is evident from our analysis that our proposed
model excels in distinguishing between failure and transition
modes, as shown in (Table 10).

VII. SUMMARY AND CONCLUSION
In the current study, we employed a three-layer 1D-CNN
to develop a tri-class classification model for predicting the
RUL of milling tools. The advantage of using 1D-CNN lies
in its ability to effectively learn from raw time-series data,
thereby obviating the need for extensive feature engineering
and permitting minimal pre-processing. The experimental
data was gathered from amillingmachine housed at the Auto-
motive and Surface Transportation Laboratory of theNational
Research Council. During the milling operation, the tool
traverses in the x, y, and z directions. Specifically, the tool
advances along the x-axis to complete one pass, during which
the forces Fx , Fy, and Fz are recorded as time-series data and
stored. The milling operation then progresses along the y-axis
until a single layer is entirely milled. This process is repeated
until visible indications of tool wear become apparent. After
each layer is completed, the degree of tool wear is assessed
using a bloom laser sensor.

It is crucial to emphasize that the bloom laser sensor
enabled us to generate target labels that are independent of

the input features and the measurement device itself. For
the scope of this study, we utilized five distinct milling
tools. Given the limited size of the dataset, we employed a
leave-one-out cross-validation strategy for model evaluation.
In this approach, the model is trained on data from
all tools except one, which is subsequently used as the
test set. This procedure is iteratively repeated, each time
designating a different tool’s data as the test set. Through
this methodology, we computed the accuracy, precision, and
recall metrics for each individual tool. For the leave-one-
out cross-validation task, data for each tool was stored in
distinct data frames. Consequently, for each test iteration,
one data frame was designated as the test set, while the
remaining data frames were concatenated to form the training
set.

Our meticulous scrutiny of the input data yielded several
instructive findings with implications for future research.
For instance, we demonstrated that the model retains its
performance efficacy even when trained on under-sampled
data, specifically by selecting every 40th data point in a
time series. This finding suggests that it may be unnecessary
to collect data at an exceedingly high sampling rate of
2000 Hz. Moreover, an evaluation of models trained on
different input features (Fx , Fy, Fz, and Fx ,Fy,Fz) revealed
that Fz contributes no meaningful information towards
predicting RUL. Interestingly, models trained on Fy exhibited
varying performance: while three tools showed robust
results, the remaining two exhibited subpar performance,
hinting at potential measurement inconsistencies during
experimentation. On the other hand, models trained solely on
Fx consistently demonstrated high performance, suggesting
its sufficiency as a standalone feature. These insights not
only underscore the utility of machine learning models in
identifying data anomalies but also guide us in optimizing
experimental setups, such as determining the most effective
sampling rate. It should also be noted that the performance
of the models trained with Fx for Tool 2 and Tool 3 was
comparable to that of other tools. This similarity suggests
that there may not be a significant difference in physical tool
wear, but rather, it is likely due to erroneous data acquisition
in the y-direction. Interestingly, when Fy from these tools
was used in the training set (e.g., for Tool 1), the model’s
performance for Tool 1 was satisfactory. This indicates a
high tolerance of the models to noisy or faulty ground truth
data.

In our study, we explored various network architectures
and determined the most effective configuration via random
search. We also compared the optimal architecture of each
tool with a general architecture and we showed a general
architecture for all tools has the capability of providing high
accuracy, precision, and recall among all the tools. More
precisely, as detailed in Table 4, the general architecture
demonstrated satisfactory performance and was thus chosen
for the results presented throughout the paper. This includes
comparisons with recent state-of-the-art models discussed in
Section VI-E. The average metrics of accuracy, precision,
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and recall for models trained on Fx were 0.90 ± 0.02,
0.85±0.12, and 0.87±0.08, respectively. We also conducted
a comparison of our proposed model with cutting-edge
models from recent research. Our findings indicate that our
lightweight 1D-CNN surpasses more complex algorithms
in performance. One possible explanation is that, given the
small size of our datasets, more complex algorithms tend to
overfit. This observation is noteworthy as it highlights that
while a model like the CNN, which capitalizes on time series
data, achieves high performance, more complex and deeper
networks may actually diminish performance.

Notably, we performed an in-depth analysis of the confu-
sion matrix for Tool 2, as it exhibited the lowest precision
and recall among all tools. Our examination revealed that the
mislabeled samples predominantly belonged to data points
where the actual tool-wear values were at the boundary of
transitioning between labels. For instance, seven passes were
predicted to be in the failure mode, whereas the ground
truth categorized them as being in transition. Further scrutiny
showed that the tool-wear for these passes was 69µm, just
shy of the 70µm threshold we set for the failure mode. It’s
important to highlight that our dataset is imbalanced, with
approximately 70% of the data labeled as ‘healthy’, making
the correct classification of the remaining ‘transition’ and
‘failure’ modes more challenging. Despite this imbalance,
the high precision and recall values, along with individual
confusion matrices, confirm the capability of our trained
models to accurately classify all three states.

In summary, this study demonstrates the efficacy of
1D-CNN algorithms for assessing the health status of milling
tools. While many existing RUL prediction studies employ
NNs, they often rely on manual feature engineering to
combat the curse of dimensionality. This approach, however,
leads to static features that fail to capture the inherent
dynamic behavior of time series, thereby underutilizing
the full potential of neural network models. In contrast,
our methodology necessitated minimal pre-processing and
allowed us to directly input time series data.

Interestingly, the anomalies detected in the model’s output
can serve as diagnostic indicators for potential sensor mal-
functions. This offers invaluable feedback to experimenters
about the quality of their collected data. Furthermore, insights
gleaned from our model can guide optimal experimental
setups, including the selection of the most effective sampling
rate.

Looking ahead, we aim to broaden the scope of our
research by incorporating larger datasets and exploring the
integration of additional sensor modalities such as thermal
and visual imaging, with the objective of further enhancing
model performance.

APPENDIX
TABLE FOR COMPARISON
The architecture of the threemodels with the highest accuracy
for each Tool is presented in Table 11.

TABLE 11. The architecture of the three models with highest accuracy for
each Tool is shown.

TABLE 12. F1 scores for Fx and Fy forces in each tool.

The F1 score for Fx and Fy components of the force for
each tool is shown in Table12.

A. CODE AND DATA AVAILABILITY
Upon request, the ML algorithms used for the training will be
shared.
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