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ABSTRACT Data from production environments is now available in unprecedented volumes, making
the problem-solving of incidents through root cause analysis straightforward. However, the root cause
analysis process remains time-consuming. This study employs the Kitchenham standard systematic literature
review methodology to explore how information models and deep learning can streamline this process.
By conducting a comprehensive search across four major databases, we evaluate the current technological
advancements and their application in root cause analysis. The aim of this study is to assesses the impact of
information models for root cause analysis in a production environment. Our findings reveal that integrating
knowledge graphs, association rule mining, and deep learning algorithms significantly improves the speed
and depth of root cause analysis compared to traditional methods. Specifically, the use of neural networks
in recent literature shows substantial advancements in analyzing complex datasets, facilitating large-scale
data integration, and enabling automated learning capabilities. Comparing our findings with other recent
studies highlights the advantages of using information modeling and deep learning technologies in root cause
analysis. This comparison underscores the superior accuracy and efficiency of these advancedmethodologies
over traditional manual interpretationmethods. The effective implementation of these technologies requires a
robust foundation of clean, standardized data, giving rise to the concept of ‘‘Production IT.’’ Furthermore, it is
crucial for this data to be openly available to facilitate academic research, thereby enabling the development
of new methods for more efficient and effective root cause analysis.

INDEX TERMS Data-driven decision making, deep learning algorithms, industry 4.0 technologies,
information modeling (IM), machine learning in manufacturing, root cause analysis (RCA).

I. INTRODUCTION
The central objective of this manuscript is to discern the
prevailing trends in information modeling (IM), root cause
analysis (RCA), and machine learning (ML) within the
realm of production. IM serves as the cornerstone for
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creating, managing, and utilizing data. It provides a structural
framework that enables the efficient flow of data, thereby
enhancing interoperability and ease of data exchange between
different production systems. RCA, on the other hand, is an
investigative approach to identify the underlying factors that
give rise to problems or inefficiencies within a production
environment. RCAmethods delve into problems at a granular
level, focusing not only on symptomatic problems but also on
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the underlying systemic factors. Despite these advancements,
several technical gaps remain that hinder effective integration
and application of RCA, IM, and ML in production environ-
ments. First, the lack of standardized IM impedes seamless
data integration across different systems, which is critical
for effective RCA. Furthermore, while ML offers powerful
tools for data analysis, existing models often fall short in
directly addressing the complex, multi-dimensional nature of
industrial data. This complexity requires not only advanced
analytical capabilities but also models that are specifically
tailored to the nuanced characteristics of industrial processes.
Additionally, there is a significant gap in the availability
of comprehensive, domain-specific datasets that are crucial
for training and validating these models, which limits the
potential for widespread application and testing in real-
world settings. These technical gaps are stressing the urgency
for more efficient problem-solving methodologies. Although
there are vast data resources in companies, each problem
in a production or industrial process is set in an overly
complex environment which needs a multidisciplinary team
of experts to solve it. Therefore, this study is motivated
by the need to streamline the RCA process using advanced
IM and ML techniques to enhance decision-making and
operational efficiency in production environments. Hence
these studies main contribution in a nutshell are formulated
in the following bullet points.

• A systematic literature review, following the Kitchen-
ham methodology, with which we assess current tech-
nologies and methodologies, identifying key tools in
advancing RCA capabilities.

• We explore how integrating IM with deep learning
(DL) enhances the efficiency and accuracy of RCA in
production environments.

• Our study provides a comprehensive evaluation of how
RCA, IM and ML technologies are applied in practice,
focusing on their implementation in diverse industrial
domains and their impact on production processes.

• The study contributes to academic and practical under-
standings by outlining the challenges and barriers
in implementing these advanced technologies in a
regulated production environment.

• We suggest future research directions based on our con-
clusion which identifies the gaps in current technologies
and methods, particularly in the standardization and
integration of data-driven approaches within existing
production systems.

The practical implications of this research are profound,
positioning RCA, IM, and ML not just as theoretical con-
structs but as essential tools for the future of manufacturing.
By enhancing RCA through advanced ML and IM, indus-
tries can significantly improve their operational efficiency,
reduce downtime, and optimize production processes. This
alignment with industry needs underscores the significant
potential for deploying these methodologies more broadly,
providing a clear roadmap for integration into existing

systems and for ongoing innovation in manufacturing tech-
nologies.

To gauge the state of the art, we conducted an exploratory,
unstructured pre-study. The insights gleaned from this initial
phase lead to the refinement of our research questions and
a structured literature review. The query terms deployed
in various databases stemmed directly from these research
questions. The outcomes of this rigorous search strategy are
elucidated in Fig. 1.

In general by integrating IM and RCA methodologies
with ML algorithms, the aim is to develop a more cohe-
sive and intelligent production management system. This
multidisciplinary approach seeks to harness the predictive
power of ML to enhance the accuracy of RCA and the
efficiency of IM, culminating in a more robust, adaptive, and
resilient production environment. Our research aims at the
identification of barriers and current challenges and giving
questions for future research.

Our manuscript further endeavors to elucidate how extant
norms, specifically cited as [1], can be integrated into
contemporary environments employing algorithms from the
ML domain. Additionally, we examine the extent to how
much an IM and the current frameworks like RAMI [2] are
featured in scientific literature. Another frameworks would
be reconfigurable production systems [3], [4], or the cyber-
physical systems in manufacturing [5]. The remainder of
this paper is organized as follows. Section II outlines the
hypothesis of the study and discusses the limitations of the
applied method. In section III the methodological approach is
presented, including the systematic literature review process
by Kitchenham [6] and the databases surveyed. Section III-A
presents the research questions which were defined after
the pre-study. In Section IV, the findings and literature is
categorized based on the identified themes and technologies
in the relevant studies. The implications of these findings
are further explored in Section V. There we delve into the
analysis of the current state of the art and its implications
for future research and practice. In the final section VI
the key contributions of our research are summarized, the
encountered challenges outlined, and future study directions
in the field of IM and RCA within production environments
suggested.

II. HYPOTHESIS AND LIMITATIONS
A. HYPOTHESIS
This study hypothesizes that the integration of IM and
DL algorithms can significantly enhance the efficiency and
accuracy of RCA in production environments. Specifically,
our conjecture is that:

• The use of knowledge graphs and association rule
mining will streamline data integration and analysis
processes, reducing the time required for RCA.

• Deep learning algorithms, particularly neural networks,
will improve the accuracy of identifying root causes by
effectively handling complex and large-scale datasets.
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FIGURE 1. The search strategy for our structured literature review.

• The combination of these technologies will outperform
traditional RCA methods that rely heavily on manual
interpretation and simpler analytical tools.

B. LIMITATIONS
While this study presents promising advancements, several
limitations must be acknowledged:

• Data Quality and Availability: The implementation of
IM and DL technologies requires a robust foundation of
clean, standardized data. The availability and quality of
such data in real-world production environments can be
a significant constraint.

• Generalizability: The models and methodologies dis-
cussed are developed and validated using specific
datasets and production scenarios. Their generalizability
to different production settings and industries may be
limited without further validation.

• Computational Resources: Deep learning algorithms,
particularly neural networks, demand substantial com-
putational resources for training and deployment. This
requirement may limit their practical application in
resource-constrained environments.

• Integration Complexity: Integrating advanced IM and
DL technologies into existing production systems can be
complex and may require significant changes to current
IT infrastructure and workflows.

• Maintenance and Scalability:Maintaining and scaling
these technologies over time, especially in dynamic
production environments, can be challenging. Regular
updates and retraining of models are necessary to ensure
sustained performance.

By addressing these limitations, future research can further
refine the integration of IM and DL in RCA, ultimately
enhancing their applicability and effectiveness in diverse
industrial contexts.

III. METHOD
This study adheres to the methodology outlined by Kitchen-
ham [6] with some adaptations. The schematic representation
of our methodology is illustrated in Fig. 1. Prior to the
main study, we executed a preliminary study to establish an
initial framework of understanding. The multi-faceted search
approach spanned Google Scholar, ACCESS Engineering,
TEMA - Technik und Management in the WISO-Database
as well as Google’s gray literature. The search terms where
‘‘Root Cause Analysis’’, ‘‘production process’’, ‘‘machine
learning’’, ‘‘fault detection’’ and ‘‘industrial internet of
things’’. This yielded a selection of key papers [7], [8], [9],
[10], [11], [12], [13], [14]. Based on the preliminary study’s
outcome, a search protocol was established. Subsequently
with this the research questions were defined, see III-A.
The following sub-sections elaborate in detail on the
multi-pronged methodological approach employed in our
research.

A. RESEARCH QUESTIONS
In the scope of this research, we articulate four pivotal
research questions:

RQ1. What is the current state of the art for RCA regarding
IM in a production environment?

RQ2. What are typical use cases and practical applications
for IMs for RCA and in which domain were they
applied?

RQ3. Which kind of RCA type based on IEC 62740
[1], framework, software architecture, algorithm, and
standards are in use for an IM combined with RCA?

RQ4. What are the main challenges and barriers in imple-
menting academic models related to IM and quality
assessment in the manufacturing industry?

In Section IV, the selected publications are taxonomically
sorted into four distinct categories. Category 1 elucidates the
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use-cases where both IM and RCA are deployed. Category
2 zeros in on RCA-centric solutions or those that aim at
root cause identification. Category 3 spotlights cases that
are primarily focused with pure IM. Category 4 serves as a
repository for publications that offer contributory insights for
either RCA or IM solutions.

Furthermore, we have undertaken an exhaustive examina-
tion of these papers based on their publication dates. This
temporal classification permits a dynamic perspective on the
evolving algorithms, which are detailed in Section IV-A.
In Subsection IV-B, the focus is on papers that serve as
review articles, lacking a precise use-case; yet, the domain
of application is also noted—for instance, the intersection
of aeronautics and information technology for the use-case
in aircraft manufacturing. Subsection IV-C systematizes
the findings in the following categories: Type of RCA;
Framework; Software; Standards. The type of RCA will
be designated in accordance with the standard [1]. The
Framework section provides an in-depth exposition of the
algorithms discussed in each paper, whereas the Software
section enumerates the tools or IDE’s utilized. Standards
encompasses all norms cited in the paper. Finally, in Sub-
section IV-D, the biggest challenge for academic models is
discussed. Besides, the availability of open-source data is
analyzed and the implications it has on the broader state of
the art are also discussed.

B. SEARCH PROCESS
In this structured literature research we dissected four
databases after defining the research questions, as it can
be seen Fig. 1. The Databases are ACM, INSPEC, IEEE
Xplore and Science Direct. Depending on the database and
the queries in table 1 are defined.
The ACM Guide to Computing Literature and INSPEC

share the same query. IEEE Xplore had a slightly different
query regarding the search structure. A significant difference
in the available amount of allowed search terms exists in the
Science Direct database. There, the highest search findings
were obtained, and also the shortest search query was used.
Every database had the same time frame in which the
publications are considered, beginningwith the year 2000 and
ending with the last day of 2022. This means that a timeframe
of 22 years is analyzed. This time frame is due to the
relative new use of convolutional neural network in 2012 with
AlexNet [15] and the more unstructured data available on the
internet since 2000.

C. INCLUSION AND EXCLUSION CRITERIA
To find the most related research to answer our questions,
it is necessary to define inclusion and exclusion criteria. The
criteria for an inclusion of a paper are as follow:

• The study must have full text (e.g. abstract only papers
are not considered)

• The study must be in English

The exclusion criteria are

• The study is a duplicate publication
• The study is published before the year 2000 and after
2022

D. QUALITY ASSESSMENT
The quality assessment for this paper had only one criterion.
The study must contain at least three of the following search
terms in the abstract to be considered for a full-text review:

• root cause analysis,
• manufacturing,
• machine learning,
• information modeling.

If the abstract contains fewer than three terms, it will be
categorized into the second class and set aside for future
consideration. Papers falling into classes one or zero are
immediately discarded from the study. Only papers in class
three are considered for this study, resulting in a total of
38 relevant papers.

E. DATA COLLECTION
The study utilized only scientific databases that are most
closely related to the topic. These were the ACM Guide to
Computing Literature, INSPEC, IEEE Xplore, and Science
Direct. The first database researched was the ACM Guide to
Computing Literature, which yielded 242 papers based on
the derived search query from the research questions. The
second and third databases in which the literature survey was
conducted were INSPEC and IEEE Xplore. INSPEC used the
same search query as the ACM database. For IEEE Xplore,
a minor adjustment was necessary to align with the search
query. Both databases returned zero results. No adjustments
were made to these two databases regarding the search query.
The fourth database was Science Direct. The search query
had to be modified to fit the search template of this database.
Overall, 304 results were found, of which 106 papers are
open source. Table 1 lists the three search queries used for the
different databases. The extracted data included the following
publications as the relevant key finding papers, as seen in
table 2.

F. DATA ANALYSIS
The analysis was conducted in a separate Excel sheet.
The results were compiled into a final table by answer-
ing the research questions. Each research question was
divided into smaller sub-questions to facilitate quicker
searches through the papers for answers. In Table 3, you can
see the sub-questions for each research question.

IV. RESULTS
A. RQ1: WHAT IS THE CURRENT STATE OF THE ART FOR
RCA REGARDING IM IN A PRODUCTION ENVIRONMENT?
To comprehensively delineate the state of the art in RCA and
IM in a production context, we prioritize the examination of
underlying algorithms. We postulate that algorithms recur-
rently cited or those featured in multiple papers published
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TABLE 1. The search term for each database and the results.

within the last three years constitute the contemporary state
of the art. Supplementary to this, to deepen our understanding
and contextualize these algorithms, we initially classify each
paper by its publication date. As specified in III-B, the
defined time span for the literature research is between
2000 and the end of 2022. The first relevant publication was
in 2008.We deem a paper as old if it is published before 2020.
Up to the year 2019, there were 13 papers published that
are considered relevant. These papers were published over
a span of eleven years, with 2008 as the first and 2019 as
the last ‘‘older’’ paper. This constitutes one third of all the
relevant papers. The other two-thirds were published in the
years between 2020 and the end of 2022. This means that
the other relevant papers are not older than three years and
could be considered as newer or recent publications. Overall,
there are 27 different algorithms/models identified, with only
ten algorithms/models witnessing repeated utilization across
publications.

Analyzing the different papers based on the algorithms and
used models shows significant use of graphs, as in the papers
denoted by IDs 5, 8, 9, 10, 13, 20, 25, 31, and 34. Notably,
in the newer publications, graphs are regularly utilized as part
of the problem solution. The other algorithms were either
popular in the years prior to 2020 or have just recently been
used. Older methods focus more on visualization and can be
found in early papers, see IDs 1, 11, 12. Additionally, data-
mining methods were considered innovative in the papers
with IDs 10, 12, 13, which are also older ones. Whereas
association rule mining has been used effectively throughout
all the years, see IDs 2, 17, 26. DL is a relatively nascent
algorithmic approach and has just begun to manifest itself in
the current body of work, namely in papers with IDs 19, 25,
and 38.

Other algorithms that were applied before 2020 include
text mining, case-based reasoning, RCA-methodology, fuzzy
set theory, fuzzy logic, rough set, systems theoretic acci-
dent modeling and processes, relational tree, multi-criteria
decision making, signed digraph model, ranking score with
the highest likelihood, anomaly detection, causal testing,
principal component analysis, genetic cost-sensitive sparse
auto-encoder, and non-revisiting genetic algorithm. These
algorithms and models are mentioned only once in a
publication and therefore do not fulfill our criteria for
representing the state of the art.

B. RQ2: WHAT ARE TYPICAL USE CASES AND PRACTICAL
APPLICATIONS FOR IMS FOR RCA AND IN WHICH
DOMAIN WERE THEY APPLIED?
Tables 4, 5, 6, and 7 provide an encompassing overview of
distinct use-cases. It’s noteworthy that not every pertinent
paper delineated a specific use-case. This is due to the criteria
definition, which does not exclude other literature studies
or mapping surveys. Papers that did highlight a use-case
typically delved into highly specialized application scenarios,
but they can be coalesced into overarching domains. Fig. 2
illustrates the eight discerned domains into which the
use-cases are sorted.This pie chart shows the percentage of
each use-case among all the relevant papers in this study.
A notable classification is the standalone ‘Production IT’
domain. Even though it is part of the production domain,
its distinct emphasis on solutions that amalgamate advanced
production facilities, simulation models, and sophisticated
information technology solutions warranted its unique cate-
gorization. Due to the length of this paper, not all use-cases
will be discussed in detail. The exact use-case description of
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TABLE 2. The 38 primary studies used in this systematic literature review.

each relevant paper can be found in the corresponding table.

Navigating to table 4, category 1 encapsulates 13 publica-
tions that unify RCA and IMmethodologies. Of these, eleven
papers include a use-case. Eight of them were published after
2020, and the other five were published prior to 2020. Of the
eight published papers, only six had a use-case. The most
dominant domain is the production domain, with three use-
cases. Each use-case is based on data from a real-world plant
or product. The same can be observed for the automotive
domain use-cases. The IT domain use-case has one direct
real-world problem and one experimental setup with log data
from an open-source project. In each publication, except for
the studies with IDs 31 and 37, IM and RCA are used to solve
the problem. For IM, either an ontology or a graph database
was necessary, and for RCA, one specific step from the
standard [1] is used. Intriguingly, though, no paper employs
the full spectrum of RCA steps.

Table 5 encompasses 15 publications emphasizing RCA.
Out of this collection, twelve publications provide specific
use-cases. Nine of these publications emerged post-2020,

whereas the remainder predate this year. Of the post-2020
collection, seven delineate use-cases. Five of the publications
are sorted into the production area, which emerges as the
predominant domain. A distinction is observed between
use-cases leveraging simulated data (e.g., IDs 6, 24, and 25)
and those extracting insights from operational environments
(e.g., IDs 4, 7, 12, 14, 35, and 36). Paper ID 14 is a
special use-case as it originates from the agricultural domain.
Nonetheless, the technology used to solve the problem aligns
seamlessly with the study’s focus.

Table 6 showcases three relevant publications emphasizing
IM. One is prior to 2020 published and the other two are
after. All three paper cover exclusively a use case in the
domain Production IT. Intriguingly, all three converge on the
Production IT domain and devote their attention to real-world
scenarios, abstaining from synthetic data.

Table 7 presents seven publications of significance
contributing to the overall study but are not particularly
emphasizing RCA, IM or both. From these paper only one
is published before 2020 and the other six after. From all
the papers only four papers elucidate a use case. The use
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TABLE 3. The main research questions and the derived sub questions.

FIGURE 2. The use cases sorted into there corresponding domain illustrated as a pie chart.

cases are more focused on the use of machine log data from
simulation models. The target domain of the publications is
the Production IT domain, with a substantial subset exploring
the algorithmic development.

C. RQ3: WHICH KIND OF RCA TYPE BASED ON IEC 62740
[1], FRAMEWORK, SOFTWARE ARCHITECTURE,
ALGORITHM, AND STANDARDS ARE IN USE FOR AN IM
ON RCA?
Before answering this question, it is paramount to first
elucidate the specific terms and taxonomic rules applied,
prior to discussing the results inmore detail. Initially, wemust

explain the annotation used, specifically the notations a), b),
c) and d), in regards to RCA. In this paper, a classification
based on the RCA - Overview on page 12 of the IEC 62740
[1] has been done. These are the recommended classification
classes:

a) There is only one single root cause to identify.
b) There are multiple root causes and eliminating any of the

root causes will prevent a focus event from happening.
c) There are multiple root causes and they are all contrib-

utory factors for the focus event. Eliminating one of the
root causes will only change the likelihood of the focus
event occurring but may not prevent it directly.
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TABLE 4. Papers Categorized Under Type 1.

TABLE 5. Papers Categorized Under Type 2.

d) There are root causes for successes so to learn by best
practice and improve.

Furthermore, we bifurcate our paradigmatic approach to
IM. It could either lean on a knowledge-driven or a data
driven approach. To classify as a knowledge-driven approach,
we must transform expert knowledge into a graph, data bank,
algorithm, or some kind of symbolic artificial intelligence
(AI). Conversely the data driven approach is based purely on
data and the formalization of it. This means that usually a ML
or even DL methodology approach will categorize the paper
in this category. A mix of both will be categorize as a hybrid
approach in our research.

Subsequent tables will be briefly and concisely discussed.
The tables are split into the four categories as previously
mentioned in the subsections IV-A and IV-B. The focus is
set on the framework or model in combination with the

used standards. An inherent expectation is that literature post
2015 would predominantly adhere to the IEC 62740:2015
(RCA) standard. However, there are other standards that are
helpful and also contributing to finding a root cause or solving
a given problem.

Fig. 3 shows the overall distribution of the RCA classes.
It is important to notice that paper ID 26 has a special use case
which could be split into five different classes of root causes.
This explains why the overall amount of classes is higher than
the amount of relevant papers. It also shows that the highest
amount of root causes cases could be categorized as class c.
The second highest number is the amount of unmentioned
classes. There, the papers were usually other structured
literature research papers without a specific root cause class.

Examining table 8, five articles reveal that they tackle
problems classified under the ‘‘c’’ category. The other
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TABLE 6. Papers Categorized Under Type 3.

TABLE 7. Papers Categorized Under Type 4.

FIGURE 3. The overall distribution of the different root cause classes.

papers are pairwise classified with ‘‘a’’ or ‘‘b’’ or remain
unspecified. The underlying paradigm for the IM exhibits a
balance between data- and knowledge-driven. paper ID 5 is
an extramention of the paradigm,which is the object-oriented
(OO) paradigm from software development.

When scrutinizing the utilized framework, most papers
build their frameworks using a standard or norm. This trend is

mirrored in the models, with many also relying on established
norms or standards. A subset of articles - specifically IDs 2,
9, 10, 20 - utilized frameworks rooted in cloud-based or
ontology-based methodologies but did not cite a standard.
The exception for this is paper ID 34, which cites the OWL
and W3C standard used. Paper ID 15 adopts an internal
standard, which is a specific standard for their material
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analysis. The 7-step approach, also derived from Toyota’s
problem-solving (PS) approach, couples with it. Notably,
paper ID 34 is the only paper that directly uses the RCA
standard and the suggested framework.

Transitioning to table 8 and focusing on the software tools,
the used software, and in regards to the publishing date and
our category for ‘‘old’’ or ‘‘new’’. The publications with the
ID 2, 5, 10 are older papers which are using Java. Paper
ID 17 uses already MATLAB, and in paper ID 20 is the
first mention of Python. This is an important fact because
Python is already more than 30 years old (first release was on
20.02.1991) and became recently popular among the software
languages.

Table 9 presents six publications which are categorized
as a c paper, supplemented by three b and two a classified
paper. The other publications have no clear type. Only paper
ID 6 uses a knowledge-driven IM approach, whereas the
remainder largely adhere to a data-driven paradigm, or in the
instances of IDs 14 and 18, employ a hybrid methodology.

Contrary to the previous table, this paper presents models
and a framework that is not base on standards. Apart from
papers ID 35 and 36, which make oblique references to
established standards, most frameworks andmodels take their
methodology from prior scholarly works and notably, paper
ID 6 utilizes STAMP. Predominantly, these papers espouse
a process-oriented approach over algorithmic intricacies.
They primarily aim to enhance operational efficiency by
meticulously identifying root causes and applying predictive
analytics to anticipate problems or system failures.

Adding another layer of complexity, authors report the
software tools employed across these papers unevenly.
Specifically, seven out of the 15 papers conspicuously remain
silent on this aspect. Recent entries, particularly IDs 16 and
36, demonstrate a preference for the programming language
Java and Python. The other papers used more CAD software
or were like paper ID 14, 18 and 19—a mix of cloud
technology, DL, and or CAE simulation.

Table 10 predominantly centers on IM, yet presents an
anomalous instance in paper ID 26, which lacks a clear IM
definition despite featuring three distinct use cases and the
ensuing problem formulation. Notably, each paper in this
set can be categorized under one of the established RCA
classifications. Within this context, paper ID 13 employs a
GUI as its underlying framework, whereas paper ID 38 has a
knowledge graph for its spot inspection used as their model.
The used software is the Java-based Neo4J graph database.

In the last table 11 there are two c and one a and b
categorized RCA types. The IM is in most cases data-driven
or skews towards data-drivenmethodologies. Paper ID 30 and
33 mention frameworks and models which are based on
standards. Paper ID 32 is a comprehensive study on digital
twins across different domains, applied implementation tech-
nologies, and purposes. Only this and paper ID 22 mention
the used software. Moreover, paper ID 32 does reference
a standard, its application thereof is implicit rather than
explicit. Overall, the papers in this table primarily engage

in comparative analysis of various ML models that hold
potential utility for RCA.

D. RQ4: WHAT ARE THE MAIN CHALLENGES AND
BARRIERS IN IMPLEMENTING ACADEMIC MODELS
RELATED TO IM AND QUALITY ASSESSMENT IN THE
MANUFACTURING INDUSTRY?
To answer this research question, several key factors need
to be examined. The first one is the availability of data
for academic research. Domain-specific data is essential
for developing accurate and effective models. Without such
data, models cannot fully encompass the range of scenarios
encountered in specialized use-cases, or meet the necessary
criteria to solve a given problem, see [24]. To answer this
question, we first determine what kind of data the publication
used and whether it relies on an open-source simulation
model from the industry, like the Tennessee Eastman Process
Simulation Dataset [53]. The next consideration is the data
source, specifically whether the data comes from simulations
or real-world applications. This is the differentiation meant
between a pure simulation model which delivers data, or a
real-life physical environment. Even if a model is very
complex, simulation data cannot encompass all the intricacies
of a real-world environment. In addition, this would directly
contradict the intended use of a model. However, we can
obtain data from scenarios that are too dangerous for a
production environment or not beneficial enough for the
user. An example would be scrap parts for very expensive
sensors. Finally, we must consider each model’s applicability
limitations. Each publication is looking at a very specific
situation and use case. This means that it is in most cases
hard to transfer the knowledge and solution of one use case
onto another use case. Therefore, the limitations of each
publication must be carefully evaluated.

V. DISCUSSION
In this section, the different research questions are recapitu-
lated and discussed.RQ1: What is the current state of the
art for RCA regarding IM in a production environment?
The conclusion of the research question 1 would be the
definition of the ‘‘new’’ state of the art. This is summarized
in the three core technologies for graphs, association rule
mining, and DL. Specifically, the use of DL algorithms is
becoming more common due to better infrastructure for data
availability. This infrastructure is enabled through the use of
IMs. Still, the workload that is necessary to build an IM,
which could be used for RCA, is high. The workload for
maintenance is usually not discussed in the paper, but based
on the workload to build one, the maintenance workload
should also be high.

RQ2: What are typical use cases and practical appli-
cations for IMs for RCA and in which domains were
they applied? The next research question 2 shows a diverse
distribution of domains. Due to the search algorithm for
production use cases, the main problems were directly related
to production. The only exception is paper ID 14 with its
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TABLE 8. The category 1 paper.

agricultural use case for lameness detection in cows. The
overall result shows a growing research field in the area of
Production IT. In an academic sense, the main questions will
be about developing new methods for more efficient RCA.
In an industrial context, the implementation and the reduction
of the initial workload for building IMs will probably be the
center of attention. RQ3: Which kind of RCA type based
on IEC 62740 [1], framework, software architecture,
algorithm, and standards are in use for an IM on RCA?
Research question 3 is showing that the biggest part of all
relevant papers focus on solvingmultiple root causes and they
are all contributory factors for a focus event. The complex
production environment becomes apparent from this analysis.
Authors have provided very specific descriptions of the used
models or frameworks in nearly all the relevant papers. This is

probably due to the nature of academic research to emphasize
the description of the method, model, or framework that
leads to a solution. The complete opposite is observed in the
description of the used software languages. The used software
IDE is most of the time not mentioned. Also, there is a trend
towards the software language Python for RCA instead of
Java. This should also be attributed to the easy entry level
for researchers programming for the first time. A similar
situation appears with the standards used. Most of the papers
are not following along with any kind of a standard. The
lack of standard solutions complicates their integration into
the highly regulated production environments. RQ4: What
are the main challenges and barriers in implementing
academic models related to IM and quality assessment
in the manufacturing industry? The last question 4 and its
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TABLE 9. The category 2 paper are only focused on the RCA and contain only minor parts about IM.

corresponding results out of the literature research indicates
a big problem with domain-specific data. Usually, it is
necessary to have very specific domain knowledge to find a
root cause in a production environment. It is also necessary to
work in a team of people from different departments, which
could be related to the problem’s root cause. This means
that for academic research it is necessary to develop models
which are very complex and specific, based on heterogeneous
data sets from different departments. The problem lies with
this kind of data because usually it is the know-how of

the company. Open data sources from production use cases
are difficult to acquire and published papers usually don’t
provide any data. The study shows that with 38 papers, the
general amount of papers of interest is relatively low. In a
percentage value, this is only 6.9 % of all the 546 found
publications in the database. The reason for this could be the
long search terms in the four different database publications.
Also the selected databases cannot cover the entire topic. This
could be a point for future research to investigate in other
databases and to include new databases.
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TABLE 10. The category 3 paper.

TABLE 11. The category 4 paper.

The biggest remark or most unexpected realization is
the rise in the amount of published papers regarding RCA,
IM and AI in production. The main bulk of our relevant
papers is from the year 2020 onward. This is an interesting
finding as this result indicates the steady incorporation of
new technology into a relatively old field. In Fig. 4 the rise
of publications is visualized.

VI. CONCLUSION
This study synthesizes the insights gleaned from addressing
four pivotal research questions, presenting a unified picture
of the advancements and persistent challenges in the field
of RCA, IM, and ML within production environments.

Firstly, we reaffirm the continued relevance of graphs and
association rule mining in RCA and highlight the notable
rise in the DL technologies. The increasing availability of
data and the accessibility of Python as a programming
language have lowered the entry barrier for researchers and
practitioners alike, enhancing the analytical capabilities of
RCA systems. However, the literature still lacks specific
metrics for evaluating these improvements.

Secondly, the emergence of ‘‘Production IT’’ as a distinct
domain reflects the evolving nature of production processes
from purely mechanical operations to complex, data-driven
systems. This transition requires sophisticated IMs capable
of handling vast amounts of digital input and managing
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FIGURE 4. The diagram shows that more then 44 % of all the relevant paper where published in 2022.

the intricate dynamics of modern production lines. These
changes profoundly influence operational strategies and
the RCA approaches employed by industries. The findings
of this research underscore the enhanced capability of
integrated ML models to refine RCA processes within the
production sector. This integration not only elevates the
precision of diagnostics but also provides a robust framework
for predictive maintenance strategies, thereby significantly
reducing downtime and improving operational resilience.
Future work should explore the scalability of these models
across different industries, potentially broadening the scope
of their application.

Thirdly, our analysis shows that the most prevalent form
of RCA in production settings involves addressing multiple
contributory factors to a problem, rather than isolating
single causes. The least common case is the RCA for
success, to learn from best practice and improve. This
complexity necessitates robust, adaptable frameworks that
can accommodate the multifaceted nature of production
issues. Yet, the application of standardized algorithms and
norms in RCA remains limited, posing challenges to the
scalability and reproducibility of these solutions. In addition,
the solutions are usually a very specific fit for the use case
and not related to a standard or norm.

Fourthly, we identify significant hurdles in implementing
academic models, particularly the scarcity of open-source,
high-quality, domain-specific data. This limitation critically
restricts the development and validation of models tailored
to real-world production scenarios. The quality of data

not only influences the accuracy of models but also their
ability to generalize from training environments to actual
operations. While this study provides valuable insights into
the integration of RCA, IM, and ML within production
environments, it is not without limitations. One of the primary
constraints is the reliance on secondary data from published
papers, which may not always capture the full range of
real-world applications and challenges. Additionally, the
specificity of case studies reviewed limits the generalizability
of our findings across different industrial sectors. Future
research should aim to collect primary data from diverse
production settings to validate and refine the proposed
methodologies.

Furthermore, the development of more comprehensive,
domain-specific datasets is crucial for advancing RCA and
IM practices. The lack of standardized, high-quality data
sets in certain production domains restricts the potential to
fully leverage ML capabilities. Investigating the creation and
utilization of such datasets could be a significant area of
focus.

Moreover, the integration of these advancedmethodologies
into existing production systems poses significant chal-
lenges due to the variability in technological adoption and
infrastructure capabilities among different industries. Future
studies could explore strategies for overcoming these barriers,
perhaps by developing more adaptable and scalable models
that can be customized for various technological contexts.

Lastly, as new ML algorithms and IM techniques
continue to emerge, ongoing research will be essential
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to continuously evaluate their effectiveness in production
environments. Establishing benchmarks and creating frame-
works for systematic evaluation would provide clearer
pathways for integrating these technologies into practical
applications.

As no reviewed papers provided quantifiable metrics to
gauge the effectiveness of proposed solutions, our study
underscores a clear gap in current research. IM is highly
dependent on the understanding of the modeler and his
experience and skills [74]. This statement also applies to
the quality manager, who is responsible for the RCA. If the
available data is of lower quality, e.g., bad image data from
the end-of-line optical inspection or time-series data with a
very high noise ratio, the time to find a root cause or build
a fitting IM can extend. Also, quality data is very important
for new technology like, with its deep neural network model
architecture, to be used [75]. This means that there is
a pressing need for established benchmarks or objective
evaluation values that could more concretely measure the
impact of new RCA, IM, and ML technologies in production
settings. This would facilitate a more empirical assessment
of innovations in this area and support the development of
implementation guidelines. New measurement methods need
to be introduced which are extending the current practice of
solely involving data science typical metrics like accuracy,
precision or recall.

In conclusion, while our study has illuminated various
advancements and challenges, it also highlights the critical
need for more rigorous empirical evaluations and the
development of standards in the application of ML and IM
in RCA. We recommend focusing future research on creating
and leveraging open-source, high-quality datasets to build
and test models that are both effective and adaptable to the
unique conditions of production environments. Additionally,
exploring quantifiable benefits and articulating clear metrics
for success in RCA practices are essential for advancing the
field and ensuring robust and reliable decision-making in
production quality management.
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