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ABSTRACT Mission planners are one of the major classes of autonomy software and their design is
especially challenging in the case cooperation autonomy is required for unmanned multi-vehicle systems.
A clear example of this is given by the applications of teams of drones, such as multi-drone spatio-temporal
sensing. Here, drone teams act as mobile and cooperative sensor networks to simultaneously collect sensor
data in areas of interest and to allow detailed computation on the sensed data. For the design of cooperative
and autonomous drone teams, mission planning shall be accomplished in the form of coordinated sensing
to optimally assign the different sensing tasks and routes to each drone, employing task allocation and
route planning as the basic pillars to maximize the multi-drone mission effectiveness. This work proposes
a dynamic and decentralized mission planner for a drone team performing autonomous and cooperative
spatio-temporal sensing. The design exploits the learning-in-games framework for the processing of optimal
routes in reasonable time frames. Two ad-hoc variants of the binary log-linear learning are proposed as a
coordination algorithm to manage both task allocation and route planning, by demonstrating reachability
and reversibility properties. Also, the work describes an experimental analysis of the proposed solutions
by means of model-in-the-loop simulations, in order to provide a preliminary tune of the main learning
parameters for both solutions.

INDEX TERMS Multi-drone systems, multi-drone sensing, learning in games, multi-agent systems.

NOMENCLATURE
B(m)
i (Mi) = Set of all the ascendant plans ofMi

with orders until m.
Cw
i (Mi) = Constrained set built starting from

the mission planMi and considering
a planning window w.

D = Wet of drones.
F(m)
i (Mi) = Wet of all the descendant plans of

Mi with orders until m.
Mi = Set of admissible mission plans for

the ith drone.
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M[+j]
i (Mi) = Set of all the descendant plans of

order j for the mission planMi.
W = Region of interest.
T = Set of sensing tasks.
CE,n = Occurrence cost of the reference

event for the waypoint wpn.
ECI = Expected Cost of Ignorance.
G = Global function (potential

function).
M = Joint mission plan.
Mi = Mission plan for the ith drone (or

agent).
M[+m]

i = mth order descendant ofMi.
M[−m]

i = mth order ascendant ofMi.
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M∅

i = Joint mission plan M with no
action taken by the ith drone.

M−i = Set of the individual plans of the
drones different from i in the team D.

Mopt = Optimal joint mission plan.
Nd = Number of drones.
Nt = Number of sensing tasks.
PE,n =Occurrence probability of the refer-

ence event for the waypoint wpn.
J = Mission duration.
ceil(x) = The smallest integer greater than or

equal to the real number x.
di = ith drone.
i = ith agent.
pn = Priority of the nth sensing task.
tn = nth Sensing task.
tin = nth Sensing task assigned to i

inMi.
ui = Utility function for the ith drone.
vi = Cruise speed of the ith drone.
w = planning window.
wpn = Waypoint of the nth sensing task

I. INTRODUCTION
Autonomy is defined as ‘‘an unmanned system’s own ability
of sensing, perceiving, analysing, communicating, planning,
decision-making, and acting, to achieve its goals as assigned
by its human operator(s) through designed human-robot inter-
face or by another system’’ [1]. One of the main classes
of autonomy-enabling software regarding Autonomous Vehi-
cles (AVs), and in particular Unmanned Vehicles (UVs),
is represented by mission planners [2]. In general, mission
planners make decisions about vehicle actions by projecting
the future outcomes of these actions according to models of
the vehicle’s behaviour and environment, and evaluating the
desirability of the outcomes according to an evaluation func-
tion. The evaluation function may encode the vehicle’s goals
and constraints, returning high utilities for plans that meet the
mission goals without violating the constraints. The planning
technology necessarily encompasses some form of search
through an action space, which is commonly an NPhard
problem [2]. At the mission planning level, the following
functions are usually performed [3]: (i) the selection and
ordering of a subset of mission waypoints that make up the
plan; (ii) the definition of the trajectories between the mis-
sion waypoints at a low level of resolution. Thus, a mission
planner system usually focuses on the specific issues of: task
allocation, in order to assign mission waypoints (targets) to
the AV in a specified sequence; route planning, in order to
determine the optimal preliminary trajectories for the AV.

Moreover, the research and design activities of UVs are
facing a major transformation in the past two decades [4], [5].
While previously the focus was on developing large vehicles
capable of carrying significant payloads over large distances,
the recent technological improvements have shifted research

and industrial interests to cooperative and autonomous oper-
ations involving multiple UVs [6], forming full-fledged
multi-UV systems and achieving common objectives that
may be dynamically changed during the mission execu-
tion. This implies the adoption of cooperative-autonomy
paradigms for multi-UV mission planners.

In general, cooperative autonomy studies how autonomous
agents (i.e., separate decision-making entities) should work
together to achieve common goals [7]. Thus, a Coopera-
tive Autonomous System (CAS) is a system engineered as
a collection of autonomous agents, which shall accomplish
common goals. In the domain of distributed intelligence,
cooperation is a form of interaction in which: entities are
aware of other entities; entities share goals; entities’ actions
are beneficial to their teammates [8]. In the domain of mul-
tirobot and multi-UV systems, cooperation represents joint
operations or actions in a group of robots systematized in
the form of a Multi-Agent System (MAS) [9], which is also
named Multi-Agent Robot System (MARS). In such cooper-
ation, robots pay attention to their own work and to the tasks
from other partners [9].

One of most significant applications about cooperative
multi-UV systems is represented by drones and multi-drone
systems. Indeed, if the Region Of Interest (ROI) is large
and/or the objectives are several, a standalone-drone mission
may take a considerable amount of time and may entail poor
performance. For example, in the case of spatio-temporal
sensing, the use of standalone drones may reduce the use-
fulness and the reliability of the collected information. Drone
teams may overcome these issues, being a networked set of
drones with a common mission, in which all members are
assigned specialized and different tasks to accomplish the
global mission [10], [11]. Such networked sets of drones may
achieve: (i) a group performance that is expected to exceed the
sum of the performance of the individual drones; (ii) mul-
tiple simultaneous interventions; (iii) an efficient cover of
large areas, optimizing the available resources; (iv) fault-
tolerant and resilient missions, by providing redundancy and
capability of reconfiguration in case of a failure of a drone;
(v) costefficiency, since a team of low-cost drones may rep-
resent a less expensive solution with respect to the equivalent
standalone and heavier drone for the samemission.Moreover,
drone teams are gaining greater relevance also in the context
of cooperative system-of-systems integrating both manned
and unmanned aerial vehicles [12].
For the design of cooperative and autonomous drone teams,

task allocation and route planning are the basic pillars to
coordinate the overall team and to maximize the multi-drone
mission effectiveness, guaranteeing optimal task comple-
tion [13]. In the case of spatio-temporal sensing missions,
drone teams act as mobile and cooperative sensor network
to simultaneously collect sensor data in areas of interest
and to allow detailed computation on the sensed data. Here,
mission planning shall be accomplished in the form of
coordinated sensing to optimally assign the different sens-
ing tasks and routes to each drone, while complying with
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the constraints related to sensing requirements and drone
features [14].

This work proposes a dynamic and decentralized mis-
sion planner for a drone team performing autonomous and
cooperative spatio-temporal sensing. The design of the plan-
ner allows for an efficient and resilient management of
simultaneous sensing operations. It exploits game theory for
the assignment of sensing tasks and for the processing of
optimal routes in reasonable time frames, laying the founda-
tion for autonomous real-time implementation. Unlike other
approaches, the proposed game-theoretic framework is able
to manage the team mission planning with multi-priority
tasks, by embedding the concept of expected cost of igno-
rance for a sensing task.

We leverage on some our previous works, which applied
Markov games and the Distributed Stochastic Algorithm for
the configuration of a heterogeneous drone team in persistent
surveillance applications [15]. This work introduces some
changes by applying the learning-in-games framework for the
coordination of the team. For the learning design, we already
proposed an ad-hoc variant of best response and of log-linear
learning as a possible learning algorithm for autonomous
detection and recognition, analyzing the effectiveness of the
approach by comparing it with a centralized solution in
preliminary model-in-the-loop testing [16]. We extend this
previous work with the following main contributions:

• we implement an action-selection strategy based on a
different data-normalization function;

• we provide a mathematical analysis of the reachability
and reversibility properties for the designed learning-
ingames approach;

• we provide a detailed experimental analysis of the coor-
dination algorithm, to assess the influence of significant
learning parameters and to preliminarily tune their val-
ues with respect to the environment.

The experimental analysis is performed by means of
modelin-the-loop simulations, exploiting the implementation
of the mission planner in an Agent-Based Modelling and
Simulation (ABMS) environment.

The remainder of this paper is organized as follows.
Section II describes the related research, focusing on the
topics of multi-agent coordination, multi-drone coopera-
tion, multidrone task allocation, and multi-drone routing.
Section III introduces the application scenario and formally
states the reference problem. Section IV describes the pro-
posed gametheoretic solution, by presenting the design of
the game model and of the learning-in-games method, and
the implementation of the coordination algorithm. Section V
describes the experimental analysis of the proposed solution.
Section VI concludes the work.

II. RELATED WORK
Recently, the decision-making and the control of a group
of autonomous systems (or autonomous agents) have been
intensively investigated from different perspectives. Specifi-
cally, in the case of MARS, the identification of a common

framework for developing the best engineering solution is
a challenging topic since these systems cannot be studied
and evaluated by generalizing the case of a single robot [9].
Currently, MARS with distributed coordination have already
demonstrated their capabilities for being robust, adaptive,
flexible and scalable [17]. However, some relevant issues
exist for task allocation and learning since these require the
decision-making process to be distributed in a robust and
efficient manner, considering both processing and commu-
nication overhead [18].
For the specific case of multi-drone cooperation, several

architectures have been proposed [19]. Relevant research
has been performed so far to advance the applications of
multidrone systems, especially in regard to the analysis of
drone communication aspects [20], [21], [22]. Nevertheless,
the mission planning process and the related problems, such
as multi-drone task allocation and routing, have become a
challenging issue for the achievement of real autonomy in
drone operations for different domains [23], [24]. This applies
in particular for multi-drone spatio-temporal sensing [14].
In regard to multi-drone task allocation, references [25]

and [26] provides a detailed survey of the most recent
decentralized algorithms. Apart from the distinction in cen-
tralized and decentralized approaches, these algorithms may
be divided in the following taxonomy presented in [26].

• Optimization-based algorithms - These methods adapt
classical optimization methods to solve the task alloca-
tion problem. They may be deterministic or stochastic.
An example of deterministic Hungarianbased method
is represented by the Multi-UAV Collaborative Target
Allocation (MCTA) algorithm [27]. Stochastic algo-
rithms include bio-inspired methods, which mimic spe-
cific biological behaviors to deal with the optimization
problem related to task allocation [25].

• Auction-based algorithms - These methods rely on eco-
nomic principles, designing the agents by means of
negotiation protocols to bid on tasks in an auction. They
may be centralized or decentralized. Some examples are
represented by the Consensus-Based Bundle Algorithm
(CBBA) [28] and by the Contract Net Protocol
(CNP) [29].

• Game-theoretic algorithms - These methods apply
frameworks based on game theory to design the interac-
tion strategies amongst the agents, which are assumed to
behave as independent and self-interested players, or as
group of these players. Here, the general objective is to
find an equilibrium, such as aNash equilibrium, between
the decisions deliberated by the agents [30].

• Hybrid algorithms - These methods represent a combi-
nation of the aforementioned methods. This combina-
tion is usually adopted to meet the requirements of a
specific application.

In particular, game-theoretic approaches for multi-drone
task allocation generally [26]: (i) demonstrate greater effi-
ciency with respect to other decentralized approaches, pro-
ducing suboptimal solutions that are closer to the optimal
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one; (ii) have comparable or lower complexity with respect
to CBBA approaches and are suitable for large-scale systems;
(iii) have limited communication burden, especially in the
case of competitive algorithms (i.e., using non-cooperative
game settings) [30].

In regard to multi-drone route planning, several detailed
surveys are available [31], [32], [33], [34], [35], mostly
focusing on drone delivery systems in logistic applications.
These aim at determining the joint optimal routes of teams of
drones for the delivery at specific customer points, starting
from a given depot or from a set of depots. Most of the
works deal with the extension of classical routing problems
for designing a multi-drone route planner, such as: the Trav-
eling Salesman Problem with Drones (TSP-D), including the
Flying Sidekick Traveling Salesman Problem (FSTSP), the
Parallel Drone Scheduling TSP (PDSTSP) and the multiple
FSTSP (mFSTSP) [36], [37], [38]; the Vehicle Routing Prob-
lem with Drones (VRP-D) [39]. Even if centralized exact
solutions [36], [37], [38] and bio-inspired approaches [33]
are available, the trend is to move towards a decentralized
and multi-agent planner for multi-drone routing [34], [40].
From the review of multi-drone task and route planning

approaches, in addition to the traditional challenges (local
optima, ungranted completeness, slow convergence), new
challenges have come up in connection with:

• Fault tolerance - This topic has not been sufficiently
considered in classical methods [34]. Some works
mention real-time implementations, but they largely
focus on computational efficiency and faster conver-
gence for online computation. Instead, they do not
consider updates based on drone and environment
status.

• Inaccurate target assignment - Typically, multi-drone
planners execute target assignment (i.e., task alloca-
tion) first and then route planning, based on the results
of target assignment. However, this strategy may lead
to inaccurate target assignment, especially in dynamic
and uncertain environments [41]. Indeed, if the routing
aspects are ignored, target-assignment planning may be
based on a too simplified view on task demands and
their spatial distributions. Clearly, such inaccuracy prop-
agates to the route-planning step.

To overcome these emerged challenges, multi-drone mis-
sion planners need to perform autonomous target assignment
and route planning simultaneously and jointly in a dynamic
setting. However, there are only a few works about this
topic [41]. For example, some researchers have discussed the
combined problem ofmulti-agent target assignment and route
planning for the Multi-Agent Pickup and Delivery (MAPD)
problem, where a team of robots has to transport a set of
objects, each from an initial location and each to a specified
target location. Reference [42] implements some heuristic
and metaheuristic strategies to solve this problem, based on
actual delivery costs. Instead, reference [41] proposes a Deep
Reinforcement Learning (DRL) framework for multi-drone
target assignment and path planning, in order to minimize

the total flight path length under the constraints of targets’
completely assignment and collision-free.

To the best of the authors’ knowledge, there are no works
applying game-theoretic frameworks for the multi-dronemis-
sion planning, meant as combined task and route planning,
in spatio-temporal sensing with tasks having possible differ-
ent priorities. A similar work to ours is proposed in [43],
but the action selection to be negotiated by each drone refers
to the next movement, and not to a full route plan spanning to
the overall mission.

III. PROBLEM STATEMENT
This section states the reference problem by describing the
application scenario and by providing the formalization of the
related problem.

A. APPLICATION SCENARIO
Our reference application is a multi-drone spatio-temporal
sensing mission, where: (i) ‘‘spatio-temporal sensing’’ means
the execution of sensing tasks to collect reference spatiotem-
poral data in sites (waypoints) of interest; (ii) ‘‘multidrone’’
means the exploitation of a drone team to attain a cooper-
ative autonomous behaviour concerning the region sensing.
We assume homogeneity of the drones in the team, both for
their sensing capability and for their dynamic features. The
mission scenario consists in a set of sensing tasks, possibly
based on a risk map, which provides the risk values of the
reference event to sense within the ROI. Thus, the risk map
enables a priority-based sensing of the ROI.

The drones in the team are equipped with the specific
payload required for the sensing. At each moment, a drone
may sense (i.e., acquire the reference sensing data of) a
ground region, representing the sensor footprint, which has
size depending on the flight height (i.e., the elevation with
respect to ground). For the sake of convenience and in anal-
ogy with other works [44], we assume the following mission
requirements:

• the ROI and each sensor footprint are respectively rect-
angular and square surfaces with fixed dimensions;

• all the drones move in a plane, at the same constant
height and with the same constant cruise speed;

• the ROI may be discretized in square cells, named sens-
ing cells, with the same size of the sensor footprint;

• the riskmap is a spatial function that associates a priority
or risk number to each sensing cell of the ROI;

• each sensing cell is associated to a sensing waypoint,
which is the ground projection of the cell center with
respect to the flight height of the team;

• a drone has to loiter on a sensing waypoint for a given
time interval in order to successfully sense the associated
cell.

The proposed assumptions are graphically depicted in
Fig. 1 and Fig. 2. In detail, the concepts of risk map, sensing
cells and sensing waypoints imply the definition of a sensing
matrix, as illustrated in Fig. 2. Instead, Fig. 3 shows the over-
all system workflow for the application. In detail, a Ground
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Control Station (GCS) contains all the command and control
tools and the mission monitoring facilities, including a
specific interface allowing the supervising of the mission
operator. Such operator supplies two main inputs: (i) the
definition of the ROI in terms of a risk map with respect
to the reference event to be sensed; (ii) the mission tem-
plate, which provides the additional user requests for the
mission, e.g., cruise speed, flight height, loiter times, fixed
obstacles, no-fly zones, etc. These inputs are processed by
the on-Ground Mission Manager (GMM), which is a specific
on-ground software module in charge of the computation of
the sensing matrix and of the additional multi-drone mis-
sion settings to be delivered to the on-Board Team Mission
Planner (BTMP). Note that the sensing matrix represents a
full-fledged basis to then typify the mission action space as a
route graph.

FIGURE 1. Drone and sensor footprint in a region of interest.

Fig. 4 (left) shows the high-level system architecture,
which implements a decentralized solution for the team mis-
sion planning: there are no central mediators for planning,
but every drone is equipped with its mission planner, which
interacts with the mission planners of the other drones in
a ‘‘peer-to-peer’’ way. Thus, the BTMP is structured as a
MAS, with agents represented by the individual mission
planners. The communication infrastructure includes data
links between the GCS and the drones, and a Flying Ad-Hoc
Network (FANET), by means of which drones in the team
exchange data related to the mission planning process. Thus,
the mission planners represent the FANET nodes, estab-
lishing a cooperative network for the processing of task
allocations and route plans in the team. Note that the diagram
in Fig. 4 (left) reports just a high-level specification of the
architecture, whereas the topology of the network may imple-
ment several data routing mechanisms. For example, some
specific drones in the team may play the role of backbone
nodes, acting as gateways for data relaying between the GCS
and other drones in the network [45].

Fig. 4 (right) illustrates the block diagram of the planning
hierarchy for the single-drone view. The mission planner is
decomposed in two hierarchical blocks: (i) the task planner,
which is the higher-level mission planner to produce the
selection and the ordering of the waypoints for the mission

FIGURE 2. Sensing matrix for priority-based multi-drone sensing.

accomplishment; (ii) the route planner, which is the low-
erlevel mission planner to process globally optimal routes
amongst the assigned waypoints. The former acts according
to the team-planning level, interacting with the distributed
mission planners within the team, based also on the mission
goals (i.e., sensing matrix and additional multi-drone mis-
sion settings) and on the feedbacks coming from the route
planner. The latter acts according to the drone-planning level,
interacting with the autopilot (i.e., the flight control software)
to allow for real-time reactions to environmental changes.
However, in our work, the distinction between task planner
and route planner is only logical and the two related planning
problems are jointly solved.

Lastly, we assume that drones are not equipped with
preloaded mission plans, which shall be online generated and
selected in a planning and re-planning scenario. Moreover,
in the remainder of the paper, the words agents, mission
planners and drones are interchangeably used.

B. PROBLEM FORMALIZATION
For a given mission, a ROI, denoted with W, is the portion
of space identified by a certain Earth surface and a variable
height where the mission itself must be carried out. The
mission, denoted with T, is a set

{
t1, · · · , tNt

}
of Nt sensing

tasks, where each task tn = ⟨wpn, pn⟩ is a pair composed
of the related sensing waypoint wpn and the priority pn
associated with it. In the following, we will interchangeably
use the terms (sensing) waypoint, cell, task and target. The
drone team, denoted with D, is a set

{
d1, · · · ,dNd

}
of Nd

drones, tasked with carrying out the mission T. Even if each
drone di may exhibit a cruise speed vi, this is considered a
constant v for all the drones, coherently with the homogene-
ity assumption for the team. Furthermore, the physics-based
modelling of the drones, we adopt a point-mass model, which
approximates the vehicle evolution as a single point with a
mass [46].

A mission plan Mi(T) = Mi for the ith drone is
defined as a sequence of sensing tasks assigned to the drone
itself, i.e.,

Mi =
(
ti1 , ti2 , . . . , tik

)
,

with tim ∈ T ∀m ∈ {1, 2, . . . , k}, k ≤ Nt, (1)
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FIGURE 3. Overall system workflow for team management in multi-drone spatio-temporal sensing.

FIGURE 4. (left) High-level system architecture; (right) Block diagram of the planning hierarchy (single-drone view).

Thus, tim is the mth task assigned to i in Mi. The mis-
sion plan in (1) is an ordered task plan, that is: (i) i shall
carry out ti1 , then ti2 , then ti3 , . . ., then tik , if it selects
Mi; (ii) Mi includes only the waypoints associated to the
mission tasks; (iii) the associated route of Mi is defined
by the sequence of edges connecting consecutive waypoints
in the plan and by the loitering times on each waypoint.
In general, such plan includes also intermediate waypoints,
which are inserted to avoid fixed obstacles and no-fly zones.
Furthermore, the mission planMi is named admissible if it
satisfies all the additional constraints related to the mission
execution (e.g., drone endurance, mission duration, etc.).
In the remainder of this work, we will denote with Mi an
admissible mission plan for the ith drone.

The mission planMi can also be interpreted as a possible
action that the ith agent may deliberate, where the action is
the route assigned to the drone for mission execution. The set
of all admissible actions of i is the setMi(T) = Mi, composed
of all admissible mission plans that the ith drone may carry

out during the mission. Since the sensing tasks are finite,
the cardinality of Mi is finite and limited by the following
relation,

|Mi| ≤

∑Nt

k=1

Nt

(Nt − k)
, ∀i ∈ {1, . . . ,Nd} . (2)

A joint mission planMD(T) =M is defined as the Nd-set
of the plans assigned to each drone of the team D, i.e.,

M =
{
M1,M2, . . . ,MNd

}
, (3)

and it belongs to the joint set of the drone action spaces
M = M1 × M2 × . . . × MNd .
In order to evaluate the proposed solution, a sensing per-

formance index is introduced resorting to the concept of
Expected Cost of Ignorance (ECI). In detail, if E is the refer-
ence event to be sensed, the not visitation cost of a waypoint
wpn within a given time interval is related to the occurrence
probability PE,n and the occurrence impact CE,n of E over
wpn in that time interval. Probability and impact functions
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depend on targets in the risk map, i.e., they allow a ranking
of their priority based on their risk figures. The ECI of a task
tn according to a joint mission planM is given by,

ECIM (tn) =

∫ tM,n

0
PE,n(t)CE,n(t)dt, (4)

where tM,n is the first instant of time in which the waypoint
of tn is visited according to M. Note that the definition of
tM,n as the first visitation instant implies that, in case of
overlapping on tn inM (i.e., the task tn is assigned to more
than one drone in M ), only the assignment corresponding
to tM,n will affect the ECI value of tn. Thus, the coverage
of a task with more drones will not provide an improvement
(i.e., a reduction) of the ECI. Note that, according to the
definition of the ECI operator in (4), the routing space of each
drone may be represented as a weighted graph, whose edges
connect waypoints and have weights equal to the variation of
ECIM in case that edge is crossed for a mission plan.
The ECI of the missionT related to a joint mission planM

is given by,

ECIM(T, D) =

∑
tn∈T

ECIM (tn) , (5)

In order to minimize the ECI of the mission, an optimal
joint mission planMopt must be considered, therefore, the
following optimization problem must be solved,

Mopt
= argmin
M∈M

ECIM(T, D) (6)

The problem in (6) represents a constrained stochastic
optimization problem and extends some well-known prob-
lems, such as the vehicle-target assignment, the multivehicle
motion planning and the multi-agent task allocation.

IV. GAME-THEORETIC SOLUTION
This section describes the game-theoretic solution of the
problem in (6). Such solution is structured in three steps:
(i) the design of the game to be played by the agents; (ii) the
design of the learning-in-games method; (iii) the implemen-
tation of the coordination algorithm.

A. GAME DESIGN
To solve the problem in (6) by means of a game-theoretic
approach, the first step is to design the game model to define
the interaction structure amongst the players (i.e., the agents).
Within this work, we adopt a competitive paradigm underly-
ing the game model: the agents are antagonistic (selfish or
self-interested), namely, they have distinct individual objec-
tives (that are potentially in conflict with each other) and
independently act according to their local information [47].
Competitive agents fit better with scalable and resilient con-
texts: in spite of its internal competitive nature, a MAS with
selfish agents may effectively control a distributed system
with a single global objective and may provide the degree
of robustness and flexibility that are needed in classic large
distributed applications [48]. In our case, an artificial compe-
tition is set amongst the selfish agents representing mission

planners, which cannot be real opponents because their inter-
action shall achieve a global goal, namely, the minimization
of the ECI. Based on this competitive paradigm, a non-
cooperative game is designed. Indeed, noncooperative game
theory is the study of games wherein the players indepen-
dently make decisions and is well suited for competitive
MAS, providing a tool to explicitly model both the internal
processes of individual agents and their interactions with
others (i.e., how their choices mutually affect others) [48].

Thus, utility functions are introduced to model both indi-
vidual behaviours and global interactions of the agents in
a competitive utility-oriented setting. We start designing a
global (i.e., agent-independent) function G = G(M) to be
maximized, which captures the desired behaviour for the
overall team D to accomplish T and represents the interaction
structure amongst the mission planners. This function is also
named mission utility and is defined as,

G(M) = −ECIM(T, D) = −

∑
tn∈T

ECIM (tn) . (7)

Instead, individual utility functions capture the preferences
of the agents over their individual mission plans and are
designed exploiting the concept of wonderful life utility or
marginal contribution utility [49]. In detail, the following
function ui represents the individual utility of the ith drone,

ui(M) = G(M) − G
(
M∅

i

)
, (8)

whereM∅

i is the joint mission planM without considering
any action for the ith drone, i.e., with Mi as the empty
sequence. With a such utility function, the proposed game
model is an exact potential game [50] withG(M) as potential
function, as proven in [51] for the games following the utility
structure based on wonderful life utility. This means that,
when a player i changes its plan, the variation in its utility
function ui is equal to the variation in the global utility G,
i.e., the individual utility improvement of each player is equal
to the improvement in the global utility.

Potential games are a particular class of non-cooperative
games provided with [52]: (i) at least a Nash equilibrium,
which coincides with the optima (even local) of the potential
function; (ii) the finite improvement property, which implies
that any sequence of improving players’ moves converges
to a Nash equilibrium in finite time. Thus, any coordination
algorithm that converges to a Nash equilibrium of the poten-
tial game, will also converge to the optima of G(M) and,
equivalently, of ECIM(T), solving the problem in (6).

B. LEARNING DESIGN
The next step aims at designing a method to solve the
game model (i.e., to find a Nash equilibrium) in a dynamic
and decentralized setting. The proposed method relies on a
learning-in-games approach. The topic of learning in games
addresses the issue of dynamic processes leading to equi-
librium by means of learning schemes, where players learn
about the environment (including the behaviour of other
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players). In the setup of learning in games [53]: (i) play-
ers repetitively play a game over a sequence of stages;
(ii) at each stage, players apply a learning rule, using past
experiences/observations to select a strategy for the current
stage; (iii) once player strategies are selected, the game is
played, information is updated, and the process is repeated.
This process may effectively suggest an online algorithm to
dynamically reach a Nash equilibrium, exploiting specific
learning rules [54].

In our case, considering the planning and re-planning
scenario highlighted in section III.A, a learning rule must
be designed for embodying the notion of equilibria selec-
tion in potential games, i.e., to guarantee convergence to
the most efficient Nash equilibrium. A learning rule that
could serve this purpose is the Log-Linear Learning (LLL)
[55]. By introducing random perturbations into the decision-
making process, such rule allows the selection of suboptimal
actions to avoid the convergence to local minima of G.
In potential games, LLL guarantees that only the joint action
profiles that maximize the potential function are stochasti-
cally stable [55]. The structure of its learning strategy has the
following settings:

• asynchrony - players update their actions one at a time;
• decomposition - the learning rule is independent of the
utility function;

• decoupling - the actions of an agent depend on its indi-
vidual utility function, but not on the utility functions of
other agents (only the past stream of previous actions of
itself and of other players is used);

• completeness - at any stage, a player can select any
action in the related action set.

Considering the application under exam, the first three
settings may be easily implemented. On the contrary, com-
pleteness entails a tough implementation challenge because
of the size of the sets Mi, which increase with Nt according
to (2). Indeed, for each drone, LLL requires the evaluation
of the utility function for each mission plan in Mi and,
consequently, the design of a practical online implemen-
tation is computationally intractable also for small values
of Nt.

A way to tackle the completeness issue is to exploit the
Binary LLL (BLLL) [55], i.e., a variant of LLL which allows
to consider a constrained action set Ci (rather than the entire
Mi ) for the ith agent, maintaining the prerogative that only
potential function maximizers are stochastically stable. More
in general,Ci is a subset of the action spaceAi of the ith agent
( Ci ⊆ Ai ), which depends on the action selected at the
preceding step by i. By convention, ai ∈ Ci (ai) for any
action ai ∈ Ai [55], that is a player is allowed to stay with its
previous action. Furthermore, Ci must satisfy the following
two properties [56]:

• reachability - for each agent i and any pair of action
a0i , a

m
i ∈ Ai, there exists a sequence of actions a0i →

a1i → · · · → am−1
i → ami satisfying aki ∈ Ci

(
ak−1
i

)
∀k

∈ {1, . . . ,m};

• reversibility - for each agent i and any pair of action
a0i , a

1
i ∈ Ai, if a1i ∈ Ci

(
a0i

)
, then a0i ∈ Ci

(
a1i

)
.

The BLLL learning structure is the following [55]:
1. at each time step t , a player i is randomly chosen and is

allowed to alter its action while all other agents repeat
their previous actions;

2. the player i uniformly (or with a given distribution
probability) chooses a new possible action a∗

i within
Ci (ai(t − 1)), where ai(t − 1) is the previous action
selected by i;

3. the player i selects a∗
i as its new action ai(t) according

to the following probabilities,

P (ai(t) = ai(t − 1)) =
e
1
τ
ui(a(t−1))

e
1
τ
ui(a(t−1))

+ e
1
τ
ui(a∗

i ,a−i(t−1))
, (9)

P
(
ai(t) = a∗

i
)

=
e
1
τ
ui(a∗

i ,a−i(t−1))

e
1
τ
ui(a(t−1))

+ e
1
τ
ui(a∗

i ,a−i(t−1))
,

(10)

where a(t−1) is the joint action set at the step (t−1), a−i(t−1)
is the joint action set played by all the players except for i, and
τ (with τ > 0 ) is a parameter called temperature.

In order to apply the BLLL to our application, we need
to define a filtering rule for the ith agent to determine its
constrained action set at the step t , based on the given mission
plan deliberated by i at t − 1. For this purpose, we introduce
some definitions reported hereinafter.

Given a mission planMi ∈ Mi as a sequence of k tasks,

another plan M[+1]
i is an immediate descendant of Mi if

M[+1]
i = Mi + tik+1 ≜

(
ti1 , . . . , tik , tik+1

)
, with tik+1 ∈ T−

Ti, where Ti =
{
ti1 , . . . , tik

}
, and with M[+1]

i being an
admissible plan. Likewise, a plan M[−1]

i is the immediate
ascendant (or ancestor) of Mi if M[−1]

i = Mi − tik ≜(
ti1 , ti2 , . . . , tik−1

)
with k ≥ 1, where tik is the last task

of the sequence in Mi.Mi is also named parent of M[+1]
i ,

and M[−1]
i is parent of Mi. More generally, M[+m]

i is an
mth order descendant ofMi if,

M[+m]
i =Mi + tik+1 + · · · + tik+m =

=
(
ti1 , . . . , tik , tik+1 , . . . , tik+m

)
,

with:

tik+1 ∈ T − Ti

tik+2 ∈ T − Ti −
{
tik+1

}
, . . .

tik+m ∈ T − Ti −
{
tik+1 , . . . , tik+m−1

}
M[+m]

i is an admissible plan. (11)

M[−m]
i is the mth order ascendant (or ancestor) ofMi if,

M[−m]
i =Mi − tik−(m−1) − tik−(m−2) − · · · − tik =

=
(
ti1 , ti2 , . . . , tik−m

)
, k ≥ m (12)

If m ≥ k , we assume M[−m]
i to be the empty sequence.

If Mi is the empty sequence, then Mi has no ascendants.
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Consequently, a mission plan Mi ∈ Mi with k tasks has
k ancestors (including the empty sequence) and at most∑k̄

n=1
k̄

(k̄−n)
descendants, where k̄ = |T| − k . Finally, given

the ith agent, we respectively denote with F(m)
i (Mi) and

B(m)
i (Mi) the set of descendant (or forward) plans and the set

of ascendant (or backward) plans ofMi with order until m.
Thus,

F(m)
i (Mi) =

{
M[+j]

i (Mi) | j = 1, · · · ,m
}

, (13)

B(m)
i (Mi) =

{
M[−1]

i ,M[−2]
i , . . . ,M[−m]

i

}
, (14)

where M[+j]
i (Mi) is the set of all the descendant plans of

order j for the mission planMi.
LetMi(t) be the mission plan (i.e., the action) selected by

the agent i at the time step t . For the purposes of our learning
method, we design the constrained action set ofMi(t) as,

Cw
i (Mi(t)) = B(w)

i (Mi(t)) ∪Mi(t) ∪ F(w)
i (Mi(t)) , (15)

where w ≤ |T| is a parameter named planning window,
indicating the maximum order of descendants and ascendants
ofMi(t) that are part of its constrained action set. In other
words, at each time step, w represents the maximum number
of tasks which could be added or subtracted to or fromMi(t)
to generate the set Cw

i (Mi(t)) of possible new mission plans
for i.

Then, the agent i may randomly (e.g., uniformly) select a
mission plan in Cw

i (Mi(t)) as its updated action for the time
step t+1. Furthermore, if k(t) is the number of tasks ofMi(t)
and k̄(t) = |T|−k(t), at most k̄(t) tasks can be added toMi(t)
when w > k̄(t), and at most k(t) tasks can be subtracted
from Mi(t) when w > k(t). Fig. 5 shows an application
example of the designed filtering rule in (15) for the learning
process.

The filtering rule in (15) complies with the required prop-
erties of a constrained action set for BLLL, considering the
association between actions ai and plans Mi. Firstly, the
set Cw

i (Mi) satisfies the relation Mi ∈ Cw
i (Mi) as per

construction of Cw
i (Mi). Moreover, it complies with the

reachability and reversibility properties. The redefinition of
the above properties in the case of drones’ mission plans are
shown by the following theorems:

• Theorem 1 - Reachability: for any drone i and any pair of
mission plansM0

i ,M
m
i ∈ Mi, there exists a sequence

of mission plansM0
i →M1

i → · · · →Mm−1
i →Mm

i

satisfyingMk
i ∈ Cw

i

(
Mk−1

i

)
∀k ∈ (1, . . . ,m).

• Theorem 2 - Reversibility: for any drone i and any pair
of mission plansM0

i ,M
1
i ∈ Mi, ifM0

i ∈ Cw
i

(
M1

i

)
,

thenM1
i ∈ Cw

i

(
M0

i

)
.

The proofs of these theorems are respectively reported in
Appendix A and Appendix B. Thus, our proposed filtering
rule in (15) represents a proper basis for an ad hoc learning
method, relying on BLLL, to be adopted by the proposed
mission planners.

FIGURE 5. Application example of the designed filtering rule in the
learning process.

C. COORDINATION ALGORITHM
Based on the filtering rule in (15), the final learning rule for
our coordination algorithm requires the determination of the
distribution probability to select the new mission planM∗

i ∈

Ci (Mi(t − 1)) at the time step t . In our case, a uniform
distribution (that is the distribution considered in the basic
version of BLLL) cannot be efficiently applied considering
how Cw

i (Mi(t − 1)) is built. Indeed, the number of descen-
dant mission plans is generally much larger than the number
of ancestor mission plans. Therefore, if a uniform distribution
is used for selectingM∗

i , the sequence of joint mission plans
will likely include random sequences of sensing tasks with
many overlaps (i.e., tasks assigned to more than one drone),
which do not represent a benefit for G(M) as per definition
of the ECI operator in (4).

To overcome this issue, we propose the adoption of a
random distribution weighted on the agents’ individual utility
functions. To define a suitable weighing for a such distribu-
tion, we need to investigate how the evolution of the learning
in the game is influenced by the global functionG(M) in (7).

For this purpose, we suppose that PE,n(t) and CE,n(t) are
constant and equal to 1 for eachwaypointwpn. Anyway, these
assumptions are introduced just for the sake of illustration,
and the proposed approach is the same in the case of time-
and waypoint-variable functions of PE,n(t) and CE,n(t). If the
mission duration is equal to T , the global function G(M) is
given by,

G(M) = −

∑
tn∈T

ECIM (tn) = −

∑
tn∈T

tM,tn , (16)

where tM,tn is the assignment time of the sensing task tn,
i.e., the time when tn is carried out according toM. If a task
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tu is not assigned in M, the related assignment time tM,tu
will be equal to T .
Given the joint planM(t), the individual planMi(t) of the

drone i, and the set of individual plansM−i(t) of the other
drones in the team D, we denote with:

• Na the number of tasks that are included in Mi(t) and
are not included inM−i(t), identified by the set Ta ={
ta1 , · · · , taNa

}
;

• Nc the number of tasks that are included both inMi(t)
and in M−i(t), and that are carried out with a greater
utility in Mi(t) than in M−i(t), identified by the set
Tc =

{
tc1 , · · · , tcNc

}
;

• Nr the number of tasks that are (i) not included in
Mi(t) and are included in M−i(t), or (ii) that are
included both in Mi(t) and in M−i(t) and are carried
out with a greater utility inM−i(t), identified by the set
Tr =

{
tr1 , · · · , trNr

}
;

• Nu the number of tasks that are not included neither
in Mi(t) nor in M−i(t), identified by the set Tu ={
tu1 , · · · , tuNu

}
.

In other words, at the time step t : Na is the number of tasks
that are allocated only to i;Nc is the number of tasks that are
allocated to i and also to other drones, but that are carried out
with a greater utility by i (or that i carries out earlier, in the
case of the assumptions introduced for PE,n and CE,n ); Nr is
the number of tasks that are allocated to some drones that are
different from i, or that are allocated to i and also to other
drones, but that are carried out with a greater utility by other
drones; Nu is the number of tasks that are not allocated at
all. With these notations, the individual utility function of the
ith drone can be written as,

ui(M(t)) = G(M(t)) − G
(
M∅

i (t)
)

=

−

∑
tj∈Ta

tMi(t),tj + NaT −

∑
tj∈Tc

tMi(t),tj+

+

∑
tj∈Tc

tM8
i (t),tj

. (17)

We suppose that the ith drone is allowed to alter its mission
plan at the step t+1 according to the BLLL rules, choosing a
new plan in the constrained set Cw

i (Mi(t)). Just for the sake
of illustration, we also assume w = 1. We can demonstrate
that the selectable mission plans Mi(t + 1) ∈ C1

i (Mi(t))
increasing the utility of i, i.e., with ui (Mi(t + 1),M−i(t)) >

ui (Mi(t),M−i(t)) and with M−i(t) = M−i(t + 1), are
probably only those adding a task ta ∈ Ta toMi(t), i.e., a task
not allocated to other drones inM−i(t). Indeed, the following
cases may occur for the selection of Mi(t + 1) starting
fromMi(t) and its impact on 1ui(t + 1) = ui (Mi(t+ 1),
M−i(t)) − ui (Mi(t),M−i(t)) :

• Mi(t + 1) is a descendant ofMi(t) adding a task ta ∈

Ta - In this case, there is an increase of the individual
utility of i equal to,

1ui(t + 1) = T − tMi(t+1),ta . (18)

• Mi(t + 1) is a descendant ofMi(t) adding a task tc ∈

Tc - In this case, there is an increase of the individual

utility of i equal to,

1ui(t + 1) = tM∅

i (t),tc
− tMi(t+1),tc . (19)

Therefore, the task tc will provide a greater increase of
the individual utility of i with respect to the task ta only
if:(

tM∅

i (t),tc
− tMi(t+1),tc

)
>

(
T − tMi(t+1),ta

)
⇒

⇒ tMi(t+1),tc <
(
tMi(t+1),ta + ϕ

)
(20)

where ϕ = tM∅
i (t),tc

− T is a negative quantity as per
definition of T . It is clear that the relationship in (20) is
unlikely to be satisfied because the mission duration T
is generally much larger than tMi(t+1),ta .

• Mi(t + 1) is a descendant ofMi(t) adding a task tr ∈

Tr - In this case, there is no variation of the individual
utility of i, i.e., 1ui(t + 1) = 0.

• Mi(t+1) =Mi(t) - In this case, no tasks are added and
the previous plan is still selected, thus, 1ui(t+ 1) = 0.

• Mi(t + 1) is an ancestor of Mi(t) - In this case, it is
evident that there is a possible reduction of the individual
utility of i, i.e., 1ui(t + 1) ≤ 0.

Therefore, if we adopt a utility-weighted distribution for
the learning rule, at each time step the agent i (if allowed to
alter its plan) will:

• add a task ta ∈ Ta with high probability, proportionally
to the term in (18);

• add a task tc ∈ Tc, with lower probabilities with respect
to the previous option, proportionally to the term in (19);

• add other tasks, or will select the previous plan, or will
select an ancestor plan, with even lower probabilities.

Such rule is expected to provide better results with
respect to the uniform distribution by drastically reducing
the overlapping in agent planning, while keeping stochastic
perturbations. However, it could be not yet satisfactory for
a practical implementation since the tasks ta ∈ Ta could
provide numerical values of1ui(t+1) with small differences.
In this case, little stochastic perturbations may significantly
affect the selection of ta, i.e., the ith drone would add a new
task ta in a ‘‘too random’’way, not rewarding enough the tasks
that would increase the agent’s utility and possibly cumulat-
ing this stochastic penalty in the next stages of selection.

In order to have a more balanced weighted distribution for
the performance maximization, we propose a first solution
of the coordination algorithm, which normalizes and then
overweighs the distribution of drones’ utility (over Mi ) using
an exponential function and a temperature β in a similar way
as reported in (9) and in (10). In other words, the exponen-
tial function and the temperature allow the agent to select
(if required) the newmission plans by further rewarding those
with higher utilities in the constrained action set. The pro-
posed balancing aims at achieving a satisfactory equilibrium
for the game. The pseudocode of this first solution is shown
in Fig. 6.

Note that the normalization of the values of the drones’
utility is necessary to prevent any numerical overflows when
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FIGURE 6. Pseudo code of the first solution for the coordination algorithm.

calculating the probabilities in (9) and in (10) in a practical
implementation. For this purpose, a normalization method,
derived from the robust scaler technique [57], is used. This
method replaces median, second and third quartile of the
robust scaler with parametric percentiles in order to further
reward the higher utilities without resorting to too small
values for β. However, a limitation of the solution in Fig. 6
is represented by the rare selection of ancestor plans, which
could not allow a sufficient diversity in the exploration strat-
egy over the set Mi, e.g., to escape from local equilibria
caused by previous selections in the sequence. Therefore,
we have also designed a second solution for the coordination
algorithm, which modifies the third point of the BLLL’s
structure by increasing the probability to select an ancestor
mission plan acting on the temperature τ . This second solu-
tion has been explicitly implemented for the case w = 1 for
computational reasons, even if it is theoretically applicable
for any value of w.

In detail, in this second solution, the ith agent will select
the new mission plan (modifying the line 15 of the algorithm
in Fig. 6) according to the following probabilities,

P
(
Mi(t) =M∗

i
)

=
e
1
τ
ui(M∗

i ,M−i(t−1))∑
(·)

, (21)

P (Mi(t) =Mi(t − 1)) =
e
1
τ
ui(Mi(t−1),M−i(t−1))∑

(·)
, (22)

P
(
Mi(t) =M[−1]

i (t − 1)
)

=
e
1
τ
ui

(
M[−1]

i (t−1),M−i(t−1)
)

∑
(·)

,

(23)

where,∑
(·) ≜ e

1
τ
ui(M∗

i ,M−i(t−1)) + e
1
τ
ui(Mi(t),M−i(t−1))

+

+ e
1
τ
ui

(
M[−1]

i (t−1),M−i(t−1)
. (24)

Strictly speaking, the demonstrations of reachability and
reversibility properties are valid for both algorithms. Instead,
the stochastic stability of G maximizers is formally valid
only for the first solution, since this adopt the same ‘‘double-
selection’’ structure in (9) and (10) of the basic BLLL for
the selection of the new action. Instead, the second solu-
tion exhibits the aforementioned ‘‘triple-selection’’ structure,
which requires further analysis to evaluate the stochastic
stability of G maximizers. The next section reports detailed
experimental analysis, also to show the performance differ-
ence between the first and the second solution.

77596 VOLUME 12, 2024



V. U. Castrillo et al.: Learning-in-Games Approach

V. EXPERIMENTAL ANALYSIS
The proposed solutions for the problem in (6) were tested by
means of model-in-the-loop simulations. The Mesa frame-
work [58] was used for the coding and the simulation of
the agent-based models underlying the planner and the drone
team. It is a modular Python-based framework for building,
analysing, simulating and visualizing agent-based models.
Our previous work [16] already reported some experimen-
tal results with the support of Mesa framework to confirm
the effectiveness of a preliminary version of the learning
design. These results especially concerned a comparison
with a centralized coordination method (exploiting K-means
algorithm), by assessing an efficiency metric as the ratio
between the ECI values of our solution and the centralized
one. The previous work demonstrated that the efficiency
increases with the number of targets, thus the game-theoretic
coordination mechanism is scalable with respect to the com-
plexity of scenario (i.e., the number of waypoints in the ROI).

For this work, some specific simulation campaigns were
set with:

• a mission with a duration T equal to 10 ’000 s
(2.78 hours);

• a 5-drone team with an average cruise velocity equal
to 1 m/s for each drone and with enough endurance to
cover the duration T ;

• a ROI having a surface area equal to 400 m × 400 m;
• a free-space ROI (i.e., with no-fly zones and obstacles);
• a home (i.e., the starting point of the drones) included in
the ROI and with the same positions for all the drones in
the team;

• a variable number of sensing waypoints located in the
ROI;

• homogeneous targets, i.e., with the same priority and the
same time needed for the inspection sensing (assumed to
be null).

The conditions about free-space ROI and homogeneous
target are without loss of generality for the proposed solutions
and are adopted just to facilitate the experimental analysis.
For example, the impact of possible obstacles may be easily
processed by computing the increase of ECI variations for
the edges between sensing waypoints which pass through the
obstacles, and by adding the proper intermediate waypoints
in the mission plans.

As example, Fig. 7 shows the mission plans for each drone
provided by the first proposed solution at the end of a sim-
ulation run, for two scenarios characterized respectively by
50 and 100 tasks with the home centered in the ROI.

The sample average of the minimum ECI (ECImin ) and,
equivalently, of the maximum mission utility G(M) (Gmax),
were calculated as metrics to evaluate the performance of the
proposed solutions. As additional reference metrics, we con-
sidered: (i) the number of assigned tasks in the joint plan
N (t) = |M(t)|, that is the sum of cardinalities of Mi,
i.e., N (t) =

∑Nd
i=1 |Mi(t)|; (ii) the Convergence Step (CS) as

the number of steps after which the coordination algorithm
obtains the 99% of the minimum value of the ECI of the

TABLE 1. Simulations results of the first solution.

joint mission plan in the learning sequence. Each step is also
named learning step or negotiation step, and we use the term
‘negotiation’ to denote the iterative learning process to reach
an equilibrium in the joint plan selection.

The first simulation campaign aimed at studying the effec-
tiveness of the first solution, also by preliminarily assessing
how the variation of its main parameters influences the statis-
tics of the performance of the algorithm. In such campaign,
the home position was centered in the ROI and 50 sens-
ing tasks were considered. The first solution was analyzed
using the values 100 and 90 for the percentiles α and γ ,
and assessing the influence of w, β and τ in three steps.
The influence of the temperature τ was firstly assessed by
using w = 1 and by adopting the condition β → 0, which
corresponds to a best response learning policy (i.e., the plan
with the highest utility is deterministically selected) for the
first random selection (line 13 of the algorithm in Fig. 6).
Afterwards, the influence of the temperature β was assessed
by using w = 1 and the optimal setting of τ (i.e., the
one minimizing ECImin ) as identified in the previous step.
Lastly, the influence of the planning window w was assessed,
using the optimal settings of β and τ previously identified.
The evaluation was performed by simulating 500 random
scenarios (i.e., random spatial distributions of the waypoints
associated to the 50 sensing tasks).

The results are shown in Table 1, where: S indicates the
identifier of the simulation set (i.e., the aggregation of ran-
dom scenarios); CS represents the sample mean of the CS
metric; µ, σ and CI respectively indicate the sample mean,
the sample standard deviation and the confidence interval
of ECImin.
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FIGURE 7. Mission plans assigned to the drone team provided by the first solution for the coordination algorithm considering a first scenario
with 50 sensing tasks (left) and a second scenario with 100 sensing tasks (right).

In regard to the influence of τ , such table highlights
that: (i) variations of τ (simulation sets 1-8) do not produce
remarkable changes of the statistics of ECImin , whereas CS
increases with τ (an explanation for this is subsequently pro-
vided); (ii) the best setting for τ is 0.01 within best response
policy (simulation sets 1-8). In regard to β, this does not
significantly affect the statistics of ECImin values in the range
]0, 0.1], whereas it produces worse average values of ECImin
for β > 0.1. This is because, as β increases, the coordination
algorithm allows the drones to add tasks to their mission
plans in an increasingly random manner. Also note that CS
increases with β (an explanation for this is subsequently
provided). Lastly, both statistics of ECImin and CS improve as
w is increased, as evident for the last simulation set in Table 1.
Indeed, greater values of w allow an enhanced research for
the agent i in the constrained set Cw

i (Mi(t)), since this set
contains more plans if w is increased. On the other hand,
larger planning windows imply a greater computational load
for the online generation of individual mission plans.

The above results also confirm that, for the first ran-
dom selection (line 13 of the algorithm in Fig. 6), a simple
weighted distribution (i.e., without exponential functions)
would not be suitable to select M∗

i . Indeed, better per-
formance is achieved for lower values of β (i.e., for near
best response policy), resulting in an exponential weighing
providing larger increments for the related cumulative distri-
bution function at the mission plans with the highest utility
values. To the contrary, greater values of β tend towards a
uniform distribution.

Fig. 8 shows other views of the results of the first campaign
to better understand their implications, related to the time
evolution of negotiation. In detail, such evolution is generally
characterized by the following phases:

• First negotiation phase - This is the initial phase of
the negotiation evolution, which is distinguished by the
presence of tasks that are not allocated in any indi-
vidual plans, i.e., Tu ̸= ∅. Here, at each time step

the coordination algorithm allows the enabled agent to
select either its previous plan or a new plan. In the former
case, the joint plan and the total mission utility do not
change with respect to the previous step, so the negotia-
tion step is also named a ‘‘stalemate’’ step. In the latter
case, the algorithm tends to lean towards not allocated
tasks, i.e., to select other tasks in Tu. This phase on
average has a quick growth in the mission utility, as a
consequence of (18).

• Second negotiation phase - Once all the tasks have been
allocated to at least one drone ( Tu = ∅ ), a second
phase starts, wherein agents may compete for tasks
already allocated. Here, the mission utility on average
has a slower growth with respect to the first phase, as a
consequence of (19).

• Equilibrium phase - The second phase continues until
an equilibrium is reached, which is distinguished by a
stable joint plan that is not perturbed by the coordination
algorithm.

The aforementioned phases are evident in the charts in
Fig. 8, which all depict the time evolution of the mission util-
ity for given simulation runs related to different combinations
of the temperatures β and τ , with w = 1.

Fig. 8 (bottom-left) shows a clear example of the influence
of the temperature τ , whose variation does not imply remark-
able changes of the equilibrium value of G(M(t)). Indeed,
τ only influences the number of stalemate steps occurred
during the second negotiation phase, resulting in a mere
increase of the value of the CS. Instead, Fig. 8 (bottomright)
highlights the reduction of the equilibrium values ofG(M(t))
and the increase of the CS as β increases. In detail, the value
of the CS gets larger because the number of stalemate steps
increase and the second negotiation phase takes more steps
to converge, due to the greater randomness in the selection of
new plans.

Lastly, Fig. 9 illustrates a comparison between the simula-
tion sets 1 and 14, characterized by the same settings except
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FIGURE 8. (top-left) Mission utility and number of sensing tasks selected by the drones for a given scenario with the
configuration of the simulation set 3; (top-right) Detail of the mission utility shown in (top-left) illustrating the transition
between the negotiation phases; (bottom-left) and (bottom-right) Mission utility for different configuration of temperatures β

and τ . All the data shown in the figures refer to the first solution for the coordination algorithm with w = 1.

for w. Such figure demonstrates how the statistics of ECImin
and Gmax improve as w increases by reporting a histogram of
the occurrences of Gmax respectively for w = 1 and w = 2.
Afterwards, the second simulation campaign aimed at

studying the effectiveness of the second solution, with the
same approach of the first campaign. The solution was
assessed using the same 500 random scenarios and the same
values for the percentiles α and γ of the first campaign. In this
case, only the influence of β and τ was assessed, whereas a
constant planning window w = 1 was adopted.
With the second solution, the negotiation is expected to

not reach an equilibrium because further randomness is intro-
duced in the second random selection (line 16 in Fig. 6)
allowing a drone to deliberate an ancestor plan with a not null
probability. Therefore, the value of ECImin is a function of the
number of time steps tmax granted to the coordination. Thus,
also the influence of such number of time steps should be
assessed in this case. In detail, we considered two different
values of tmax, respectively 600 and 1000 steps, to find the
best combination of tmax and τ in the case β → 0. Then, other
simulations were carried out considering different values of
β to assess its influence. The obtained results are shown in
Table 2.
In the simulation sets 1-5 (tmax = 600 and β → 0), a small

improvement in performance was observed for small values

FIGURE 9. Comparison between performances obtainable with two
different values (respectively 1 and 2 ) for w using the first solution for
the coordination algorithm.

of τ ( ≤ 0.1 ) with respect to the average value of ECImin
provided by the first solution (considering w = 1). How-
ever, a significant increase was detected for the value of
CS. Moreover, a worsening of the statistics of ECImin was
observed for τ > 0.1, in contrast to the first solution.
Instead, in simulation sets 6-10 ( tmax = 1000 and β → 0),
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TABLE 2. Simulations of the second solution.

no significant differences for the statistics of ECImin were
noticed with respect to simulation sets 1 − 5. To conclude:
(i) the optimal setting of τ is 0.05 and (ii) the increase tmax
does not produce notable improvement. Moreover, using the
settings for τ = 0.05 and tmax = 600, no improvements were
observed for β < 0.05 in simulation sets 11−14 with respect
to the previous simulation sets, whereas some worsening was
observed for β > 0.5. This influence of β is similar to the
results of the assessment of β obtained for the first solution.

Fig. 10 and Fig. 11 provide a temporal view of the above
results for a sample simulation scenario, confirming the
absence of the equilibrium phase. Indeed, a persistent vari-
ation of G(M) and N (t) is evident in Fig. 11.
An additional comparison between the first and the second

solution is shown bymeans of the histogram in Fig. 12, where
the occurrences of the values of mission utility are reported
with the same settings for β → 0, τ = 0.05 and w = 1 for
both solutions, and with tmax = 600 for the second solution.
The histogram experimentally confirms the slight improve-
ment introduced by the second solution for the average values
of Gmax. As mentioned in section IV.C, this experimental
analysis shall be complemented with a formal analysis of the
stochastic stability of the maximizers of the mission utility
function.

The third simulation campaign aimed at assessing the
influence of the distribution of sensing tasks on the per-
formance of the coordination algorithm. For this purpose,
we used the following configuration for the parameters of the
first solution: (i) the values 100 and 90 for the percentiles α

and γ , (ii) β → 0, (iii) τ = 0.01 and (iv) 100 random sce-
narios for each simulation set, where the settings for β and τ

FIGURE 10. Mission utility for different configuration of τ with β → 0,
obtained with the second solution for the coordination algorithm.

FIGURE 11. Detail of the mission utility and the total sensing tasks
selected by the drones for a given scenario with the configuration defined
for the simulation set 3 in Table 2. The data shown refer to the second
solution for the coordination algorithm.

FIGURE 12. Comparison between the maximum mission utility provided
by the first and the second solutions of for the coordination algorithm
considering β → 0 and τ = 0.05.

represent the best trade-off for the first solution, as identified
in the first simulation campaign. The analysis was carried out
by varying: (i) Nt ∈ {50, 100, 150, 200, 250, 300}; (ii) the
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FIGURE 13. (left) Average convergence step vs. number of sensing tasks considered in the simulation sets; (right) Sample
mean of ECImin vs. number of sensing tasks considered in the simulation sets. The data shown in the figures refer to the
first solution for the coordination algorithm, considering the settings β → 0, τ = 0.01 and w = 1.

TABLE 3. Simulations of the third campaign.

home position, which might be fixed and centered in the ROI,
or it might be randomly located (with a uniform distribution)
in the ROI. For the planning window, the setting w = 1 was
used for all the values of Nt, whereas the setting w = 2 was
also used for Nt = 50 and Nt = 100. The results are shown
in Table 3, where HP indicates the home position (centered
or random).

Based on the results in Table 3, Fig. 13 (left) and (right)
respectively show the average value of the CS and of ECImin
as functions of Nt for both random and centered home posi-
tions, with w = 1. In detail, Fig. 13 (left) highlights that

the convergence step increases almost linearly with Nt for
each configuration, confirming the scalability of the proposed
coordination algorithms.

VI. CONCLUSION
This work reports the design of a dynamic and decentralized
mission planner for a drone team performing autonomous
and cooperative spatio-temporal sensing. It applies the
learning-ingames framework for the coordination of the team,
introducing ad-hoc variants of the binary log-linear learn-
ing. Also, the work provides a mathematical analysis of
the reachability and reversibility properties for the designed
learning-in-games approach. Lastly, a detailed experimental
analysis is presented, which allows for a preliminary tune of
some learning parameters.

Future work entails a systematic optimization of the learn-
ing parameters with respect to the mission scenario and
a trade-off with other reinforcement-learning approaches.
For example, Agent-based Evolutionary Search (AES) may
be applied for the optimization strategy of the learning
parameters, similarly to other multi-agent applications [59].
Moreover, a formal analysis shall be performed to evaluate
the stochastic stability of themaximizers of themission utility
function for the second coordination solution, considering
possibly additional frameworks for the stability analysis of
learning in games [60]. In case of spatio-temporal sensing
for security-driven applications, the coordination mecha-
nism shall be enriched to consider advanced and intelligent
behaviours of the reference threat, e.g., by means of Stackel-
berg security games. Lastly, future work shall consider actual
flight tests to further verify the performance of the proposed
mission planner in a real environment.

APPENDIX A
PROOF OF THEOREM 1—REACHABILITY
We firstly consider the case where Mm

i is an ancestor or
a descendant of M0

i . If the plans M0
i and Mm

i differ in r
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tasks with r ≤ w, the proof is trivial, because the property is
verified as per construction of Cw

i . Otherwise (r > w):
• ifMm

i is a descendant ofM0
i , we can apply a sequence

of ceil (r/w) steps to add the r differing tasks to the
previous plan, starting fromM0

i , to obtainMm
i ;

• ifMm
i is a descendant ofM0

i , we can apply a sequence
of ceil (r/w) steps to subtract the r differing tasks from
the previous plan, starting fromM0

i , to obtainMm
i .

Instead, ifMm
i is not an ancestor or a descendant ofM0

i ,
we can apply a first sequence of plans, which starts fromM0

i
and subtracts tasks from the previous plan of each sequence
step, until it reaches the empty plan. Then, we can apply
a second sequence of plans, which starts from the empty
sequence and adds the tasks ofMm

i to the previous mission
of each sequence, until it reaches the fullyMm

i . Merging the
two sequences, the property is proved also in this case.

APPENDIX B
PROOF OF THEOREM 2—REVERSIBILITY
As per construction of Cw

i , ifM
0
i ∈ Cw

i

(
M1

i

)
, thenM0

i can
be: (i) a j th order descendant ofM1

i with j ≤ w; (ii) a j th
order ancestor of P1i with j ≤ w; or (iii) equal toM1

i .
In the case (i), since Cw

i

(
M0

i

)
includes all the ancestors of

M0
i up to (at least) the order j, therefore it includes alsoM

1
i .

In the case (ii), since Cw
i

(
M0

i

)
includes all the descendant

of M0
i up to (at least) the order j, therefore it includes

alsoM1
i .

In the case (iii), the proof of the property is trivial.

REFERENCES
[1] NIST. (Oct. 2008). Autonomy Levels for Unmanned Systems (ALFUS)

Framework–Volume I: Terminology. Hui-Min Huang National Insti-
tute of Standards & Technology, Gaithersburg, MD, USA, NIST
Special Publication 1011-I-2.0. [Online]. Available: https://www.nist.
gov/system/files/documents/el/isd/ks/NISTSP_1011-I-2-0.pdf

[2] E. Gat, ‘‘Autonomy software verification and validation might not be
as hard as it seems,’’ in Proc. IEEE Aerosp. Conf., Big Sky, MT,
USA, vol. 5, Mar. 2004, pp. 3123–3128, doi: 10.1109/AERO.2004.
1368117.

[3] S. E. Kolitz and R. M. Beaton, ‘‘Overall system concepts in mission
planning,’’ in New Advances in Mission Planning and Rehearsal
Systems, AGARD Lecture Series, vol. 192. Neuilly Sur Seine, France:
Advisory Group for Aerospace Research & Development, 1993. [Online].
Available: https://www.sto.nato.int/publications/AGARD/AGARD-LS-
192/AGARD-LS-192.pdf

[4] C. Tabasso, C. Kielas-Jensen, V. Cichella, S. Manyam, D. W. Casbeer, and
I. Weintraub, ‘‘Continuous monitoring of a path-constrained moving target
by multiple unmanned aerial vehicles,’’ J. Guid., Control, Dyn., vol. 45,
no. 4, pp. 704–713, Apr. 2022, doi: 10.2514/1.g006043.

[5] C. Tabasso, V. Cichella, S. B. Mehdi, T. Marinho, and N. Hovakimyan,
‘‘Time coordination and collision avoidance using leader-follower strate-
gies in multi-vehicle missions,’’ Robotics, vol. 10, no. 1, p. 34, Feb. 2021,
doi: 10.3390/robotics10010034.

[6] V. Cichella, ‘‘Cooperative autonomous systems: Motion planning and
coordinated tracking control for multi-vehicle missions. dissertation,’’
Ph.D. dissertation, Mech. Eng., Univ. Illinois Urbana-Champaign,
Urbana, IL, USA, 2018. [Online]. Available: https://core.ac.uk/
download/pdf/161953638.pdf

[7] W. Truszkowski, H. L. Hallock, C. Rouff, J. Karlin, J. Rash, M. Hinchey,
and R. Sterritt, ‘‘Cooperative autonomy,’’ in Autonomous and Autonomic
Systems: With Applications to NASA Intelligent Spacecraft Operations
and Exploration Systems (NASA Monographs in Systems and Software
Engineering), London, U.K.: Springer, 2009, doi: 10.1007/b105417_7.

[8] L. E. Parker, ‘‘Distributed intelligence: Overview of the field and its
application in multi-robot systems,’’ in Proc. AAAI Fall Symp., 2007,
pp. 1–6. [Online]. Available: https://cdn.aaai.org/Symposia/Fall/2007/FS-
07-06/FS07-06-002.pdf

[9] J. K. Verma and V. Ranga, ‘‘Multi-robot coordination analysis, taxonomy,
challenges and future scope,’’ J. Intell. Robotic Syst., vol. 102, p. 10,
Apr. 2021, doi: 10.1007/s10846-021-01378-2.

[10] L. Beaudoin, A. Gademer, L. Avanthey, V. Germain, andV. Vittori, ‘‘Poten-
tial threats of UAS swarms and the countermeasure’s need,’’ in Proc. Eur.
Conf. Inf. Warfare Secur. (ECIW), Tallinn, Estonia, Jul. 2011, pp. 24–30.
[Online]. Available: https://hal.science/hal-01132236/document

[11] V. U. Castrillo, A. Manco, D. Pascarella, and G. Gigante, ‘‘A review of
counter-UAS technologies for cooperative defensive teams of drones,’’
Drones, vol. 6, no. 3, p. 65, Mar. 2022, doi: 10.3390/drones6030065.

[12] X. Wang, Y. Cao, M. Ding, X. Wang, W. Yu, and B. Guo, ‘‘Research
progress in modeling and evaluation of cooperative operation system-
of-systems for manned-unmanned aerial vehicles,’’ IEEE Aerosp.
Electron. Syst. Mag., vol. 39, no. 4, pp. 6–31, Apr. 2024, doi:
10.1109/MAES.2023.3347504.

[13] J. Song, K. Zhao, and Y. Liu, ‘‘Survey on mission planning of multiple
unmanned aerial vehicles,’’ Aerospace, vol. 10, no. 3, p. 208, Feb. 2023,
doi: 10.3390/aerospace10030208.

[14] C. Qin and E. Pournaras, ‘‘Coordination of drones at scale: Decentralized
energy-aware swarm intelligence for spatio-temporal sensing,’’ Transp.
Res. C, Emerg. Technol., vol. 157, Dec. 2023, Art. no. 104387, doi:
10.1016/j.trc.2023.104387.

[15] G. Gigante, D. Pascarella, S. Luongo, C. Di Benedetto, A. Vozella, and
G. Persechino, ‘‘Game-theoretic approach for the optimal configuration
computing of an interoperable fleet of unmanned vehicles,’’ Expert Syst.,
vol. 35, Oct. 2018, Art. no. e12293, doi: 10.1111/exsy.12293.

[16] V. U. Castrillo, I. Iudice, D. Pascarella, G. Pigliasco, and A. Vozella,
‘‘Game-theoretic mission planning of drone teams in autonomous
detection and recognition,’’ in Proc. IEEE Int. Workshop Technol.
Defense Secur. (TechDefense), Rome, Italy, Nov. 2023, pp. 197–202, doi:
10.1109/TechDefense59795.2023.10380873.

[17] W. Ren andY. Cao, ‘‘Overview of recent research in distributedmulti-agent
coordination,’’ in Distributed Coordination of Multi-Agent Networks:
Emergent Problems, Models, and Issues. London, U.K.: Springer, 2011,
pp. 23–41, doi: 10.1007/978-0-85729-169-1_2.

[18] A. Dorri, S. S. Kanhere, and R. Jurdak, ‘‘Multi-agent systems:
A survey,’’ IEEE Access, vol. 6, pp. 28573–28593, 2018, doi:
10.1109/ACCESS.2018.2831228.

[19] I. Maza, J. Capitán, L. Merino, and A. Ollero, ‘‘Multi-UAV cooperation,’’
in Encyclopedia of Aerospace Engineering. Hoboken, NJ, USA: Wiley,
2015, doi: 10.1002/9780470686652.eae1130.

[20] V. Hassija, V. Chamola, A. Agrawal, A. Goyal, N. C. Luong, D. Niyato,
F. R. Yu, andM. Guizani, ‘‘Fast, reliable, and secure drone communication:
A comprehensive survey,’’ IEEE Commun. Surveys Tuts., vol. 23, no. 4,
pp. 2802–2832, 4th Quart., 2021, doi: 10.1109/COMST.2021.3097916.

[21] Y. Mekdad, A. Aris, L. Babun, A. E. Fergougui, M. Conti, R. Lazzeretti,
and A. S. Uluagac, ‘‘A survey on security and privacy issues of
UAVs,’’ Comput. Netw., vol. 224, Apr. 2023, Art. no. 109626, doi:
10.1016/j.comnet.2023.109626.

[22] A. Fotouhi, H. Qiang, M. Ding, M. Hassan, L. G. Giordano,
A. Garcia-Rodriguez, and J. Yuan, ‘‘Survey on UAV cellular
communications: Practical aspects, standardization advancements,
regulation, and security challenges,’’ IEEE Commun. Surveys
Tuts., vol. 21, no. 4, pp. 3417–3442, 4th Quart., 2019, doi:
10.1109/COMST.2019.2906228.

[23] S. D. Apostolidis, P. C. Kapoutsis, A. C. Kapoutsis, and
E. B. Kosmatopoulos, ‘‘Cooperative multi-UAV coverage mission
planning platform for remote sensing applications,’’ Auton. Robots,
vol. 46, no. 2, pp. 373–400, Feb. 2022, doi: 10.1007/s10514-021-10028-3.

[24] Á. Calvo, G. Silano, and J. Capitán, ‘‘Mission planning and exe-
cution in heterogeneous teams of aerial robots supporting power
line inspection operations,’’ in Proc. Int. Conf. Unmanned Aircr.
Syst. (ICUAS), Dubrovnik, Croatia, Jun. 2022, pp. 1644–1649, doi:
10.1109/ICUAS54217.2022.9836234.

[25] S. Poudel and S. Moh, ‘‘Task assignment algorithms for unmanned aerial
vehicle networks: A comprehensive survey,’’ Veh. Commun., vol. 35,
Jun. 2022, Art. no. 100469, doi: 10.1016/j.vehcom.2022.100469.

77602 VOLUME 12, 2024

http://dx.doi.org/10.1109/AERO.2004.1368117
http://dx.doi.org/10.1109/AERO.2004.1368117
http://dx.doi.org/10.2514/1.g006043
http://dx.doi.org/10.3390/robotics10010034
http://dx.doi.org/10.1007/b105417_7
http://dx.doi.org/10.1007/s10846-021-01378-2
http://dx.doi.org/10.3390/drones6030065
http://dx.doi.org/10.1109/MAES.2023.3347504
http://dx.doi.org/10.3390/aerospace10030208
http://dx.doi.org/10.1016/j.trc.2023.104387
http://dx.doi.org/10.1111/exsy.12293
http://dx.doi.org/10.1109/TechDefense59795.2023.10380873
http://dx.doi.org/10.1007/978-0-85729-169-1_2
http://dx.doi.org/10.1109/ACCESS.2018.2831228
http://dx.doi.org/10.1002/9780470686652.eae1130
http://dx.doi.org/10.1109/COMST.2021.3097916
http://dx.doi.org/10.1016/j.comnet.2023.109626
http://dx.doi.org/10.1109/COMST.2019.2906228
http://dx.doi.org/10.1007/s10514-021-10028-3
http://dx.doi.org/10.1109/ICUAS54217.2022.9836234
http://dx.doi.org/10.1016/j.vehcom.2022.100469


V. U. Castrillo et al.: Learning-in-Games Approach

[26] G. M. Skaltsis, H. S. Shin, and A. Tsourdos, ‘‘A review of task allocation
methods for UAVs,’’ J. Intell. Robotic Syst., vol. 109, p. 76, Nov. 2023, doi:
10.1007/s10846-023-02011-0.

[27] H. Yan, W. Zhao, C. Chen, Y. You, X. Gao, D. Zhang, W. Cao, and
W. Bao, ‘‘MCTA: Multi-UAV collaborative target allocation to monitor
targets with dynamic importance,’’ in Proc. 6th Int. Conf. Big Data Inf.
Anal. (BigDIA), Shenzhen, China, Dec. 2020, pp. 50–57, doi: 10.1109/Big-
DIA51454.2020.00017.

[28] J. Chen, X. Qing, F. Ye, K. Xiao, K. You, and Q. Sun, ‘‘Consensus-based
bundle algorithm with local replanning for heterogeneous multi-UAV
system in the time-sensitive and dynamic environment,’’ J. Super-
comput., vol. 78, no. 2, pp. 1712–1740, Feb. 2022, doi: 10.1007/
s11227-021-03940-z.

[29] A. Liekna, E. Lavendelis, and A. Grabovskis, ‘‘Experimental analysis of
contract net protocol in multi-robot task allocation,’’ Appl. Comput. Syst.,
vol. 13, no. 1, pp. 6–14, 2013, doi: 10.2478/v10312-012-0001-7.

[30] J. J. Roldán, J. Del Cerro, and A. Barrientos, ‘‘Should we compete or
should we cooperate? Applying game theory to task allocation in drone
swarms,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Madrid,
Spain, Oct. 2018, pp. 5366–5371, doi: 10.1109/IROS.2018.8594145.

[31] G. Attenni, V. Arrigoni, N. Bartolini, and G. Maselli, ‘‘Drone-based
delivery systems: A survey on route planning,’’ IEEE Access, vol. 11,
pp. 123476–123504, 2023, doi: 10.1109/ACCESS.2023.3329195.

[32] A. M. Raivi, S. M. A. Huda, M. M. Alam, and S. Moh, ‘‘Drone rout-
ing for drone-based delivery systems: A review of trajectory planning,
charging, and security,’’ Sensors, vol. 23, no. 3, p. 1463, Jan. 2023, doi:
10.3390/s23031463.

[33] F. Aljalaud, H. Kurdi, and K. Youcef-Toumi, ‘‘Bio-inspired multi-UAV
path planning heuristics: A review,’’Mathematics, vol. 11, no. 10, p. 2356,
May 2023, doi: 10.3390/math11102356.

[34] S. Lin, A. Liu, J. Wang, and X. Kong, ‘‘A review of path-planning
approaches for multiple mobile robots,’’ Machines, vol. 10, no. 9, p. 773,
Sep. 2022, doi: 10.3390/machines10090773.

[35] G. Macrina, L. Di Puglia Pugliese, F. Guerriero, and G. Laporte, ‘‘Drone-
aided routing: A literature review,’’ Transp. Res. C, Emerg. Technol.,
vol. 120, Nov. 2020, Art. no. 102762, doi: 10.1016/j.trc.2020.102762.

[36] C. Cheng, Y. Adulyasak, and L. Rousseau, ‘‘Formulations and exact
algorithms for drone routing problem,’’ CIRRELT, Montreal, QC,
Canada, Tech. Rep., Jul. 2018. [Online]. Available: https://www.
cirrelt.ca/DocumentsTravail/CIRRELT-2018-31.pdf

[37] S. Cavani, M. Iori, and R. Roberti, ‘‘Exact methods for the traveling
salesman problem with multiple drones,’’ Transp. Res. C, Emerg. Technol.,
vol. 130, Sep. 2021, Art. no. 103280, doi: 10.1016/j.trc.2021.103280.

[38] C. C.Murray andR. Raj, ‘‘Themultiple flying sidekicks traveling salesman
problem: Parcel delivery with multiple drones,’’ Transp. Res. C, Emerg.
Technol., vol. 110, pp. 368–398, Jan. 2020, doi: 10.1016/j.trc.2019.11.003.

[39] Z. Wang and J. Sheu, ‘‘Vehicle routing problem with drones,’’
Transp. Res. B, Methodol., vol. 122, pp. 350–364, Apr. 2019, doi:
10.1016/j.trb.2019.03.005.

[40] J. M. Leon-Blanco, P. L. Gonzalez-R, J. L. Andrade-Pineda, D. Canca,
and M. Calle, ‘‘A multi-agent approach to the truck multi-drone routing
problem,’’ Expert Syst. Appl., vol. 195, Jun. 2022, Art. no. 116604, doi:
10.1016/j.eswa.2022.116604.

[41] X. Kong, Y. Zhou, Z. Li, and S. Wang, ‘‘Multi-UAV simultane-
ous target assignment and path planning based on deep reinforce-
ment learning in dynamic multiple obstacles environments,’’ Frontiers
Neurorobot., vol. 17, Jan. 2024, Art. no. 1302898, doi: fnbot.2023.
1302898.

[42] Z. Chen, J. Alonso-Mora, X. Bai, D. D. Harabor, and P. J. Stuckey,
‘‘Integrated task assignment and path planning for capacitated multi-
agent pickup and delivery,’’ IEEE Robot. Autom. Lett., vol. 6, no. 3,
pp. 5816–5823, Jul. 2021, doi: 10.1109/LRA.2021.3074883.

[43] J. Ni, G. Tang, Z. Mo, W. Cao, and S. X. Yang, ‘‘An improved
potential game theory based method for multi-UAV cooperative
search,’’ IEEE Access, vol. 8, pp. 47787–47796, 2020, doi:
10.1109/ACCESS.2020.2978853.

[44] P. Garcia-Aunon, J. del Cerro, and A. Barrientos, ‘‘Behavior-based control
for an aerial robotic swarm in surveillance missions,’’ Sensors, vol. 19,
no. 20, p. 4584, Oct. 2019, doi: 10.3390/s19204584.

[45] K.-Y. Tsao, T. Girdler, and V. G. Vassilakis, ‘‘A survey of cyber secu-
rity threats and solutions for UAV communications and flying ad-hoc
networks,’’ Ad Hoc Netw., vol. 133, Aug. 2022, Art. no. 102894, doi:
10.1016/j.adhoc.2022.102894.

[46] J. Villagra, M. Clavijo, A. Díaz-Álvarez, and V. Trentin, ‘‘Motion predic-
tion and risk assessment,’’ inDecision-Making Techniques for Autonomous
Vehicles. Amsterdam, The Netherlands: Elsevier, 2023, ch. 4, pp. 61–101,
doi: 10.1016/B978-0-323-98339-6.00002-6.

[47] M. N. Huhns and L. M. Stephens, ‘‘Multiagent systems and societies of
agents,’’ inMultiagent Systems: A Modern Approach to Distributed Artifi-
cial Intelligence. Cambridge, MA, USA: MIT Press, 1999, pp. 79–120.

[48] A. C. Chapman, ‘‘Control of large distributed systems using games
with pure strategy Nash equilibria,’’ Ph.D. dissertation, Electron. Com-
put. Sci., Univ. Southampton, Londonm U.K., 2009. [Online]. Available:
https://eprints.soton.ac.uk/69169/1/Thesis_Final.pdf

[49] D. Wolpert and K. Tumer, ‘‘An overview of collective intelligence,’’ in
Handbook of Agent Technology. Cambridge, MA, USA: MIT Press, 1999.

[50] D. Monderer and L. S. Shapley, ‘‘Potential games,’’ Games Econ. Behav.,
vol. 14, no. 1, pp. 124–143, May 1996, doi: 10.1006/game.1996.0044.

[51] G. Arslan, J. R. Marden, and J. S. Shamma, ‘‘Autonomous vehicle-target
assignment: A game-theoretical formulation,’’ J. Dyn. Syst., Meas., Con-
trol, vol. 129, no. 5, pp. 584–596, Sep. 2007, doi: 10.1115/1.2766722.

[52] A. C. Chapman, R. AnnaMicillo, R. Kota, and N. R. Jennings, ‘‘Decentral-
ized dynamic task allocation using overlapping potential games,’’ Comput.
J., vol. 53, no. 9, pp. 1462–1477, Nov. 2010, doi: 10.1093/comjnl/bxq023.

[53] J. S. Shamma, ‘‘Learning in games,’’ in Encyclopedia of Systems and
Control. Cham, Switzerland: Springer, 2021, doi: 10.1007/978-3-030-
44184-5_34.

[54] J. R. Marden and J. S. Shamma, ‘‘Game-theoretic learning in distributed
control,’’ in Handbook of Dynamic Game Theory. Cham, Switzerland:
Springer, 2018, doi: 10.1007/978-3-319-44374-4_9.

[55] J. R. Marden and J. S. Shamma, ‘‘Revisiting log-linear learning: Asyn-
chrony, completeness and payoff-based implementation,’’ in Proc. 48th
Annu. Allerton Conf. Commun., Control, Comput. (Allerton), Mon-
ticello, IL, USA, Sep. 2010, pp. 1171–1172, doi: 10.1109/ALLER-
TON.2010.5707044.

[56] A. Muralidharan, Y. Yan, and Y. Mostofi, ‘‘Binary log-linear learning
with stochastic communication links,’’ in Proc. IEEE Mil. Commun.
Conf. (MILCOM), Tampa, FL, USA, Oct. 2015, pp. 1348–1353, doi:
10.1109/MILCOM.2015.7357632.

[57] L. B. V. de Amorim, G. D. C. Cavalcanti, and R. M. O. Cruz,
‘‘The choice of scaling technique matters for classification perfor-
mance,’’ Appl. Soft Comput., vol. 133, Jan. 2023, Art. no. 109924, doi:
10.1016/j.asoc.2022.109924.

[58] Mesa Overview. Accessed: May 30, 2024. [Online]. Available:
https://mesa.readthedocs.io/en/stable/overview.html

[59] A. Pellegrini, P. D. Sanzo, B. Bevilacqua, G. Duca, D. Pascarella,
R. Palumbo, J. J. Ramos, M. À. Piera, and G. Gigante, ‘‘Simulation-based
evolutionary optimization of air traffic management,’’ IEEE Access, vol. 8,
pp. 161551–161570, 2020, doi: 10.1109/ACCESS.2020.3021192.

[60] P.Mertikopoulos, Y.-P. Hsieh, andV. Cevher, ‘‘A unified stochastic approx-
imation framework for learning in games,’’ Math. Program., vol. 203,
nos. 1–2, pp. 559–609, Jan. 2024, doi: 10.1007/s10107-023-02001-y.

VITTORIO U. CASTRILLO was born in Caserta,
Italy, in 1979. He received theM.S. degree (Hons.)
in electronic engineering from the University of
Naples Federico II, Italy, in 2003.

In 2004, he joined the Electronics and Commu-
nications Unit, Italian Aerospace Research Centre
(CIRA). In the beginning, he was involved in the
design and integration of data acquisition systems.
Afterward, he worked on the design and inte-
gration of communication systems for unmanned

aerial and space vehicles. Since 2011, his activities have been focused on the
design of algorithms for base-band digital signal processing for communi-
cation systems with implementation on FPGA-based platforms. Recently,
he has worked on the full (analog and digital) circuit design of complex
electronic systems based on FPGAs, DDR memories, and microcontrollers.
He is currently with the Security of Systems and Infrastructures Laboratory
and manages a project for the development of innovative technologies for
small drones.

VOLUME 12, 2024 77603

http://dx.doi.org/10.1007/s10846-023-02011-0
http://dx.doi.org/10.1109/BigDIA51454.2020.00017
http://dx.doi.org/10.1109/BigDIA51454.2020.00017
http://dx.doi.org/10.1007/s11227-021-03940-z
http://dx.doi.org/10.1007/s11227-021-03940-z
http://dx.doi.org/10.2478/v10312-012-0001-7
http://dx.doi.org/10.1109/IROS.2018.8594145
http://dx.doi.org/10.1109/ACCESS.2023.3329195
http://dx.doi.org/10.3390/s23031463
http://dx.doi.org/10.3390/math11102356
http://dx.doi.org/10.3390/machines10090773
http://dx.doi.org/10.1016/j.trc.2020.102762
http://dx.doi.org/10.1016/j.trc.2021.103280
http://dx.doi.org/10.1016/j.trc.2019.11.003
http://dx.doi.org/10.1016/j.trb.2019.03.005
http://dx.doi.org/10.1016/j.eswa.2022.116604
http://dx.doi.org/fnbot.2023.1302898
http://dx.doi.org/fnbot.2023.1302898
http://dx.doi.org/10.1109/LRA.2021.3074883
http://dx.doi.org/10.1109/ACCESS.2020.2978853
http://dx.doi.org/10.3390/s19204584
http://dx.doi.org/10.1016/j.adhoc.2022.102894
http://dx.doi.org/10.1016/B978-0-323-98339-6.00002-6
http://dx.doi.org/10.1006/game.1996.0044
http://dx.doi.org/10.1115/1.2766722
http://dx.doi.org/10.1093/comjnl/bxq023
http://dx.doi.org/10.1007/978-3-030-44184-5_34
http://dx.doi.org/10.1007/978-3-030-44184-5_34
http://dx.doi.org/10.1007/978-3-319-44374-4_9
http://dx.doi.org/10.1109/ALLERTON.2010.5707044
http://dx.doi.org/10.1109/ALLERTON.2010.5707044
http://dx.doi.org/10.1109/MILCOM.2015.7357632
http://dx.doi.org/10.1016/j.asoc.2022.109924
http://dx.doi.org/10.1109/ACCESS.2020.3021192
http://dx.doi.org/10.1007/s10107-023-02001-y


V. U. Castrillo et al.: Learning-in-Games Approach

DOMENICO PASCARELLA was born in San
Felice a Cancello, Italy, in 1983. He received the
B.S. and M.S. degrees in information engineering
and the Ph.D. degree in electronics and informa-
tion engineering from the Department of Industrial
and Information Engineering, ‘Seconda Università
degli Studi di Napoli, Italy, in 2007 and 2016,
respectively.

Since 2008, he has been a Researcher with the
Italian Aerospace Research Centre (CIRA), Italy.

From 2015 to 2020, he was with the Intelligent Systems Laboratory. Since
2020, he has been the Head of the System and Infrastructure Security
Laboratory, CIRA. He has published scientific papers in journals and con-
ference proceedings about the following themes: multiagent systems and
automated planning for drones, security applications for drones, and mod-
eling of complex systems. He was a part of the CIRA Team who awarded
the 2020 Defence Innovation Prize assigned by the European Defence
Agency.

GIANPAOLO PIGLIASCO was born in Naples,
Italy, in 1973. He received the degree (Hons.) in
computer engineering (specializing in automation)
from theUniversity of Naples Federico II, Italy, the
first master’s degree in enterprise innovation from
the Italian Business School ‘‘Fondazione CUOA,’’
and the secondmaster’s degree in innovative meth-
ods for aeronautical maintenance from the Italian
Aerospace Research Centre (CIRA), Capua. Since
2008, he has been a Researcher in the fields of

applications for aeronautics and aerospace, participating in several important
projects with regard to data analysis, process automation, design of intelli-
gent systems for avionics, and telecommunications. Since 2020, he has also
been a member of the System and Infrastructure Security Laboratory, CIRA.

IVAN IUDICE was born in Livorno, Italy,
in November 1986. He received the B.S. and
M.S. degrees in telecommunications engineering
and the Ph.D. degree in information technology
and electrical engineering from the University of
Napoli Federico II, Italy, in 2008, 2010, and 2017,
respectively.

He first served as a part of the Electronics and
Communications Laboratory. Since November
2020, he has been with the Security of Systems

and Infrastructures Laboratory, Italian Aerospace Research Centre (CIRA).
He is involved in several international projects. He is the author of several
papers in refereed journals and international conferences. His research inter-
ests include signal and array processing for communications, with current
interests focused on physical-layer security, space-time techniques for coop-
erative communications systems, and reflective intelligent metasurfaces.
He serves as a reviewer for several international journals and a TPC member
for several international conferences.

ANGELA VOZELLA received the Ph.D. degree.
She is currently the Head of the Reliabil-

ity Availability Maintainability Safety and Secu-
rity (R.A.M.S.&S.) Department, Italian Aerospace
Research Centre (CIRA). With 33 years of profes-
sional experience in system reliability engineering
for safety-critical applications, she has been an
active participant in many projects funded by the
European Commission and the project manager of
collaborative projects in space and transport. She

was involved in many research initiatives, working groups, and committees
supporting the definition and implementation of approaches to foster the
fulfillment of Flightpath2050 goals with themain stakeholders in the aviation
domain, such as EASA, ICAO, national civil aviation authority, military
stakeholders, industry, and research entities. She is currently involved in
many projects implementing innovative paradigms and related concepts
in aerospace to face with safety, security, performance, and sustainability
challenges, such as SESAR, Horizon Europe, Clean Aviation, EDF, and
national-funded initiatives.

77604 VOLUME 12, 2024


