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ABSTRACT We present a modeling framework for metasurfaces illuminated by a plane wave based
on the Generalized Sheet Transition Conditions (GSTCs). This framework describes how conventional
boundary conditions are converted to GSTCs. In order to provide a physical insight into the induced
dipole moments of simple small scatters, different snapshots are used when the maximum electric or
maximum magnetic field touches the metasurface. The spatial derivatives of the normal components of
the induced surface polarization densities are physically justified by considering all possible cases. It is
shown that both the normal and transverse components of the electric surface polarization density and surface
magnetization (magnetic polarization) density should be included in studying the most general case in the
metasurface. In addition, we have reviewed three different modeling approaches for describing the GSTCs,
which are polarizability, susceptibility, and impedance/admittance models. The interrelations between these
approaches are also discussed. Finally, we have reviewed the generalized modeling approaches of GSTCs
for synthesizing bianisotropic metasurfaces via all three mentioned models. This review provides several
examples to demonstrate how to design a desired metasurface using GSTCs. This tutorial study may open
new paradigms for a better modeling and conceptual understanding of GSTCs.

INDEX TERMS Boundary conditions, dipole moment, generalized sheet transition conditions, GSTCs,
metasurface.

I. INTRODUCTION
Electromagnetic waves, from radio waves to X-rays,
form the backbone of most of modern infrastructures
and technologies. However, when electromagnetic waves
generated by time-varying current or charge distributions
encounter electromagnetic discontinuities in a propagation
medium, they can exhibit complex behaviors. Understanding
and analyzing these effects is essential to comprehend the
behavior of electromagnetic waves. In the macroscopic
domain, Maxwell’s equations can determine the wave
responses. In order to solve Maxwell’s equations, permeabil-
ity (µ), permittivity (ε) and conductivity (σ ) are the only three
macroscopic constitutive parameters of the material media
needed to describe the relationships between macroscopic
field quantities [1]. These parameters for an ordinary medium
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are only scalar values, which means they are isotropic, time-
invariant, linear and homogeneous. However, these param-
eters for a complex medium (i.e., anisotropic, time-variant,
non-linear or inhomogeneous medium) may depend on
orientations of the magnetic and electric fields (anisotropic),
time (time-variant), magnitudes of the magnetic and
electric fields (non-linear), or location (inhomogeneous)
[1].

In order to control the phase, amplitude, and polariza-
tion of the electromagnetic wave, specific materials are
often employed [2]. Unfortunately, ordinary materials have
particular ranges of µ and ε, which limits their electro-
magnetic responses. In fact, electromagnetic properties of
the materials derived from the periodic table of elements
are in a specific range of values associated with various
factors, e.g., the operation frequency [2]. This limitation
of the ordinary material leads to the restriction of wave-
matter interaction. To overcome this physical limitation,
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the artificially engineered metamaterials, which are three-
dimensional (3D), generate opportunities for researchers in
both physics and engineering communities to extend the
range of effective µ and ε values beyond what nature has
provided to us [2], [3], [4], and [5]. Meta-structures are
engineered composites of (periodically or non-periodically)
sub-wavelength polarizable artificial particles, which are
called meta-atoms [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13].

The subwavelength meta-atoms, scattering particles of
metamaterial often periodically embedded in a host medium,
can be designed in different ways, resulting in extreme
wave manipulation performance [2], [6], [7], [8], [9], [10],
[11], [12], [13]. Due to the lower loss, profile size and
several fabrication challenges of voluminal metamaterials,
the two-dimensional counterparts, or planar versions of the
metamaterials, termed metasurfaces, with subwavelength
thickness are often employed. The metasurfaces are artificial
electromagnetic surfaces whose thickness is infinitesimal in
comparison with the operating wavelength [2], [6], [7], [8],
[9], [10], [11], [12], [13], [14].

Dipolar approximations are the basis of most of the
modeling and design techniques used for the analysis and
synthesis of metasurfaces [15]. This is due to the fact
that the polarizable scattering particles which compose the
metasurfaces are sufficiently small in comparison with the
operating wavelength [15]. In such a case, the surface
creates dipole moment responses when it is impinged by
the electromagnetic wave-front [16], [17], [18]. Therefore,
the meta-atoms can be considered as induced electric
and/or magnetic dipole moments that are dependent on the
local electric and magnetic fields through polarizability (or
susceptibility) tensors [9], [10], [11], [12], [13], [19]. In fact,
metasurfaces are broadly employed for their powerful syn-
thesis techniques [20], offering an unprecedented opportunity
to manipulate fundamental properties of electromagnetic
waves, including phase, amplitude, and polarization [2],
[7]. These capabilities lead to a myriad of electromagnetic
applications which have been demonstrated for various
functionalities in recent years, e.g., metasurface magnetless
specular isolators [20], flexible metasurface energy har-
vesters [21], metasurface antennas [22], and holographic
metasurfaces [23] to name a few. Different examples of
metasurface structure cells in the microwave regime and
THz-optical frequency ranges [24], [25], [26] are shown in
Fig. 1 and Fig. 2, respectively. In addition, the metasurface
structures can be either fixed or made reconfigurable by
implementing electronic devices such as pin diodes, varactor
diodes and transistors [27], [28].

This review paper provides a comprehensive tutorial on
Generalized Sheet Transition Conditions (GSTCs), which are
commonly used in modeling and designing metasurfaces.
The aim of the paper is to explain GSTCs in a simple
manner and discuss various synthesis approaches, such
as impedance, polarizability, and susceptibility, that are
typically employed in metasurface design. This paper will

also review three synthesis approaches for bianisotropic
metasurfaces, considering both magneto-electric and electro-
magnetic coupling coefficients. Finally, several simple
examples will be reviewed to demonstrate how GSTCs can
be effectively used in metasurface design. The main goal
of this paper is to serve as a foundational resource for
researchers in this field who wish to conceptually understand
the metasurface boundary conditions.

To this end, the rest of the paper is organized as follows.
Section II presents the metasurface synthesis problem,
showcasing GSTCs as a potent synthesis technique which
can be integrated into different numerical methods, thereby
enhancing the simulation design speed of metasurface struc-
tures. Section III briefly surveys the fundamental concepts
of Maxwell’s equations and the conventional boundary
conditions. Subsequently, Section IV demonstrates how
the conventional boundary conditions are transformed to
GSTCs. Section V reviews various modeling approaches for
characterizing GSTCs. Section VI focuses on bianisotropic
metasurface structures. Section VII reviews examples of
designed metasurface structures employing different GSTC
modeling approaches, and finally, the paper is concluded in
Section VIII.

II. METASURFACE SYNTHESIS PROBLEM
The conventional theory of effective medium or ‘‘modified’’
Nicolson-Ross-Weir (NRW) technique is known to be a
useful approach to model bulk metamaterial properties [13],
[29], [30]. However, in many investigations, researchers
have proven that the theory is impractical to parametrize
the metasurfaces (as their 2D version) [13]. In practice, the
extracted bulk parameters of a metasurface - i.e., permittivity
(ε) and permeability (µ) - are affected by its thickness [13],
[16], [17]. In addition, conventional metamaterial modeling is
challenged when the thickness of metamaterial is extremely
small in comparison with the incident wavelength [13]. For
example, the Kramers-Kroning relations that join the real
and imaginary parts of (µ) and (ε) may be contravened so
that a passive material may demonstrate the features of a
non-passive material (i.e., non-physical behaviors), reviewed
in detail in [13]. As the second example, the admittance (or
impedance) boundary condition as 1H = Y · E (1E =

Z · H) also fails to explain some metasurfaces since the
admittance (or impedance) boundary condition can assume
a discontinuity in either E or H [12]; where Y and Z are
defined as surface admittance and impedance tensors, related
to the magnetic and electric discontinuities, respectively [12].
The 1 operator is the difference between the vectorial
fields on both sides of the interface. Besides, the right-hand
side fields (E and H) in equations of the admittance (or
impedance) boundary condition denote the average fields
on either side of the interface. For simplicity of notation,
throughout this paper, we will employ 1E and 1H, which
refer to the difference between the vector components of
the electric and magnetic fields, respectively. In fact, the
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FIGURE 1. Examples of metasurface structure’s cell in the microwave regime. (a) The designed wire-loop unit cell (unit: mm) [33],
(b) polarization-sensitive unit cell realized with modifying chiral elements on a PCB [34], (c) longitudinal wire-loop unit cell [35], (d) metasurface absorber
constructed using split-ring resonators (SRR) encircled by an E-shaped fractal structure [36], (e) The period of a metasurface mirror comprises of
6 subwavelength metallic omega-shaped cells Reprinted figure with permission from [37] Copyright (2015) by the American Physical Society, (f)
helix-shaped unit-cell Reprinted from [38], licensed under a Creative Commons Attribution 3.0 License, (g) a picture of the three stacked layers of the
fabricated circular polarization selective surface [39], (h) the electromagnetic energy harvester unit-cell [32], and (i) three stacked layers unit cell [40].

metasurface boundary conditions are often more enhanced
than the conventional boundary conditions, e.g., boundary
conditions of Huygens’s metasurface.

It should be noted that the analysis and design of metasur-
face structures are usually performed by using different com-
mercial simulation software, such as COMSOL, CST, FEKO,
Lumerical and HFSS based on different numerical methods,
including Finite Element Method (FEM), Finite Difference
Time Domain (FDTD), Method of Moments (MoM), etc.
Furthermore, the design of electromagnetic devices based
on a ‘‘cut-and-try’’ operation [31] or time-consuming

optimization procedures guiding by engineering experiences
and/or metaheuristic approaches may be laborious work [32],
particularly when the electromagnetic devices have become
a complex-shaped structure with different loads and irregular
discontinues, etc. For example, Fig. 3 shows the electric
field distribution simulation results on a metasurface energy
harvester designed in [6]. Notably, this metasurface array is
excited by a normal incident plane wave at its resonance
frequency (10 GHz) to generate the desired surface current
densities. As shown in this figure, the electric field has got
a non-uniform distribution on each cell over a small distance
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FIGURE 2. Examples of metasurface structure’s cell in the THz, infrared and optical frequency ranges. (a) Scanning electron microscope (SEM) images
showcasing the manufactured metasurface antenna, featuring a periodicity of 4.2 µm, a length of 1 µm, and a width of 3 µm. The design is tailored for
operation at a wavelength (λ) of 9.6 µm Reprinted from [41], licensed under a Creative Commons Attribution license. (b) The image of a tunable
metasurface lens with an array of ion-gel layers and graphene ribbons, along with a metallic reflector, and a dielectric spacer [42], (c) SEM image of a
fabricated metasurface structure designed to convert arbitrary polarizations into a fixed polarization within the THz frequency range reprinted
from [43] licensed under a CC BY license, (d) a three-dimensional schematic showing a designed thermally tuning infrared unit cell, which includes a
cylindrical post made of crystal silicon (c-Si) positioned on the tunable planar layered thin film (PLTF) structure [44], (e) A schematic view of a
hexagonally-shaped unit cell, consisting of TiO2 nanopillars on a SiO2 substrate, along with the corresponding results for its polarization conversion
ratio (PCR) across different wavelengths reprinted from [45] licensed under the Creative Commons CC BY license, where W =100 nm, L =240 nm, P =
300 nm, and H = 800 nm. (f) An SEM image captures the manufactured metasurface superlens working under 405 nm illumination Reprinted from [46]
licensed under a CC BY license.

compared to the incident wavelength from the metasurface
plane [6]. The reason behind these field distributions is
the interaction between the incident plane-wave and the
metasurface structure to create the proper scattered wave for
electromagnetic energy harvesting. For the sake of clarity,
Fig. 4 shows how the distribution of the real Poynting vectors
redirect themselves with minimum reflections towards the
edges of an illuminated cell of metasurface energy harvester
at 5.82 GHz designed in [32]. The purpose of these two case
studies is to show that developing a metasurface structure
for manipulating the electromagnetic wave may incur a
tedious and time-consuming process based on the simulation
approaches.

Recently, researchers are trying to use the GSTCs to
characterize the metasurface [8], [9], [11], [12], [16], [47],
[48], [49]. However, some examples are given in [48],
demonstrating that the direct calculation of unknown suscep-
tibilities, which are heavily underdetermined, is not possible
only using the GSTCs equations. Because of the difficulty in
finding the exact field quantities at the metasurface boundary,
some simplifications or approximations are needed [19].
Some methods for implementing these simplifications and

calculation of the tensors are presented in [48]. Although,
to our best knowledge, there is no commercial electro-
magnetic software on the market using GSTCs [50], [51],
different numerical methods have employed GSTCs for
electromagnetic simulation of metasurfaces, e.g., the discon-
tinuous Galerkin time-domain (DGTD) in [50] and [51], the
finite difference time-domain (FDTD) in [12] and [52], the
finite-element method (FEM) in [53], the finite difference
frequency-domain (FDFD) in [54], the spectral-domain
integral equations (SD-IEs) in [55], the multifilament current
(MFC) in [56], the IE-based method of moments (IE-MoM)
in [57]. In [50], for example, they introduced the ‘‘virtual
edges’’ after and before the metasurface to incorporate the
DGTD method on GSTCs (see Fig. 1 in [50]). Besides,
multiple representative simulation examples to validate the
effectiveness of the mentioned numerical methods, incor-
porating GSTCs have been presented and benchmarked in
the literature. Motivated by the interesting opportunities that
GSTCs can provide, in this paper we elaborate on the physical
justification of GSTCs using the basic Maxwell’s equations
that have already been studied in detail in [9], [12], [13], [19],
[48], and [58].
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FIGURE 3. The electric field distribution over the metasurface energy harvester unit cells illuminated by a normal incident plane wave at 10 GHz. (a) a 3D
perspective view of the induced electric field on a unit-cell Reprinted from [6], licensed under a Creative Commons Attribution (CC BY) license and (b) a
side view of the induced electric field on a row of unit cells Reprinted from [6], licensed under a Creative Commons Attribution (CC BY) license.

FIGURE 4. A 3D perspective view of real Poynting vector distribution
induced over a unit-cell with a thickness of 0.254 mm at 5.82 GHz
[32].

III. BACKGROUND
In this section, we briefly review the fundamental concepts
of Maxwell’s equations and the conventional boundary
conditions, which are essential for a better understanding of
the generalized surface transition conditions.

A. FUNDAMENTAL CONCEPTS
Generally, the reaction of a medium to an applied elec-
tromagnetic field can be described by the responses of
the atomic dipole moments (electric and magnetic) and
displacement of both bounded and unbounded charges [1],
[59]. From an electromagnetic point of view, this medium
contains polarizable scattering particles and the vacuum
space between them, each having individual responses to
electromagnetic waves. The scattering particles responses
typically include electric and magnetic polarization densities
(P and M), while the vacuum space responses involve ε0E
and µ0H [10]. Furthermore, these particles may be induced
by both electric and magnetic vector fields and may exhibit
electric/magnetic mutual couplings similar to particles in

bi-anisotropic materials [8], [38], [47], [60]. However,
responses of most media are typically formulated by the
electric (electric displacement field or electric flux density
field) and magnetic (or magnetic flux density) vector fields
of D and B as follows [1], [59], [61], [62], [63], [64]:

D = ε0E + P (1)

B = µ0H + µ0M (2)

where µ0 and ε0 are the free space permeability and
permittivity, respectively. P (µ0M) is the response of the
polarizable scattering particles from polarization material to
the electromagnetic waves in the vector terms of electric
(magnetic) polarization density. In addition to this, the term
ε0E (µ0H) would be a contribution from the response of the
vacuum between the polarizable scattering particles which
have a P (µ0M) response [47], [59], [62], [63], [64], [65].
Actually, these particles are discretely polarized; however
it is convenient to assume that the equivalent infinitesimal
dipoles have a continuous distribution [59], [63], [64]. Based
on the uniqueness theorem, two curl equations of Maxwell
are required to determine the fields uniquely [9], [59], [62],
[63], [64] as follows:

∇ × E = −
∂B
∂t

(3)

∇ × H =
∂D
∂t

+ J (4)

where J is the electric current density. In (3) and (4), the
units of E, H, D, B, ε0, and µ0 are [V/m], [A/m], [C/m2],
[Wb/m2], [F/m], and [H/m], respectively. At the interface
discontinuity, it is convenient to solve Maxwell’s equations
in the integral form [59], [62], [63], [64]. Faraday’s induction
law and Ampere-Maxwell law in the integral forms are as
follows:˛

C
E · d l = −

∂

∂t

‹
S
B · ds

= −
∂

∂t

‹
S
(µ0H + µ0M) · ds (5)
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FIGURE 5. In the simplest model of showing the interface between two
different media with two unit tangent vectors t̂1 and t̂2, and a normal unit
vector n̂, adapted from [8] licensed under a Creative Commons Attribution
(CC BY) license.

˛
C
H · d l =

∂

∂t

‹
S
D · ds +

‹
S
J · ds

=
∂

∂t

‹
S
(ε0E + P) · ds +

‹
S
J · ds (6)

where C and S are the abbreviations for the closed
path (contour) and the surface containing the contour,
respectively.

B. CONVENTIONAL BOUNDARY CONDITIONS
Traditionally, the two main boundary conditions derived by
applying Stokes’s theorem to Faraday’s induction law and
Ampere-Maxwell’s law are as follows [59], [62], [63], [64]:

n̂× (E2 − E1) = 0 (7)

n̂× (H2 −H1) = Js (8)

where n̂ is the unit vector normal to the interface, and the
magnetic and electric fields distributed on both sides of the
interface are shown in Fig. 5 byH1 (H2) andE1 (E2). Besides,
the tangent unit vectors are depicted by t̂1 and t̂2 in this figure.
Js is the surface current density, expressed in the unit of [A/m]
[1], [59], [62], [63], [64]. In most metasurface applications,
there is no Js [66].

IV. HOW CONVENTIONAL BOUNDARY CONDITIONS ARE
CONVERTED TO GSTCS
Some metasurfaces, such as Huygens surfaces, exhibit bi-
anisotropic behavior [60], [67], which cannot be fully
described by (7) and (8). In fact, metasurfaces are inter-
faces that contain polarizable scattering particles across
the interface. When the Stokes theory is applied to the
metasurface by a rectangular contour, as shown in Fig. 6
and Fig. 7, it becomes clear that the responses of the
vacuum space to electromagnetic waves, denoted by ε0E
and µ0H, become zero at the interface. This occurs because
the flux of fields passing through the Stokes rectangular
tends towards zero as the rectangle’s height diminishes to
zero. However, metasurfaces can have yet induced electric
and magnetic surface polarization densities that are parallel
to the surface [12], [13], [15], [16], [17], [18], [19], [59],
[63]. These tangential components of electric and magnetic
surface polarization densities (P∥ and µ0M∥) can be induced
(resonated) by time-varying electromagnetic fields across the
metasurface, resulting in the equivalent surface polarization
current densities shown in Fig. 6 and Fig. 7. In Sections IV
and V, we have assumed that there is no magneto-electric or

FIGURE 6. A schematic picture of a piece of a Huygens metasurface in the
balance conditions when a normal incident plane wave at a resonance
frequency of the metasurface illuminates it. This snapshot is shown when
the maximum electric field touches the metasurface, resulting in the
maximum exciting level of the tangential electric surface polarization
density (P∥) shown by the color capsules. Note that the gray doughnuts
mean that the tangential magnetic surface polarization density (M∥) is at
its minimum exciting level. The metasurface sample is transparent.

electro-magnetic couplings between the meta-atoms, and the
Huygen’s metasurfaces are in a balanced condition. In fact,
the balance condition mentioned in the captions of these
figures refers to the balance condition between the magnetic
and electric surface polarizabilities. This condition ensures
that the magnetic and electric surface current densities
induced in meta-atoms are equivalent, as they are responses
of magnetic and electric moments to incident waves [32],
[67], [68], [69]. Achieving this balance condition in Huygen’s
metasurface requires a careful design of the resonance
characteristics of magnetic and electric dipoles at a specific
frequency [8], [32], [67], [68], [69].

Basically, as long as there is no charge movement,
the charge complies with electrostatic rules. Also, the
charge complies with the magnetostatic laws if it moves
with a constant velocity. However, according to Maxwell’s
equations, when an electric or magnetic field is time-varying,
these two fields become interconnected. As a result, the
polarizable scattering particles and their mutual interactions
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FIGURE 7. A schematic picture of a piece of a Huygens metasurface in
the balance conditions when it is illuminated by a normal incident plane
wave at the resonance frequency of metasurface. This snapshot is shown
when the maximum magnetic field touches the metasurface, resulting in
the maximum exciting level of tangential magnetic surface polarization
densities (M∥) shown by the colored doughnuts. The gray capsules mean
the tangential electric surface polarization density (P∥) is at its minimum
exciting level. The metasurface sample is transparent.

become time-varying when excited by external electromag-
netic waves, creating surface displacement currents. These
displacement current densities can induce additional fields,
which are then added to (7) and (8), as shown in (9)
and (10).
For example, a study conducted in 2011 [70] demonstrated

the generalized Snell’s law of reflection and refraction. This
generalized law can describe how phase discontinuity along
the metasurface interface responds to incident plane waves.
This law can address spatial gradient phase changes of the
metasurface, as depicted in a simplified manner in Fig. 8.
Over the years, there have been exponential improvements in
the performance of metasurface structures, which has enabled
the realization of various microwave, terahertz, and optical
functions [10], [11], [12], [13], [15], [71].
Equations (9) and (10) introduce additional currents

induced by the tangential component of electric and magnetic

surface polarization densities. These currents are added to
the conventional boundary conditions because metasurfaces,
as interfaces, can have tangential displacement currents
associated with the tangential components of electric and
magnetic surface polarization densities. These currents play
a crucial role in the behavior of metasurfaces and need
to be considered to model their electromagnetic response
accurately.

Based upon Faraday’s law, electromotive-force (emf) can
be created around a loop due to the time-varying magnetic
flux passing through it. According to Lens’s law, this
force is constructed around the loop in such a way that
it opposes the magnetic flux variation. In the case of a
metasurface, we would be able to observe the contribution
of emf when a time-varying magnetic flux passes through
a closed path shown as magnetic small scatters in Fig. 7.
Additionally, in accordance with Ampere-Maxwell’s law, the
magnetomotive force (mmf) is equivalent to the total current
going through the loop [59], [62], [63], [64]. Accordingly,
the results of (5) and (6) for metasurfaces are summarized as
follows:

n̂× (E2 − E1) = −µ0
∂M∥

∂t
(9)

n̂× (H2 −H1) = Js +
∂P∥

∂t
(10)

In some cases, it is also possible that surface polarizable
scattering particles with a non-uniform distribution are
located in the metasurface plane in a way that their normal
components of the electric surface polarization density and/or
the surface magnetization (magnetic polarization) density
are induced by a plane wave incident. However, only the
ones whose spatial tangential gradient vector’s direction is
parallel to the interface may directly affect the tangential field
discontinuity across the metasurface, as shown in Fig. 9 and
Fig. 10.
Although the uniform distribution of the induced normal

electric surface polarization density vectors does not affect
the tangential components of electric fields (i.e., they
have no spatial variation in the direction of the tangential
components of the fields), it is crucial to consider the
concept of electric surface polarizability, which involves the
accumulation of electric charges. A non-uniform distribution
of charge accumulation on the metasurface generates a
tangential electric field, which influences the tangential field
components.

In other words, this non-uniform charge distribution
results in a non-zero tangential gradient of induced normal
polarization density that is aligned with the tangential
component of the field on the surface. This charge distribution
directly impacts the discontinuity of the tangential electric
field components, which is further explained in Fig. 11.
For this reason, (9) must incorporate the tangential gradient
of the induced normal polarization density. Similarly, (10)
must include the tangential gradient of the induced normal
magnetic surface polarization density. It should be mentioned
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FIGURE 8. A schematic picture of a piece of a metasurface with a linear phase gradient along the y-axis
illuminated by a normal incident plane wave in z-direction. Note that the meta-atoms’ shape, geometry, and
arrangement are designed so that each meta-atom row senses the incident wave by a different phase delay.
The sizes of the colored capsules represent the electric surface polarization density (P∥).

FIGURE 9. A schematic picture of a piece of a metasurface with the
normal electric surface polarization densities illuminated by an incident
plane wave. Note that the meta-atoms’ shape, geometry, and
arrangement are designed so that each meta-atom column senses the
incident plane wave. The sizes of the colored capsules represent the
normal electric surface polarization density (Pn). The spatial tangential
gradient of these normal electric surface polarization densities can
directly affect the discontinuity of the tangential components of electric
fields on both sides of the metasurface.

that, as shown in Fig. 9 and Fig. 10, TE and TM waves
are the two simplest propagation waves, and it is assumed
that there are no electro-magnetic and magneto-electric

FIGURE 10. A schematic picture of a piece of a metasurface illuminated
by an incident plane wave. Note that the meta-atoms’ shape, geometry,
and arrangement are designed so that each meta-atom column senses
the incident plane wave. The sizes of the colored doughnuts represent
the normal magnetic surface polarization density (Mn). The spatial
tangential gradient of these normal magnetic surface polarization
densities can directly affect the discontinuity of the tangential
components of the magnetic fields on both sides of the
metasurface.

coupling effects between the simple induced polarizable
scatters.
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The GSTCs connect the tangential electric and magnetic
field discontinuities across the metasurface to the normal
and tangential surface polarization densities. It is, there-
fore, convenient to decompose the magnetic and electric
surface densities into normal (Mn and Pn) and tangential
(M∥ and P∥) surface polarization densities to the metasurface
plane [48].
Fig. 9 demonstrates the spatial gradient of Pz/ε0 along the

x-axis. It is also possible that a similar spatial gradient can be
created along the y-axis, which is not shown here. Therefore,
this spatial tangential gradient in a vector form can be written
as n̂ × ∇∥ (Pn/ε0) whose unit is [V/m] where n̂ is the unit
vector normal to the metasurface plane as shown in Fig. 5.
The units of the electric surface polarization density and
the magnetic surface polarization density are [C/m] and [A],
respectively.

Fig. 11 provides a side view of a portion of a sample
metasurface illuminated by an incident plane wave at its
resonance frequency. This metasurface lies in the xy-plane
and is placed between two different material media, region
A with εA and µA and region B with εB and µB. The figure
illustrates how the normal component of the electric surface
polarization densities can impact the discontinuity of the
tangential electric field across the metasurface.

Fig. 11(a) illustrates that an oblique incident plane wave
can excite the normal surface polarization densities of
the surface scattering particles (meta-atoms). This happens
basically because the normal scattering particles, whose
dipole moment vectors are normal to the interface, cannot
sense the time-changing fields of a normal incident plane
wave. However, by changing the angle of the incident wave,
they might be excited [48]. It is important to note that these
densities are perfectly spatially uniform,meaning their spatial
derivatives along the x-axis are equal to zero. As a result,
they do not affect the tangential field discontinuities across
the metasurface.

As shown in Fig. 11(c), the electric dipoles are oriented
obliquely to the metasurface. Nonetheless, their spatial
gradient along the x-axis is also zero, indicating that they
do not affect the tangential field discontinuities across
the metasurface. In Fig. 11(e), for a general case where
the electric dipole moments are randomly placed on the
metasurface, they can impact the discontinuity only when
the spatial derivative of the normal surface polarization
density differs from zero. The purpose of these figures is
to demonstrate that Pn is included in the GSTCs if its
spatial tangential gradient on the metasurface plane becomes
different from zero. Similarly, these figures can be depicted
for the normal magnetization density (Mn), whose spatial
derivatives (not time derivatives) may cause a discontinuity
in the tangential component of the magnetic field across
the metasurface. In fact, the gradient of these induced
normal electric and magnetic surface polarization vectors
can directly influence the discontinuities (or jumps) of the
tangential components of electric and magnetic fields across
the metasurface. Therefore, they may add or reduce the

amount of field difference on the left-hand side of (9) and (10)
[12], [13], [47], [63].

In order to solve the boundary value problems of the
metasurface usingMaxwell’s equations, the tangential spatial
derivative component of Pn and Mn on the surface should
be considered. This is illustrated in Fig. 11(b), Fig. 11(d),
and Fig. 11(e), where Stokes’ theorem can be applied to
Maxwell’s laws. Finally, (9) and (10) can be generalized
into the GSTCs, which were derived by Idemen [72] as
follows:

n̂× (E2 − E1) + n̂× ∇∥

(
Pn
ε0

)
= −µ0

∂M∥

∂t
(11)

n̂× (H2 −H1) + n̂× ∇∥Mn = Js +
∂P∥

∂t
(12)

where ∇∥ =
∂

∂t1
t̂1 +

∂
∂t2
t̂2.

As shown in Fig. 5, the index of t̂1 and t̂2 are two
tangential surface components, so that n̂ = t̂1 × t̂2. In fact,
the surface discontinuity created by the metasurface for
electromagnetic fields is more general than the conventional
boundary conditions, which assume zero thickness of the
metasurface. Regarding the uniqueness theorem, with two
main equations of the GSTCs for the discontinuity of the
transverse fields across the interface, one can accurately
determine the characteristics of any metasurface [9].

Finally, it should be noted that three surface constants
have been defined in GSTCs, which will be reviewed in
the following sections. These surface constants are used
to connect the tangential field discontinuities across the
metasurface to the average fields of the metasurface on both
sides [58]. Accordingly, several surface approaches have been
employed in the GSTCs [6], [58], [67], including the surface
(i) susceptibility [9], (ii) polarizability [16], or (iii) electric
impedance/magnetic admittance approaches [29], [67], each
of them has its own merits. For example, the advantage
of the microscopic approach is that we only need the
incident plane wave, and the electric (P) and magnetic (µ0M)
surface polarization densities can be related to polarizability
tensors [9], [12]. The macroscopic approach, on the other
hand, requires the incident, reflection, and transmission fields
to calculate the susceptibility tensors [16], [48]. We refer the
reader to the relevant literature which covers the theoretical
study of these methods extensively [9], [16], [19], [29], [37],
[50], [51], [52], [53], [54], [55], [56], [57], [60], [58], [73],
[74], [75], [76].

As already mentioned, the primary advantage of the GSTC
modeling method lies in its ability to accelerate calculation
speeds significantly compared to conventional full-wave sim-
ulation methods. While GSTCs serve as a suitable boundary
condition for accurately presenting the discontinuities in
the tangential fields over metasurfaces, a challenge remains
in transforming these GSTCs into a physically meaningful
representation. The current study focuses on conceptually
understanding GSTCs to characterize a metasurface that
effectively showcases the desired EM behavior. Therefore,
the next section will investigate howGSTCs can be translated
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FIGURE 11. A schematic side view of a metasurface sample whose normal electric surface polarization density of electric dipole moments are
excited by an incident plane wave. Various orientations of electric dipole moments are shown in the figure, either perpendicular or oblique to
the metasurface plane, resulting in (a) ∂Pz

∂x = 0, (b) ∂Pz
∂x ̸= 0, (c) ∂Pz

∂x = 0, (d) ∂Pz
∂x ̸= 0, and (e) ∂Pz

∂x ̸= 0. Only the effect of normal components
of these surface polarizations is considered.

into meaningful physical parameters and devise strategies for
designing physical structures accordingly.

V. GSTCS MODELING APPROACHES
This section focuses on the challenge of designing scatters
and comprehending their properties based on GSTCs, which
is essential for controlling and generating the desired
electromagnetic field patterns. To address this, one potential
approach is to establish a connection between the overall
EM fields and the conditions that apply at the metasurface
boundaries [8], [19], [67].

A. METASURFACE SYNTHESIS APPROCHES
The process of synthesizing metasurfaces involves deter-
mining the metasurface’s physical parameters, including its
geometrical size and EM properties, to obtain a specific
wave transformation [9], [12], [19], [48], [58], [67], and [77].
This synthesis process typically comprises two primary

steps. Firstly, it is essential to establish tensorial quantity
functions (e.g., susceptibility or polarizability) in order to
customize the metasurface for desired field behaviors. These
tensorial functions serve as a library guide for determining
the parameters of a metasurface necessary to achieve desired
wave characteristics [77]. Secondly, to effectively transform
the radiation characteristics of meta-atoms, such as reflection
and transmission coefficients, into available libraries based
on GSTCs, it is crucial to establish a connection between
meta-atom parameters and the tensorial functions [77]. This
step involves a full-wave parametric analysis of meta-atoms,
considering characteristics such as transmission and reflec-
tion coefficients of meta-atoms, amplitude, phase mapping,
etc. The goal is to find an optimal arrangement of meta-atom
geometry and shape for constructing the desired metasurface
under periodic boundary conditions (PBCs) [19], [58], [77].
During this step, full-wave scattering parameters for a unit
cell should be computed using 2-D PBCs. This process aims

74314 VOLUME 12, 2024



A. Ghaneizadeh, M. Joodaki: GSTCs in Electromagnetic Metasurface Modeling

to identify the scattering particles that can realize the transfer
function associated with the synthesized susceptibilities or
polarizability or impudence/admittance tensors [48], [58],
[77].

Finally, a library containing various subwavelength scatter-
ing particles with full-wave characteristics will be generated.
This collection greatly assists in establishing a mapping
between the properties of these particles and the relationships
between susceptibility and incident field. It should be men-
tioned that the EM response of each subwavelength particle
might be expressed through transmission and reflection
coefficients. For example, the authors in [74] demonstrate
a straightforward design methodology for designing a non-
periodic metamaterial Huygens’ surfaces. In this work [74],
the surface impedances are directly determined from a
metasurface’s complex transmission (T) and reflection (R)
coefficients [78] when a normal incident wave is considered,
as follows [74].

Yes =
2(1 − T − R)
η(1 + T + R)

, Zms =
2η(1 − T + R)
(1 + T − R)

(13)

where η =
√

µ0/ε0 is the wave impedance of free space.
Hence, a sample-designed meta-atom (e.g., designed cell

in Fig. 2 of [74]) can serve as a precise tool for manipulating
the tangential components of both transmitted and reflected
fields. These calculations are beneficial during interactions
with a specified EM incident field. To showcase how
GSTCs work, the authors in [74] considered a non-reflecting
metasurface to provide an initial relationship that simply
connects the transmitted field to the tensorial function and
the incident field. Regarding the uniqueness theory, the
normal components of the fields are entirely determined
by their tangential components [9]. Consequently, the entire
generated EM field by the metasurface is realized.

B. SURFACE IMPEDANCE MODEL
In fact, the foundation for these generalized surface boundary
conditions is rooted in the connection between magnetic
surface current density (Ms) and the average magnetic field
(Ht,avg), as well as between electric surface current density
(Js) and the average electric field (Et,avg) applied on the
metasurface [19]. This connection is established through
the utilization of electric surface impedance and magnetic
surface admittance, respectively, which are defined in (16)
[76]. This signifies that the electric surface current is directly
proportional to the average electric field on both sides of
the surface [76]. In [19], the author discusses how magnetic
surface admittance can be perceived as similar to the concept
of magnetic conductance, while electric surface impedance
can be conceptually like resistance in Ohm’s law. The
introduction of these surface constants of proportionality,
namely electric impedance and magnetic admittance, leads to
the establishment of the two impedance/admittance boundary
conditions utilized for describing GSTCs (see Fig. 12) [8],

[16], [19], [65], [67], [74], [76], [79]:

Et,avg =
1
2
(E1, t + E2, t) (14)

Ht,avg =
1
2
(H1, t + H2, t) (15)

Et,avg = Z seJs, Ht,avg = Y smMs (16)

Et,avg = Z se[n̂× (H2 − H1)] (17)

Ht,avg = Y sm[−n̂× (E2 − E1)] (18)

Let’s assume there is an infinite planar metasurface
positioned on the plane of x-y at z = 0, and the unit
vector z is normal to its surface. The designed structure
is illuminated by an incident plane wave from below,
as shown in Fig. 12. The total vectorial fields below and
above the metasurface are represented by E1,H1 and E2,H2
respectively, as shown in Fig. 12. It is important to note
that in the equation mentioned above, which links the
average fields to the boundary conditions, approximations
are introduced in the actual fields that precisely occur
within the surface of constitutive components [19], [48],
[66], [80]. In addition, two other material proportionality
surface constants, surface susceptibility and polarizability,
can connect the average fields to the discontinuity of the
tangential field on the metasurfaces [19], [58], [65], [67].
Such approximations are also used to represent GSTCs based
on the susceptibility and polarizability characteristics [19].
In other words, these three approaches for representing
GSTCs require approximated fields, e.g., arithmetic averages
of the fields before and after the metasurface, to calculate the
tangential field discontinuities across the metasurface [19],
[48]. The key rationale for these approximations lies in the
challenge of precisely determining the actual field values
at the discontinuity boundary [19]. Hence, approximations
like the average field are employed due to the difficulties
associated with calculating precise values of these fields [19].

C. POLARIZABILITY MODEL
As already mentioned, another simplification in the polar-
izability modeling of GSTCs formulated by Kuester et al.
involves the assumption that conduction currents are neg-
ligible in their derivations [16], [19]. The simplification of
the GSTCs is beneficial because their derivations involve
scatterers that can be magnetized and electrically polarized
bymagnetic and electric surface polarizabilities. This concept
does not involve the conduction currents of free charges [19].
As a result, the relationships of (11) and (12) in the frequency
domain are simplified as follows [19]. Note that an ejωt time
harmonic convention is presumed throughout the paper.

n̂× (E2 − E1) +
1
ε0
n̂× ∇∥Ps,n = −jωµ0Ms,t (19)

n̂× (H2 −H1) + n̂× ∇∥Ms,n = jωPs,t (20)

whereMs, n,Ps, n, Ms, t and Ps, t in the frequency domain
are the normal surface magnetization density, the normal
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FIGURE 12. Physical arrangement of surface polarizable particles,
characterized by the magnetic surface admittance Y sm(x, y ) and the
electric surface impedance Z se(x, y ) within a general metasurface.
The averaged applied field induces the magnetic and electric currents on
the metasurface, leading to a discontinuity between the fields above and
below the metasurface, resulting in a mechanism to manipulate EM
wavefronts Reprinted with permission from [67] 
Optica Publishing
Group.

electric surface polarization density, the tangential surface
magnetization density and the tangential electric surface
polarization density, respectively [19].
The density distributions of surface magnetization and

electric surface polarization can generate discontinuities in
the macroscopic magnetic and electric fields [16]. However,
these densities themselves stem from averaging a distribution
comprising discrete magnetic dipole moments (m) and
electric dipole moments (p), which are related to the acting
fields as denoted in (21)-(24) [16], [19], [61]. It should be
mentioned that dipole moments associated with polarization
density can be applied to any media [19]. The study in [16]
shows that the magnetization and polarization densities
can be represented by effective surface polarizabilities
concerning the average fields instead of the acting fields for
an infinitesimally thin surface [19]. The magnetic surface
polarization density (M) and electric surface polarization
density (P) are formulated in (24) based on a microscopic
representation of the metasurface responses [16], [19].

P = N ⟨p⟩, M = N ⟨m⟩ (21)

p = ε0αeEact, m = αmHact (22)

Eact = Eavg − Escatter, Hact = Havg −Hscatter (23)

P = ε0N
〈
αe

〉
Eact, M = N

〈
αm

〉
Hact (24)

In these equations, N represents the count of scatterers per
unit area, and the notation < > signifies an averaging process
encompassing the scatterers surrounding the points where
magnetization and electric surface polarization densities
are introduced [9], [16], [19], [61]. In fact, any dipole
moment is related to the field that acts upon the scattering
particle with the proportionality involving the magnetic and
electric surface polarizability tensors of a given scatterer
(i.e., αe and αm), as shown in (22) [9], [16]. In the
microscopic representation of the metasurface responses

mentioned in (23), the acting (or local) fields’ concept
involves averaging the fields on either side of the metasurface
while considering contributions from all scatters with their
coupling effects except the one under consideration [9],
[16], [19], [61]. In [16], the contribution of this scatter has
been approximately modeled using a very small radius disk
containing its magnetic and electric current dipoles [16], [19],
[61]. By ‘‘very small’’, we refer to a scale where the surface
magnetization and electric surface polarization densities are
reasonably assumed to remain nearly constant on the disk.
In other words, the term ‘‘acting field’’ in (23) refers to the
local field that is acting on each separate scattering particle,
excluding the excited scatterer’s own field contribution [16],
[19]. In order to characterise the GSTCs based on the
surface polarizabilities by combining (19)-(20) with (24),
the polarizability boundary conditions are formulated in (25)
and (26) and simplified in (27) and (28) [19]. For further
details, we direct the reader to [16], [19], and [48].

n̂× (H2 − H1) = jωε0
[
N

〈
αe

〉
Eact

]
s, t

− n̂× ∇∥

[
N

〈
αm

〉
Hact

]
s, n (25)

−n̂× (E2 − E1) = jωµ0
[
N

〈
αm

〉
Hact

]
s, t

+ n̂× ∇∥

[
N

〈
αe

〉
Eact

]
s, n (26)

n̂× (H2 − H1) = jωε0αE, tEt,avg

− n̂× ∇∥

[
αM, nHn,avg

]
(27)

−n̂× (E2 − E1) = jωµ0αM, tH t,avg

+ n̂× ∇∥

[
αE, nEn,avg

]
(28)

where t, n and s subscripts are tangential, normal and surface
quantities, respectively [19].

D. SUSCEPTIBILTY MODEL
In order to describe the response of the metasurface at a
microscopic level, it is essential to properly define the mutual
coupling between the neighbouring scattering particles [9],
[19]. To avoid the necessity of an intermediary step of the
particle polarizability approach involving the connection to
acting fields, as shown in (23), a macroscopic representation
of polarizability boundary conditions can be derived by
substituting the averaged polarizabilities with surface suscep-
tibilities [19]. This means that to macroscopically describe
the metasurface, the polarizabilities mentioned earlier are
replaced with surface susceptibilities [61]. Kuester et al.
in [16] present the fields of the disk as functions of
magnetic surface polarization densityM and electric surface
polarization density P , enabling the transformation of
relations (24) into functions of average fields (29) [19], [61].

P = ε0χeEavg, M = χmHavg (29)

Similarly, equivalent surface susceptibilities have been
employed to characterize an infinitesimally thin metasurface,
as denoted in (30) and (31) [19]. It should be mentioned
that the susceptibility approach can also be generalized for
nonlinear (i.e., higher-order susceptibilities) [12], [81], and
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time-modulated situations [58].

n̂× (H2 − H1) = jωε0χE,tEt,avg

− n̂× ∇∥[χM,nHn,avg] (30)

−n̂× (E2 − E1) = jωµ0χM,tH t,avg

+ n̂× ∇∥[χE,nEn,avg] (31)

In fact, these constitutive surface parameters are properties
that define how EM fields interact with a surface. While the
normal component of surface susceptibilities or polarizabili-
ties can influence the field discontinuities, it can commonly
be ignored for designs that do not involve susceptibilities in
the normal direction [19], [48]. Thus, susceptibility and polar-
izability conditions for a mono-anisotropic metasurfaces [53]
are reduced, respectively, as follows [19]:

n̂× (H2 − H1) = jωε0αE,tEt,avg (32)

−n̂× (E2 − E1) = jωµ0αM,tH t,avg (33)

and

n̂× (H2 − H1) = jωε0χE,tEt,avg (34)

−n̂× (E2 − E1) = jωµ0χM,tH t,avg (35)

Neglecting the normal surface magnetization and electric
surface polarization densities, these sets of effective consti-
tutive surface parameters can be equivalent, as demonstrated
below [19]:

Y se = Z
−1
se = jωε0αE,t (36)

Z sm = Y
−1
sm = jωµ0αM,t (37)

and

Y se = Z
−1
se = jωε0χE,t (38)

Z sm = Y
−1
sm = jωµ0χM,t (39)

VI. BIANISOTROPIC BOUNDARY CONDITIONS IN THE
DESIGN OF METASURFACES
The descriptions of the GSTCs in the previous section, which
include polarizability, susceptibility, and impedance/admittance,
exhibit certain limitations. In the previous section, the
field discontinuities were just excited by either the acting
or averaging magnetic or electric field, but not by both
simultaneously [8]. Although GSTCs for mono-anisotropic
metasurfaces offer a unique solution for boundary conditions,
they might not fully consider the complexities and losses
which are in real-world EM interactions [19]. These chal-
lenges arise in modeling and understanding EM interactions,
particularly at metasurfaces, revealing that some assumptions
may not hold in practical scenarios. Therefore, a better
approach to enhance the control of boundary conditions
is to employ bianisotropy instead of mono-anisotropic
metasurface boundary conditions [19], [37], [58], [60], [76],
[82].

The bianisotropy approach can potentially alleviate the
mentioned issue by introducing magneto-electric and electro-
magnetic coupling coefficients to GSTCs, enabling the
excitation of magnetic and electric current densities from
both magnetic and electric fields. In fact, bianisotropic meta-
surfaces add an additional degree of freedom to GSTCs in
the form of magneto-electric and electro-magnetic coupling
tensors of Kme and K em, respectively [19], [37], [58], [60],
[76], [83]. The use of bianisotropic surface boundaries has
the potential to characterize conformal optical and EM
systems, which allows them to be incorporated in various
platforms. This is due to the fact that the metasurfaces
can be characterized by electric, magnetic, and magneto-
electric/electro-magnetic responses [12], [19], [61], [84],
[85], [86]. Therefore, the GSTCs in (16) can be reformulated
for the bianisotropic metasurfaces in a manner involving
surface impedances, admittances, electro-magnetic coupling
and magneto-electric coupling coefficients as follows [8],
[19].

Et,avg = Z seJs − K em[n̂×M s] (40)

H t,avg = Y smM s + Kme[n̂× Js] (41)

In order to better understand similarities among vari-
ous modeling approaches of GSTCs, such as the surface
impedance boundary conditions and other constituent surface
parameters, we also provide a brief overview of bianisotropic
polarizability and susceptibility boundary conditions. For
more details, the reader is referred to [9], [12], [19], [48], [58],
and [84]. It should be noted that designing metasurfaces with
bianisotropic boundary conditions needs scattering particles
exhibiting magneto-electric/electro-magnetic properties. The
most recent review paper [58] on bianisotropic metasurfaces
demonstrates that complex magnetic, electric, magneto-
electric and electro-magnetic susceptibilities, incorporating
gain and loss, can enable arbitrary field transformations using
bianisotropic boundaries.

In the following, we will review this by considering the
interaction of both the acting and averaging electric and
magnetic fields in generating surface magnetization and
electric surface polarization densities [9], [19], [61].

P = ε0N
〈
αee

〉
Eact +

√
µ0ε0N

〈
αem

〉
Hact (42)

M = N
〈
αmm

〉
Hact +

√
ε0

µ0
N

〈
αme

〉
Eact (43)

By substituting the bianisotropic parameters from (42)
and (43) with those in (19) and (20), the bianisotropic polar-
izability modeling of GSTCs can be obtained, as denoted in
follows [19], [58].

n̂× (H2 − H1) = jω
[
ε0N

〈
αee

〉
Eact

+
√

µ0ε0N
〈
αem

〉
Hact

]
s,t

− n̂× ∇∥

[
N

〈
αmm

〉
Hact

+

√
ε0

µ0
N

〈
αme

〉
Eact

]
s,n

(44)
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−n̂× (E2 − E1) = jωµ0
[
N

〈
αmm

〉
Hact

+

√
ε0

µ0
N

〈
αme

〉
Eact

]
s,t

+
1
ε0
n̂× ∇∥

[
ε0N

〈
αee

〉
Eact

+
√

µ0ε0N
〈
αem

〉
Hact

]
s,n (45)

In addition, a similar mathematical approach is developed
to the bianisotropic susceptibility modeling of GSTCs
outlined in follows [19], [58].

P = ε0χeeEavg +
√

µ0ε0χemHavg (46)

M = χmmHavg +

√
ε0

µ0
χmeEavg (47)

n̂× (H2 − H1) = jω
[
ε0χeeEavg +

√
µ0ε0χemHavg

]
s,t

− n̂× ∇∥

[
χmmHavg +

√
ε0

µ0
χmeEavg

]
s,n

(48)

−n̂× (E2 − E1) = jωµ0

[
χmmHavg +

√
ε0

µ0
χmeEavg

]
s,t

+
1
ε0
n̂× ∇∥

[
ε0χeeEavg

+
√

ε0µ0χemHavg
]
s,n (49)

The surface susceptibility tensors in (46) and (47) consist
of the magnetic χmm, the electric χee, the magneto-electric
χme and the electro-magnetic χem tensors [58]. Each of
the tensors can have a 3 × 3 dimension. Additionally,
the most general bianisotropic metasurface structure can be
characterized by 36 general susceptibility or polarizability
parameters [61], [84]. For instance, the magnetic susceptibil-
ity tensor in a Cartesian coordinate system is [58]:

χmm =

 χxx
mm χ

xy
mm χxz

mm
χ
yx
mm χ

yy
mm χ

yz
mm

χ zx
mm χ

zy
mm χ zz

mm

 (50)

However, it is worth noting that in some cases, it is
convenient to assume that the metasurface has zero normal
polarizability or susceptibility components; the number of
tangential susceptibilities can be reduced to 16, as shown
in (52) [48], [84]. Therefore, (48) and (49) can be written
as (51).

1Hy
1Hx
1Ey
1Ex

 =


χ̃xx
ee χ̃

xy
ee χ̃xx

em χ̃
xy
em

χ̃
yx
ee χ̃

yy
ee χ̃

yx
em χ̃

yy
em

χ̃xx
me χ̃

xy
me χ̃xx

mm χ̃
xy
mm

χ̃
yx
me χ̃

yy
me χ̃

yx
mm χ̃

yy
mm



Ex,av
Ey,av
Hx,av
Hy,av

 (51)

In (51) and (52), the tilde symbol ∼ is used to represent
normalized susceptibilities, which exhibit a connection
with the susceptibilities that have not been normalized,
as described by (52) [48].

χxx
ee χ

xy
ee χxx

em χ
xy
em

χ
yx
ee χ

yy
ee χ

yx
em χ

yy
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χxx
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χ
yx
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yy
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yx
mm χ

yy
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ωε0
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j
ωε0
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ωε0
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ωε0
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χ̃
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me

j
k0

χ̃
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j
ωµ0

χ̃
yx
mm

j
ωµ0

χ̃
yy
mm

 (52)

The array equation specified in (52) involves 16 unknown
variables, which results in a heavily underdetermined system
that is not well-constrained when combined with the matrix
equivalents of (51) [48]. In order to solve the inverse synthesis
problem presented in (51), there are three primary approaches
discussed in [48]. (I) Variable reduction method: This aims to
reduce the 16 unknown variables to four, making system (51)
solvable or determinate. Several sets of four susceptibility
parameters can be assumed as valid candidates for solving the
matrix equations of (52), meaning that different combinations
of variables can generate the same scattered EM fields. (II)
Transformation increase method: Instead of decreasing the
number of susceptibility variables to four, this approach
focuses on increasing the number of transformations. In other
words, the metasurface can be designed to transform
multiple sets of transmitted, reflected and incident waves
simultaneously. (III) Combination Approach: This method
combines the abovementioned techniques to find an effective
solution. Various strategies for transforming equation (52)
into determinate forms are explained in detail in [48].

In the next section, we will present some typical examples.
These examples demonstrate the verification of analytically
synthesized approaches (polarizability, susceptibility, and
impedance/admittance) often utilized to design various
metasurface devices.

VII. EXAMPLES OF DESIGNED METASURFACES
In this section, we indicate some examples of designed
metasurfaces to show the validation of the GSTCs method
for designing metasurface structures.

A. SYNTHESIZING A HUYGEN’S METASURFACE WITH
IMPEDANCE AND ADMITTANCE MODELING OF GSTCS
One advantage of GSTCs is their capability to character-
ize nonperiodic subwavelength structures that demonstrate
responses to both magnetic and electric fields, similar to
Huygens metasurfaces [19]. In fact, Huygens’ principle
states that every individual point found on a wavefront
operates as a fictitious secondary source, generating the
outgoing wavefront [74]. In 1901, Love extended Huygens’
principle rigorously, determining secondary sources as virtual
magnetic and electric current densities [19], [74]. Then,
Schelkunoff further developed the equivalence principle of
Love to encompass any arbitrary EM field distributions on
either side of a sheet [74]. The equivalence principle clarifies
how any EM wave can be represented using a collection of
current densities and any other wave [19]. In [74], the authors
presented a simple design method for tailoring wave fronts
based on a non-periodic reflectionless Huygens surface.
We will review this method further below.
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FIGURE 13. (a) A snapshot of the magnetic field simulation result while the designed metasurface is illuminated by a normal incident plane wave, (b) one
of the designed metasurface cell configurations which have Yes = (0.02 + 3.14j )/η and Zms = (0.07 + 2.3j )η, (c) a single period depicting the imaginary
and real surface admittances and impedances, computed for refracting a plane wave incident at a normal angle to an oblique angle of 45◦. Reprinted
figures with permission from [74] Copyright (2013) by the American Physical Society.

Generally, surface impedance and admittance are tensorial
quantities. In this particular example [74], they assumed the
surface impedance and admittance are isotropic for a surface
situated at x = 0, as denoted below (see Fig. 13).

Yes = Y yy
es = Y zz

es (53)

Zms = Zyy
ms = Z zz

ms (54)

As already mentioned, these electric surface admittance
and magnetic surface impedance can be calculated by
using (13) [74]. As depicted in Fig. 13(a), this Huygens’
metasurface was engineered to redirect a plane wave,
transforming a normal incident wave in Region I to a φ

= 45◦ angle in Region II, which is a 45◦ difference from
the normal direction. Fig. 13(a) shows a snapshot of the
magnetic field simulation results before and after the plane
wave incident on the designed metasurface in Regions I and
II, respectively [74]. Therefore, the fields within Regions I
and II are as follows [74].

E1 = −ŷe−jkx (55)

H1 = −
ẑ
η
e−jkx (56)

E2 = 21/4(x̂ sin(φ) − ŷ cos(φ))e−jk(y sin(φ)+x cos(φ)) (57)

H2 = −ẑ
21/4

η
e−jk(y sin(φ)+x cos(φ)) (58)

The resulting electric surface admittance and magnetic
surface impedance are calculated according to (59) and (60)
[74], respectively.

Yes =
2

(
H z
1 − H z

2

)
Ey1 + Ey2

=
2 − 25/4e−jky sin(φ)

η + 21/4η cos(φ)e−jky sin(φ)
(59)

Zms =
2

(
Ey1 − Ey2

)
H z
1 + H z

2
=

2η − 25/4η cos(φ)e−jky sin(φ)

1 + 21/4e−jky sin(φ)
(60)

It should be noted that the transmitted and incident
waves are plane waves. The surface impedances in the
y-axis direction are periodic with a period length equal

FIGURE 14. A schematic view of the metallic patterns on both the
(a) bottom and (b) top layers of the designed metasurface substrate, and
(c) a picture of the manufactured metasurface, designed to refract a
normal incident plane wave to an oblique angle of 45◦ at 10 Ghz.
Reprinted figures with permission from [74] Copyright (2013) by the
American Physical Society.

to λ = sin(φ) [74]. In order to design this Huygens’
metasurface with magnetic surface impedance and electric
surface admittance, each period is divided into 12 individual
unit cells [74], which consist of designed copper pathways
over a Rogers 4003 substrate. To realize each type of
electric surface reactance, the upper layer of the substrate is
loaded with copper traces in both inductive and capacitive
configurations. On the other hand, the lower layer of the
designed cell is loaded with capacitive loop resonators to
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create magnetic surface reactance. As an example, one of
the 12 cells with an electric surface admittance value of
Yes = (0.02 + 3.14j)/η and a magnetic surface admittance
value of Zms = (0.07 + 2.3j)η is illustrated in Fig. 13(b).
Where η is the wave impedance of free space. In addition, the
normalized magnetic surface impedance and electric surface
admittance of a period of 12 cells are shown in Fig. 13(c).
Subsequently, a reflectionless Huygens surface is designed
using the HFSS full-wave simulator, and their simulation
results are compared with the analytical calculation results
in [74]. A more in-depth discussion of this example can also
be found in [74]. Finally, the ultimate structure based on
the Rogers 4003 substrate was designed and implemented,
as shown in Fig. 14.

B. SYNTHESIZING A TWIST POLARIZER WITH
POLARIZABILITY MODELING OF GSTCS
In the field of bianisotropic metasurface arrays, the theory
of EM interactions among electrically small magneto-
electric/electro-magnetic scattering particles in a planar
square array, with the lattice (grid) periodicity of α con-
stant, is well-known [65], [87], [88], [89]. In order to
provide the required polarizabilities of meta-atoms that
constitute the metasurface with the desired functionality,
an analytical method has been developed in [34], [87],
and [88]. In this method, effective polarizabilities are
introduced which are denoted with hatted symbols such as
α̂ee, α̂mm, α̂em, α̂me to simplify the linear relations
between the induced dipole moments (p and m) and the
local field at the location of electrically small particles [34],
[88]. These effective polarizabilities are the functions rely-
ing on interaction dyadics, defined in [65], and particle
polarizabilities. By employing these effective polarizabilities,
it is possible to establish a linear relationship between the
incident EM wave and the induced dipole moment, which
is described in (61) [34], [87]. This method facilitates the
synthesis of bianisotropic metasurfaces featuring specific
transmission and reflection by assuming a plane wave inci-
dence as follows. The form of time harmonic dependence is
also ejωt [87].[

p
m

]
=

[
α̂ee α̂em

α̂me α̂mm

]
·

[
Einc
Hinc

]
(61)

Er = −
jω
2S

[ (
η0α̂

xx
ee − α̂

xy
em + α̂

xy
me −

1
η0

α̂
yy
mm

)
x̂x̂

+

(
η0α̂

xy
ee + α̂xxem + α̂

yy
me +

1
η0

α̂
yx
mm

)
x̂ŷ

+

(
η0α̂

yx
ee − α̂

yy
em − α̂xxme +

1
η0

α̂
xy
mm

)
ŷx̂

+

(
η0α̂

yy
ee + α̂

yx
em − α̂

xy
me −

1
η0

α̂xxmm

)
ŷŷ

]
· Einc

(62)

Et =

{ [
1 −

jω
2S

(
η0α̂

xx
ee − α̂

xy
em − α̂

yx
me +

1
η0

α̂
yy
mm

)]
x̂x̂

+

[
1 −

jω
2S

(
η0α̂

yy
ee + α̂

yx
em + α̂

xy
me +

1
η0

α̂xxmm

)]
ŷŷ

−
jω
2S

(
η0α̂

yx
ee − α̂

yy
em + α̂xxme −

1
η0

α̂
xy
mm

)
ŷx̂

−
jω
2S

(
η0α̂

xy
ee + α̂xxem − α̂

yy
me −

1
η0

α̂
yx
mm

)
x̂ŷ

}
· Einc

(63)

where η0 is the free space impedance, and S is the unit-cell
area [88]. In this example [87], the authors synthesized a twist
polarizer illuminated by a linearly polarized incident plane
wave. This metasurface polarizer can rotate the transmitted
wave’s polarisation by 90◦ without any reflection [34],
[87]. As a result, by knowing the incident, transmitted, and
reflected waves, we can express them using the following
mathematical relationships, which are discussed in detail
in [34] and [87].

Einc = E0x̂ ⇒

{
Er = 0
Et = −AE0ŷ

(64)

Einc = E0ŷ ⇒

{
Er = 0
Et = AE0x̂

(65)

where A is any complex number (|A| = 1), thus allowing
the selection of any phase for the transmitted wave [88].
The effective polarizabilities can be simply found by
substituting (64) and (65) into (62) and (63). As already
mentioned, there is also a simplification in this example,
considering only yy and xx-directed terms in the dyadics of
effective polarizability. Therefore, the effective polarizability
of this example can be described as follows [87].

η20α̂
xx
ee = α̂

yy
mm (66)

α̂xxme = −α̂
yy
em (67)

−α̂
yy
em + α̂xxme = 2α̂xxme =

2S
jω
A (68)

And similarly, (65) can be simplified as follows [87].

η20α̂
yy
ee = α̂xxmm (69)

α̂xxem = −α̂
yy
me (70)

α̂xxem − α̂
yy
me = 2α̂xxem = −

2S
jω
A (71)

The process of designing a metasurface starts by defining
its functionality and choosing a unit cell from a library
that can provide the desired electromagnetic responses.
Next, assumptions are made about how the metasurface will
respond to electromagnetic waves. This leads to obtaining
simplified susceptibility values, followed by establishing
a connection between the equations derived from GSTCs
and the responses of the unit cells, taking into account the
desired geometry and dimensions. Therefore, it is crucial
to have a comprehensive understanding of how different
basic unit cells respond to electromagnetic waves, their
geometries, and their polarizability relationships to design
efficient metasurfaces based on GSTCs.
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FIGURE 15. A schematic view of (a) a single chiral element [87], (b) a twist polarizer composed of two perpendicular chiral particles [87], and (c) a
practical printed circuit board (PCB) implementation of a twist polarizer [34].

For instance, this example [87] exhibits a high degree
of symmetry, where the yy components are equal to
the xx components. By setting the value of A = j, the
performance of these effective polarizabilities becomes
similar to the canonical helical polarizabilities [87]. Thus,
chiral cells (pairs of orthogonal canonical helices) are
identified to obtain the well-known geometry, as shown in
Fig. 15.

To implement the designed structure based on GSTCs, the
authors in [34] and [87] modified the chiral meta-atoms on
a PCB, as depicted in Fig. 15(c). Therefore, the individual
polarizabilities of a canonical helix can be expressed in
terms of wire length l and the loop radius r1 as follows
[34], [87].

αee =
l2

jω (Zl + Zw)
(72)

αem = −αme = −µ0
πr21 l

Zl + Zw
(73)

αmm = −µ2
0
jω

(
πr21

)2
Zl + Zw

(74)

Basically, the impedance of the particle at resonance
frequency is a pure real value. Therefore, the particle
impedance can be approximated by the total radiative
resistance at its resonance frequency as follows [34].

Zl + Zw =
η0

6π

(
k20 l

2
+ k40

(
πr21

)2)
(75)

Finally, the polarizability equations can also be easily
rewritten as denoted by effective polarizability in (76)
and (77).

α̂ee =
αee

1 − βee

(
αee +

αmm
η20

) =
α2

jωη0
(76)

α̂em =
αem

1 − βee

(
αee +

αmm
η20

) = −
α2

ω
(77)

FIGURE 16. The simulation results of the (a) transmitted and (b) reflected
fields for both co- and cross-polarized components [87].

α̂mm = η20α̂ee (78)

Assuming a frequency of f0 = 1.5 GHz and considering
the unit cell area as S = a2 = (40mm)2 = (λ0/5)2,
the analytically calculated cell dimensions are optimally
determined in [87] as r1 = 11.7 mm and l = 13.5 mm.
This example has been implemented and validated through
numerical full-wave simulation using HFSS, as derived by
Niemi et al. [34], [87]. Some of their results are shown in
Fig. 16. Their simulation results are also compared with
the values obtained from metasurface synthesis [34], [87].
It is worth mentioning that the simplifications made during
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FIGURE 17. The simulation results of a fully absorbing metasurface
calculated according to 1-D FEM-GSTC in [53]. The metasurface is situated
at z = 10λ, where a plane wave with an electric field magnitude of 1 V/m
approaches from the left [53].

the synthesis process introduce slight discrepancies between
calculated values and full-wave simulation results [88].
Nonetheless, these simplifications significantly facilitate the
design of a metasurface with the desired performance. Cell
dimensions were fine-tuned and optimized, resulting in l =

15 mm and r1 = 9 mm [34], [87], [88].

C. SYNTHESIZING A METASURFACE STRUCTURE WITH
SUSCEPTIBILITY MODELING OF GSTCS
In this subsection, we review some simulation results based
on synthesizing of metasurface with susceptibility approach
discussed in detail in [53]. Different GSTCs modelling
approaches using finite element methods and finite difference
techniques are presented in [53] and [54], respectively,
which can be suitable for solving EM engineering prob-
lems. The numerical method of FEM in [53] allows the
modeling of complex geometries, facilitating adaptability
with the well-known tetrahedral meshing process. Cur-
rently, commercial full-wave simulators can model various
boundary conditions, including the perfectly matched layer
(PML), perfect electric conductor (PEC), periodic boundary
condition, radiation boundary condition, and perfect mag-
netic conductor (PMC) [12]. As already mentioned, there
has not been any commercial simulation tool capable of
incorporating GSTCs [50], [51]. The importance of these
numerical method examples lies in paving the way for
further research in developingGSTCsmodeling for designing
various metasurface applications with shorter simulation
times [50], [51].

In [53], the authors initially modeled a perfect absorber in
a one-dimensional scenario using finite element methods.
In this case, the values of transmitted and reflected fields
are set to zero in (79) and (80), resulting in susceptibility
values of χee

xx = χmm
yy = 2/jk0. As shown in Fig. 17 [53],

FIGURE 18. The simulation results display the (a), (b) real part of Hy, and
(c), (d) magnitude part of Hy for a (a), (c) 45◦ refracted metasurface, and
(b), (d) fully absorbing metasurface [53]. The calculations were performed
by a 2-D FEM-GSTC numerical modeling, as outlined in [53]. Noted that
the designed metasurface is positioned at z = 13λ with dimensions of 10λ

along the x-axis, where a normal plane wave impinges from below [53].

the real and imaginary parts of the incident electric field are
observed on the left side, while there is no transmitted field
on the right side of the metasurface located at the center of
the computational line domain [53]. It is worth noting that if
a reflective wave existed on the left side, it would create a
standing wave with a different amplitude [53].

χxx
ee =

2
jωε0

[
Hinc
y + Href

y − Htr
y

Einc
x + Eref

x + Etr
x

]
(79)

χ
yy
mm =

2
jωµ0

[
Einc
x + Eref

x − Etr
x

Hinc
y + Href

y + Htr
y

]
(80)

In addition, a two-dimensional scenario is explored in [53]
using a computational domain of 26λ by 26λ, with the
designed reflectionless metasurface located at 13λ. A normal
incident plane wave with a Gaussian profile impinges on the
metasurface from below, as shown in Fig. 18. The angle of
the transmitted wave is set at 45◦ relative to the metasurface
plane [53]. Based on the finite element method incorporating
GSTCs [53], the numerical simulation results are displayed
in Fig. 18. A pattern of standing waves can be observed in
the top-right corner of Fig. 18(a) and Fig. 18(c). The authors
in [53] explained that this phenomenon occurred due to their
utilization of the first-order Absorbing Boundary Condition
(ABC), which led to reflections from the absorbing boundary
of the computational domain [53]. In practice, deploying
a perfectly matched layer (PML) or the second-order
ABC would help minimize this standing wave [53], [90].
Furthermore, another example of this numerical modeling
approach is employed for synthesizing a two-dimensional
perfect absorber, and the results are depicted in Fig. 18 (b)
and Fig. 18 (d).
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FIGURE 19. (a) A conventional metallic layer of unit cell which is
parametrized for designing various metasurface structures based on
GSTCs approaches, (b) A metasurface prototype that functions as a
polarization beam splitter, constructed with a specific arrangement of
various designed cells obtained from the parametrized cell in (a) through
GSTC methodologies, and (c) images showing the functionality of the four
fabricated metasurfaces designed using GSTC synthesis methods: a
half-wave plate, a quarter-wave plate, a polarization beam splitter, and
an orbital angular momentum multiplexing metasurface structure.
Reprinted from [90], with the permission of AIP Publishing.

Finally, it is worth noting that metasurfaces have seen
recent advancements in synthesis, design, and deployment
across various applications [91], [92], [93], [94], [95], [96],
[97], [98], [99], utilizing transient boundary conditions.
Fig. 19 shows some examples of designed metasurface
structures with a desired functionality [90], such as a half-
wave plate, a quarter-wave plate, a polarization beam splitter,

and an orbital angular momentum multiplexing metasurface
structure. This figure showcases different metasurface sam-
ples that were fabricated using GSTCs modeling approaches.
For further information, interested readers can refer to [90].

VIII. CONCLUSION
In order to demonstrate how conventional Maxwell’s bound-
ary conditions are converted to the GSTCs, we have
employed different physical presentations and justifications
based on the induced dipole moments of simple scatters
on the metasurface. In addition, we have shown different
snapshots when the electric and magnetic fields touch the
metasurface in the presence of magnetic and electric dipole
moment responses. These electromagnetic responses have
been expressed in terms of equivalent surface polarization
and magnetization current densities and spatial tangential
gradients of the normal surface polarization and mag-
netization densities. It has been deduced that both the
normal and transverse components of the electric surface
polarization density and the surface magnetization density
must be involved in studying the most general case of the
metasurface. We have reviewed several modeling approaches
of the GSTCs, including polarizability, susceptibility, and
impedance/admittance models, and discussed their interre-
lations. Then, we have developed these modeling forms
of the GSTCs for designing bianisotropic metasurfaces.
Finally, multiple examples to demonstrate the benefits of
designing metasurfaces using GSTCs have been provided.
We expect that this study may help open new paradigms
for developing advanced metasurface modeling techniques
and will be particularly useful for a convenient understand-
ing of GSTCs requiring the presence of dipolar moment
responses.
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