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ABSTRACT A novel analytical approach to optimal base station (BS) location problem is proposed. It is
based on the widely used system and propagation path models but, unlike known studies, makes use a
convex optimization formulation to minimize the total transmit power subject to quality-of-service (QoS,
rate) constraints. In contrast to the previously-proposed approaches, the sufficient Karush-Kuhn-Tucker
(KKT) conditions are used here to characterize a globally (rather than locally)-optimum point as a convex
combination of user locations, where convex weights depend on user parameters, path loss exponent and
overall geometry of the problem. Based on this characterization, a number of novel closed-form solutions
are obtained. In particular, the optimumBS location is shown to be the average of user locations in the case of
unobstructed line-of-sight (LOS) propagation (the path loss exponent equals 2) and identical user parameters
but not in general. If the user set is symmetric, the optimal BS location is independent of the pathloss
exponent, which is not the case in general. The analytical results show the impact of propagation conditions
(e.g. clear/obstructed LOS) as well as system and user parameters (bandwidth, rate demand, etc.) on optimal
BS location: the higher the path loss exponent, the heavier the impact of distant users; users with higher
rate demands have more impact. The obtained analytical results facilitate insights, which are unavailable
from purely numerical studies and which can be used to develop design guidelines. Based on these results,
an iterative algorithm is proposed and its convergence is proved. The single BS results are further extended
to multi-BS scenarios (e.g. a cell cluster) using the K-means algorithm with proper modifications, so that
the total (sum) BS power in a cell cluster is locally minimized, subject to user rate constrains. Numerical
experiments validate the analytical solutions and show the effectiveness of the proposed algorithms. Overall,
the emphasis is on an analytical framework, solutions and insights rather than on numerical algorithms.

INDEX TERMS Wireless communication, cellular base station, unmanned aerial vehicle (UAV), optimal
location, convex optimization, global optimum, quality-of-service, KKT conditions, K-means algorithm.

I. INTRODUCTION
With the explosive growth of wireless traffic demands and
due to high costs and scarcity of radio spectrum resources,
cell planning is of major importance for wireless service
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providers. It includes determining optimum locations and
the number of base stations (BSs) to meet the traffic and
quality-of-service (QoS) requirements at minimum cost [1].
Communication technologies are currently responsible for
around 5% of the total generated carbon footprint and
this amount is expected to increase significantly with full
deployment of 5G systems and with the introduction of
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newly-developed 6G systems since the data traffic and the
number of connected devices will increase significantly. This
calls for energy-efficient approach to wireless communica-
tions, which already became an active area of research [2],
[3]. In this paper, we address the energy efficiency and also
inter-cell interference issues by optimizing a cellular base
station location to minimize its total transmit (Tx) power (to
all users) and finding an optimal power allocation among
users subject to rate constraints for each user, which represent
QoS requirements.

A. TERRESTRIAL BS LOCATION
The problem of BS location in cellular networks has been
extensively studied in the existing literature [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17]. A large
number of optimization algorithms have been proposed to
attack this problem numerically, taking into account a number
of practically-important parameters and limitations. Many
of the proposed algorithms use a pre-selected finite list of
candidate sites where the BS could potentially be located and
look for ones that optimize some objective function amongst
that list [4], [5], [6], [7], [8], [9], [10]. The considered
problems are formulated as mixed integer programming or
combinatorial optimization and the methods to solve them
include simulated annealing [5], Tabu search [4], [6] [9],
simplex method and branch and bound algorithm [8], etc.
While these approaches can be useful in practice, their
common feature is that the considered problems are NP-hard
(i.e. the numerical complexity grows exponentially fast with
the problem size), and convergence of algorithms to a global
optimum cannot be guaranteed, due to the lack of convexity
of the underlying optimization problems. Furthermore, the
sub-optimality gap is also unknown. Due to the nature of
numerical algorithms, they offer limited insight into the
problem, for which no analytical solution is known either.

A different approach is adopted in [11] and [12], where an
optimal BS location is searched over thewhole area of interest
(without assuming a finite number of candidate locations).
Additionally, after finding sub-optimal BS locations, the
number of BSs is minimized by removing redundant BSs so
that the quality of network service is not affected. Numerical
algorithms are proposed for this two-stage optimization
process. A pattern search algorithm is used in [11] to
minimize the total power consumption of the network by
properly locating BSs subject to the SIR constraints. It is
based on the mesh-adaptive direct search extended to include
non-linear inequalities via the augmented Lagrangian. While
the algorithm converges to a Karush-Kuhn-Tucker (KKT)
point, this is not sufficient for global optimality since the
underlying optimization problem is not convex (so that aKKT
point can be a local rather than global minimum, an inflection
point, or even a maximum rather than minimum). A combi-
natorial optimization problem is formulated in [12] to find
BS locations that satisfy area coverage and cell capacity
constraints. Two heuristic numerical algorithms, namely

particle swarm optimization and gray-wolf optimization, are
used and afterward the redundant BSs are eliminated to
achieve the minimum required number of BSs. Although
these algorithms can be useful in practice, their convergence
to a globally-optimal solution is not guaranteed and their
numerical complexity can be prohibitively large for a large
problem size.

Yet another approach is adopted in [13] and [14], where the
weighted sum pathloss (to all users) is minimized by properly
locating a base station. Various numerical algorithms for
local optimization are used, such as Hooke-Jeeves’, quasi-
Newton, conjugate gradient search, steepest descent, simplex
or Rosenbrock methods, simulated annealing, and genetic
algorithm. The entire area of interest is partitioned into a
finite grid, which is sequentially refined while looking for
an optimal location. None of these methods guarantee a
globally-optimal solution due to their intrinsic limitations
or due to the non-convexity of underlying optimization
problem. In addition, the cost function (the weighted sum
pathloss) is introduced in an ad-hoc manner, without any link
to system-level performance indicators (e.g. total transmit
power or energy efficiency subject to QoS constraints).

B. UNMANNED AERIAL VEHICLES (UAV)
There is currently a growing interest in utilizing unmanned
aerial vehicles (UAVs) as flying base stations to temporarily
increase network capacity or/and provide coverage by
moving supply towards demand [15], [16]. An algorithm to
find a placement of UAV-BS that maximizes the number of
covered users is proposed in [17]. The problem is decoupled
into vertical and horizontal dimensions. For the vertical
dimension, the optimum angle that maximizes the coverage
radius and then the optimum height are found; in the
horizontal dimension, the deployment is modeled as a circle
placement problem. Further extending the above studies,
a combination of terrestrial BSs with UAVs to improve the
terrestrial network performance is considered in [18], [19],
and [20] and iterative algorithms to determine optimal UAVs
locations are proposed.

Optimal deployment of multiple UAVs with directional
antennas serving randomly-located users via an orthogonal
multiple-access scheme is considered in [22]. While the
general case remains an open (NP-hard) problem, a closed-
form asymptotic (in the number of UAVs) solution is obtained
for uniformly-distributed users and all UAVs located at the
same height. Based on numerical evidence, it is conjectured
that the same height is asymptotically optimal in this
case. Optimal deployment of tethered UAVs (T-UAV) to
maximize cellular coverage and energy efficiency tradeoff
in clusters of uniformly-distributed users is considered
in [23], [28] using stochastic geometry tools and the SNR
of a given user or the average pathloss as performance
metrics. A set of locations to which optimal T-UAV location
belongs is identified, and, since the remaining problems are
analytically untractable, simulated annealing or exhaustive
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search are used. Intermittently tethered UAVs (iTUAVS) are
proposed in [27] as a trade-off solution to combine the
advantages of untethered and tethered UAVs. Optimal UAV
placement is formulated in [24] as a constrained optimization
problem to maximize fair coverage to energy consumption
ratio while satisfying backhaul constraints. An algorithm
for alternating optimization based on stochastic gradient
decent is proposed and its performance is demonstrated
via simulations. An algorithm to minimize the average
UAV-user distance while maintaining UAV-terrestrial BS
connectivity in LOS environment is presented in [26] and
its convergence to a local optimum is proved. However,
it is not clear how the average UAV-user distance relates to
e.g. energy or spectral efficiencies, i.e. does the minimum
average distance implies that the total transmit power is also
minimized? Deployment and trajectory design of UAVs in
non-orthogonal multiple-access (NOMA) wireless networks
to maximise the network sum-rate are considered in [25].
Since the underlying optimization problems are non-convex
and untractable analytically, balanced grey wolf optimization
algorithm is used in combination with k-means clustering.
A comprehensive model for the optimization of resource
allocation and placement of UAVs in multi-hop (relaying)
networks is proposed in [29]. While the model accounts
for many relevant factors, it also renders the considered
optimization problems untractable analytically and, due to
their non-convexity, numerically as well, so that various
approximations and bounds have to be used.

To summarize, while the above UAV deployment algo-
rithms are useful from a practical perspective, they share the
same fundamental limitations as those of the terrestrial BS
location: since the underlying optimization problems are not
convex and untractable analytically, convergence to global
optima remains out of reach and the corresponding global
optimality gap of the numerical solutions remains unknown.
Therefore, it is not known whether the obtained solutions are
close to the respective global optima or significant further
improvement is still possible.

C. WIRELESS SENSOR NETWORKS
A related problem is that of optimal access point locations in
wireless sensor networks (WSN), which have been studied
extensively [30], [31], [32], [33], [34]. It should be noted,
however, that there is a significant difference between optimal
BS locations in cellular networks and those in wireless sensor
networks, due to different operating conditions, system
requirements and end-user demands. Indeed, while current
cellular users demand high-rate services (e.g. streaming HD
video as in 5G systems) and hence need high spectral
efficiency in a limited bandwidth available (and often operate
in interference-limited environment due to frequency re-use)
[1], [35], autonomous sensors are low-rate energy-limited
devices; their transmit power is much smaller than that of
cellular users, and their batteries cannot be recharged on a
regular basis, unlike those of cellular users. Hence, an optimal

BS (access point, sink or cluster head) location in WSN
is selected to maximize energy efficiency of autonomous
sensors and hence prolong the network life time [30], [31],
[32], [33], [34], while in cellular networks, BS location is
selected to provide high rate (high spectral efficiency) to most
cellular users and to minimize the amount of interference it
creates (due to frequency re-use) to other cells [1], [35]. Since
the same cellular BS serves many high-rate users at the same
time in interference-dominated environment, its total transmit
power is also of concern, unlike that in a sensor network.
Thus, a BS location optimal for a cellular network is not
necessarily optimal for a sensor network and vice versa.

D. COMMON LIMITATIONS
To summarize, while all the above-discussed algorithms are
useful from the practical perspective, they have a number of
limitations at the fundamental level. Due to the non-convex
formulations or approximations they use, these algorithms
converge to a local optimum at best, which can be far
away from a global optimum; provable convergence to a
global optimum is out of reach and the global optimality
gap is not known (or bounded) either. If these algorithms
are used to search for globally-optimal solutions (using e.g.
multi-start implementation), they require exponentially-high
complexity/run time (i.e., NP-hard) so that only small-sized
problems can be handled in a reasonable time. This is a
general difficulty for most non-convex problems [36], [37],
[38]. Due to the numerical nature of the above algorithms,
very limited or no insights are available. No closed-form
solutions to the considered problems are known either.
From a fundamental perspective, what is missing is an
analytical framework for globally-optimal analysis, solutions
and optimization algorithms.

E. OUR CONTRIBUTIONS
The aim of this paper is to build such a framework. To address
the above gaps and limitations, the BS location problem is for-
mulated here as a convex optimization problem to minimize
the total BS transmit power subject to per-user rate constraints
(other constraints can be added as well). Unlike the above-
reviewed studies, this convex formulation delivers a provable
global optimum efficiently, since its KKT conditions are
sufficient for global optimality and numerical algorithms
based on them, e.g. Newton barrier method, converge to a
global (rather than local) optimum in polynomial time and
run fast in practice, even for large problem instances (many
users and constraints). In addition, a number of globally-
optimum closed-form solutions, which cannot be found in the
existing literature, are also presented here.

The system model is introduced in Section II, where a base
station serves a given number of users with known locations
and rate requirements. This may represent actual users in a
cellular system as well as expected user distributions (e.g.
in business or apartment buildings, shopping centers and
other social attractors); expected traffic demands in different
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locations can also be represented in this way via virtual
users [20], [21]. This system model is consistent with the
current literature on optimal BS location [5], [6], [7], [8],
[9], [10], [12], [13], [14], [16], [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32],
[33], [34]. While we consider first a single base station
scenario, the obtained results can be used as a building block
to solve higher-level problems with multiple base stations
(an approach used extensively in the current literature),
as demonstrated in Section VII. The considered model and
approach are general enough to include any rate that is a
monotonically-increasing function of the SNR and hence can
include fading, in addition to the average pathloss, as well as
nonuniform user (traffic) distributions. It is also applicable
to modern systems using massive MIMO and millimeter
waves (key technologies for 5G/6G systems), which rely
on orthogonal access schemes in frequency, time or space
domains [35]. Different propagation conditions to different
users are accommodated as well. In particular, unobstructed
line-of-sight (LOS) propagation (where 1st Fresnel zone is
clear of any obstructions) corresponds path loss exponent
ν = 2 while obstructed LOS corresponds to 2 < ν < 8,
where higher ν represents heavier obstruction; ν < 2 is
also possible in waveguide-type environments, e.g., tunnels,
corridors, shopping malls/warehouses etc. [45], [46], [47],
[48], [63], [64].

Next, the optimal BS location problem is formulated as
a convex optimization problem to minimize the total BS
transmit power, subject to the QoS (per-user rate) constraints;
additional constraints are also considered later on. Based on
this novel formulation, Section III characterizes a globally-
optimal BS location in the general 3-D case as a convex
combination of user locations, where the convex weights
depend on user bandwidth and rate demands, some system
and propagation parameters, and overall geometry of the
problem.

This characterization is subsequently used to obtain a
number of explicit closed-form solutions for an optimal
BS location (to the best of our knowledge, for the first
time). In the case of users with identical parameters (rate
and bandwidth) and line-of-sight propagation (ν = 2), the
globally-optimal BS location is shown to be the average
(arithmetic mean) of user locations. This also applies to other
propagation environments provided that the set of users is
symmetric (as defined in the paper), or to randomly-located
users, where the optimal BS location converges to the mean
user location as the number of users increases. In the case
of a symmetric set of users, the optimal BS location is also
independent of pathloss exponent ν while the latter has a
profound impact on the optimal BS location for asymmetric
user sets. In the case of heavily obstructed LOS and hence
large pathloss exponent (ν > 4), the optimal BS location
is determined by the most distant user locations. In general,
users with higher rate demands are shown to contribute more
to an optimal BS location (via their convex weights) and

distant users have higher weights for larger ν (i.e. for heavier
LOS obstruction).

Clustered environments are also considered, where all
users are grouped into several clusters, and an optimal BS
location is shown to be the average of cluster centers provided
that the inter-cluster distances are significantly larger than
the cluster sizes. An unusual property is observed whereby
an optimal BS location is not necessarily unique. While the
optimal BS location is always unique when the pathloss
exponent ν > 1, this is not necessarily the case with ν =

1 (this may represent some waveguide-type environments),
as shown for collinear users in Section III-F. However, it is
always unique for the elevated BS case.

While the study above considers the general 3-D user
locations, Section IV considers an elevated BS scenario,
where all users are located on a 2-D (ground) plane and
the BS is elevated above it. This may represent typical BS
locations in cellular systems as well as UAV-based base
stations. The optimal BS location is characterized as a convex
combination of user locations, where the weights depend on
user parameters and pathloss exponent, subsequently elevated
above the ground plane.

Section V extends the original problem to include extra
constraints on a BS location (where the BS must be located
within a certain available area, e.g. a rooftop or a hill). The
characterization of Section III as well as many other results
are shown to hold for this extended problem as well.

Section VI presents an iterative algorithm for the BS
location problem for the general case (unequal system/user
parameters and pathloss exponents) and its convergence is
established in Proposition 7. For the ν = 1 case, this
Algorithm reduces to the Weiszfeld’s Method [71], [72],
[73] to solve the celebrated 350-years-old Fermat-Weber
problem [71], but is substantially different from it in other
cases.

The single-BS results above are extended to a multi-BS
setting (a cell cluster) in Sec. VII. Since the total (sum) BS
power minimization for the entire cellular cluster (via proper
user-BS assignment and BS location) is a non-convex prob-
lem, we show that the popular K-means algorithm can be used
(with proper modifications) to find a locally-optimal solution
to this problem. Unlike the known studies making use of
this algorithm [52], [53], [54], [55], [56], [57], [58], [59],
we use the physically-based ‘‘distance’’ measure to make
sure that the total BS power is reduced at each iteration of
the algorithm. Consequently, an algorithm convergence point
corresponds to a locally-optimal BS locations that minimize
the total power of all base stations in the cellular cluster.
A globally-optimal location can be approached by using
the multi-start version of the algorithm. Its computational
complexity can be reduced by using the above analytical
location results at each iteration.

To facilitate the analysis and to obtain insights, we consider
the users having the same path loss exponent and other system
parameters in some parts of the paper. However, our approach

VOLUME 12, 2024 75183



E. Kalantari et al.: Optimal Location of Cellular Base Stations via Convex Optimization

is not limited to this setting: different path loss exponents
and system parameters can be accommodated as well, as in
Theorems 1-3, Propositions 2, 3, 7 and in Section VI and VII,
including Algorithms 1 and 2.

Representative numerical experiments are considered in
Section VIII, which validate the analytical results and related
approximations and show the effectiveness of the proposed
algorithms.

Overall, this paper studies analytically an optimum BS
location to minimize its total transmit power (subject to
per-user rate constraints) as well as the impact of pathloss
exponent, system parameters and traffic (user) distribution.
Its analytical results provide insights unavailable from
numerical algorithms/studies and can be subsequently used
to obtain design guidelines for more complicated settings.
Compared to the known studies and algorithms, globally
(rather than locally)-optimal solutions are obtained here in
an efficient way, sometimes in a closed-form.

II. SYSTEM MODEL AND PROBLEM FORMULATION
Following the approach widely accepted in the current
literature [5], [6], [7], [8], [9], [10], [12], [13], [14], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30], [31], [32], [33], [34], let us consider a base
station (BS) serving N users located at xn, n = 1, ..,N , via
some form of an orthogonal multiple-access technique, e.g.
frequency-division multiple access (FDMA), time-division
multiple access (TDMA) or space-division multiple access
(SDMA), which are widely used by modern systems [35].
Due to spatial filtering using a large number of antennas
and the phenomenon known as ‘‘favorable propagation’’,
user orthogonality is also ensured in massive MIMO multi-
user systems [60], [61], [62]. Large bandwidth available
to millimeter-wave systems (a key technology for 5G/6G
systems) also makes an orthogonal access the preferred
choice [63], [64]. Under this assumption, user rates Rn can
be expressed as follows,

Rn = 1fn log(1+ γn/0n) (1)

where 1fn and γn = Prn/σ 2
0n are the bandwidth and the SNR

of user n, the channel is frequency-flat with AWGN noise of
power σ 2

0n and Prn is the signal power received by user n;
0n ≥ 1 is the SNR gap to the capacity of user n [40], [41],
[42], [43] (it can also represent ‘‘interference margin’’ and
model the residual inter-user interference from co-channel
cells). When efficient (capacity-approaching) codes are used
for each user, 0n → 1. In practice, the assumption of
rates being close to the capacity is justified due to the
existence of codes which operate very close to channel
capacity, e.g. turbo, polar or LDPC codes [44]. In fact, this
model can be further extended to include any rate which
is a monotonically-increasing function of the SNR (e.g.
an ergodic rate in a fading channel) by properly selecting βn
in (4). While we do not consider inter-user interference (due
to e.g. frequency re-use) explicitly, the solutions we obtain
will minimize the total Tx power for each BS and therefore

the amount of inter-user interference will also be minimized.
In addition, the use of massive or ultra-massive MIMO in
5G/6G systems effectively eliminates inter-user interference
via spacial filtering under the condition known as ‘‘favorable
propagation’’ [60], [61], [62] and modern millimeter-wave
systems are known to be noise-dominated (due to large
bandwidth available and large path loss to distant users) [63],
[64]. Hence, our approach is applicable to such systems as
well.

The received power Prn is related to the transmit power Pn
allocated by the BS to user n via the path loss model [45],
[46], [47], [48],

Prn = αnPn/dνn
n (2)

where dn = |c − xn| is the distance between the BS located
at c and user n located at xn, |x| is the Euclidean norm
(length) of vector x, νn is the path loss exponent, and αn is a
constant related to the propagation environment and antenna
gains (due to e.g. beamforming), which is independent of
distance but may depend on frequency. For example, in the
case of free-space propagation environment in the far-field,
e.g. when line-of-sight (LOS) path is dominant, νn = 2 and
αn = GtnGrn(λn/(4π ))2, where λn is the wavelength of user
n and Gtn,Grn are the Tx and Rx antenna gains. For the 2-
ray ground reflection model, νn = 4 and αn = GtnGrnh2t h

2
rn,

where ht , hrn are the transmit (BS) and user n antenna
heights [45]. LOS blockage can be accounted for via larger
νn: the larger the blockage, the larger the path loss exponent
is: while νn = 2 corresponds to clear LOS (unobstructed 1ts
Fresnel zone), νn = 2.5 . . . 8 correspond to lightly to severely
blocked LOS, and νn < 2 corresponds to waveguide-type
environments with clear LOS [45]. The model in (2) is widely
used in the literature [5], [6], [7], [8], [9], [10], [12], [13],
[14], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27], [28], [29], [30], [31], [32], [33], [34] as well as in
the current industrial standards [46]. It has been extensively
tested experimentally [45], [46], [47], [48], [63], making it
practically-relevant.

Since a cellular BS location is fixed and cannot be changed
every time a user experiences a different fading state or
moves around, only the average path loss is included in (2)
to represent long-term tendencies (it is understood that the
system performance for a particular user in a given moment
of time may depend on its channel fading state at that
time). However, the impact of fading can be included by
considering an ergodic rate function instead of (1), which
also corresponds to (4) with a properly selected βn so that
all our results apply to an ergodic fading scenario as well.
Modern systems using massive MIMO effectively eliminate
small-scale fading due to the effect known as ‘‘channel
hardening’’ [60] (roughly, this corresponds to high-order
diversity combining using a large number of antennas).
Hence, our approach is applicable to such systems as well.

We assume that the BS knows path loss to each user
(or, equivalently, its SNR). While there may be significant
short-term user dynamics in terms of locations, rate demands,
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fading, etc. in real-world systems, our model is not intended
to model this dynamics but rather to represent long-term
tendencies in user locations and service demands since we
consider a fixed (rather than mobile) BS. While schedul-
ing/resource allocation algorithms take care of this short-term
dynamics in real time, a fixed BS location is selected
based on long-term tendencies in user locations and service
demands and this location is not expected to change following
short-term dynamics (unless one considers a UAV BS).
Therefore, only the average path loss is taken into account
in (2). To satisfy quality-of-service requirements, each user
rate must not be less than its target rate R0n: Rn ≥ R0n, where
the latter is determined based on user’s grade of service and
traffic/service demand (adaptive modulation/coding along
with time/frequency resource blocks are used practice to set
it up [35]). To achieve this objective in an energy-efficient
way, the operator selects BS location c in an optimal way to
minimize its total transmit power PT =

∑
n Pn subject to the

QoS constraints as follows:

(P1) min
{Pn},c

∑
n

Pn s.t. Rn ≥ R0n (3)

where the optimization variables are BS location c as well
as per-user powers {Pn}, so that the BS performs optimal
per-user power allocation as well. Noting from (1) that the
constraint Rn ≥ R0n is equivalent to γn ≥ γ0n = (2R0n/1fn −
1)0n, the problem (P1) can be re-formulated as follows:

(P2) min
{Pn},c

∑
n

Pn s.t. Pn ≥ βn|c− xn|νn (4)

where βn absorbs all system-level parameters,

βn =
γ0nσ

2
0n

αn
=

(2R0n/1fn − 1)0nσ 2
0n

αn
(5)

Note that σ 2
0n may also include interference power as a

part of it. We further note that problem (P1) and hence
(P2) can also accommodate any rate model that is a
monotonically-increasing function of the SNR Rn(γn), not
only that in (1), so that the condition Rn ≥ R0n is equivalent
to γn ≥ γ0n with properly-selected γ0n = R−1n (R0n). This
generalized model can also include fading, where Rn and
γn are interpreted as the average (ergodic) rate and SNR
respectively.

To the best of our knowledge, no analytical solution is
available in the literature to either (P1) or (P2). Therefore,
the next section presents a general characterization of
an optimal BS location according to (P2), from which
a number of closed-form solutions are obtained in some
special cases. These results are further extended to multi-BS
location problem in Section VI. Unless indicated otherwise,
‘‘optimal’’ means ‘‘globally-optimal’’ in the rest of this paper.

III. OPTIMAL BS LOCATION AND POWER ALLOCATION
Following the model of the previous section, a globally-
optimal BS location and power allocation to minimize the

total transmit power subject to the QoS constraints can be
characterized as follows.
Theorem 1: A globally-optimal BS location c∗ in (4) can

be expressed as a convex combination of user locations {xn}:

c∗ =
∑
n

θnxn, θn =
βnνn|c∗ − xn|νn−2∑
n βnνn|c∗ − xn|νn−2

(6)

if either (i) νn ≥ 2 or/and (ii) c∗ ̸= xn and νn ≥ 1, where
0 ≤ θn ≤ 1,

∑
n θn = 1. Transmission with the least per-user

power is optimal: P∗n = βn|c∗ − xn|νn .
Proof: Since the problem (P2) in (4) is convex and the

strong duality holds (Slater condition is satisfied), its KKT
conditions are sufficient for optimality [36]. Its Lagrangian
is

L(Pn, c) =
∑
n

Pn +
∑
n

λn(βn|c− xn|νn − Pn) (7)

where λn ≥ 0 are Lagrange multipliers responsible for the
power constraints. First, we consider the non-singular case,
when c∗ ̸= xn ∀n, and deal with the singular case later
on. In the non-singular case, the KKT conditions take the
following form

∂L
∂c
=

∑
n

λnβnνn(c− xn)|c− xn|νn−2 = 0, (8)

∂L
∂Pn
= 1− λn = 0 (9)

λn(βn|c− xn|νn − Pn) = 0 (10)

Pn ≥ βn|c− xn|νn , λn ≥ 0 (11)

where (8), (9) are the stationary conditions, (10) are the
complementary slackness conditions, and (11) are primal and
dual feasibility conditions. 1st condition in (8) was obtained
from

∂|x|ν

∂x
= νx|x|ν−2 (12)

if x ̸= 0, which always holds in the non-singular case.
The 2nd condition in (8) implies λn = 1 so that, from (10),
Pn = βn|c − xn|νn , i.e. transmitting with the least required
power for each user is optimal. Combining this with 1st
condition in (8) results, after some manipulations, in (6).
The singular case, when c∗ = xn for some n, is more

involved as, in this case, (12) and hence 1st condition in (8) do
not hold (since x = 0 and |x| is not differentiable at x = 0).
To deal with this case, we consider a regularized version of
(P2) of the following form:

min
Pn,c

∑
n

Pn s.t. Pn ≥ βn|c− xn|
νn
h (13)

where |x|h = (|x|2 + h2)1/2, for some h ̸= 0. Since
|x|h is differentiable for any x (including x = 0) when
h ̸= 0, the singularity is always avoided and one can use
the same KKT-based approach as above. The respective KKT
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conditions are:
∂L
∂c
=

∑
n

λnβnνn(c− xn)|c− xn|
νn−2
h = 0, (14)

∂L
∂Pn
= 1− λn = 0 (15)

λn(βn|c− xn|
νn
h − Pn) = 0 (16)

Pn ≥ βn|c− xn|
νn
h , λn ≥ 0 (17)

where we have used

∂|x|νh
∂x
= νx|x|ν−2h (18)

valid for any x, including x = 0, hence avoiding the
singularity problem. Solving the KKT conditions in the same
way as above, one obtains the optimal location c∗(h) as
follows:

c∗(h) =
∑
n

θn(h)xn, (19)

θn(h) =
βnνn|c∗(h)− xn|

νn−2
h∑

n βnνn|c∗(h)− xn|
νn−2
h

(20)

To proceed further, let PT =
∑

n βn|c∗ − xn|νn and Ph =∑
n βn|c∗(h) − xn|

νn
h be the optimal total transmit powers of

the BS for the original and regularized problems, andPT (c) =∑
n βn|c−xn|νn be the total BS transmit power for the original

problemwhen the BS is located at c (not necessarily optimal).
Their relationship can be characterized as follows.
Lemma 1: The powers PT , PT (c) and Ph are related as

follows:

PT ≤ PT (c∗(h)) ≤ Ph (21)

where PT (c∗(h)) is the total BS power of the original problem
when it is located at c∗(h), i.e. the optimal location of the
regularized problem. Furthermore,

lim
h→0

Ph = PT = lim
h→0

PT (c∗(h)) (22)

and, when the limit exists, limh→0 c∗(h) = c∗.
Proof: Since

|c− xn|νn ≤ |c− xn|
νn
h (23)

for any c, k and h, it follows that

Ph =
∑
n

βn|c∗(h)− xn|
νn
h (24)

≥ PT (c∗(h)) ≥ min
c
PT (c) = PT (25)

as required. Since |c− xn|
νn
h is continuous and

lim
h→0
|c− xn|

νn
h = |c− xn|

νn (26)

it follows that limh→0 Ph = PT and hence, from (24),

lim
h→0

PT (c∗(h)) = PT (27)

and, when the limit exists,

lim
h→0

c∗(h) = c∗ (28)

since PT (c) is a continuous function. □
Now notice that the KKT conditions (14)-(17) of the

regularized problem converge to those of the original problem
in (8)-(11) if νn ≥ 2, since |x|h → |x| as h → 0 and the
regularized KKT conditions are continuous in h when νn ≥ 2
(even if c = xn). Hence, c∗(h) → c∗ as h → 0, i.e. the
regularized problem solution converges to that of the original
one and thus (6) holds in full generality when νn ≥ 2 (even
in the singular case c∗ = xn). This concludes the proof of
Theorem 1. □
Next, we explore some properties of an optimal BS

location to get some insight in the general case.
Proposition 1: When νn > 1 for some n, an optimal base

station location is unique. This is not necessarily the case if
νn = 1 for all n.
Proof:We need the following technical lemma.
Lemma 2: The function f (x) = |x|ν is strictly convex for

any ν > 1.
Proof: For any x, y, 0 ≤ θ ≤ 1, the following holds:

f (θx+ (1− θ )y) = |θx+ (1− θ )y|ν

≤ (θ |x| + (1− θ )|y|)ν

≤ θ |x|ν + (1− θ )|y|ν

= θ f (x)+ (1− θ )f (y) (29)

where 1st inequality is due to the triangle inequality,

|θx+ (1− θ)y| ≤ θ |x| + (1− θ )|y| (30)

and the fact that xν is strictly increasing, while 2nd inequality
is due to the convexity of xν for ν > 1. To establish strict
convexity, let x ̸= y and 0 < θ < 1, and observe that 1st
inequality in (29) is strict if x ̸= αy for any α > 0, due to the
strict inequality in (30) in this case, and hence

f (θx+ (1− θ )y) < θ f (x)+ (1− θ )f (y) (31)

as required. On the other hand, if x = αy for someα > 0, α ̸=
1, then |x| ̸= |y| and 2nd inequality in (29) is strict, due to the
strict convexity of xν for ν > 1, hence implying (31). □
Now, the uniqueness of the solution follows from the fact

that (P2) is equivalent to

min
c

∑
n

βn|c− xn|νn (32)

since transmitting with the least per-user power is optimal,
and the objective here is strictly convex if νn > 1 for some
k , from Lemma 2, and thus the solution is unique [36].
Non-uniqueness for νn = 1 can be shown via examples,
see Proposition 5 and Fig. 7. This concludes the proof of
Proposition 1.
To proceed further, we need the following definition [36].
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FIGURE 1. The convex hull of a set of points (shown as dots) in IR2 is a
pentagon (with dashed boundary).

Definition 1: Let {yn} be a set of points. Its convex hull
conv{yn} is the set of all convex combinations of the points
in {yn}:

conv{yn} =

{∑
n

qnyn : qn ≥ 0,
∑
n

qn = 1

}
(33)

Figure 1 illustrates this definition. Note that conv{yn} is
always a convex set, regardless of {yn}.
Corollary 1: The optimal BS location c∗ in (6) is in the

convex hull of all user locations:

c∗ ∈ conv{xn} (34)

Proof: Notice from (6) that 0 ≤ θn ≤ 1,
∑

n θn = 1, and
then apply Definition 1. □
While (6) characterizes an optimal location of the BS,

no closed-form solution of this relationship is known in the
general case (note that (6) is not a closed-form solution
itself since θn depends on c∗). The above Corollary gives a
property of such solution. Furthermore, it implies that the
search of c∗ can always be confined to conv{xn}, without loss
of optimality. For example, if all users are located on a line
or in a building, the optimal BS is also on this line or in this
building.

We obtain below a number of explicit closed-form
solutions for c∗ in some special but practically-important
cases.

A. LINE-OF-SIGHT PROPAGATION
An important special case, included in industrial standards,
is that of LOS or free-space propagation, where νn = 2.
In practice, νn ≈ 2 when most of the 1st Fresenel zone
is free of obstructions [45], [46], [47], [48]. This is also
the case in a multipath channel when multipath components
are much weaker than LOS; therefore, LOS dominates and
the propagation becomes almost the same as in free space.
νn is close to 2 in many indoor environments when LOS
is present [45] and νn = 2 appears often in the industrial
propagation models [46]. This propagation environment
is also critical for emerging millimeter wave (mmWave)
or THz systems (key technologies for 5/6G), where any
significant blockage of LOS results in link outage due to high
propagation path loss and therefore low SNR [63], [64], [65],
[66].

Using Theorem 1, the optimal BS location c∗ can be
expressed as follows in this environment.

FIGURE 2. Left: an irregular user set and optimum BS location. Right: an
equivalent symmetric set of users, which requires the same BS power and
the users get the same rates as on the left.

Corollary 2: If νn = 2 for all n, the optimal BS location
c∗ is a weighted average of the user locations:

c∗ =
∑
n

θnxn, θn =
βn∑
i βi

. (35)

where 0 ≤ θn ≤ 1,
∑

n θn = 1.
Proof: Use (6) with νn = 2. □

Note that (35) is an explicit closed-form solution, since θn
are now independent of c∗. It follows that users with larger
βn, i.e. those requiring higher rates, contribute more to c∗ so
that as βn increases, c∗ moves closer to xn. In the limiting case
of β1 > 0, βi = 0, i ̸= 1, the optimal location c∗ = x1.
Further simplification is possible when all users require the

same rate and have the same system settings, so that βn =

β ∀n.
Corollary 3: If νn = 2 and βn = β ∀n, the optimal BS

location c∗ is the average of user locations:

c∗ = x =
1
N

∑
n

xn. (36)

The total BS transmit power PT =
∑

n Pn is proportional to
the empirical variance σ 2 of user locations,

PT = Nβσ 2, (37)

where σ 2
= N−1

∑
n |x− xn|

2.
Proof Use (35) with βn = β. (37) follows from (36). □
Note that (37) also represents the total BS power when

all N users are located at the same distance σ from the
BS, i.e. on a circle (or sphere) of radius σ centered on the
BS, where P = βσ 2 represents per-user BS power. Hence,
the original, possibly highly irregular, user setting can be
equivalently substituted by a highly-symmetric (circular) user
locations, keeping the same total BS power as well as the
same total and per-user rates (however, the per-user powers
are not necessarily the same). This is illustrated in Fig. 2.

B. RANDOMLY-LOCATED USERS
It should be pointed out that (35) and (36) can also used to find
the optimal BS location for randomly-located users. Indeed,
when xn are independent identically-distributed (iid) random
vectors of finite variance, the law of large numbers (LLN)
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FIGURE 3. The optimal BS location c∗ (solid red) and its statistical mean
E{c∗} = E{x} = 1/2 (dashed blue) for N random users uniformly
distributed on the unit line segment [0,1] (for each value of N , the set of
all N user locations was generated afresh).

applies [67, p. 12] [68, p. 185] so that, using (35), c∗ will
converge to its statistical meanE{c∗} as the numberN of users
increases:

c∗→ E{c∗} =
∑
n

θnE{xn} = E{x} (38)

where E{x} = E{xn} is the statistical mean of user locations
(all means are the same due to the iid assumption) and
the convergence is in probability, mean-square error or with
probability one. Thus, in this case, the globally-optimal BS
location converges to the statistical mean of user locations
and this also holds for the setting of Corollary 3.

To illustrate this stochastic convergence, let us consider an
examplewhereN independent users are uniformly distributed
on the unit interval [0,1] (this can be a normalized distance
along a line, e.g. a street) so that E{x} = 1/2. Fig. 3 shows
the convergence of c∗ to E{c∗} = E{x} = 1/2 as N increases,
where an independent set of user locations was generated
for each value of N to illustrate statistical fluctuations of c∗,
which quickly diminish as N increases. Clearly, c∗ ≈ E{x} is
a good approximation for N ≥ 100 so that using individual
random locations xn of users to optimize BS location does
not bring in any significant advantage compared to using the
mean user location E{x} instead. This example also applies
to a two-dimensional settings, where users are distributed
on a unit square (where each coordinate is uniformly and
independently distributed); in this case, Fig. 3 should be
interpreted as representing one coordinate of the optimal BS
location.

This result can also be extended to a more general setting
where user locations are still independent but with different
distributions of bounded variances and different statistical
means E{xn}. In this case,

c∗→
∑
n

θnE{xn} (39)

i.e. the globally-optimal BS location converges to the
weighted average of statistical means of user locations.
Likewise, when βn = β ∀n as in Corollary 3, this becomes

just the average of statistical means,

c∗→
1
N

∑
n

E{xn} (40)

Finally, the case of correlated user locations can also
be considered since the LLN is also applicable to some
cases of correlated random variables (e.g. when Bernstein’s
conditions hold) [69], [70]. However, the analysis becomes
significantly more complicated and is beyond the scope of
this paper.

C. LARGE PATHLOSS EXPONENT
To obtain further insights, we return to deterministically-
located users and consider the limiting case of large pathloss
exponent νn → ∞, which serves as an approximation to
large but finite νn (as will be seen from numerical experiments
below). To simplify the discussion, we further assume that all
users have identical parameters so that βn = β ∀n.
Proposition 2: If νn →∞, the optimal BS location is the

average of most distant user locations.
Proof:Without loss of generality, arrange users according

to their distances to the BS in a descending order, i.e. d1 =
d2 = . . . = dp > dp+1 ≥ . . . ≥ dN , where p is the number of
most distant users. Then, θi can be expressed as

lim
νn→∞

θi = lim
νn→∞

dνn−2
i∑
n d

νn−2
n

= lim
νn→∞

 p∑
n=1

(
dn
di

)νn−2

+

N∑
n=p+1

(
dn
di

)νn−2
−1

=

{
p−1, 1 ≤ i ≤ p,
0, i > p,

(41)

and therefore,

c∗ =
1
p

p∑
n=1

xn (42)

□
Hence, for large path loss exponent, it is the most distant

users who determine the optimal BS location, while nearby
users contribute little.1 Finding most distant users in a set
can be expressed geometrically as follows. First, generate a
sphere large enough to enclose all the users. Then, shrink
it until no further shrinkage is possible while keeping all
the users inside, as illustrated in Fig. 4, thus obtaining the
smallest enclosing sphere. The most distant users are those
on the sphere surface. This can also be expressed as a convex
optimization problem below, where optimization variables
are the sphere center c and its radius r :

min
r,c

r s.t.|c− xn| ≤ r ∀n (43)

1In real-world applications, BS transmit power to each user may be limited
and, if the threshold is exceeded since the user is located far away (‘‘outlier’’),
its power should be set to the maximum allowed level; alternatively, outliers
may be excluded from the service or re-assigned to a different BS.

75188 VOLUME 12, 2024



E. Kalantari et al.: Optimal Location of Cellular Base Stations via Convex Optimization

FIGURE 4. An illustration of finding the most distant users via enclosing
spheres.

FIGURE 5. The union of 4 elementary symmetric sets �1..�4 with the
same center is symmetric; the optimal BS location, for any pathloss
exponent ν, is its (common) center.

D. SYMMETRIC SETS OF USERS
To obtain closed-form solutions for c∗ beyond those above,
we consider now scenarios where user location sets posses
some symmetry properties. This should also approximate
(due to the continuity of the problem in user locations)
scenarios where users are nearly-symmetric.Wewill need the
following definitions of symmetric sets.
Definition 2: Let �l = {xn : n ∈ Il} be a set of |Il | points

(users), where Il is an index set and |Il | is its cardinality. The
set�l is called elementary symmetric if the distance between
its center al = |Il |−1

∑
n∈Il xn and any of its points is the

same, i.e. |al − xn| = dl ∀n ∈ Il .
Definition 3: Set � is symmetric if it is a union of disjoint

elementary symmetric sets with the same centers, i.e. � =

∪l�l and al = a ∀l.
While an elementary symmetric set is also symmetric, the

converse is not true in general, i.e. a symmetric set does not
need to be elementary symmetric, as Fig. 5 illustrates, so the
former is more general than the latter. Equipped with these
notions of symmetry, we are now able to obtain the optimal
BS location in a closed form.

Proposition 3: Let the set � of user locations be symmet-
ric, i.e. � = ∪l�l , where �l are disjoint and elementary-
symmetric, νn = νl for any n ∈ Il , and βn = β ∀n. Then,
for any pathloss exponents νn > 1 for all n, the optimal BS
location is its center a, i.e. the average of the users’ locations,

c∗ = a = x =
1
N

∑
n

xn. (44)

Proof: Since (6) is necessary for optimality of c∗ and since
optimal location is unique when νn > 1, it is also sufficient,
i.e. any c∗ that satisfies (6) is optimal. We demonstrate below
that c∗ = a, where a is the center of �, does satisfy (6). Since
all user locations form a union of elementary symmetric sets
�l of the same center a, it follows that

a =
1
N

∑
n

xn =
1
|Il |

∑
i∈Il

xi (45)

Note that the distance |a− xi| between any user in �l and its
center a is the same, i.e. dl = |a− xi| for any i ∈ Il , since �l
is elementary symmetric. Using c∗ = a in 2nd part of (6),

θi =
|a− xi|νi−2∑
n |a− xn|νn−2

=
dνl−2
l∑

n |a− xn|νn−2
= pl ∀i ∈ Il

(46)

i.e. all weights θi are the same for all users in the same
symmetric set �l . Now using these θi in 1st part of (6),
we obtain

c∗ =
∑
n

θnxn =
∑
Il

∑
i∈Il

θixi

=

∑
Il

pl
∑
i∈Il

xi =
∑
Il

pl |Il |a = a. (47)

as required, where the last 2 equalities are due to
∑

i∈Il xi =
|Il |a and

∑
n θn =

∑
Il ρl |Il | = 1. □

It should be emphasized that this result holds for any
νn > 1, not just for νn = 2, as in Corollary 3, so this
result is more general in terms of νn but more restrictive
in terms of user locations as symmetry is required here,
unlike Corollary 3. Note also that, unlike the general case,
the optimal BS location is independent of pathloss exponent
νn as long as the user set is symmetric. This Proposition also
implies that when new users are added to existing ones, the
optimal BS location is not affected as long as new users do
not disturb symmetry.

E. CLUSTERING OF USERS
Let us consider a scenario when users are clustered around
some points (social attractors, e.g. business or shopping
centers, apartment buildings etc.), as illustrated in Fig. 6.
When the cluster sizes (radii) are much smaller than the
distance between them, then the optimal BS location can be
approximated as follows. When only 2 clusters are present,
their centers can be set, without loss of generality (via
appropriate choice of the reference frame), to be c1 and −c1,
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FIGURE 6. Users are clustered in two sets. An optimum location of the BS
is approximated by (48).

and, choosing 1st basis vector along the same directions, the
(scalar) coordinates are c1 and −c1.
Proposition 4: Let νn = ν > 1, βn = β for all n, and all

the users be clustered in two sets, C1 and C2, and their cluster
centers be −c1 and c1; let the distance between the clusters
D = 2|c1| be much larger that the cluster radii r1 and r2:
D ≫ r1, r2 (see Fig. 6). Then, the optimal BS location can
be approximated as follows: it is on the line connecting the
cluster centers and its coordinate c∗ is

c∗ ≈ c1
(m2/m1)1/(ν−1) − 1
(m2/m1)1/(ν−1) + 1

, (48)

where m1 and m2 are the number of users in each cluster.
Proof: When all users have the same parameters, βn =

β ∀k , the optimization problem (P2) in (4) is equivalent to

min
c

∑
n

dν
n , (49)

Since the cluster sizes are much smaller than the distance
between them, each cluster can be approximated by a point
(located at its center) where all users of this cluster are
located. Applying Corollary 1 under this approximation, the
BS is located on the line segment connecting c1 and −c1,
which is characterized by its coordinate c, so that dn ≈ |c+c1|
for all users in C1, and dn ≈ |c− c1| for all users in C2. Under
this approximation, the problem in (49) is simplified to

min
c
m1|c+ c1|ν + m2|c− c1|ν, (50)

Setting the derivative of the objective in (50) to zero, one
obtains

m1ν(c+ c1)ν−1 − m2ν(c1 − c)ν−1 = 0, (51)

from which (48) is obtained after some manipulations. □
Using this Proposition, we make the following observa-

tions.
1. c∗ depends on m2/m1, c1 and ν, but not on cluster sizes,

provided that they are much smaller than the inter-cluster
distance.

2. c∗ is a monotonically-increasing function ofm2: ifm2 >

m1, then c∗ > 0, i.e. the BS is closer to the bigger cluster
centered at c1 > 0, and it is getting closer to it as the number
of its users grows.

3. If m1 = m2, then c∗ ≈ 0, i.e. the BS is in the middle of
the clusters when they have the same number of users, which
is an intuitively-appealing conclusion.

4. If ν = 2, then

c∗ ≈ c1(m2 − m1)/(m2 + m1) (52)

5. Finally, ifm2 ≫ m1, then c∗ ≈ c1, i.e. the BS approaches
the bigger cluster center.

F. COLLINEAR USERS
In this section, we consider the case where all users are
located on a line. This is motivated by practical settings on
highways, in tunnels, street canyons or corridors. Following
Corollary 1, an optimal BS location is also on the line, while
its specific location depends on users’ locations and path loss
exponent. We consider below the case of νn = 1 for all n and
demonstrate some unusual properties such as non-uniqueness
of optimal BS location. Note that ν < 2 represents an
environment more favorable for propagation than free space
and it is possible in channels with guided wave structure, such
as tunnels, corridors, street canyons [45].
Proposition 5: Let all users to have the same system

parameters, νn = 1, βn = β ∀n, and be located on a line
as represented by their scalar coordinates xn, n = 1 . . .N;
without loss of generality, set x1 ≤ x2 ≤ . . . ≤ xN . If νn = 1,
an optimal BS location is a median of users’ locations:

c∗ =

{
x(N+1)/2, N is odd,
any a ∈ [xN/2, xN/2+1], N is even.

(53)

Proof: Since all users as well as the BS are located on a line
and transmission with the least per-user power is optimal, the
problem (P2) is equivalent to

min
c

∑
n

|xn − c|. (54)

which is a convex problem. Since there are no constraints,
the KKT conditions reduce to the stationarity condition (zero
derivative at optimal point). When the number of users is
even, consider any point a between two middle points, i.e.
xN/2 ≤ a ≤ xN/2+1, as illustrated in Fig. 7. Below,
we demonstrate that this point is optimal. Indeed,

f (a) =
N∑
n=1

|xn − a|

=

N/2∑
n=1

(a− xn)+
N∑

n=N/2+1

(xn − a)

=

N∑
n=N/2+1

xn −
N/2∑
n=1

xn (55)

so that df (a)/da = 0 for any a ∈ [xN/2, xN/2+1] and hence
c∗ = a. When the number of users is odd, consider any a ∈
[x(N−1)/2, x(N+1)/2+1], so that

f (a) = |x(N+1)/2 − a| −
(N−1)/2∑
n=1

xn +
N∑

n=(N+1)/2+1

xn (56)
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FIGURE 7. If νn = 1 and the number of users is even, an optimal BS
location is not unique: it can be anywhere between two middle-point
users.

FIGURE 8. Optimum BS locations for different pathloss exponents. For
ν = 1, it is a median point, which is not unique (anywhere between users
3 and 4); for ν = 2 - the average of the user locations; for ν → ∞ - the
average of the most distant users. As ν increases, the impact of the
distant user on the right increases too.

which is clearly minimized by a = x(N+1)/2. It is straightfor-
ward to see that any a not in the interval [x(N−1)/2, x(N+1)/2+1]
cannot be optimal since it gives larger

∑
n |xn − a|. Hence,

c∗ = x(N+1)/2. □
An illustration of Proposition 5 is given in Fig. 7 when the

number of users is even. Note that an optimal BS location is
not unique in this case, which is ultimately due to the fact
that |x| is not strictly convex. However, if ν > 1, then it
is always unique, according to Proposition 1, since |x|ν is
strictly convex in this case. To see the impact of ν, let us
consider 3 special cases as shown in Fig. 8:
1. For ν = 1, an optimal BS location is a median point,

which is not unique (can be anywhere between users 3 and
4).

2. For free-space propagation, ν = 2, the optimal BS
location is the (unique) average of the users’ locations,
according to Corollary 3.

3. For asymptotically-large ν, the optimal BS location is
the average of the most distant users’ locations, according to
Proposition 2, so that most distant users contribute most to
optimal BS location in this case.

Thus, ν has a profound impact on optimal BS location for
asymmetric user sets. This is in stark contrast with symmetric
user sets (Proposition 3), where the optimal BS location is
independent of ν.

IV. ELEVATED BASE STATION
In practice, base station is often located at some elevation
above ground to provide clear LOS to most users hence
improving coverage. This also includes scenarios with an
airborne communication node (e.g. a drone). To model this

FIGURE 9. An elevated BS scenario, where all users are located on the
ground plane while the BS is elevated to a given height h.

scenario, we consider the setting of Fig. 9, where users are
located on a (ground) plane with 2-D vector xn representing
user n, while the BS is above the ground at a given height
h and c is its 2-D location (projection) on the ground
plane. The distance between the BS and user n is therefore√
|c− xn|2 + h2 = |c−xn|h. Thus, the problem (P2) becomes

min
{Pn},c

N∑
n=1

Pns.t. Pn ≥ βn|c− xn|
νn
h (57)

The following Theorem characterizes its solutions.
Theorem 2: Consider the elevated BS location problem

in (57) when νn ≥ 1. Its solution c∗ can be expressed as a
convex combination of user locations {xn}:

c∗ =
∑
n

θnxn, θn =
βnνn|c∗ − xn|

νn−2
h∑

i βiνi|c∗ − xi|
νi−2
h

. (58)

where 0 ≤ θn ≤ 1,
∑

n θn = 1.
Proof: Follows from 2nd part of the proof of Theorem 1,

see (13)-(19). □
Note that while Theorem 1 needs special consideration

for singular cases, Theorem 2 is not restricted in this way,
since |x|h is differentiable for any x when h ̸= 0. The
characterization of c∗ in Theorem 2 is similar, in its functional
form, to that in Theorem 1, with the substitution | · | → | · |h.
Hence, a number of properties/solutions pointed above also
hold for the elevated BS problem in terms of its 2-D projected
location c∗. In particular, Corollaries 1-3, Propositions 2,
3, do hold for the elevated BS as well. Proposition 1 is
strengthened as follows.
Proposition 6: The optimal elevated base station location

is unique for any νn ≥ 1 if h ̸= 0.
Proof: Follows the steps of that of Proposition 1 by

observing that |x|νh is strictly convex for any ν ≥ 1 if h ̸= 0.
□

It is tempting to conclude that the optimal elevated BS
location can be found by first solving the problem with h = 0
(no elevation) and then using its solution c∗ and ‘‘elevating’’
it by h above the ground plane, but this is incorrect in general
as shown by examples below. However, it is indeed the case
if νn = 2 for all n, as follows from (58).

V. ADDITIONAL LOCATION CONSTRAINTS
When locating a BS in practice, quite often there are some
additional constraints due to existing infrastructure, such as
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a limited roof-top area available for a BS location. In such
a case, the problem (P2) can be modified to include extra
constraint on BS location as follows:

(P3) min
{Pn},c

∑
n

Pn s.t. Pn ≥ βn|c− xn|νn , |c− al | ≤ rl,

(59)

where n = 1 . . .N , l = 1..L; the additional constraints
|c− al | ≤ rl account for physical limitations or preferences,
as discussed above, for given al, rl . Note that this formulation
can also accommodate tethered UAVs, as in e.g. [23], [27]
[28].

An optimal BS location under these extra constraints can
be characterized as follows.
Theorem 3: When (i) νn ≥ 2, or/and (ii) νn ≥ 1 and

c∗ ̸= xn, the optimal BS location for the problem (P3) can
be expressed as a convex combination of user and constraint
locations:

c∗ =
N+L∑
n=1

θnxn (60)

where xN+l = al ,

θn =
νnβn|c∗ − xn|νn−2∑N

n=1 βnνn|c∗ − xn|νn−2 + 2
∑L

l=1 µl
, (61)

θN+l =
2µl∑N

n=1 βnνn|c∗ − xn|νn−2 + 2
∑L

l=1 µl
, (62)

n = 1 . . .N , l = 1 . . . L, and dual variables µl ≥ 0 are
found from

µl(|c∗ − al | − rl) = 0 (63)

subject to |c∗ − al | ≤ rl . Signaling with the least per-user
power is optimal: P∗n = βn|c∗ − xn|νn .
Proof: The proof is similar to that of Theorem 1. The

Lagrangian is

L =
∑
n

Pn +
∑
n

λn(βn|c− x
νn
|
− Pn)

+

∑
l

µl(|c− al |2 − r2l ) (64)

where µl ≥ 0 are Lagrange multipliers responsible for the
additional location constraints. The stationarity condition is

∂L
∂c
=

∑
n

λnβnνn(c− xn)|c− xn|νn−2 + 2
∑
l

µl(c− al)

= 0 (65)

from which, after some manipulation, (60)-(62) follow. (63)
are the complementary slackness conditions associated with
|c− al | ≤ rl . □

Note that if µl > 0 (active l-th location constraint), then
|c∗ − al | = rl , i.e. an optimal BS location is on the circle of
radius rl centered at al . Otherwise, the constraint is inactive
and can be discarded. When all extra location constrains

Algorithm 1

1: Initialization: i = 1, c1 =
∑

n βnxn/
∑

n βn, ϵ > 0.
2: while |ci+1 − ci| > ϵ do
3: ci+1 = f (ci).
4: i← i+ 1.
5: end while

are inactive, µl = 0 for all l and Theorem 3 reduces to
Theorem 1.

Some of the properties above can be also extended
to include additional location constraints. In particular,
Proposition 1 applies verbatim and Corollary 1 is extended to
c∗ ∈ conv{xn, al}, i.e an optimal BS location is in the convex
hull of {xn, al}. Since 0 ≤ θn ≤ 1 and

∑
n θn = 1, it follows

from (60) that the optimal BS location is a weighted average
of user locations and additional constraint centers.

If νn = 2 and βn = β, i.e. free-space propagation and
identical user parameters,

θn =
νβ

νβN + 2
∑

l µl
, n = 1 . . .N , (66)

θN+l =
2µl

νβN + 2
∑

l µl
, l = 1 . . . L, (67)

so that the optimal BS location is the weighted average of the
user locations and extra constraint centers.

VI. AN ITERATIVE ALGORITHM FOR THE GENERAL CASE
While a number of closed-form solutions of the location
problem (P2) have been presented above, no such solution is
known in the general case. However, the characterization of
a solution in Theorem 1 can be exploited to build an iterative
algorithm for the general case as follows. First, select an
initial BS location c1 (not necessarily optimal) and use it
in (6) to compute the weights θn. Second, use these weights to
update the location according to the 1st equation in (6). The
process can be repeated until some convergence condition is
satisfied, as shown in Algorithm 1, where

f (c) =
∑

n βnνn|c− xn|νn−2xn∑
n βnνn|c− xn|νn−2

. (68)

The convergence condition in line 2 of the algorithm can
be substituted by some other suitable condition, for example,
in term of the total BS power: |PT (ci+1)−PT (ci)| < ϵ, where
PT (c) =

∑
n βn|c− xn|νn is the total BS power at location c.

Additional improvements of this basic algorithm are possible.
For example, one can enforce a certain minimum number
of iterations to ensure that the algorithm does not terminate
prematurely. Additionally, one can select at each iteration the
best overall location so far (it is sufficient to take the best of
2 most recent locations), in which case the sequence of total
BS powers generated by the algorithmwill be monotonically-
decreasing.

When βn = β and νn = 1 ∀n, this algorithm coincides with
Weiszfeld’s algorithm [72] to solve the celebrated 350-years-
old Fermat-Weber problem [71]. This problem as well as the
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algorithm have a long and convoluted history (including a
number of false claims of convergence) [50]. Its convergence
has been fully settled only recently [73].
It is beyond the scope of the present paper to study the

convergence of Algorithm 1 in details. However, we do point
out cases where such convergence is achieved in a single
iteration. Numerical experiments below support the empirical
conclusion that Algorithm 1 converges if νn ≤ 3.
Proposition 7: The Algorithm 1 converges in a single

iteration, i.e. c∗ = c2 = c1, if any of the following holds:
1. νn = 2 ∀n.
2. The conditions of Proposition 3 hold.
3. There are 2 identical users, i.e. β1 = β2, ν1 = ν2.
4. c1 = c∗, i.e. initial location is optimal.
Proof: To prove the last case, observe from (6) that using

c1 = c∗ in (68) results in c2 = c1 = c∗ and hence the
algorithm terminates in 1 iteration. Cases 1 - 3 follow from
Case 4 since, in these cases, c1 = c∗. □
Note that condition 4 implies that an optimal location c∗

is a convergence point of the algorithm, i.e. if the algorithm
reaches an optimal point, it will stop there.

This algorithm can also be used to solve the elevated BS
location problem in (57), with the substitution | · | → | · |h
in (68). It is interesting to note that, in this case and when
νn = 1, βn = β ∀n, the elevated BS problem coincides
with that considered in [51], where h ̸= 0 was introduced
as a smoothing variable to avoid singularities and thus ensure
the convergence of the barrier method. However, no physical
justification for it was provided, beyond a computational
convenience. In our setting, h appears naturally and has a
solid meaning of the BS height above the ground plane.

VII. MULTI-BS LOCATION
In this section, we apply the above single-BS results to multi-
BS location problem. Let us consider a scenario where a
number of base stations form a cluster and each BS uses
its own distinct set of frequencies, as typical in the cellular
architecture [45]. This BS cluster is to serve a set of users
with given locations and rate constraints. To accommodate
multiple base stations and find their suitable locations, K -
means algorithm (arguably, the most popular one) [52], [53],
which finds applications in various fields and works well in
many cases of practical importance, can be used [57], [58],
[59]. This algorithm, however, is geometric in nature and was
designed to group (abstract) data points into clusters based on
some ad-hoc (arbitrary) ‘‘distance’’ metric (often, Euclidian
distance is used, but other metrics are also possible), where,
in the present setting, data points represent users and clusters
represents cells and their ‘‘centers’’ - BS locations. Since
various ‘‘distance’’ metrics are possible, a natural question
arises: what is the best one and how to find it [52]? Note
also that, in its original form, the K -means algorithm cannot
ensure that the obtained BS locations and user clusters they
form will minimize BS transmit power, even locally, subject
to user rate constraints, since its ad-hoc ‘‘distance’’ metric

(e.g. Euclidian, as in [57], [58], and [59]) is not related to the
cellular system design.

To address these issues, we observe that the Tx power
minimization problem (P2) in (4) is equivalent to

min
c

∑
n

βn|c− xn|νn (69)

since all inequalities hold with equality at an optimal point,
see (32). Hence, it provides a natural physically-based
measure of ‘‘distance’’ for n-th user in the form βn|c− xn|νn ,
which ultimately ensures, according to (3), (4) and (69),
that the BS transmit power is minimized subject to user
rate constraints and taking into account the propagation
environment (via the path loss model). To extend this to
multi-BS scenario, consider a setting where K BS located
at ck , k = 1..K , serve N users located at xn, n = 1..N .
Let Bk be a set of users served by k-th BS. Then, the total
(sum) transmit power PT of all BSs serving all users can be
expressed as

PT =
K∑
k=1

∑
xn∈Bk

βnk |ck − xn|νnk (70)

where νnk is the path loss exponent of user n when connected
to BS k (here, we allow these path loss exponents to be
different for different BS, as in e.g. multi-slope model [45]
where path loss exponent depends on distance in a piece-wise
constant manner; this reflects the possibility that LOS may
be present for a path to some BS but not to another one).
The objective here is to minimize PT (subject to user rate
constraints) via proper BS locations ck as well as user-BS
assignments Bk ,

min
ck ,Bk

K∑
k=1

∑
xn∈Bk

βnk |ck − xn|νnk (71)

While, for fixed user-BS assignments Bk , this is a convex
problem in ck , it is not overall convex, since the minimization
over Bk is a combinatorial problem. Hence, it is difficult
to solve in general (where ‘‘solve’’ means finding global
optimum).2 Using the physically-based ‘‘distance’’ measure
βnk |ck − xn|νnk in the K -means algorithm, we propose the
following Algorithm 1 to solve (71) locally. In this algorithm,
c(t)k and P(t)Tk are k-th BS location and its Tx power at iteration
t , so that P(t)T =

∑
k P

(t)
Tk is the total Tx power of all base

stations at iteration t . In Step 2, users are assigned to base
stations based on their ‘‘distance’’ measure βnk |c

(t−1)
k −xn|νnk

so that the Tx power needed to serve each user is minimized at
this step via the user-BS assignment. In Step 3, the location of
each BS is updated so that its total Tx power (to serve all users
assigned to it) is also minimized. These 2 steps are repeated
until convergence is reached. Several convergence criteria are
possible: (i) stop if no new BS locations are found compared

2Globally-optimal solution is out of reach unless the number of users is
very small, since this problem is NP-hard (exponential complexity), even in
its simple form [54], [55], [56].
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to the previous iteration, or (ii) if the reduction in the total
Tx power P(t)T is too small compared to previous iterations,
or (iii) if t exceeds a maximum value of iterations tmax .

Algorithm 2 (Multi-BS location)

Require c(0)k , βnk , νnk , k = 1..K , n = 1..N .
1. Initialize: t = 1.
repeat

2. User-BS assignment: B(t)k = {xn : βnk |c
(t−1)
k −

xn|νnk ≤ βnm|c
(t−1)
m − xn|νnm ∀ m ̸= k}

3. Update BS locations: c(t)k = argminc P(t)Tk =∑
xn∈Bk βnk |c− xn|νnk
4. t := t + 1

until convergence
5. Output: c(t−1)k , P(t−1)Tk .

It is clear from the Algorithm description that it generates
a non-increasing sequence P(t)T (which is bounded from
below) and hence converges (note that P(t)T serves here as a
Lyapunov function). However, its convergence point is not
necessarily a global optimum - it may be just a local optimum
and it may also depend on initial BS locations, which is
a general property of the original K -means algorithm [52],
[53], [54], [55], [56] and is not specific for its particular
modification here. Note, however, that unlike the original K -
means algorithm (which is geometric in nature and which
make use of ad-hoc ‘‘distance’’ measure), Algorithm 1 is
guaranteed to minimize (albeit locally) the total Tx power of
all BSs to serve a given set of users subject to their individual
rate constraints.

To partially overcome its local optimality and approach
a global optimum, one can use a multi-start modification
of this algorithm, i.e. to run it many times with different
initial BS locations c(0)k , possible choices of which include
the following:

• randomly assign c(0)k to be equal to some user locations
• generate randomly c(0)k within given service area;
alternatively, uniform or other grid can be used

• use some preferred locations (based e.g. on favorable
propagation conditions, where LOS is available to most
users, as in mmWave/THz 5G/6G systems)

Finally, we remark that extra location constraints,
as in (59), can be easily accommodated in Step 3, and the
constraints on the number of users assigned to each BS can
also be included in Step 2. The above analytical results can be
used at Step 3 to speed up the algorithm. Elevated BS, as in
Sec. IV (Theorem 2), can also be considered by using | · |h
instead of | · | in Steps 2 and 3, and different BSs can have
different heights as well.

VIII. NUMERICAL EXAMPLES
In this section, we validate and illustrate the analytical results
above, examine their accuracy as well as the convergence
of Algorithm 1. In all examples, users are located within a

TABLE 1. The error norm |c∗ − c∗CVX | averaged over
103 randomly-generated user sets.

FIGURE 10. (a) User locations (asymmetric scenario) and optimal BS
locations via the approximation (42) (for ν → ∞) and numerically via CVX
for ν = 4. The normalized BS powers are 3.96 and 3.34 dB, respectively,
so that the approximation incurs only a small loss of 0.62 dB.
(b) Normalized BS power vs. pathloss exponent ν for the user set in (a).

square of side 2Rmax so that |xin| ≤ Rmax ; all coordinates
are normalized (except for clustered scenarios) by Rmax to
make the results independent of physical size but dependent
on geometry of user locations. To obtain clear insights,
we separate the impact of user locations and propagation
channel from that of the system-level parameters and set,
in all examples, βn = β (where βn absorbs all system-level
parameters, as in (5)), and νn = ν, for all n. The total BS
power PT is normalized to βRν

max , so that the normalized
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FIGURE 11. (a) User locations and optimal BS locations via the
approximation in (42) and via the CVX, all for ν = 4. (b) Normalized BS
power vs. pathloss exponent for the user setting in (a). Note good
agreement between the two for all considered values of ν.

power

P̃T =
∑
n

|c∗ − xn|ν/Rν
max =

∑
n

|̃c∗ − x̃n|ν (72)

where c̃∗, x̃n are normalized location vectors. Note that
βRν

max is the BS power for a single user located at Rmax
distance from the BS, so that P̃T [dB] is the excess power
needed to serve all the users as compared to this single but
most distant user located at cell edge. To simplify notations,
we drop (̃·) and use the original symbols PT , c∗, xn to denote
the normalized quantities below.

The expression for an optimal BS location in Theorem 1
was validated by comparing c∗ in (6) with c∗CVX obtained
via the convex optimization toolbox CVX [39] to solve the
problem (P2) in (4) numerically. In doing so, the optimal
location c∗CVX obtained numerically via CVXwas used in 2nd
equality in (6) to evaluate θk , which were subsequently used
in 1st equality to evaluate c∗. 103 user sets were randomly
generated, where a given number of users were located with

FIGURE 12. (a) Two clusters of users and optimal BS locations, found
by (48) and by CVX, for ν = 2.5 and ν = 4; the cluster radii are 1 and 0.41.
(b) Normalized BS power PTn vs. the inter-cluster distance for the setting
in (a).

a unit square for each set, and the error norm |c∗ − c∗CVX |
averaged over all user sets was evaluated. No significant
difference between c∗ and c∗CVX was observed for different
path loss exponents and different numbers of users in each
set. As Table 1 shows, the average error does not exceed 10−5

in all considered scenarios. The optimal BS location c∗ was
also compared with c∗CVX for ν = 2 (see Corollary 3) using
103 randomly-generated user sets as above. No significant
difference was found either: in all tested cases, the average
error did not exceed 10−5.

Next, we assess the accuracy of the approximation in
Proposition 2 (see (42)) when applied to finite ν, for
asymmetric user locations in Fig. 10(a). Fig. 10(b) shows
the normalized BS power PTn found via (42) and via CVX.
Note a reasonably good agreement between the two methods,
even when ν is not so large. When ν increases, the accuracy
improves significantly. In many other tested cases, the
convergence was much better. For example, Fig. 11(a) shows
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FIGURE 13. The projection of the optimum BS location on the ground
plane for different heights, ν = 4. Note that the height affects the
optimum ground location as well, but this effect is not significant if h ≥ 5.

a more symmetric user setting and optimal BS locations
via (42) and CVX, while Fig. 11(b) shows the normalized
BS power vs. ν. Note that the agreement here is much better
than that in Fig. 10(b) for the whole considered range of
ν. To understand this, observe from Proposition 3 that the
optimal BS location is independent of ν if the user set is
symmetric and, hence, nearly-independent if the set is nearly-
symmetric (as in Fig. 11(a)), so that the actual BS power will
be almost same for both BS locations (computed for a given
ν and from Proposition 3).

Also note, from Fig. 11(b) and Fig. 10(b), that the
normalized BS power in (72) decreases with ν, which
indicates that these are the most distant users (at cell edge)
that dominate for large ν. This is not the case for smaller
ν, e.g. ν = 2 as for LOS-dominated scenarios or ν < 2 as
for tunnel-type environments, where many users contribute
to PT , not only the most distant ones.

To validate the clustering approximation (48), Fig. 12(a)
shows two clusters of users and optimal BS locations found
via (48) and numerically by CVX, for ν = 2.5 and ν = 4.
Note that the approximate and numerical solutions agree well
with each other, even though the larger cluster size is not so
small compared to the inter-cluster distance. The accuracy of
approximation slightly decreases for larger ν. For the same
clusters, Fig. 12(b) shows the impact of inter-cluster distance.
The accuracy of the approximation in (48) increases with the
distance; while it is uniformly good for ν = 2.5, it is slightly
worse for ν = 4 when the distance is not large enough.
Notice that the evaluation of optimal BS location based on the
approximation in (48) is much simpler than that for the whole
setting (for which no closed-form solution is known), hence
demonstrating its usefulness. While in general the accuracy
of the approximation depends on user locations, in addition
to path loss exponent, good accuracy was observed in most
tested cases.

Next, we consider an elevated BS location when all users
are located on the ground. Fig. 13 shows the optimum BS
location (projected on the ground) for ν = 4 and various BS
heights; h = 0 corresponds to no elevation. Observe that the
projected optimal BS location is not the same as that with
h = 0. Hence, finding an optimal BS location on the ground
(no elevation) and then elevating it to height h is not optimal
in general. Once certain hight is reached, its further increase
does not have significant impact on optimal BS location.

IX. CONCLUSION
In this paper, unlike the known studies, the problem of
determining an optimal base station location is formulated
as a convex optimization problem to minimize the total
BS power subject to QoS (rate) constraints. This brings in
significant advantages: while only sub-optimal or locally-
optimal solutions are available in the literature, globally-
optimal solutions are obtained here, which are expressed
as a convex combination of user locations. Based on this,
a number of closed-form globally-optimal solutions are
obtained, which reveal the impact of system and user
parameters, propagation pathloss, as well as the overall
system geometry. In particular, the optimal BS location is
the average of users’ locations in the case of unobstructed
LOS propagation while in the case of large pathloss exponent
(obstructed LOS), it is the average of the most distant
users’ locations and their weight increases with the pathloss
exponent; when the pathloss exponent is unity, the optimal
BS location is the median of users’ locations. The symmetry
in the user set was shown to make the optimal BS location
independent of pathloss exponent, which is not true for
asymmetric sets. These results provide insights unavailable
from numerical algorithms, and allow one to develop design
guidelines for more complicated systems. The single-BS
results were extended to the multi-BS location problem (in
a cell cluster) using a properly-modified form of the K -
means algorithm with a physically-based distance measure,
which (locally) minimizes the sum BS transmit power in a
cell cluster via proper BS locations and user-BS allocation.
Overall, the paper aims at building an analytical foundation
for the BS location problem, that can facilitate system design
and network planning, and can be further extended to include
more complicated scenarios.

REFERENCES
[1] A. Taufique, M. Jaber, A. Imran, Z. Dawy, and E. Yacoub, ‘‘Planning wire-

less cellular networks of future: Outlook, challenges and opportunities,’’
IEEE Access, vol. 5, pp. 4821–4845, 2017.

[2] E. Ayanoglu, ‘‘Guest editorial green communications and networking
series,’’ IEEE J. Sel. Areas Commun., vol. 34, no. 12, pp. 3088–3091,
Dec. 2016.

[3] S. Buzzi, I. Chih-Lin, T. E. Klein, H. V. Poor, C. Yang, and A. Zappone,
‘‘A survey of energy-efficient techniques for 5G networks and challenges
ahead,’’ IEEE J. Sel. Areas Commun., vol. 34, no. 4, pp. 697–709,
Apr. 2016.

[4] E. Amaldi, A. Capone, and F. Malucelli, ‘‘Planning umts base station
location: Optimization models with power control and algorithms,’’ IEEE
Trans. Wireless Commun., vol. 2, no. 5, pp. 939–952, Sep. 2003.

75196 VOLUME 12, 2024



E. Kalantari et al.: Optimal Location of Cellular Base Stations via Convex Optimization

[5] S. Hurley, ‘‘Planning effective cellular mobile radio networks,’’ IEEE
Trans. Veh. Technol., vol. 51, no. 2, pp. 243–253, Mar. 2002.

[6] C. Y. Lee and H. G. Kang, ‘‘Cell planning with capacity expansion in
mobile communications: A Tabu search approach,’’ IEEE Trans. Veh.
Technol., vol. 49, no. 5, pp. 1678–1691, Sep. 2000.

[7] X. Ling and K. Lawrence Yeung, ‘‘Joint access point placement and
channel assignment for 802.11 wireless LANs,’’ IEEE Trans. Wireless
Commun., vol. 5, no. 10, pp. 2705–2711, Oct. 2006.

[8] P. Gonzalez-Brevis, J. Gondzio, Y. Fan, H. V. Poor, J. Thompson,
I. Krikidis, and P.-J. Chung, ‘‘Base station location optimization for
minimal energy consumption in wireless networks,’’ in Proc. IEEE 73rd
Veh. Technol. Conf. (VTC Spring), May 2011, pp. 1–5.

[9] X. Xu, W. Saad, X. Zhang, X. Xu, and S. Zhou, ‘‘Joint deployment of
small cells andwireless backhaul links in next-generation networks,’’ IEEE
Commun. Lett., vol. 19, no. 12, pp. 2250–2253, Dec. 2015.

[10] W. Zhao, S. Wang, C. Wang, and X. Wu, ‘‘Approximation algorithms
for cell planning in heterogeneous networks,’’ IEEE Trans. Veh. Technol.,
vol. 66, no. 2, pp. 1561–1572, Feb. 2017.

[11] A. A. Khalek, L. Al-Kanj, Z. Dawy, and G. Turkiyyah, ‘‘Optimization
models and algorithms for joint uplink/downlink UMTS radio network
planning with SIR-based power control,’’ IEEE Trans. Veh. Technol.,
vol. 60, no. 4, pp. 1612–1625, May 2011.

[12] H. Ghazzai, E. Yaacoub, M.-S. Alouini, Z. Dawy, and A. Abu-Dayya,
‘‘Optimized LTE cell planning with varying spatial and temporal user
densities,’’ IEEE Trans. Veh. Technol., vol. 65, no. 3, pp. 1575–1589,
Mar. 2016.

[13] H. D. Sherali, C. M. Pendyala, and T. S. Rappaport, ‘‘Optimal location of
transmitters for micro-cellular radio communication system design,’’ IEEE
J. Sel. Areas Commun., vol. 14, no. 4, pp. 662–673, May 1996.

[14] Z. Ji, T. K. Sarkar, and B.-H. Li, ‘‘Methods for optimizing the location of
base stations for indoor wireless communications,’’ IEEE Trans. Antennas
Propag., vol. 50, no. 10, pp. 1481–1483, Oct. 2002.

[15] X. Cao, P. Yang, M. Alzenad, X. Xi, D. Wu, and H. Yanikomeroglu,
‘‘Airborne communication networks: A survey,’’ IEEE J. Sel. Areas
Commun., vol. 36, no. 9, pp. 1907–1926, Sep. 2018.

[16] P. Yang, X. Cao, X. Xi, Z. Xiao, andD.Wu, ‘‘Three-dimensional drone-cell
deployment for congestion mitigation in cellular networks,’’ IEEE Trans.
Veh. Technol., vol. 67, no. 10, pp. 9867–9881, Oct. 2018.

[17] M. Alzenad, A. El-Keyi, F. Lagum, and H. Yanikomeroglu, ‘‘3-D
placement of an unmanned aerial vehicle base station (UAV-BS) for
energy-efficient maximal coverage,’’ IEEEWireless Commun. Lett., vol. 6,
no. 4, pp. 434–437, Aug. 2017.

[18] F. Lagum, I. Bor-Yaliniz, and H. Yanikomeroglu, ‘‘Strategic densification
with UAV-BSs in cellular networks,’’ IEEEWireless Commun. Lett., vol. 7,
no. 3, pp. 384–387, Jun. 2018.

[19] E. Kalantari, H. Yanikomeroglu, and A. Yongacoglu, ‘‘Wireless net-
works with cache-enabled and backhaul-limited aerial base stations,’’
IEEE Trans. Wireless Commun., vol. 19, no. 11, pp. 7363–7376,
Nov. 2020.

[20] E. Kalantari, ‘‘Base station placement in integrated aerial and terrestrial
wireless cellular networks,’’ Ph.D. thesis, School Elect. Eng. Comput. Sci.,
Univ. Ottawa, Ottawa, ON, Canada, 2020.

[21] E. Kalantari, S. Loyka, H. Yanikomeroglu, and A. Yongacoglu, ‘‘Optimal
location of cellular base station via convex optimization,’’ in Proc.
IEEE Int. Black Sea Conf. Commun. Netw. (BlackSeaCom), May 2020,
pp. 26–29.

[22] J. Guo, P. Walk, and H. Jafarkhani, ‘‘Optimal deployments of UAVs
with directional antennas for a power-efficient coverage,’’ IEEE Trans.
Commun., vol. 68, no. 8, pp. 5159–5174, Aug. 2020.

[23] O. M. Bushnaq, M. A. Kishk, A. Celik, M.-S. Alouini, and
T. Y. Al-Naffouri, ‘‘Optimal deployment of tethered drones for maximum
cellular coverage in user clusters,’’ IEEE Trans. Wireless Commun.,
vol. 20, no. 3, pp. 2092–2108, Mar. 2021.

[24] Y. Liu, W. Huangfu, H. Zhou, H. Zhang, J. Liu, and K. Long, ‘‘Fair and
energy-efficient coverage optimization for UAV placement problem in the
cellular network,’’ IEEE Trans. Commun., vol. 70, no. 6, pp. 4222–4235,
Jun. 2022.

[25] A. Gupta, A. Trivedi, and B. Prasad, ‘‘Deployment and trajectory design of
fixed-wing UAVs in NOMA assisted wireless networks,’’ Phys. Commun.,
vol. 54, Oct. 2022, Art. no. 101789.

[26] H. Huang and A. V. Savkin, ‘‘Deployment of heterogeneous UAV base
stations for optimal quality of coverage,’’ IEEE Internet Things J., vol. 9,
no. 17, pp. 16429–16437, Sep. 2022.

[27] N. Cherif, W. Jaafar, E. Vinogradov, H. Yanikomeroglu, S. Pollin,
and A. Yongacoglu, ‘‘ITUAVs: Intermittently tethered UAVs for future
wireless networks,’’ IEEE Wireless Commun., vol. 30, no. 4, pp. 124–130,
Aug. 2023.

[28] S. Khemiri, M. A. Kishk, and M.-S. Alouini, ‘‘Tethered UAV deployment
strategies: The coverage and energy efficiency trade-off,’’ IEEE Open J.
Commun. Soc., vol. 4, pp. 2561–2577, 2023.

[29] M. Nikooroo, O. Esrafilian, Z. Becvar, and D. Gesbert, ‘‘Optimization
of placement and resource allocation in UAV-aided multihop wireless
networks,’’ IEEE Internet Things J., vol. 11, no. 11, pp. 20051–20071,
Jun. 2024, doi: 10.1109/jiot.2024.3369174.

[30] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan,
‘‘An application-specific protocol architecture for wireless microsensor
networks,’’ IEEE Trans. Wireless Commun., vol. 1, no. 4, pp. 660–670,
Oct. 2002.

[31] V. Mhatre and C. Rosenberg, ‘‘Design guidelines for wireless sensor
networks: Communication, clustering and aggregation,’’ Ad Hoc Netw.,
vol. 2, no. 1, pp. 45–63, Jan. 2004.

[32] J. Pan, L. Cai, Y. T. Hou, Y. Shi, and S. X. Shen, ‘‘Optimal base-station
locations in two-tiered wireless sensor networks,’’ IEEE Trans. Mobile
Comput., vol. 4, no. 5, pp. 458–473, Sep. 2005.

[33] M. Younis and K. Akkaya, ‘‘Strategies and techniques for node placement
in wireless sensor networks: A survey,’’ Ad Hoc Netw., vol. 6, no. 4,
pp. 621–655, Jun. 2008.

[34] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, ‘‘Energy
conservation in wireless sensor networks: A survey,’’ Ad Hoc Netw., vol. 7,
no. 3, pp. 537–568, May 2009.

[35] E. Dahlman, S. Parkvall, and J. Skold, 5G NR: The Next Generation
Wireless Access Technology. London, U.K.: Academic Press, 2018.

[36] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[37] S. A. Vavasis, ‘‘Complexity issues in global optimization: A survey,’’ in
Handbook of Global Optimization, R. Horst and P. M. Pardalos, Eds.
Boston, MA, USA: Springer, 1995, pp. 27–41.

[38] Y. Nesterov, Lectures on Convex Optimization, 2nd ed. Cham, Switzerland:
Springer, 2018.

[39] M. Grant and S. Boyd. (Sep. 2013). CVX: MATLAB Software for Disci-
plined Convex Programming. [Online]. Available: http://cvxr.com/cvx

[40] J. M. Cioffi, G. P. Dudevoir, M. V. Eyuboglu, and G. D. Forney, ‘‘MMSE
decision-feedback equalizers and coding. II. Coding results,’’ IEEE Trans.
Commun., vol. 43, no. 10, pp. 2595–2604, Oct. 1995.

[41] G. D. Forney and G. Ungerboeck, ‘‘Modulation and coding for
linear Gaussian channels,’’ IEEE Trans. Inf. Theory, vol. 44, no. 6,
pp. 2384–2415, Oct. 1998.

[42] C.-H.-F. Fung, W. Yu, and T. J. Lim, ‘‘Precoding for the multiantenna
downlink: Multiuser SNR gap and optimal user ordering,’’ IEEE Trans.
Commun., vol. 55, no. 1, pp. 188–197, Jan. 2007.

[43] J. Cioffi, EE 379A—Digital Communication: Signal Processing. Stanford,
CA, USA: Stanford Univ., 2008.

[44] E. Arikan, D. J. Costello, J. Kliewer, M. Lentmaier, P. Siegel, R. Urbanke,
and M. Pursley, ‘‘Guest editorial recent advances in capacity approaching
codes,’’ IEEE J. Sel. Areas Commun., vol. 34, no. 2, pp. 205–208,
Feb. 2016.

[45] T. Rappaport,Wireless Communications: Principles and Practice, 2nd ed.
Upper Saddle River, NJ, USA: Prentice-Hall, 2001.

[46] Study on Channel Model for Frequencies From 0.5 to 100 GHz,
document TR 38.901 V17.0.0, 3GPP, Mar. 2022.

[47] S. Sun, T. S. Rappaport, M. Shafi, P. Tang, J. Zhang, and P. J. Smith,
‘‘Propagation models and performance evaluation for 5G millimeter-
wave bands,’’ IEEE Trans. Veh. Technol., vol. 67, no. 9, pp. 8422–8439,
Sep. 2018.

[48] Y. Xing and T. S. Rappaport, ‘‘Propagation measurement system and
approach at 140 GHz-moving to 6G and above 100 GHz,’’ in Proc. IEEE
Global Commun. Conf. (GLOBECOM), Dec. 2018, pp. 1–6.

[49] Z. Shen, A. Khoryaev, E. Eriksson, and X. Pan, ‘‘Dynamic uplink-
downlink configuration and interference management in TD-LTE,’’ IEEE
Commun. Mag., vol. 50, no. 11, pp. 51–59, Nov. 2012.

[50] Z. Drezner and H. W. Hamacher, Facility Location: Applications and
Theory. Berlin, Germany: Springer, 2002.

[51] K. D. Andersen, ‘‘An efficient Newton barrier method for minimizing
a sum of Euclidean norms,’’ SIAM J. Optim., vol. 6, no. 1, pp. 74–95,
Feb. 1996.

VOLUME 12, 2024 75197

http://dx.doi.org/10.1109/jiot.2024.3369174


E. Kalantari et al.: Optimal Location of Cellular Base Stations via Convex Optimization

[52] D. MacKay, Information Theory, Inference and Learning Algorithms.
Cambridge, U.K.: Cambridge Univ. Press, 2003.

[53] G. Gan, C. Ma, and J. Wu, Data Clustering: Theory, Algorithms, and
Applications. Philadelphia, PA, USA: SIAM, 2007.

[54] M. Garey, D. Johnson, and H. Witsenhausen, ‘‘The complexity of the
generalized Lloyd–max problem (Corresp.),’’ IEEE Trans. Inf. Theory,
vol. IT-28, no. 2, pp. 255–256, Mar. 1982.

[55] D. Aloise, A. Deshpande, P. Hansen, and P. Popat, ‘‘NP-hardness of
Euclidean sum-of-squares clustering,’’ Mach. Learn., vol. 75, no. 2,
pp. 245–248, Jan. 2009.

[56] A. Vattani, ‘‘K-means requires exponentially many iterations even in
the plane,’’ Discrete Comput. Geometry, vol. 45, no. 4, pp. 596–616,
Mar. 2011.

[57] J. Flathagen, Ø. Kure, and P. E. Engelstad, ‘‘Constrained-based multiple
sink placement for wireless sensor networks,’’ in Proc. IEEE 8th Int. Conf.
Mobile Ad-Hoc Sensor Syst., Oct. 2011, pp. 783–788.

[58] P. Sasikumar and S. Khara, ‘‘K-means clustering in wireless sensor
networks,’’ in Proc. 4th Int. Conf. Comput. Intell. Commun. Netw.,
Nov. 2012, pp. 140–144.

[59] G. Y. Park, H. Kim, H. W. Jeong, and H. Y. Youn, ‘‘A novel cluster head
selectionmethod based onK-Means algorithm for energy efficient wireless
sensor network,’’ in Proc. 27th Int. Conf. Adv. Inf. Netw. Appl. Workshops,
Mar. 2013, pp. 910–915.

[60] T. L. Marzetta, E. G. Larsson, and H. Yang, Fundamentals of Massive
MIMO. Cambridge, U.K.: Cambridge Univ. Press, 2016.

[61] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, ‘‘Energy and spectral
efficiency of very largemultiuserMIMO systems,’’ IEEE Trans. Commun.,
vol. 61, no. 4, pp. 1436–1449, Apr. 2013.

[62] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, ‘‘Aspects of favorable
propagation in massive MIMO,’’ in Proc. 22nd Eur. Signal Process. Conf.,
Sep. 2014, pp. 76–80.

[63] S. Rangan, T. S. Rappaport, and E. Erkip, ‘‘Millimeter-wave cellular
wireless networks: Potentials and challenges,’’ Proc. IEEE, vol. 102, no. 3,
pp. 366–385, Mar. 2014.

[64] T. S. Rappaport, R. W. Heath Jr., R. C. Daniels, and J. N. Murdock,
Millimeter WaveWireless Communications. Upper Saddle River, NJ, USA:
Prentice-Hall, 2015.

[65] T. S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Madanayake,
S. Mandal, A. Alkhateeb, and G. C. Trichopoulos, ‘‘Wireless com-
munications and applications above 100 GHz: Opportunities and chal-
lenges for 6G and beyond,’’ IEEE Access, vol. 7, pp. 78729–78757,
2019.

[66] H. Tataria, M. Shafi, A. F. Molisch, M. Dohler, H. Sjöland, and
F. Tufvesson, ‘‘6G wireless systems: Vision, requirements, challenges,
insights, and opportunities,’’ Proc. IEEE, vol. 109, no. 7, pp. 1166–1199,
Jul. 2021.

[67] A. N. Shiryaev,Probability-2, 3rd ed. NewYork, NY,USA: Springer, 2019.
[68] A. A. Borovkov, Probability Theory, 5th ed. London, U.K.: Springer, 2013.
[69] Y. V. Prohorov, Law of Large Numbers, Encyclopedia of Probability and

Mathematical Statistics. Moscow, Russian: Encyclopedia, 2003.
[70] R. Lyons, ‘‘Strong laws of large numbers for weakly correlated random

variables,’’Michigan Math. J., vol. 35, no. 3, pp. 353–359, Jan. 1988.
[71] A. Beck and S. Sabach, ‘‘Weiszfeld’s method: Old and new results,’’

J. Optim. Theory Appl., vol. 164, no. 1, pp. 1–40, Jan. 2015.
[72] E. Weiszfeld, ‘‘Sur le point lequel la somme des distances de N

points donnds est minimum,’’ Tohoku Math. J., vol. 43, pp. 355–386,
Jan. 1937.

[73] H. Üster and R. F. Love, ‘‘The convergence of the weiszfeld
algorithm,’’ Comput. Math. Appl., vol. 40, nos. 4–5, pp. 443–451,
Aug. 2000.

ELHAM KALANTARI received the Ph.D. degree
in electrical and computer engineering from the
University of Ottawa, in 2020. Her research
interests include optimization, machine learning,
resource management, O-RAN, and aerial net-
works. She was a recipient of the Ontario Graduate
Scholarship, in 2019.

SERGEY LOYKA (Senior Member, IEEE) was
born in Minsk, Belarus. He received the M.S.
degree (Hons.) from the Minsk Radioengineering
Institute, Minsk, in 1992, and the Ph.D. degree in
radio engineering from Belorussian State Univer-
sity of Informatics and Radioelectronics (BSUIR),
Minsk, in 1995. Since 2001, he has been a Faculty
Member at the School of Electrical Engineering
and Computer Science, University of Ottawa,
Canada. Prior to that, he was a Research Fellow

with the Laboratory of Communications and Integrated Microelectronics
(LACIME), Ecole de Technologie Superieure, Montreal, QC, Canada; a
Senior Scientist at the Electromagnetic Compatibility Laboratory of BSUIR,
Belarus; and an Invited Scientist at the Laboratory of Electromagnetism
and Acoustic (LEMA), Swiss Federal Institute of Technology, Lausanne,
Switzerland. His research interests include information/communication the-
ory, optimization, wireless communications and networks, and, in particular,
MIMO systems and security aspects of such systems, in which he has
published extensively. He received a number of awards from URSI, IEEE,
Swiss, Belarus, and former USSR governments, and the Soros Foundation.

HALIM YANIKOMEROGLU (Fellow, IEEE) is
currently a Professor with the Department of
Systems and Computer Engineering, Carleton
University, Ottawa, ON, Canada. His collaborative
research with industry has resulted in 37 granted
patents. His research interest includes 5G/6G
wireless networks. He is a fellow of the Engineer-
ing Institute of Canada (EIC) and The Canadian
Academy of Engineering (CAE). He received sev-
eral awards for his research, teaching, and service,

including the IEEE Communications Society Wireless Communications
Technical Committee Recognition Award, in 2018, and the IEEE Vehicular
Technology Society Stuart Meyer Memorial Award, in 2020. He was the
General Chair of the IEEE VTC 2010-Fall, Ottawa, and VTC 2017-Fall,
Toronto. He also served as the Chair for the IEEE Technical Committee on
Personal Communications. Hewas the Technical ProgramChair/Co-Chair of
WCNC 2004, Atlanta, WCNC 2008, Las Vegas, and WCNC 2014, Istanbul.
He is serving as the Chair for the IEEE Wireless Communications and
NetworkingConference (WCNC) Steering Committee. He is aDistinguished
Speaker of the IEEE Communications Society and the IEEE Vehicular
Technology Society.

75198 VOLUME 12, 2024


