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ABSTRACT While current research predominantly focuses on image-based colorization, the domain of
video-based colorization remains relatively unexplored. Many existing video colorization techniques operate
frame-by-frame, often overlooking the critical aspect of temporal coherence between successive frames.
This approach can result in inconsistencies across frames, leading to undesirable effects like flickering or
abrupt color transitions between frames. To address these challenges, we combine the generative capabilities
of a fine-tuned latent diffusion model with an autoregressive conditioning mechanism to ensure temporal
consistency in automatic speaker video colorization. We demonstrate strong improvements on established
quality metrics compared to existing methods, namely, PSNR, SSIM, FID, FVD, NIQE and BRISQUE.
Specifically, we achieve an 18% improvement in performance when FVD is employed as the evaluation
metric. Furthermore, we performed a subjective study, where users preferred LatentColorization to the
existing state-of-the-art DeOldify 80% of the time. Our dataset combines conventional datasets and videos
from television/movies. A short demonstration of our results can be seen in some example videos available
at https://youtu.be/vDbzsZdFuxM.

INDEX TERMS Artificial intelligence, artificial neural networks, machine learning, computer vision, video
colorization, latent diffusion, image colorization.

I. INTRODUCTION
With the rapid increase in the popularity of streaming video
in recent years, today’s media consumers have become
accustomed to high-definition and vibrant video experiences,
in color and on demand. However, there are also many
substantial video archives with content that remains available
in black and white only. Unlocking the potential of these
archives, and infusing them with color, presents an exciting
opportunity to engage with modern audiences, and breathe
new life into classic movies and television episodes. By seam-
lessly blending cutting-edge technology with classic content,
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we not only enhance the visual appeal for contemporary
viewers but also ensure that the historical significance of
these timeless works are faithfully maintained.

A. TRADITIONAL COLORIZATION
Colorizing black-and-white multimedia is a formidable
challenge characterized by its inherent complexity. It presents
a ‘one-to-many’ scenario, wherein multiple feasible coloriza-
tion outcomes can be derived for a single black-and-white
video, as illustrated by recent research [1].

Traditional approaches for video colorization are manual
and labor-intensive, demanding the dedicated efforts of
interdisciplinary teams comprised of skilled colorists and
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FIGURE 1. (a) ‘‘Sherlock Holmes and the Woman in Green’’ (1945) black-and-white frames. (b) ‘‘Sherlock
Holmes and the Woman in Green’’ (1945) LatentColorization output frames.

rotoscoping animators, artists and historians. These teams
invest extensive hours to ensure the production of a convinc-
ing and coherent end result. The intricacies of colorization are
particularly difficult in the realm of videos, where the sheer
volume of frames per second amplifies the complexity [2].
Therefore, automation of the video colorization process is
highly desirable.

B. AUTOMATIC COLORIZATION
Automatic video colorization can be seen as a means to
significantly reduce the cost traditionally associated with
manually colorizing/restoring vintage movies, an expensive
proposition that is often limited to organizations with sub-
stantial budgets. Since the labor costs associated with expert
colorists are a significant barrier, manual colorization has
also been largely limited to popular films or TV shows (e.g.,
Doctor Who), with numerous other works (social history
movies, documentaries, films by lesser-known directors, etc.)
omitted where the cost-benefit analysis could not justify their
colorization.

As a consequence, various research efforts have tackled
the need to automate aspects of the colorization process.
These efforts span from earlier methods such as his-
togram matching [3], to more recent interactive approaches
such as scribble-based systems [4] and exemplar-based
approaches [5], as well as more recent developments in
terms of deep learning-based colorization [6]. While the
results still lag behind those that can be achieved of an
experienced human colorizer, the automated approaches
referred to above have made significant advancements in
terms of their accuracy over prior systems.

In terms of the state-of-the-art, one current benchmark
for automatic video colorization is held by Wan et al. [7].
However, it is important to note that their approach
not only colorizes but also restores videos, making it a
difficult benchmark for systems that are focused solely

on colorization. DeOldify [6], provides colorized outputs
without image restoration, and therefore can be more easily
compared against colorization-only approaches such as the
one presented in this paper.

Recent research [8] has shown the advantages of
self-supervised learning methodologies for colorization,
removing the resource-intensive need for creating and
curating manually labelled datasets for training models. Con-
structing custom labelled datasets can be a resource-intensive
and time-consuming endeavor, particularly when dealing
with video content which has both static- and motion-related
information.

C. RESEARCH CONTRIBUTION
Driven by the recent increase in the adoption of diffusion
models [9], [10], [11], the field of generative modelling
has produced a variety of contributions including Stable
Diffusion [12], Imagen [13], and DALL•E 2 [14] which
have gained attention in both research and the mainstream
media.

Within the context of video colorization, the majority
of techniques are based on GAN-based methods [15],
[16], as well as the utilization of transformer-based
approaches [17] such as those featured in [7], [18], and [19].
Notably, Saharia et al. [20] propose leveraging diffusionmod-
els for various image-to-image tasks, including colorization.

This paper introduces an innovative approach to video-
based colorization, employing a latent-based denoising dif-
fusion model. Our method demonstrates improvements over
the state-of-the-art DeOldify [6] method, across a range of
standard evaluation metrics, including Peak Signal to Noise
Ratio (PSNR), Structural Similarity (SSIM), Fréchet Incep-
tion Distance (FID), Fréchet Video Distance (FVD), and
Naturalness Image Quality Evaluator (NIQE). Furthermore,
we provide comparative results for Blind/Referenceless
Image Spatial Quality Evaluator (BRISQUE). It is also worth
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noting that our method yields an average improvement of
approximately 18% when FVD is employed as the evaluation
metric. This result is also collaborated by our user study
where LatentColorization is preferred 80% of the time to the
previous state-of-the-art.

We introduce a novel system for achieving temporal
consistency in video colorization through the application of
a latent diffusion model. A sample visual, before and after,
is given in Figures 1a and 1b.

To summarise, the unique contributions of our proposed
work are as follows:

• We adapt fine-tuned latent diffusion models to the
automatic speaker video colorization task.

• We ensure temporal consistency in automatic speaker
video colorization using our autoregressive conditioning
mechanism.

The structure of this paper is as follows: In §2, we examine
related work. §3 provides an in-depth description of our
methodology. Then, §4 presents the results of our evalua-
tions, which are further examined in §5. Conclusions are
given in §6, and we outline our future research directions
in §7.

II. RELATED WORK
A. CONVENTIONAL DEEP LEARNING APPROACHES
Generative adversarial networks, commonly referred to as
GANs [15], have emerged as a common technology in the
enhancement of existing video content, in domains including
sign-language addition [21], low-light enhancement [22],
and video colorization [5]. GAN-based methods have also
been extensively used for image colorization [23], [24],
[25], [26], [27], [28], [29], [30]. For example, Isola et al.
proposed Pix2Pix [23], which has performed well on various
benchmarks, including the FID-5K benchmark using the
ImageNet Val dataset. In the context of video colorization,
DeOldify [6] and, more recently, Generative Color Prior
(GCP) [31] stand out as two of the more prominent GAN-
based approaches.

DeOldify [6] is a self-attention-based GAN [32]. It incor-
porates NoGAN training [33] and adheres to a Two Time
Scale Update Rule [34]. While DeOldify is capable of
generating credible colorizations, it has a tendency to produce
somewhat subdued or less vibrant colors, characteristic of
GAN-based systems.

GCP [31] leverages color priors encapsulated in a pre-
trained GAN for automatic colorization. Specifically, they
‘‘retrieve’’ matched features (similar to exemplars) via a
GAN encoder and then incorporate these features into the
colorization process with feature modulations.

Other works, such as [35], [36], and [37], have also
made contributions to the field of video colorization. It is
important to note that GANs, due to their reliance on
multiple loss functions, are challenging to train, susceptible to
mode collapse, and often encounter convergence issues [38],
[39], [40]. Furthermore, only certain GAN-based automatic

colorization systems consider temporal consistency, such as
Zhao et al. [41]. This means that the systems that do not
account for temporal consistency do not maintain coherence
across successive frames, which is a crucial aspect of video
colorization.

Video Colorization with Hybrid Generative Adversarial
Network (VCGAN) [41] is an end-to-end recurrent colour-
ization network that prioritises temporal consistency in
automatic video colorization.

DeepRemaster, as introduced by Iizuka and Simo-Serra in
their work [42], is a Convolutional Neural Network (CNN)-
based colorization system. As well as colorization, it also
performs super-resolution, noise reduction, and contrast
enhancement. Its performance makes it a suitable benchmark
for comparison in our work.

Transformers, known for their success in diverse machine
learning domains, including Natural Language Processing
(NLP) and Computer Vision (CV), have achieved state-
of-the-art results in various low-resolution computer vision
tasks, exemplified by their second-place ranking on the
FID-5K benchmark using the ImageNet Val dataset. How-
ever, the computational complexity of their self-attention
mechanism scales significantly with higher image resolu-
tions, presenting a challenge for handling high-resolution
images [19], [43]. While ongoing research efforts aim to
mitigate this challenge, it remains an open area of investi-
gation. Unlike GANs, transformers exhibit greater resilience
to mode collapse, thanks to their distinctive attention
mechanism.

Kumar et al. have introduced the Colorization Transformer
(ColTran) [18], a transformer-based image colorization
model that operates through a three-step process. Initially,
it colorizes a low-resolution version of the image, as it
leverages self-attention, which is computationally demanding
for high-resolution photos. Subsequently, it upscales the
image and then the colors, yielding high-resolution colorized
images. ColTran excels in producing vibrant colorizations,
yet it falls short of catering to the specific demands
of video colorization, leading to inconsistencies in video
colorizations.

B. DIFFUSION MODELS
Diffusion models, as initially introduced by
Sohl-Dickstein et al. [9], operate by learning how to
reconstruct data from noise. They encompass two distinctive
stages:

Forward Diffusion Process: In this phase, Gaussian noise
is incrementally incorporated into the data through a step-
wise progression spanning multiple timesteps. This gradual
introduction of noise gradually transforms the original
information until the desired level of diffusion or alteration
is attained.

Reverse Diffusion Process: Subsequently, a learningmodel
is employed to reverse this diffusion process, effectively
reconstructing the original data [44], as illustrated in
Fig. 2. Unlike GANs, diffusion models are resilient to
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FIGURE 2. Diagram of the diffusion process: This diagram illustrates the operation of the diffusion model in both the forward and
backward processes. In the forward process, it visually portrays the incremental addition of Gaussian noise to the input image
x0 until it becomes visually indistinguishable from Gaussian noise xT (top). Subsequently, it showcases the learned backward
diffusion process, where the model gradually removes the Gaussian noise from xT to return to the original image x0 (bottom).

mode collapse, and they have demonstrated success across
various domains, including video generation [45], [46], audio
generation [47], [48], and image generation [12], [14], [45].

An illustration of the application of diffusion models
to still-image colorization can be found in Palette [49],
a diffusion model tailored for a variety of image-to-image
tasks. Palette attains the top position on the leader-board in
the FID-5K benchmark using the ImageNet Val dataset.

Concurrently, Liu et al. [50] are engaged in research
focused on the challenge of achieving temporally consistent
video colorization, employing pre-trained diffusion mod-
els. A distinction lies in their approach as they utilize
text-based conditioning for their system. In contrast, our
methodology relies on exemplar frames as the condition-
ing input. This strategic choice was made based on our
belief that using an image for conditioning provides a
higher degree of expressive control compared to text-based
approaches.

A challenge with diffusion models is their demanding
computational requirements during both the training and
testing phases. Nevertheless, ongoing research endeavors
are actively addressing this issue [51], [52], [53]. Several
approaches have emerged to mitigate this challenge:

Down-sampling and Super-resolution: Works such
as Make-A-Video [54] tackle this issue by initially
down-sampling the resolution of images in the diffusion
process and subsequently restoring the resolution using a
super-resolution algorithm.

Latent Diffusion: Another approach, exemplified by
Latent Diffusion [12], modifies the diffusion process to oper-
ate in the latent space of a trained autoencoder, as opposed to
the pixel space. This results in reductions in both inference
and training times due to the reduced dimensionality of the
data inputted into the diffusion process.

This paper presents the first work on the automatic
speaker video colorization task using an image-to-image
latent diffusion model adapted for video.

III. METHODOLOGY
A. DESIGN CONSIDERATIONS
One key consideration when designing an automatic speaker
video colorization system is ensuring that the outputs are
consistent throughout time. There are two ways to approach
this: implicit temporal consistency and explicit temporal
consistency.

• Implicit Temporal Consistency: In this approach,
ensuring explicit temporal consistency is considered
unnecessary. The belief is that with a sufficiently
accurate system and reasonably similar input (e.g.,
consecutive frames in a video sequence), the colorized
output should naturally exhibit similarity and relative
consistency. As a result, temporal consistency is man-
aged implicitly.

• Explicit Temporal Consistency: This project aligns
with the second methodology, which emphasizes explic-
itly addressing temporal consistency. Rather than relying
on the system to learn it implicitly, this approach
involves conditioning for temporal consistency explic-
itly. The advantages of this approach include reduced
training time, decreased data requirements, and a lower
computational load. However, it necessitates more
intricate system engineering to explicitly convey the
requirements to the system.

Once the decision to use explicit temporal consistency has
been made, a specific method must be implemented. Three of
the most commonly used methods are:

• Optical Flow-Based: Optical flow-based colorization
methods operate by conditioning the system to maintain
color consistency over time. However, it is worth noting
that a limitation of this approach is the potentially high
computational cost associated with calculating optical
flow, making it less practical in certain applications [55].

• Exemplar-Based:Exemplar-basedmethods provide the
system with a reference image to guide its colorization
process. This typically entails human intervention or
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FIGURE 3. Comparison of 3 consecutive frames with different operations
applied: First Row (Ground Truth): This row showcases the original,
unaltered images, representing the ground truth reference. Second Row
(Diffusion Model): In the second row, you can observe the colorization
output generated by our original diffusion model. Third Row (Diffusion
Model with Post-Processing): Here, the output of the diffusion model is
presented with an additional post-processing procedure applied to
enhance the results. Fourth Row (LatentColorization): The final row
displays the results obtained from LatentColorization.

a database retrieval algorithm with a collection of
reference images [56].

• Hybrid-Based: Some methods adopt a hybrid approach
by combining different methodologies to harness the
benefits of multiple systems simultaneously. This strat-
egy, as seen in works like [5] and [57], seeks to leverage
the strengths of various techniques to enhance overall
performance.

LatentColorization uses an approach similar to exemplar-
based, using an autoregressive conditioning mechanism
which uses the previous frame as the exemplar. More details
on this mechanism can be seen in III-D.

B. DATA PROCESSING
We use the following datasets as part of our experiments:

GRID Dataset: The GRID dataset [58] is a collection of
video recordings featuring individuals speaking. It encom-
passes high-quality facial recordings of 1,000 sentences
spoken by each of 34 talkers, with a distribution of 18 males
and 16 females, resulting in a total of 34,000 sentences.

Lombard Grid Dataset: An extension of the GRID
dataset, the Lombard Grid dataset [59], includes 54 talkers,
each contributing 100 utterances. Among these 54 talkers,
30 are female, and 24 are male, expanding the dataset’s
diversity.

Sherlock Holmes Movies Dataset: This dataset is a
collection of professionally colorized frames extracted from

‘Sherlock Holmes and the Woman in Green,’ ‘Sherlock
Holmes Dressed to Kill,’ ‘Sherlock Terror by Night,’ and
‘Sherlock Holmes and the Secret Weapon.’

These diverse datasets provide a foundation for our
research in the field of speaker video colorization and
temporally consistent diffusion models.

Our dataset consisted of 10,000 frames allocated for
training the model, with an additional 700 frames reserved
for testing purposes. Each frame was uniformly resized to
128 × 128 pixels.
To ensure the generalizability of our model, the training

and testing frames were derived from distinct subjects, mit-
igating the risk of artificially inflated performance measures
that would not extend to real-world scenarios.

By conducting tests on benchmark datasets, we could
compare our approach against previous methods. Fur-
thermore, testing on the Sherlock Holmes-related data
provided a valuable means of comparing our results
to expert human colorizations. Additionally, training on
open-domain videos underscores the potential of these
resources in advancing the field of automatic speaker video
colorization.

C. SYSTEM OVERVIEW
1) IMAGE DIFFUSION BASED SET UP
In our initial exploration, we considered adopting a setup
akin to Palette [49], incorporating our temporal consistency
mechanism and initial frame biasing, which will be elabo-
rated on in Section III-D. However, we observed sub-optimal
performance from this configuration, as the system’s outputs
exhibited undesired residual speckled noise, as illustrated in
Fig. 3.
To address the speckled noise in the diffusion colorization

outputs, we explored two approaches:
Non-Linear Means (nlmeans) Clustering: We initially

applied the nlmeans clustering algorithm [60] to the images
to mitigate the noise. However, this method relies on a
hyper-parameter that dictates the filter’s strength. A stronger
filter results in smoother images but may inadvertently
remove high-quality details, such as hair and facial features.
Conversely, a weaker filter may leave more residual speckled
noise unfiltered.

Overlaying Colorized Output with Black-and-White
Inputs: As an alternative, we experimented with overlaying
the colorized output with the original black-and-white inputs.
This approach yielded superior results compared to the
nlmeans filter, and it required less parameter tuning for filter
strength. We opted to proceed with this approach, referred to
as ‘Diffusion Filtered’.

Despite our efforts to optimize noise reduction while
preserving critical details, the final output quality still fell
short of our improved approach, LatentColorization, which
we will detail in the following section. Consequently, our
final experiments did not incorporate the Palette-based
approach [49].
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FIGURE 4. (a) The system architecture during training is depicted in the diagram, illustrating the key elements of the network and their interactions:
Image Encoder: This component is responsible for encoding the input frames into embedding representations. It generates the ground truth
embedding ZGT , the embedding of the current black-and-white frame ZBW , and the embedding of the previous color frame ZP . Denoising Unet: This
is a critical part of the architecture, responsible for denoising and refining the embeddings generated by the Image Encoder that have passed
through the forward diffusion process. Conditioning Mechanism: The conditioning mechanism is integral to the network, providing contextual
information and conditioning signals to guide the colorization process. It takes into account various embeddings, including ZBW , ZP , and ZT , which
represent the black and white input frame, the output of the model at the previous timestep, and the noisy frame to be denoised. Image Decoder:
This component is responsible for decoding the predicted frames from their embedding representations. The architecture’s design and interactions
are essential for the model’s training process, ensuring that it learns to generate accurate and temporally consistent colorizations over multiple
timesteps. (b) During inference, the system architecture remains largely consistent with the training phase, with one significant difference: Gaussian
Noise in Place of Ground Truth Frame: Instead of the ground truth frame, the system introduces Gaussian noise as input during the testing phase.
This alteration simulates real-world scenarios where the model must colorize frames without the ground truth. The rest of the architecture, including
the Image Encoder, Denoising Unet, Conditioning Mechanism, Image Decoder, and their interactions, remains unchanged. This design allows the
model to assess its performance under conditions that more closely resemble practical, ground truth-free
scenarios.

2) LATENT DIFFUSION BASED SET UP
Inspired by Latent Diffusion [12], we devised LatentCol-
orization.

LatentColorization comprises three core components: an
autoencoder, a latent diffusion model, and a conditioning
mechanism, as visually represented in Fig. 4a.
The latent diffusion model follows a two-step process,

commencing with the forward diffusion phase (formulated in
Eqn. 1). During this phase, Gaussian noise is systematically

introduced to the data, incrementally transforming it until
it becomes indistinguishable from Gaussian noise. During
the second phase, the learned backward diffusion process
is applied. This is where a neural network is trained
to learn the original data distribution, and to draw sam-
ples from it by reconstructing the data from Gaussian
noise. We represent formulations of this process with
conditioning in Eqn.3 and without conditioning, as in
Eqn.2.

81110 VOLUME 12, 2024



R. Ward et al.: LatentColorization: Latent Diffusion-Based Speaker Video Colorization

The forward diffusion process, as defined by [9], can be
represented by the following formula:

q(xt |xt−1) = N (xt ; µt =
√
1 − βxt−1, 6t = βt I ) (1)

In this formulation, the probability distribution q(·) of the
image at each timestep xt , given the previous timestep xt−1,
is characterized as a normal distribution N . This distribution
is centred around a mean equal to the previous timestep
xt−1, with noise incorporated. The magnitude of this noise
is determined by the noise scheduler β at time t and is further
modulated by the identity matrix I . The noise scheduler β

typically follows a linear pattern, as exemplified in [44], or a
cosine pattern, as demonstrated in [61].
The backward diffusion process, in accordance with [10],

can be defined as follows:

pθ (xt−1|xt ) = N (xt−1; µθ (xt , t), 6θ (xt , t)) (2)

In this definition, the probability distribution pθ (·) of the
slightly denoised image xt−1, given the noisier image xt ,
is characterized as a normal distributionN (). This distribution
has a mean denoted as µ and a variance represented by 6,
both of which are learned and parameterized by the neural
network indicated by θ .
The diffusion process can be conditioned using the

following equation:

pθ (x0:T |y) = pθ (xt )
T∏
t=1

pθ (xt−1|xt , y) (3)

In this equation, the probability density function pθ is akin
to the unconditioned diffusion process, but conditioning is
introduced at each timestep of the diffusion process, denoted
as pθ (xt−1|xt , y). In our specific scenario, the conditions
encompass the previous frame, the grayscale frame, and the
current frame during training, as illustrated in Fig.4a. During
inference, the conditions consist of the previous frame, the
grayscale frame, and noise, as indicated in Fig.4b.

For a visual representation of our network architecture
during training and inference, as well as a breakdown of
where each equation is utilized, please refer to Fig. 4a and
Fig. 4b. Additionally, for amore in-depth explanation of these
equations and their derivation, you can explore the references
provided in [9], [10], and [62].

In the training process, the current frame ground truth, the
current frame in black and white, and the previous frame are
fed into the image encoder. These images are compressed into
their respective embeddings, namely ZGT , ZBW , and ZP. The
chosen autoencoder for this purpose is a Vector Quantized
Variational AutoEncoder (VQ-VAE), as detailed in [63].
During the forward diffusion process, the current frame’s

ground truth embedding ZGT has noise applied to it based
on the noise timestep, resulting in ZT . Simultaneously,
the ground truth black and white embedding ZBW and
the previous frame embedding ZP are concatenated. The
noised embedding ZT is then denoised using the Unet and
conditioned on ZBW and ZP.

During the backward diffusion process, the neural network
learns to predict the noise that was added during the
forward diffusion process at time step T . Denoising the noise
embedding ZT using the predicted noise results in ZT−1.
We use a simple mean square error loss between the predicted
noise, vs the actual noise added to the embedding in order to
train the network.

By employing the previous frame as conditioning, tem-
poral consistency between frames is ensured throughout the
video sequence, resulting in coherent colorization.

During inference, the same process as the training scheme
is followed, with the exception that the model is fed pure
Gaussian noise representing frame ZT . The denoising is then
repeated T times, after which the denoised embedding is
passed through to the image decoder in order to produce the
predicted frame. This process is depicted explicitly in Fig.4b.

The system can be used in two different ways. First, it can
be employed in an entirely end-to-end manner, where no
additional guidance from the user is needed. In this setup, the
system serves as an image colorization tool for the first frame.
Then, this initial colorized frame is used in an autoregressive
fashion to guide the colorization of subsequent frames in
the video clip. Second, the system can be used interactively,
allowing the user to manually colorize the initial frame. This
manual colorization becomes the condition for initiating the
colorization of the following frames. This second approach
provides control over the colorization process but requires the
user to provide the initial colorization.

D. TEMPORAL CONSISTENCY
Temporal consistency was maintained through an autoregres-
sive conditioning mechanism, where the current video frame
was conditioned on the previous frame and the grayscale
version of the current frame. This approach ensured that
colorization remained consistent across the video frames.
For a detailed illustration, refer to Fig. 4a and Eqn 4. This
mechanism is similar to the approaches used in other studies
such as [64] and [65], where models were conditioned with
information from the previous frame to guarantee temporal
consistency in the context of video generation. Essentially,
maintaining consistent colors throughout a video sequence
becomes more achievable when the model can ‘‘remember’’
the colors from the previous frame.

Ct = f (Ct−1..n,Gt )∀t ∈ T (4)

Following convention [66], [67], we use the CIELAB color
space. We describe a color image as a combination of the L
(Luminance), A (Alpha) and B (Beta) channels. Each value
of CIE LAB is a real number; therefore, we denote it as R.
We describe a grayscale image as only the L (Luminance)
channel. In Eqn 4, we denote the color image as C ⊆ RL,a,b,
the grayscale image as G ⊆ RL , and f () represents the
colorization function performed by the neural network. Here,
n signifies the length of the conditioning window frame, T is
the total length of the video, and t indicates a specificmoment
within the video sequence. This equation describes how the
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colorization process is conditioned on both the previous
frame and the grayscale version of the current frame, ensuring
temporal consistency across the video frames.

Throughout the video sequence, we maintain temporal
consistency by providing the colorizer with the previous
frame as a reference. However, a challenge arises at the
beginning of the sequence, denoted as t0, where there is no
previous frame available for conditioning. To address this,
we introduce an initial colorized frame at t0. This initial
frame is advantageous because it introduces an element of
user preference, which can be highly practical. It effectively
reduces the video colorization task to that of coloring a
single image, which then serves as the starting point for
colorizing the entire video with a bias towards the initial
frame.

This approach offers flexibility and aligns with human-
centric AI concepts for video colorization. We refer to this
approach as ‘‘initial frame biasing’’. Additionally, it provides
a clear method for evaluating the system, as ground
truth is available for the initial frame, making traditional
reference-based metrics such as PSNR, SSIM, FID, and
FVD effective for assessment. It also allows for a user study
where one can compare performance against the ground
truth.

E. HYPERPAREMETER AND TRAINING SET UP
The hyperparameters used in the experiment are detailed
in Table 1. The experiment employed the ADAM opti-
mizer [68], with most of the values being adopted from
the specifications of Stable Diffusion [12]. Any additional
hyperparameters were determined through a process of
empirical testing.

An image size of 128 × 128 pixels required a 4x decrease
in processing time as opposed to 256 × 256 pixels. Training
at 256 × 256 pixels takes 165 minutes per epoch on an
NVIDIA RTX 2080, whereas training at 128 × 128 pixels
takes 38 minutes per epoch. Using 200 Diffusion steps for
training and 50 for testing resulted in good performance.
Input channels must be nine to account for the conditioning,
three channels for color previous frame, three channels for
the image and three channels for the black-and-white current
frame. Having a batch size of 256 and a learning rate of
1.25e−7 resulted in convergence and reasonably fast training
times.

IV. EVALUATION
The performance evaluation of the colorization process
combines both qualitative and quantitative assessments to
gauge its success. Following similar colorization studies [7]
our work is compared on standard metrics. The key metrics
used for this evaluation are as follows:

Peak Signal to Noise Ratio (PSNR): This metric mea-
sures the quality of colorized images by comparing them
to the corresponding ground truth images. It quantifies the
difference between the pixel values of the colorized and

TABLE 1. The hyperparameter setup provides the values used for both
training and testing.

ground truth images. Higher PSNR values indicate better
performance.

Structural Similarity Index (SSIM): SSIM evaluates the
structural similarity between colorized images and ground
truth images. It considers not only pixel values but also the
structure and patterns in the images. Higher SSIM values
indicate greater similarity to the ground truth.

Fréchet Inception Distance (FID): FID assesses the
distance between the distribution of features extracted from
colorized images and real images. Lower FID values indicate
closer similarity to real images.

Fréchet Video Distance (FVD): FVD is a video-specific
metric that measures the difference between generated and
real videos by comparing the mean and covariance of
their features. Lower FVD values represent better video
colorization quality.

Naturalness Image Quality Evaluator (NIQE): NIQE
is a referenceless metric that quantifies the naturalness of
colorized images using statistical measures. Lower NIQE
values indicate more natural-looking images.

Blind/Referenceless Image Spatial Quality Evaluator
(BRISQUE): BRISQUE is another referenceless metric that
evaluates the quality of colorized images. It learns the
characteristics of natural images and quantifies the deviation
from these characteristics. Lower BRISQUE values represent
better image quality.

MeanOpinion Score (MOS):MOS is a weighted average
of survey participants’ perceived quality of an image or
video. Higher MOS score represents a higher opinion of the
subjective quality of the media.

A combination of these quantitative metrics and visual
inspection, see Fig. 7, allows for a comprehensive assessment
of the colorization process, enabling objective and subjective
evaluation of its performance.

Evaluating colorization is a very subjective task, and
therefore, as well as the metrics used, a survey was conducted
to obtain a subjective measure of our performance. This
survey was conducted in a similar manner to the survey
conducted by Wu et al. [31].
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TABLE 2. The quantitative comparisons provide a detailed evaluation of different colorization methods across various datasets. These methods include
DeOldify, DeepRemaster, ColTran, GCP, VCGAN, Human Colorized, LatentColorization without Temporal Consistency and LatentColorization. The evaluation
criteria encompass several metrics, including PSNR, SSIM, FID, FVD, NIQE, and BRISQUE. By comparing these metrics on individual datasets and a
combined dataset (consisting of GRID, Lombard Grid, and Sherlock Holmes Movies), the study aims to assess and compare the performance of these
colorization methods. This information allows for an evaluation of how LatentColorization compares to other state-of-the-art methods in various
scenarios.

A. QUALITATIVE ANALYSIS
The qualitative results in Fig. 7 visually compare the
colorization performance of different methods, including
DeOldify [6], ColTran [18], DeepRemaster [42], GCP [31],
VCGAN [41], LatentColorization without temporal consis-
tency enabled, LatentColorization, and the ground truth.
These comparisons are based on image sequences from the
GRID [58] and Lombard Grid [59] datasets. Additional
qualitative results can also be seen in our appendices. This
visual assessment allows for a direct comparison of how
well LatentColorization performs in relation to other state-
of-the-art methods. Based on the qualitative analysis of
the results in Fig. 7, the following conclusions can be
drawn:

DeOldify [6] produces consistent colorizations, but they
tend to appear dull and have a halo effect around the
subject. ColTran generates colorful images, but it suffers from
inconsistencies throughout the sequence. DeepRemaster [42]
provides produces dull, conservative colorizations. GCP [31]
produces colorful, consistent colorizations, but they are not
faithful to the ground truth. VCGAN [41] seems to mostly
apply a blueish filter to the frames. LatentColorization w/o
TC produces colorization similar to the ground truth. It is
difficult to visually distinguish between LatentColorization
w/o TC, LatentColorization and the ground truth itself.
LatentColorization impressively colorizes the sequence,

maintaining faithfulness to the original, vibrancy in color,
and overall consistency. Overall, LatentColorization appears
to outperform the other methods in terms of fidelity to the
original, colorfulness, and consistency.

B. QUANTITATIVE ANALYSIS
Quantitative evaluation is an essential aspect of assess-
ing the quality and performance of colorization meth-
ods. It helps provide an objective measure of how well
these methods perform. By evaluating colorizations both
frame by frame and as a video sequence, you can gain
insights into the strengths and weaknesses of each approach
and determine how well they maintain consistency and
quality throughout the sequence. This quantitative assess-
ment complements the qualitative analysis and provides
a more comprehensive understanding of the colorization
results.

Table 2 provides a quantitative evaluation of the coloriza-
tion methods, considering various image metrics. It is a
useful way to compare the performance of DeOldify [6],
DeepRemaster [42], ColTran [18], GCP [31], VCGAN [41],
LatentColorization without temporal consistency mecha-
nism, LatentColorization, and human colorization. By assess-
ing metrics such as PSNR, SSIM, FID, FVD, NIQE, and
BRISQUE, you can analyze the quality, similarity, and
naturalness of the colorized images. This comparison enables
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amore data-driven and objective assessment of howwell each
method performs.

The results presented in Table 2 indicate that Latent-
Colorization performs well across all of the referenced
and non-referenced metrics, surpassing the state-of-the-
art DeOldify [6] by an average of =̃18% in terms of
FVD. This performance showcases the effectiveness of
LatentColorization in achieving high-quality and consistent
video colorization results.

Comparing LatentColorization against human-level col-
orization is an important evaluation. Using non-reference
image quality assessment metrics like NIQE and BRISQUE
to assess the relative performance when no ground truth
is available is a valuable approach. These metrics provide
insights into how closely the colorization generated by
LatentColorization aligns with human-expert colorization in
terms of image quality.

The results in Table 2 show that LatentColorization
outperforms human colorization according to NIQE and
BRISQUE, which indicates that the colorizations produced
by LatentColorization are of high quality when assessed
using these non-reference metrics.

The other methods also perform well on BRISQUE and
NIQE scores relative to the Human Colorized version of the
video. Colorization is a subjective matter, and therefore, these
metrics must be paired with a user survey to evaluate the
systems’ performances.

C. SURVEY
A survey was conducted to get a more subjective view of
the performance of LatentColorization. This study aimed to
evaluate the difference in performance between our proposed
approach, LatentColorization, and its closest competitor in
our experiments, DeOldify [6]. Thirty-two participants were
shown three sets of three videos and were asked a question on
each set. Each dataset had an associated video set. The survey
questions can be seen in our appendices.

For the Grid [58] dataset, the participants were shown
three versions of the same video taken from the dataset
side-by-side. One video version had been colorized by
LatentColorization, the other by DeOldify [6], and the third
was the ground truth. The ground truth video was labelled
as such, whereas the LatentColorization and DeOldify [6]
versions of the video were anonymous. To distinguish the
LatentColorization version of the video from the DeOldify
version [6] they were labelled with 1 and 2. After the
participants had watched the videos, they were asked which
video they thought was closer to the ground truth. The
purpose of this question (Question 1) was to differentiate in
a head-to-head competition in which the colorization system
was able to produce outputs which were similar to the ground
truth colors of the video.

For the Lombard Grid [59] dataset, the participants were
shown three versions of an example video taken from the
dataset shown side-by-side. Again, one version was colorized
by LatentCololorization, the other by DeOldfiy [6], and

the third was the ground truth. In contrast to the previous
question, the ground truth video was anonymous this time,
and the three videos were titled 1, 2 and 3. After the
participants watched the video, they were asked to rank the
three videos in terms of which one looked the most realistic.
Therefore, this question (Question 2) acted as a visual turning
test where humans were tested to see if they could tell the
difference between a colorization and a ground truth video.
The idea behind this is that the better the performance of
the colorization system, the more difficult it should be to
distinguish between the colorization system and the ground
truth.

For the Sherlock Holmes dataset, the participants were
shown three versions of an example video from the dataset
side-by-side. One version had been colorized by LatentCol-
orization, the other by DeOldify [6], and the third was the
human-colorized version. This time, the human-colorized
version of the video was labelled, and the LatentColorization
and DeOldify [6] versions were left anonymous. After the
participants had watched the clips, they were asked which
of the automatically colorized versions of the clip was closer
to the human-colorized version. The purpose of this question
(Question 3) then was to determine the relative performance
of LatentColorization, DeOldify [6] with respect to human
expert colorizations.

We then collated the survey results and analysed them. The
results can be seen visually in Fig. 5. The X-axis represents
the Mean Opinion Score (MOS) for each question’s methods.
The Y axis indicates the relevant question. The color-coded
bars represent each of the methods. The mean opinion
score was calculated for each method for each question.
For Question 1 and Question 2, the mean opinion score is
simply the tally of each of the votes as it compares two
methods. For Question 3, the mean opinion score is the sum
of the ratings for each method divided by the number of
methods.

Interpreting the graph, we can see that overall LatentCol-
orization was preferred to DeOldify [6]. For Question 1,
DeOldify [6] received seven votes, and LatentColorization
received 25 votes, indicating a preference for LatentCol-
orization on this question. For Question 2, the ground
truth received the highest MOS score of 28.00, followed
by LatentColorization at 20.00 and DeOldiy [6] at 13.67.
Summarising this result, the ground truth was preferred
most of the time, followed by LatentColorization and finally
DeOldify [6]. For Question 3, LatentColorization was chosen
26 times out of 31, indicating a strong preference for
LatentColorization.

D. ABLATION STUDY
An ablation study was undertaken to evaluate the impact
of the temporal consistency mechanism on the LatentCol-
orization system. The results for both LatentColorization
and LatentColorization without temporal consistency mech-
anism are recorded in Table 2. LatentColorization refers
to the version of LatentColorization with the temporal
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FIGURE 5. The graph of the results of the survey. Each group represents a
particular question. The X-axis represents the Mean Opinion Score (MOS)
for each question’s methods. The Y axis indicates the relevant question.
The color-coded bars represent each of the methods.

consistency mechanism enabled, and LatentColorization w/o
TC refers to the version of LatentColorization where the
temporal consistency metric has been disabled. The results of
LatentColorization and LatentColorization without temporal
consistency appear similar. The main difference is that the
FVD values for LatentColorization are roughly 10% lower
than LatentColorization without temporal consistency’s FVD
values. As a result of this observation, it can be deduced that
the temporal consistency mechanism is indeed improving the
video quality of the output and, therefore, ensuring temporal
consistency.

E. FAILURE CASES
There were also instances where the system failed to
colorize faithfully to the ground truth. This particularly
occurred for out-of-distribution data where the videos were
from a different domain than speaker videos, see Fig. 6.
LatentColorization fails to apply realistic colors to the
bedroom scene. It initially manages to separate the walls
from the bed as it colorizes the walls blue and the bed
orange, see Frame 1. As time passes, see Frame 2 and
Frame 3; LatentColorization tends towards a dull grey
color. This indicates that LatentColorization is sensitive to
the domain that the video is from, and when it does not
recognize the contents of a video, it resorts to drab, dull
colors.

V. DISCUSSION
In this section, we discuss our model’s results compared to
other approaches from the field.
ColTran [18] Vs LatentColorization: The comparison

between LatentColorization and non-autoregressive models
like ColTran [18] provides insights into the importance
of the autoregressive nature of the system in the context

FIGURE 6. The comparison of three frames from the system taken from
out-of-distribution data. The top row is the black-and-white version of
the video, the middle frame is the output of LatentColorization, and the
bottom row is the ground truth. It can be seen that LatentColorization has
failed to colorize faithfully to the ground truth.

of video colorization. Fig. 7 demonstrates the difference
in consistency between the two approaches. The frames
colorized by LatentColorization appear more consistent
throughout the video sequence, while those generated by
ColTran [18] exhibit more variation. This suggests that
the autoregressive nature of LatentColorization, where each
frame is conditioned on the previous ones, plays a role
in maintaining temporal consistency and ensuring that the
colorization is coherent across the entire video. In contrast,
approaches like ColTran [18] which do not have a temporal
consistency mechanism may struggle to achieve the same
level of consistency in colorized sequences.
DeOldify [6] Vs LatentColorization: The qualitative

assessment of the colorizations in Fig. 7 highlights the
differences in colorfulness among LatentColorization, and
DeOldify [6]. LatentColorization produces colorful results.
In contrast, DeOldify [6] appears grey, suggesting that it
may suffer from a lack of color diversity. This observation
is consistent with the idea that GANs, which DeOldify [6]
is based on, can be susceptible to mode collapse, where
they produce limited and less diverse color variations. This
observation also correlated with the survey results where
LatentColorization was preferred to DeOldify [6] 80% of the
time.
DeepRemaster [42] Vs LatentColorization: DeepRemas-

ter [42] has struggled with the colorization of this material
and has resorted to very bland, dull colors, unlike LatentCol-
orization.
GCP [31] Vs LatentColorization: it can be seen that

LatentColorization is closer to the ground truth than
GCP [31]. GCP has produced colorful output, but it is dif-
ferent in color from the ground truth. It has not succumbed to
the mode collapse of its GAN-based architecture, especially
on the Lombard Grid [59] dataset. This could potentially be
a result of its retrieval mechanism.
VCGAN [41] Vs LatentColorization: it can be seen

that LatentColorization is closer to the ground truth than
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FIGURE 7. The qualitative comparison of colorization results from various systems, including DeOldify [6],
ColTran [18], DeepRemaster [42], GCP [31], VCGAN [41], LatentColorization without the temporal consistency
mechanism enabled (LatentColorization w/o TC), LatentColorization and the ground truth, for both the
GRID [58] dataset (left) and the Lombard Grid [59] dataset (right) is shown. In the GRID [58] dataset,
DeOldify’s [6] colorization, depicted in the first row, exhibits desaturated colors and a halo effect around
the subject. ColTran [18], in the second row, produces more colorful results but lacks consistency
throughout the sequence. DeepRemaster [42] produces dull, conservative colorizations. GCP [31] produces
colorful, consistent colorizations, but they are not faithful to the ground truth. VCGAN [41] produces drab,
monotone colorizations. LatentColorization w/o TC produces colorization similar to the ground truth. It is
difficult to visually distinguish between LatentColorization w/o TC, LatentColorization and the ground truth
itself. The ground truth, represents the original color frames. Similar observations can be made for the
Lombard Grid [59] dataset. These visual comparisons demonstrate that LatentColorization consistently
delivers colorization results that closely match the original colors, making it a promising technique for
automatic video colorization tasks.

VCGAN [41]. VCGAN has produced a blue filter type effect
on the frames.
LatentColorization Vs LatentColorization without tempo-

ral consistency: has been investigated in the ablation study.
Essentially, it is difficult to visually differentiate between the

two, and the main difference can be seen quantitatively in
their relative FVD scores.

The quantitative evaluation, as shown in Table 2, indicates
that LatentColorization achieved scores on the NIQE and
BRISQUEmetrics that are close to human-level colorization.
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FIGURE 8. The qualitative comparison of colorization results from various systems, including DeOldify [6], ColTran [18],
DeepRemaster [42], GCP [31], VCGAN [41], LatentColorization without the temporal consistency mechanism enabled
(LatentColorization w/o TC), LatentColorization and the ground truth, for both the GRID [58] dataset (left) and the Lombard
Grid [59] dataset (right) reveals differences in their performance.

In summary, these results suggest that LatentColorization,
in this experiment, is comparable to human-level coloriza-
tion in terms of the assessed quality metrics. This highlights
the effectiveness of the LatentColorization method in gen-
erating high-quality colorized videos. This evaluation also
correlates with our survey, where LatentColorization received
a higher preference from the subjects than DeOldify [6]. The
survey also shows a tendency of the users to prefer the ground
truth videos over both LatentColorization and DeOldify [6].

VI. CONCLUSION
In conclusion, our work demonstrates the effectiveness of
diffusion-based models, particularly the LatentColorization
method, in achieving results comparable to the state of the
art across multiple datasets. Notably, the system performs
comparably to human-level colorization on the ‘Sherlock
Holmes Movie’ dataset, indicating its practical significance
and the potential for application-specific video colorization.
The use of a latent diffusion model and the incorporation
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FIGURE 9. The qualitative comparison of colorization results from various systems, including DeOldify [6], ColTran [18],
DeepRemaster [42], GCP [31], VCGAN [41], LatentColorization without the temporal consistency mechanism enabled
(LatentColorization w/o TC), LatentColorization and the ground truth, for both the GRID [58] dataset (left) and the Lombard
Grid [59] dataset (right) reveals differences in their performance.

of a temporally consistent colorization approach contribute
to realistic and convincing colorization results, making
the process more accessible and reducing the reliance on
traditional human-driven colorization methods. This research
provides insights into the potential of diffusion models for
video colorization and opens up opportunities for further
developments in this field.

VII. FUTURE WORK
Expanding on our research, adapting the system to work
with various video styles, types, and content would be a
promising direction for future work. This would enable a
broader assessment of the approach’s applicability in general
video colorization. Decreasing the inference and training
time of this system would also be beneficial. Currently, the
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FIGURE 10. The survey questions asked. Question 1 compares LatentColorization to DeOldify [6] on the Grid [58] dataset. Question 2 compares
LatentColorization, DeOldify [6] and the ground truth on the Lombard Grid [59] dataset. Question 3 compares LatentColorization, and DeOldify [6] on the
Sherlock Holmes Movie dataset.

system must sample each frame multiple times, which limits
real-time capabilities. There are also ethical concerns that
further research must be conducted into. Two of the main
ethical concerns are misuse and bias. These systems could
be potentially used maliciously to distort history. They could
also inherit bias from their datasets, which would result in
systems that are not fair. One practical way of alleviating
some of the ethical concerns regarding this work could be
by developing a model card highlighting the potential biases
present in the system. These endeavors will further enhance
the practicality and versatility of our research in automatic
video colorization.

APPENDIX A
ADDITIONAL EXPERIMENTS
See Figures 8 and 9.

APPENDIX B
SURVEY
See Figure 10.

REFERENCES
[1] J.-W. Su, H.-K. Chu, and J.-B. Huang, ‘‘Instance-aware image coloriza-

tion,’’ 2020, arXiv:2005.10825.
[2] F. Pierre and J.-F. Aujol,Recent Approaches for ImageColorization. Cham,

Switzerland: Springer, 2021, pp. 1–38.
[3] S. Liu and X. Zhang, ‘‘Automatic grayscale image colorization using his-

togram regression,’’Pattern Recognit. Lett., vol. 33, no. 13, pp. 1673–1681,
Oct. 2012.

[4] A. Levin, D. Lischinski, and Y. Weiss, ‘‘Colorization using optimization,’’
ACM Trans. Graph., vol. 23, no. 3, pp. 689–694, Aug. 2004.

[5] B. Zhang, M. He, J. Liao, P. V. Sander, L. Yuan, A. Bermak, and D. Chen,
‘‘Deep exemplar-based video colorization,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 8044–8053.

[6] J. Antic. (2019). Deoldify. [Online]. Available: https://github.
com/jantic/DeOldify

[7] Z. Wan, B. Zhang, D. Chen, and J. Liao, ‘‘Bringing old films back to life,’’
2022, arXiv:2203.17276.

[8] C. Vondrick, A. Shrivastava, A. Fathi, S. Guadarrama, and K. Murphy,
‘‘Tracking emerges by colorizing videos,’’ 2018, arXiv:1806.09594.

[9] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, ‘‘Deep
unsupervised learning using nonequilibrium thermodynamics,’’ in Proc.
Int. Conf. Mach. Learn., 2015, pp. 2256–2265.

[10] J. Ho, A. Jain, and P. Abbeel, ‘‘Denoising diffusion probabilistic models,’’
in Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp. 6840–6851.

[11] P. Dhariwal and A. Nichol, ‘‘Diffusion models beat GANs on image
synthesis,’’ 2021, arXiv:2105.05233.

[12] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer,
‘‘High-resolution image synthesis with latent diffusion models,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022,
pp. 10674–10685.

[13] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. Denton,
S. K. S. Ghasemipour, B. K. Ayan, S. S. Mahdavi, R. G. Lopes,
T. Salimans, J. Ho, D. J. Fleet, and M. Norouzi, ‘‘Photorealistic text-
to-image diffusion models with deep language understanding,’’ 2205,
arXiv:2205.11487.

[14] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, ‘‘Hier-
archical text-conditional image generation with CLIP latents,’’ 2022,
arXiv:2204.06125.

[15] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial networks,’’
2014, arXiv:1406.2661.

[16] B. Zhang, M. He, J. Liao, P. V. Sander, L. Yuan, A. Bermak, and D. Chen,
‘‘Deep exemplar-based video colorization,’’ 2019, arXiv:1906.09909.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ 2017,
arXiv:1706.03762.

[18] M. Kumar, D. Weissenborn, and N. Kalchbrenner, ‘‘Colorization trans-
former,’’ 2021, arXiv:2102.04432.

[19] E. Casey, V. Pérez, Z. Li, H. Teitelman, N. Boyajian, T. Pulver, M. Manh,
and W. Grisaitis, ‘‘The animation transformer: Visual correspondence via
segment matching,’’ 2021, arXiv:2109.02614.

[20] C. Saharia, W. Chan, H. Chang, C. Lee, J. Ho, T. Salimans, D. Fleet, and
M. Norouzi, ‘‘Palette: Image-to-image diffusion models,’’ in Proc. ACM
SIGGRAPH Conf., 2022, pp. 1–10.

[21] B. Natarajan, E. Rajalakshmi, R. Elakkiya, K. Kotecha, A. Abraham,
L. A. Gabralla, and V. Subramaniyaswamy, ‘‘Development of an end-to-
end deep learning framework for sign language recognition, translation,
and video generation,’’ IEEE Access, vol. 10, pp. 104358–104374, 2022.

[22] C. Li, C. Guo, L. Han, J. Jiang, M.-M. Cheng, J. Gu, and C. C. Loy,
‘‘Low-light image and video enhancement using deep learning: A survey,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 12, pp. 9396–9416,
Dec. 2022.

VOLUME 12, 2024 81119



R. Ward et al.: LatentColorization: Latent Diffusion-Based Speaker Video Colorization

[23] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, ‘‘Image-to-image translation
with conditional adversarial networks,’’ 2016, arxiv:1611.07004.

[24] C. Zou, H.Mo, C. Gao, R. Du, and H. Fu, ‘‘Language-based colorization of
scene sketches,’’ ACM Trans. Graph., vol. 38, no. 6, pp. 1–16, Nov. 2019.

[25] L. Zhang, C. Li, T.-T. Wong, Y. Ji, and C. Liu, ‘‘Two-stage sketch
colorization,’’ ACM Trans. Graph., vol. 37, no. 6, pp. 1–14, Dec. 2018.

[26] X. Kuang, X. Sui, C. Liu, Y. Liu, Q. Chen, and G. Gu, ‘‘Thermal
infrared colorization via conditional generative adversarial network,’’
2018, arXiv:1810.05399.

[27] W. Chen and J. Hays, ‘‘SketchyGAN: Towards diverse and realistic sketch
to image synthesis,’’ 2018, arXiv:1801.02753.

[28] P. Hensman and K. Aizawa, ‘‘CGAN-based Manga colorization using a
single training image,’’ 2017, arXiv:1706.06918.

[29] C. W. Seo and Y. Seo, ‘‘Seg2pix: Few shot training line art colorization
with segmented image data,’’ Appl. Sci., vol. 11, no. 4, p. 1464, Feb. 2021.

[30] Y. Cao, Z. Zhou, W. Zhang, and Y. Yu, ‘‘Unsupervised diverse colorization
via generative adversarial networks,’’ 2017, arXiv:1702.06674.

[31] Y. Wu, X. Wang, Y. Li, H. Zhang, X. Zhao, and Y. Shan, ‘‘Towards
Vivid and diverse image colorization with generative color prior,’’ 2022,
arXiv:2108.08826.

[32] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, ‘‘Self-attention
generative adversarial networks,’’ 2018, arXiv:1805.08318.

[33] F.Mameli, M. Bertini, L. Galteri, and A. Del Bimbo, ‘‘ANoGAN approach
for image and video restoration and compression artifact removal,’’
in Proc. 25th Int. Conf. Pattern Recognit. (ICPR), Milan, Italy, 2021,
pp. 9326–9332, doi: 10.1109/ICPR48806.2021.9413095.

[34] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
‘‘GANs trained by a two time-scale update rule converge to a local Nash
equilibrium,’’ 2017, arXiv:1706.08500.

[35] P. Kouzouglidis, G. Sfikas, and C. Nikou, ‘‘Automatic video col-
orization using 3D conditional generative adversarial networks,’’ 2019,
arXiv:1905.03023.

[36] R. Endo, Y. Kawai, and T. Mchizuki, ‘‘A practical monochrome video
colorization framework for broadcast program production,’’ IEEE Trans.
Broadcast., vol. 67, no. 1, pp. 225–237, Mar. 2021.

[37] N. Akimoto, A. Hayakawa, A. Shin, and T. Narihira, ‘‘Reference-
based video colorization with spatiotemporal correspondence,’’ 2020,
arXiv:2011.12528.

[38] A. Srivastava, L. Valkov, C. Russell, M. U. Gutmann, and C. Sutton,
‘‘VEEGAN: Reducing mode collapse in GANs using implicit variational
learning,’’ in Advances in Neural Information Processing Systems,
vol. 30, I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds. Red Hook, NY, USA: Curran
Associates, 2017.

[39] T. Che, Y. Li, A. Paul Jacob, Y. Bengio, and W. Li, ‘‘Mode regularized
generative adversarial networks,’’ 2016, arXiv:1612.02136.

[40] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford,
and X. Chen, ‘‘Improved techniques for training GANs,’’ 2016,
arxiv:1606.03498.

[41] Y. Zhao, L.-M. Po, W. Y. Yu, Y. Abbas Ur Rehman, M. Liu, Y. Zhang, and
W. Ou, ‘‘VCGAN: Video colorization with hybrid generative adversarial
network,’’ IEEE Trans. Multimedia, vol. 25, pp. 3017–3032, 2023.

[42] S. Iizuka and E. Simo-Serra, ‘‘DeepRemaster: Temporal source-reference
attention networks for comprehensive video enhancement,’’ ACM Trans.
Graph., vol. 38, no. 6, pp. 1–13, Dec. 2019.

[43] Z. Wan, J. Zhang, D. Chen, and J. Liao, ‘‘High-fidelity pluralistic image
completion with transformers,’’ 2021, arXiv:2103.14031.

[44] J. Ho, A. Jain, and P. Abbeel, ‘‘Denoising diffusion probabilistic models,’’
2020, arXiv:2006.11239.

[45] J. Ho, W. Chan, C. Saharia, J. Whang, R. Gao, A. Gritsenko,
D. P. Kingma, B. Poole, M. Norouzi, D. J. Fleet, and T. Salimans, ‘‘Imagen
video: High definition video generation with diffusion models,’’ 2022,
arXiv:2210.02303.

[46] R. Villegas, ‘‘Phenaki: Variable length video generation from open domain
textual descriptions,’’ in Proc. 11th Int. Conf. Learn. Represent., 2023,
pp. 1–14.

[47] Z. Kong, W. Ping, J. Huang, K. Zhao, and B. Catanzaro, ‘‘DiffWave: A
versatile diffusion model for audio synthesis,’’ 2020, arXiv:2009.09761.

[48] D. Yang, J. Yu, H. Wang, W. Wang, C. Weng, Y. Zou, and D. Yu,
‘‘Diffsound: Discrete diffusion model for text-to-sound generation,’’ 2022,
arXiv:2207.09983.

[49] C. Saharia, W. Chan, H. Chang, C. A. Lee, J. Ho, T. Salimans, D. J. Fleet,
and M. Norouzi, ‘‘Palette: Image-to-image diffusion models,’’ 2021,
arXiv:2111.05826.

[50] H. Liu, M. Xie, J. Xing, C. Li, and T.-T. Wong, ‘‘Video colorization with
pre-trained text-to-image diffusion models,’’ 2023, arXiv:2306.01732.

[51] A. Vahdat, K. Kreis, and J. Kautz, ‘‘Score-based generative modeling in
latent space,’’ 2021, arXiv:2106.05931.

[52] T. Dockhorn, A. Vahdat, and K. Kreis, ‘‘Score-based generative modeling
with critically-damped Langevin diffusion,’’ 2021, arXiv:2112.07068.

[53] Z. Xiao, K. Kreis, and A. Vahdat, ‘‘Tackling the generative learning
trilemma with denoising diffusion GANs,’’ 2021, arXiv:2112.07804.

[54] U. Singer, A. Polyak, T. Hayes, X. Yin, J. An, S. Zhang, Q. Hu,
H. Yang, O. Ashual, O. Gafni, D. Parikh, S. Gupta, and Y. Taigman,
‘‘Make-a-video: Text-to-video generation without text-video data,’’ 2022,
arXiv:2209.14792.

[55] M. Otani and H. Hioki, ‘‘Video colorization based on optical flow and
edge-oriented color propagation,’’ in Proc. SPIE, vol. 9020, C. A. Bouman
and K. D. Sauer, Eds., 2014, Art. no. 902002.

[56] X. Liu, L. Wan, Y. Qu, T.-T. Wong, S. Lin, C.-S. Leung, and P.-A. Heng,
‘‘Intrinsic colorization,’’ ACM Trans. Graph., vol. 27, no. 5, pp. 1–9,
Dec. 2008.

[57] R. Ward and J. Breslin, ‘‘Towards temporal stability in automatic video
colourisation,’’ in Proc. 24th Irish Mach. Vis. Image Process. Conf.,
Aug. 2022, pp. 1–8.

[58] M. Cooke, J. Barker, S. Cunningham, and X. Shao, ‘‘The grid audio-visual
speech corpus,’’ Zenodo, Jan. 2006, doi: 10.5281/zenodo.3625687.

[59] N. Alghamdi, S. Maddock, R. Marxer, J. Barker, and G. J. Brown, ‘‘A
corpus of audio-visual lombard speech with frontal and profile views,’’ J.
Acoust. Soc. Amer., vol. 143, no. 6, pp. EL523–EL529, Jun. 2018.

[60] A. Buades, B. Coll, and J.-M.Morel, ‘‘Non-local means denoising,’’ Image
Process. Line, vol. 1, pp. 208–212, Sep. 2011.

[61] A. Nichol and P. Dhariwal, ‘‘Improved denoising diffusion probabilistic
models,’’ 2021, arXiv:2102.09672.

[62] Y. Song and S. Ermon, ‘‘Generative modeling by estimating gradients of
the data distribution,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 32,
2019, pp. 1–9.

[63] A. van den Oord, O. Vinyals, and K. Kavukcuoglu, ‘‘Neural discrete
representation learning,’’ 2017, arXiv:1711.00937.

[64] D. Bigioi, S. Basak, M. Stypułkowski, M. Zieba, H. Jordan, R. McDonnell,
and P. Corcoran, ‘‘Speech driven video editing via an audio-conditioned
diffusion model,’’ 2023, arXiv:2301.04474.

[65] M. Stypułkowski, K. Vougioukas, S. He, M. Ziȩba, S. Petridis, and
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