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ABSTRACT Next-generation sensor and radio access networks (NG-SRANs) namely, Hydra radio access
networks (H-RANs) represent a significant evolution in the telecommunications and sensor ecosystem
landscape in anticipation of 6G deployment and beyond. H-RAN’s vision derives its strength from integrating
various technologies and networks into a single central network with the widespread incorporation of
artificial intelligence (AI) technologies throughout the network. As a result, H-RAN’s unique features
and characteristics can serve as a baseline for innovating new applications and significantly enhance
the overall functions of conventional open radio access networks (O-RANs). However, among the many
improvements and innovations that the H-RAN architecture promises in its functionality, this paper focuses
on the initial access implementation ‘‘Task1’’ approach. Our solution contains several novelties that enhance
both overhead and model accuracy. To this end, we define a novel intelligent perception network inspired by
the knowledge distribution idea for collaborative H-RAN networks. We develop sparse multi-task learning
(SMTL) as part of the AI/ML D-engine for federated learning to perform multiple tasks simultaneously. The
SMTL is designed to select the optimal solution from a list of recommended solutions, namely ‘‘Tasks’’.
In the simulation, figures of merit includemetrics such as top-k validation accuracy, beam selection accuracy,
throughput ratios, beam sweep time, latency, and initial access times, which are used to evaluate the
performance and efficiency of the proposed technologies. Simulation results demonstrate that by exploiting
contextual information from distributed collaborative SRUs, and UE sends its own sensing information via
a physical random-access channel in addition to using SMTL, our H-RAN-based initial access scheme can
achieve 82.9% throughput of an exhaustive beam search (EBS) based-O-RAN network without any beam
search overhead and 96.7% by searching among as few as 5 beams. Compared to the conventional MMW
5G-NR solution, our proposed method significantly minimizes the beam search time needed to reach the
desired throughput.
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I. INTRODUCTION
As technology evolves and new applications emerge, there
is a growing recognition that 5G may not be able to meet
all future requirements and demands. The transition to 6G
is driven by the anticipation of future use cases and needs
that may require even higher data rates, lower latency, greater
reliability, and new communication paradigms beyond what
5G can offer. Research communities around the world have
already initiated research and development projects focused
on exploring 6G’s fundamental technologies, concepts, and
architectures. These initiatives aim to identify key technology
trends, challenges, and opportunities that will shape the
future of RAN. Hydra radio access networks (H-RANs)
[1] employ sophisticated data processing and analytics
techniques, such as edge computing, machine learning, and
artificial intelligence, to extract actionable insights from
sensor data. H-RANs play a crucial role in laying the
foundation for future communication technologies, including
6G and beyond. By embracing a holistic approach to
network design, the next generation of sensing and radio
access networks (NG-SRANs) will drive innovation in
wireless communication, sensor integration, and data-driven
intelligence, paving the way for transformative advancements
in connectivity, automation, and digitalization. The H-RAN
architecture was introduced as a novel paradigm to sup-
plement the state-of-the-art standardization of open radio
access networks (O-RANs) [2], [3]. H-RAN is characterized
as a comprehensive perceptual RAN in which H-RAN
components broadly utilize sensor data and AI/ML engines
along with conventional communication parameters to ensure
its capabilities evolve agilely over time. H-RAN’s vision
revolutionizes the conventional 5G gNodeB, by segmenting
the single gNodeB into a cluster of perceptive SRUs deployed
in a broad network area controlled and managed by a single
intelligent H-DU.

Ongoing research and advancements in technologies
such as millimeter wave (MMW)/terahertz (THz) commu-
nications [4], [5], sensing capabilities [6], and artificial
intelligence (AI)/machine learning (ML) algorithms [7]
clearly indicate that future wireless networks can be more
autonomous, intelligent, and resilient [7], [8], [9]. H-RAN’s
vision is designed to automatically adjust its parameters
and configurations to changing environmental conditions or
network requirements. In addition, H-RAN promotes the
network’s ability to identify and repair faults or disruptions
automatically without manual intervention, ensuring con-
tinuous service availability and improved fault tolerance.
This holistic approach transforms traditional radio access
networks into intelligent, context-aware ecosystems capable
of meeting the evolving demands of modern RAN.

Initial access is an essential component of MMW/THZ
communication systems. These systems often rely on nar-
row, directional beams to establish and maintain reliable
communication links [10], [11], [12], [13]. Nevertheless,
achieving accurate beam alignment and beam selection can
be challenging and time-consuming due to narrow beams,

propagation characteristics, multi-path propagation, mobility
environments, and antenna variability [14], [15], [16], [17],
[18]. Therefore, efforts to simplify and automate beam
alignment and beam selection processes are ongoing across
the industry, with advancements in algorithms, hardware,
and system integration. These efforts aim to make MMW
communication systems more accessible, reliable, and cost-
effective, paving the way for their widespread deployment
in next-generation wireless networks [19]. However, among
the several improvements and innovations promised by our
previous study on the H-RAN architecture [1], in this paper,
we emphasize initial access procedures, particularly beam
alignment and selection methods, namely ‘‘Task1’’ among
the many tasks proposed as H-RAN network promising
solutions. Our solution incorporates several novelty features
that enhance both the overhead and the model’s accuracy.
In particular, we propose a novel intelligent perception net-
work that utilizes knowledge distribution for collaborative H-
RAN networks. These improvements collectively contribute
to the goal of making H-RAN more agile, cost-effective, and
capable of meeting the diverse requirements of emerging 6G
and beyond. H-RAN specifications are expected to address
several MMW/THZ beam management problems and enable
novel and exciting applications through perceptive networks.
By exploiting the rich information received from different
sensors, H-RANs can acquire a comprehensive understanding
of the network environment. Moreover, by training sparse
multi-task learning (SMTL) models locally and aggregating
them collaboratively, SMTL reduces the need for complex
computation and communication overhead. SMTL extends
the concept of federated learning, which typically focuses
on training a single global model across distributed SRUs,
to handle multiple related tasks concurrently. SMTL for
federated learning enables efficient and scalable learning
across multiple tasks in distributed environments, making it
well-suited to applications where data is distributed across the
edge, IoT, and mobile devices.

A. RELATED WORK
The proliferation of data sources, including sensors, IoT
devices, wearables, and web applications, has led to an abun-
dance of data for AI/ML model training and analysis [20].
This wealth of data enables the development of more accurate
and robust AI/ML models across a wide range of domains
and applications [6], [7]. Advancements in sensor technology
have led to the development of smaller, cheaper, and more
energy-efficient sensors, expanding their accessibility and
applicability [21]. Collaboration betweenAI/ML researchers,
sensor experts, and academic communication engineers from
various disciplines has facilitated the development of H-RAN
solutions tailored to broad applications and domains. This
interdisciplinary approach ensures that AI/ML workflows,
sensors, and communication technologies are designed and
deployed effectively to address real-world challenges and
emulate future aspirations [1]. For example, researchers in
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several studies have demonstrated that the integration of
context information extracted from sensors with AI/ML
algorithms offers a powerful approach to address challenges
and enhance various functions in MMW communication
systems [22], [23], [24], [25], [26], [27], [28], [29], [30]. The
authors of [5] claimed that AI/ML techniques have gained
substantial attention for beam management frameworks in
MMW/THz bands due to their ability to extract and track
nonlinear environmental characteristics. A comprehensive
survey of AI/ML-enabled beamforming techniques using out-
of-band and multimodal data for MMW communication in
next-generation networks is presented in [31]. The study
demonstrates that Incorporating (AI/ML) methods within the
5Gwireless standard promises autonomous network behavior
and ultra-low-latency reconfiguration. Shi et al. [32] showed
that integrating high-performance intelligent algorithms (e.g.,
learning to branch-and-bound graph neural networks for
structured optimization, deep reinforcement learning for
stochastic optimization, end-to-end learning for semantic
optimization, as well as wireless federated learning for
distributed optimization) into diverse domains of 6G wireless
networks has been an inevitable trend and disruptive shift for
supporting highly transparent, reliable, and large-scale 6G
communication systems. The article in [33] discusses how
the heterogeneity of future services and devices necessitates a
highly adaptive and intelligent framework to ensure efficient
future network performance. Many innovative services are
emerging to accommodate various sensing and IoT services,
which extend beyond the traditional provisions of cellular
networks and Internet connectivity [20]. To tackle these
challenges, researchers are turning to the potential of data-
driven methods, specifically AI/ML, and sensors to usher
in the next era of intelligent design and decision-making
in wireless networks [21]. Reference [34] asserted that
the O-RAN paradigm requires several innovations in 6G
networks, considering a system-level and architectural per-
spective. Researchers have confirmed the increasing use of
application of AI/ML-based optimization in network slicing,
scheduling, and service provisioning, adapting the network
to different slices and user needs. Moving forward, deep
learning (DL) is adopted to extract the complex dependence
in heterogeneous networks between sub-6 GHz and MMW
channels for achieving high prediction accuracy for optimal
MMW beams in [35]. On the other hand, a location- and
orientation-based single and multi-task DNN architecture for
the beam selection method to enable context information
(CI)-based beam alignment has been proposed in [36].
The study in [37] develops federated multi-task learning
(FMTL), for channel estimation with beam-split correction
THz channel and user direction-of-arrival (DoA) estimation
to improve communications efficiency. The researchers
in [38] propose a collaborative service placement-based
decentralized algorithm for a network of small cell BSs
to optimize service placement decisions collaboratively and
address several challenges in mobile edge computing sys-
tems. To address the problems mentioned above, cooperative

service placement is developed by placing diversified latency
critical services to maximize time utility with deadlines
and resource constraints [39]. To address the problems
mentioned above, cooperative service placement is developed
by placing diversified latency critical services to maximize
time utility with deadlines and resource constraints [39]. The
spatiotemporal graph filter method which integrates graph
learning and model-based estimation to achieve multi-view
sensor fusion for collaborative object localization is outlined
in [40].

B. CONTRIBUTION
The specific contributions of this paper can be summarized
as follows:

• We propose an H-RAN initial access approach, namely
‘‘Task1’’, in which the network incorporates (location,
direction, velocity, weather conditions, blockage status,
and object distinguishing) as input to AI/ML D-engines.
We develop sparse multi-task learning (SMTL) as part
of the AI/MLD-engine for federated learning to perform
multiple tasks simultaneously. The SMTL is designed to
select the optimal solution from a list of recommended
solutions, namely ‘‘Tasks′′, according to online sensing
data input and communication parameters. As part of
this paper, only ‘‘Task1’’ will be discussed in the beam
recommendation solution for the line-of-sight (LOS)
scenario. ‘‘Task1’’ yields a list of recommended beam
pairs that should, later, be sensed by H-DU and UE.
This approach results in a drastic reduction in overhead
and significantly improved accuracy compared to an
exhaustive beam search (EBS) [4].

• We develop multi-functional perceptual networks,
which significantly improve beam classification accu-
racy, primarily in the LOS scenario ‘‘Task1’’. We pro-
pose a curriculum training strategy, which increases
convergence speed and final beam prediction accuracy.
Our findings indicate that for samples with a dominant
LOS component, the strongest propagation path is
significantly predictable as it is highly dependent on
real-time sensing information, which is largely deter-
mined by the surrounding environmental conditions.

• We propose that each UE sends its own sensing infor-
mation extracted from GPS (e.g., location coordinates,
velocity, direction, etc.) via a physical random access
channel (PRACH) during the random-access preamble
transmission period.

• We designed collaborative sensing signal processing
and decision-level fusion approaches through different
neural networks for SRU, and H-DU, which are crucial
for integrating distributed sensing data among network
nodes.

• We propose collaborative service placement through
H-RAN-enabled dense SRU networks, in which a
single H-DU optimizes service placement decisions
collaboratively to address various challenges in SRUs.
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FIGURE 1. The disaggregated architecture of SRUs and H-DU perceptual networks facilitates the deployment of functional units. These
networks are augmented with heterogeneous data, sensing, and extensive AI/ML functionality. Fronthaul interfaces and planes enable the
split of physical layer functionalities across SRU and H-DU.

• SMTL has been incorporated into the AI/ML D-engine
as a baseline approach to serve as an initial benchmark
for future work [Task2, Task3, Task4, . . . , Taskn]:
aimed at selecting the optimal solution from a list
of recommended solutions derived from an online
surrounding environment.

II. SYSTEM MODEL
A. H-RAN ARCHITECTURE BACKGROUND
The H-RAN perceptual network is intended to complement
the existing O-RAN architecture [1]. To achieve this goal,
additional hardware, layers, protocols, algorithms, interfaces,
and the widespread use of AI/ML engines are added to

supplement each other.We are also pursuing the integration of
dual network functionalities through a common infrastructure
and building an intelligent network capable of supporting
future applications. In this paper, we provide an overview
of SRUs and H-DU functionality. We do so by analyzing
H-RAN technical specifications, architectural components,
and AI/ML functionalities. According to H-RAN specifi-
cations, H-RAN disaggregation splits conventional RANs
into different functional components, thereby effectively
embracing and extending the functional disaggregation
paradigm for NG-SRANs. When it comes to control and
optimization (e.g., beamforming and beam selection), sensor
data, beam parameters, and AI/ML D-engines play a crucial
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role in selecting the optimal solution from a list of predefined
solutions. Moreover, when it comes to reduced complexity
and interoperability challenges, a single multi-functional
network by combining communication and sensor function-
alities offers numerous benefits that contribute to reducing
operational and maintenance expenses and lowering the
costs of establishing and managing the network. These cost
reductions, coupled with improved efficiency, scalability, and
service quality, make multi-functional networks an attractive
option for a wide range of applications and industries [1].

B. SENSING AND RADIO UNIT (SRU) ARCHITECTURE
The SRU is a component of the H-RAN architecture, which
is designed to be more perceptive, open, interoperable,
resilient, and fully collaborative than traditional open radio
unit (O-RU) [2] allowing for different components from
various vendors and companies to work together such
as (telecommunications, autonomous driving, the internet
of things (IoT), security, traffic management/alerts, smart
applications, etc.) [1]. The protocol stack is split between the
SRU, which hosts communication and sensing components,
such as the lower part of the physical layer (low PHY), radio
frequency (RF), and sensor data pre-processing [1]. SRU is
designed to perform simple functions, and interface with the
Fronthaul (FH) gateway between the SRUs and H-DUs [1],
thereby making it affordable and easy to deploy. As shown
in Fig. 1, the H-RAN FH interface protocol comprises
several planes, each serving a specific functionality in the
communication and management of H-RAN components,
including the control plane (C-plane), the user plane
(U-plane), the synchronization plane (S-plane), the manage-
ment plane (M-plane), the perception plane (P-plane), and the
internet of things (IoT-plane) [1], [2], [41].

At the sensing layers, to achieve the highest efficiency
at the lowest cost, combined data from the most widely
used and standard real-world sensors, GPS, MMW radar,
and cameras were used to verify SMTL operations and
verification. This approach contributes to the improvement
of the accuracy and robustness of beamforming and beam
selection processes. It is worth mentioning that in the
H-RAN philosophy, different types of sensors can be com-
bined with a variety of sensor data processing methodologies
according to the network functions to be implemented. For
example, sensors such as GPS, radar, cameras, and lidar can
play an essential role in improving the initial access and
beam management mechanism [22], [23], [24], [25], [26].
In contrast, other types of sensors (e.g., RF sensors, power
sensors, environmental sensors, motion sensors, etc.) can be
utilized to achieve a comprehensive monitoring and control
system, enabling network operators to proactively manage
and optimize network functionality [6].

In the SRU, sensor data pre-processing includes feature
extraction and early data fusion. Here, deep learning-based
features extracted from convolutional neural networks
(CNNs) are used to extract relevant features from sensor data,

including (e.g., object location, direction, velocity, angles,
size, etc.). Also, early fusion is performed by combining
features from sensor data at the earliest stage. This results
in a single integrated feature vector that represents both
modalities. The combined vector is then used as input for
classifiers.

C. DATA FUSION
Utilizing prior information obtained from a single sensor
(e.g., GPS, radar, lidar, cameras, etc.) may not be sufficient
in complex and challenging environments [40]. The reason
for this is that single-sensor systems cannot cope with
complex environments [43]. GPS provides a wide range
of information (e.g., positioning, velocity, synchronization,
tracking, mapping) [42]. The GPS signal, however, can be
obstructed or weakened by tall buildings, dense foliage,
and tunnels. In contrast to cameras and LiDAR, the
MMW-radar provides longer wavelengths from 0.1 to 1.0 cm,
with a certain amount of anti-pollution and anti-blocking
properties, which can handle fog, rain, snow, and low light
conditions [24], [25], [26]. MMW radar with a frequency
range from 30 to 300 GHz sends multiple consecutive
chirps to solve for detecting targets (range, speed, elevation
angle, and azimuth angle) as well as tracking multiple
targets simultaneously [43]. In contrast, image detection
provides more accurate azimuth estimation, classification,
and tracking than radar detection [29], [30]. According to
the trade-off, multisensory fusion is complementary to each
other. A fusion of sensing data offers the ability to take
advantage of the information and characteristics of several
sensors, thus reducing missed detection rates under poor
environmental conditions [35], [40], [43]. Based on the
trade-off between accuracy and cost, this approach selects
the most widely used sensors. Thanks to combining different
data methods, the proposed method is more robust against
inaccuracies in sensors to determine the actual location and
the potential impact of environmental challenges. Here are
some pre-processing steps related to sensor data.

D. RANDOM ACCESS PREAMBLE
InH-RANdeployments, SRUs periodically transmit synchro-
nization signals and system information blocks to facilitate
communication with the UE. System information blocks
contain critical information about the network, including cell
identity, available frequency bands, cell configuration, and
other relevant parameters [2]. It is broadcast periodically
by the network to accommodate UEs that may enter the
coverage area or those already connected to the network.
When the UE is powered on, entering a new cell, or has
data to transmit, it initiates the random-access procedure. The
UE selects a random-access preamble from a predefined set
of possibilities. A random preamble is chosen and serves
as a unique identifier for the UE during the random-access
procedure. The UE transmits the selected random-access
preamble over the PRACH to the dedicated channel allocated
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FIGURE 2. AI/ML D-engines, system architecture GPS, and radar mapping transformation.

FIGURE 3. AI/ML D-engines, system architecture object detection method.

for handling random access and announces their presence and
intention to access the network [41].We propose that eachUE
sends its own sensing information extracted from GPS (e.g.,
location coordinates, velocity, direction, etc.) via a physical

random-access channel (PRACH) during the random-access
preamble transmission period. Since each preamble is
designed to be unique, networks are able to identify the
specific UE that sent the preamble. This uniqueness is
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essential for the network to respond appropriately to the
requesting UE. The initiated communication and the request
for network access can be illustrated as follows. First, a UE
transmits random access preambles over PRACH, including
information regarding the array’s location and direction.
Each SRU that receives a PRACH signal uses position
and direction information in addition to its own sensor
information to locate the target and perform an early data
fusion stage independently. An SRU successfully detects a
target and performs an early data fusion stage, transmitting
the information to the associated H-DU. The H-DU selects
the optimal SRU to communicate with the UE from among
all the SRUs according to the accuracy of detecting the target
through the sensor unit. The network respondswith a random-
access response, assigning a temporary identifier (RA-RNTI)
to the UE to identify itself and facilitate channel estimation
in subsequent messages.

• Transformation neural network: Fig. 2 illustrates the
GPS and radar design of the mapping transformation
neural network. By parsing the controller area network
information generated by the GPS and radar mod-
ules, eight types of object state information can be
derived [43]. This information represents the network’s
input layer and includes angle, longitudinal distance,
transverse distance, longitudinal velocity, transverse
velocity, category, length, and width. A network output
needs to identify the bounding box corresponding to
the object detected by GPS and radar in the image.
Therefore, the output layer of the transformation neural
network is set to four, which contains the coordinates of
the upper left and lower right corners of the bounding
box. As shown in Fig. 2 the mapping transformation
neural network consists of a convolution operation,
a residual network with 34 parameter layers, and
fully connected layers. The convolutional layer has a
single input channel, four output channels, and a 1 ×

2 convolution kernel, with a step size of two. By using
the residual module [44], the deep-level features can
be merged with the shallow-level features. As a result,
the deep-level feature map and the shallow-level feature
map are superimposed, allowing the number of param-
eters to be reduced while maintaining high network
performance.

• Early fusion detection In ‘‘Task1’’, to enhance target
detection accuracy, speed, and multi-target tracking in
real-time, the multi-source object detection network
(MS-YOLO) [43] results from the COCO dataset [45]
are applied to enhance target detection accuracy and
meet the data transmission delay. MS-YOLO is used for
fusing data frommultiple sensors, whereby the extracted
features of the multiple sensors are combined to
implement the object detection model. The MS-YOLO
network constructs a double backbone structure based
on GPS, radar, and image feature extraction in the early
stages, which is then used for later fusion to improve
detection accuracy. Fig. 3 depicts a schematic diagram

of the MS-YOLO network in which (Focus) is a slicing
operation, defined by the width and height of the feature
map. Convolution batch normalization Leaky ReLU
(CBL) is the standard convolution layer, consisting of
two-dimensional convolution, batch normalization, and
an activation function, which here uses LeakyReLU.
Cross Stage Partial Network (CSP) consists of various
bottlenecks and several standard convolution layers.
Spatial pyramid pooling (SPP) enables the combination
of local and global features. In this network, there
are three layers: a middle layer, a backbone layer,
and a detection layer. The backbone is an organized
combination of several modules, such as Focus, CBL,
CSP, and SPP. The key function of the backbone
is feature extraction; the middle layer is an orderly
combination of CSP, CBL, and upsampling modules;
and its primary function is feature fusion. The detection
layer consists of a convolution block that receives three
groups of features from the middle layer, and in turn
generates three groups of detection results, as shown in
Fig. 3.
Let’s assume the surrounding FoV of the SRU side can
be represented by Fv[k] ∈ RH×W××V , where H ,W are
height and width for V number of views. Therefore, the
data and feature level fusion result for a single SRU at a
given time k can be estimated as follows

f (x)k1 = [f1, f2, . . . , fm]
f (x)k2 = [f1, f2, . . . , fm] . . .

f (x)kn = [f1, f2, . . . , fm]

(1)

where fm denotes the feature fusion vector and n is the
number of extracted features.
Meanwhile, on the radio side, we consider an uplink
massive MIMO system with Nrx receiving antennas at
the SRU that serve uth users. An uplink transmission is
represented by the received signal on the SRU side at a
time k

xs =

K∑
k=1

Hkcksk + n, (2)

where Hk ∈ CNSRU×NUE represents the uplink channel
response matrix, ck ∈ CNUE×1 indicates the combined
matrix on SRU side, Sk = {sk,1, sk,2, · · · , sk,|Sk |}
describes the signal transmitted with the uplink transmit
power E[||xk ||2] ≤ P, n ∼ CN (0Nr , σ

2INr ) is the
Gaussian additive noise.

III. HYDRA DISTRIBUTED UNIT (H-DU) ARCHITECTURE
The H-RAN paradigm disaggregates the gNodeB function-
alities into function entities where the lower layer protocol
stack, decision level fusion layers, and AI/ML D-sub-
engines are located at the H-DU. In the H-RAN vision,
the H-DU is a logical node that hosts various network
functions related to sensing, AI, and communication layers.
The H-DU plays a crucial role in the disaggregated RAN
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FIGURE 4. AI/ML D-engines, system architecture classifier.

FIGURE 5. AI/ML D-engines, system architecture decision level fusion.

architecture by providing a centralized processing entity
for managing and controlling multiple SRU functional-
ities. A single H-DU can support a cluster of SRUs,

(e.g., process numerous cells with one H-DU and various
SRUs, coordinate and manage multiple SRUs to support
carrier and data aggregation, quality of service (QoS)
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management, internet of things (IoT) applications, etc.).
As depicted in Fig. 1, the radio link control (RLC) layer, the
medium access control (MAC) layer and the physical layer
(PHY) are essential layers of the H-DU protocol stack [1],
[2]. In contrast, sensing/AI layers include features extraction
and decision-making (FEDM), sensing and communication-
based AI/ML D-engines decision-making (SCEDM), and
control and adaptive mechanisms (CAM) [1]. In the H-
DU architecture, preprocessing heterogeneous data involves
several steps to provide a means to account for missing
values, normalize, scale the data, and transform it into a
suitable format for analysis. By utilizing both sensor data and
communication parameters, the AI/ML D-sub-engines in the
H-DU gain a comprehensive understanding of the network
environment and can make data-driven decisions.

According to the H-RAN methodology, a single SRU
creates a robust data collection and integration pipeline for
managing and analyzing heterogeneous data from various
sources [1]. In this model, sensor data comes from GPS,
MMW radar, and cameras, providing crucial information
related to H-IA (e.g., environmental monitoring, location
information, obstacles, user behavior, etc.).

The standardizedH-fronthaul interfaces (H-FH) defined by
H-RAN vision [1] are used to coordinate the exchange of data
and control information between the SRUs and the H-DU.
Since the H-RAN components receive heterogeneous data
simultaneously. Therefore, portions of the pre-processing
for each type of data are required independently by the
H-DU components, and then all processed data is collected
in AI/ML D-sub-engines for training. In a heterogeneous
network, the H-DU protocol stack comprises different
layers and features designed to facilitate communication and
coordination among diverse elements within the network.
The H-DU protocol stack typically integrates components
from different technologies, allowing them to work together
seamlessly. Here’s a brief breakdown of how heterogeneous
data is handled in H-DU.

A. FEATURE EXTRACTION AND DECISIONS-MAKING
(FEDM)
The FEDM layer is responsible for several functions,
including collecting early data fusion sets from a cluster
of SRUs, feature extraction and selection, classification,
decision-level fusion, and decision-making, which refers to
the process of extracting relevant features and information for
further analysis. Convolutional neural networks (CNNs) are
well-known DL models capable of learning and representing
complex features automatically. Therefore, they are applied
to a wide range of problems in image classification, text
classification, speech recognition, and object detection [20].
As part of this stage, the major objective is to learn mean-
ingful representations from the fused information, thereby
optimizing the overall framework’s detection and recognition
accuracy. The feature selection algorithm uses the selected
features to filter the extracted features by choosing the most
relevant features that maximize accuracy. Fig. 4 demonstrates

the system architecture for feature extraction, selection, and
classifier for FEDM layers. The current model is divided
into three input groups, a feature extraction group using the
CNN model, a feature selection group based on the Aquila
optimizer algorithm [20] and a classifier group based on an
ML classifier. According to Fig. 4, the CNN structure consists
of 2 convolutional layers (Conv), two pooling layers, and four
fully connected layers (FC), with four batch normalizations
and one Softmax. Conv1 uses a rectified linear unit (ReLU)
[45] with 64 filters, a kernel of size three, and a stride of
size one. Conv2 incorporates an adaptive average pooling
layer. FC1, FC2, and FC3 are fully connected layers having
128, 128, and 64 neurons, respectively. FC1, FC2, and FC3
provide feature extraction layers to output the learned features
from the fused data, while FC4 is the final FC layer to output
the classification predictions. Four-batch normalization (BN)
involves normalizing and stabilizing inputs to a layer within
a neural network by adjusting and scaling the inputs.

Here’s a general overview of the steps involved: Assuming
that the output early fusion of the dataset of the cluster
of SRUs Fkear (t) = (F1(t),F2(t), . . . ,Fk (t)) are input to
the FEDM layer. From a set of SRUs, certain features
are extracted from the sensor data streams. Next, feature
extraction and selection are used to choose a subset of
the most relevant features from the fused dataset while
discarding irrelevant or redundant ones. This subset of
selected features should provide sufficient information for
analysis, classification, and modeling tasks. Assuming that
we have feth feature sets extracted from futh fused dataset
measured simultaneously, where each feature set consists of
dth samples as follows

f (x)1e = [k11 , k
1
2 , . . . , k

1
d ]

f (x)2e = [k21 , k
2
2 , . . . , k

2
d ] . . .

f (x)ne = [km1 , km2 , . . . , kmd ]

(3)

where kd denotes the feature vector and m is the correspond-
ing label. The output of uni-modal feature selections of each
sensor modality is used as data representation after passing
through the feature extractors.

Fig. 5 demonstrates a network designed for decision-level
fusion and decision-making estimation for various sensors
of an SRU. Decision-level fusion refers to the process of
collecting and aggregating results from multiple classifiers
to reach a final decision. As shown in Fig. 5 the classifier
results are used as inputs to decision-level fusion. The
integrated output of decision-level fusion represents the
combined decision or estimate regarding the (e.g., location,
velocity, direction, weather condition, etc.). This integrated
output is considered more robust and reliable compared
with the individual outputs of the classifiers, as it leverages
diverse sources of information and mitigates the weaknesses
of individual classifiers. At each input of decision-level
fusion, convolutional layers apply small filters that slide
over the input data, processing small regions at a time. This
allows them to capture local patterns and spatial relationships
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within the input data. Max pooling is employed for feature
down-sampling and spatial abstraction. Flattening refers to
the process of converting multi-dimensional input tensors
into one-dimensional vectors. FC layers enable end-to-end
learning of complex functions directly from input data to
output predictions. By stacking multiple fully connected
layers together, neural networks can learn hierarchical
representations of the input and automatically extract relevant
features for the task at hand. Softmax layers are used in
classification tasks to predict the class label and category of
input data.

B. BEAMFORMING FORMULATION
Creating a pre-defined beamforming codebook C database
involves systematically generating and storing a set of
beamforming vectors or matrices that represent different
directional configurations. These codebooks are then used
to optimize beamforming for communication links based on
the specific characteristics of the environment [52]. It should
be noted that, by understanding expected communication
scenarios, the codebook can be used to select appropriate
beam pairs based on real-time channel conditions [36].
However, in MMW communication systems, beamforming
performance can be significantly impacted by blockage
scenarios, especially in non-line-of-sight (NLoS) links where
obstacles obstruct the direct path between the transmitter
and receiver [10], [11], [12], [13]. Indeed, traditional
beamforming codebooks designed for line-of-sight (LoS)
scenarios may not perform optimally under blockage con-
ditions [14], [15], [16], [17]. Therefore, H-RAN vision is
designed with adaptive AI/ML strategies to respond to all
expected scenarios, including (1) Integrate environmental
sensing functionality to detect obstacles and predict blockage
scenarios, (2) implement specific beamforming codebooks
Ĉ tailored for NLoS scenarios. These codebooks should
take into account reflections and diffraction caused by
obstacles, (3) develop an adaptive ML to dynamically switch
between different codebooks according to perceived channel
conditions, (4) develop joint optimization strategies that
consider power adjustment, frequency band switching, and
SRU switching simultaneously in challenging environments
characterized by large obstacles.

In this subsection, we emphasize LoS scenarios and
their associated codebook, among all other promising
solutions, namely ‘‘Tasks’’ dedicated to the H-RAN solu-
tions. To this end, let us consider a downlink orthogonal
frequency-division multiplexing (OFDM) MMW communi-
cation system between an SRU and a UE. SRU and UE
are equipped with a uniform linear array (ULA) of MSRU
antennas, and NUE antennas, respectively. Considering the
hybrid beamforming architecture with baseband and RF
beamformer at the SRU and MRF RF chains to communicate
with U = {1, . . . , un} UEs. A discrete Fourier transform
(DFT)-based codebook simplifies beamforming when each
transceiver is connected to a single RF chain. The downlink

received signal for uth UE can be written as

y[u] = H[u]T f[u]s[u]

+

u∑
i=u′,u′ ̸=u

H[u]T f[u′]s[k ′] + n[u′], (4)

where H[u] =
∑
l = 1Mαla(φl , θ l ) is the MMW downlink

channel matrix at the uth UE, f[u] = FRFfBB denotes
the uth hybrid beamforming vector, s[u] ∈ CNs×1 is the
modulated symbols with total average transmitted power
E[s[u]s∗[u]] =

Pc
uNs

INs , and n[u] ∼ CN (0, σ 2) refers to
additive white Gaussian noise. Consider a set of all possible
combinations of precoders and combiners in the transceiver.
Context information from sensors can boost the sensing group
and reduce the space of sensed precoders and combiners.

The hybrid beamforming matrix F ∈ CM×U can be
formulated as F = FRFFBB, where and FRF ∈ CM×MRF is the
RF beamforming matrix and FBB ∈ CMRF×U is the baseband
beamforming matrix. The design sensor-aided beamforming
matrix is given based on predicted angles, which can be
formulated as{

BSRU,i = [aSRU(θi, φi) . . . aSRU(θNSRU,i , φNSRU,i)].
BUE,i = [aUE(θi, φi) . . . aUE(θNUE,i, φNUE,i )],

(5)

where θi and φi denote the predictive azimuth and elevation
angles, respectively{

aSRU(θi) = [1, ej2π1 sin(θi), . . . , ej(NRSU−1)2π1 sin(θi)]T.

aV(φi) = [1, ej2π1 sin(φi), . . . , ej(NV−1)2π1 sin(φi)]T.

(6)

We assume the MMW massive MIMO channel between
the SRU and UE for the discrete-time narrowband channel
scattering cluster model can be expressed as [53]

Hu = µ ×

Nc∑
i=1

Nra∑
k=1

ζi,kαsr
(
φsri,k , θ

sr
i,k

)
× α∗

u
(
φui,k , θ

u
i,k

)
. (7)

where µ =

√
NtxNrx
NclNra

denotes the normalization factor
based on the total number of scattering cluster Nc and the
number of multi-paths within a cluster Nra and the number
of multi-paths within a cluster. ζi,k refers to the complex
path gain associated with the kth ray in ith clusters. The
αsr (φsri,k , θ

sr
i,k ) indicates the angle of arrival (AOAs) at each

SRU and α∗
u (φ

u
i,k , θ

u
i,k ) is the angle of departure (AODs at each

UE. Array response vectors at the transmitter and receiver can
be formulated by

asrtx (φ) = ξtx

[
1, ej

η
λ
cosφ

, · · · , ej(Nsrtx−1)
η
λ
cosφ

]T
,

aurx (θ ) = ξrx

[
1, ej

η
λ
cos θ

, · · · , ej(Nurx−1)
η
λ
cos θ

]T
,

(8)
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where ξtx , and ξtr are 1√
Nsrtx

, 1√
Nsrrx

, respectively, and η =

2πd is the inter-element spacing.
Hence, we consider a downlink OFDM MMW system,

which relies on SRUs to serve UEs in its coverage area. The
SRU and the UE are equipped with Nt andMt antenna arrays,
respectively. Assuming fixed beam codebooks.
CSRU = {f1, f2, . . . , fi} and CUE = {w1,w2, . . . ,wj}, i = j

at the transmitter and receiver sides, consecutively.
Assume that CSRU is the beam codebook adopted by the

SRU, which can be expressed as

CMSRU
=

1
√
M

[
ejθ1 , ejθ2 , . . ., ejθM

]T
. (9)

where θm is the phase shift chosen from a finite set,
by considering the pair (i, j) ∈ CSRU × CUE of precoder and
combiner vectors.

IV. AI/ML D-ENGINES
A. SPARSE MULTI-TASK LEARNING-BASED AI/ML
D-ENGINE
We propose SMTL as a component of the AI/ML D-engine
for federated learning [54] to perform multiple tasks simul-
taneously. Unlike traditional supervised learning, SMTL
attempts to learn a function that maps from the multi-input
sample space to multi-output spaces, in which each output
addresses a specific objective. The proposed SMTL model
is designed to perform multiple tasks simultaneously during
training. Each task has a specific set of labeled data, and
the model learns to perform all tasks jointly. As shown
in Fig. 6, the input to the SMTL model is divided into
several groups [group1, group2, group3, . . . , groupn] and
each group represents a specific observation of input features.
At each group, the input features for the neural network
model are derived from observations collected up to that point
in time. This approach is particularly useful when dealing
with tasks that involve sequential or time-series data, where
observations occur at distinct time points. The SMTL model
is trained to performmultiple tasks simultaneously, with each
task corresponding to a particular prediction or classification
problem. For each group, the model produces task-specific
outputs based on the observed input features and the learned
representations captured by the network. As depicted in
Fig. 6, the SMTL model has a shared layer structure shared
by all functions. These shared layers capture features and
representations applicable to multiple tasks. This common
representation enhances the model’s generalization across
different domains, as well as decreases the number of network
parameters, and the knowledge gained from one task can
act as an inductive bias for another. We designed SMTL by
employing clustering algorithms to group users with similar
environmental characteristics. Predict the optimal solution
for each user cluster. Furthermore, we break down the solu-
tion into multiple tasks. [Task1, Task2, Task3, . . . , Taskn],
thereby reducing the complexity of predicting the outcome.
Here’s a breakdown of the key tasks that represent some of
the promising solutions for the H-RAN network.

• Non-blockage scenario, optimal beam pair selection
[Task1] : In this setting, the SMTLmodel maps between
input user online sensing information [groups] and
an optimal beam index from dedicated non-blockage
adaptive environment-aware beamforming codebooks,
tailored to the LoS scenario [36].

• Blockage scenario, optimal beam pairs selection
[Task2]: In this setting, and under blockage scenarios
caused by small or medium-sized obstructions, the
SMTL model maps between input user online sensing
information [groups] and an optimal beam index from a
dedicated (blockage adaptive environment-aware beam-
forming codebook). Blockage codebook vectors should
be designed to account for reflections, diffractions, and
other effects caused by blockages, tailored to the NLoS
scenario. It may include beamforming patterns that are
more robust to obstructions. These patterns may include
wider beams or beams directed at specific incidence or
alignment angles to eliminate blockage effects [18].

• Special scenarios, adaptive strategies
[Task3, Task4, Task5, . . . , Taskn]: In this setting,
if the signal is blocked by a large obstacle or in a scenario
of adverse weather conditions such as rain and snow,
adaptive strategies may be necessary to implement,
such as power adjustment [Task3], frequency switching
[Task4], SRU switching [Task5] according to input
real-time sensing data, and communication parameters
to contribute to high-quality communication links. First,
by monitoring online sensing information and RSS,
the system can adaptively adjust transmission power
to compensate for signal loss. Second, the system
can dynamically switch between frequency bands
to maintain reliable communication. Lower-frequency
bands, such as sub-6 GHz, may be more resilient to
attenuation caused by large obstacles or precipitation.
Third, the H-DU can dynamically switch between its
associated SRUs to ensure reliable communication. This
is achieved by referencing the online feedback reports
provided by each SRU.

As illustrated in Fig. 6, the SMTL model divides the
network into three sub-layers (sparse features generation
(SFG) sub-layers, common feature selection (CFS) sub-
layer, and task-specific deep feedforward neural network
(TSD) sub-layers). First, the sparse feature generation sub-
layers (SFG) are designed to reduce the number of trainable
weights in neural networks, particularly in layers involving
interactions between different sets of features, which is
essential for managing model complexity and avoiding
overfitting. As shown in Fig. 6, current SFG neural networks
sparse the feature generation layers into three groups
(position/direction group, velocity/weather condition group,
and blockage/object distinguishing group). However, in the
SMTL model, a variety of input features [groups] can be
incorporated according to the tasks to be performed, which
allows for the adaptation and customization of the network
architecture to suit specific objectives or requirements.
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FIGURE 6. AI/ML D-engine system architecture for a sparse multi-task learning (SMTL)-based Task 1 approach.

Sparse neural networks enable the selection of ‘‘task-specific
features’’ by activating only relevant connections or neurons
based on the requirements of the given task. By incorporating
features that are most informative or discriminative about the
situation at hand, the network can focus its resources more
efficiently. For further clarity, through the combination of
multiple sets of ‘‘task-specific features’’ into a single sparse
neural network, multi-task learning can be achieved. This
approach allows the network to simultaneously learn and
performmultiple solutions, leveraging shared representations
and improving generalization across domains of interest.
Indeed, SMTL networks are designed to reduce the number
of active connections or parameters in the network, making
them more efficient. To be more specific, sparsity in the
SMTL architecture allows it to activate or deactivate certain
connections in response to input features. This can help the
network adapt to different combinations of user conditions
and reduce the overall number of trainable parameters.

Furthermore, conditional neural networks are used with
each sparse feature generation layer, which involves

modifying the network’s architecture or parameters in
response to certain conditions or input features. We designed
the SMTL-based AI/ML D-engine with conditional branches
and layers that activate in response to specific input features.
For example, certain neural network branches will activate
only when the current scenario is within a classification
(a particular category), allowing the network to specialize
in handling this scenario. For greater clarity, for instance,
in the (blockage/object distinguish) group, distinguished
parameters are triggered only when the blockage scenario
is within (a high category) (e.g., blockage by bus, truck,
or building, e.g.) enabling the network to specialize in
handling obstructed scenarios. We consider the task to be a
multi-label classification problem, in which each instance can
be associated with multiple classes rather than a single class.
This might help capture essential information in a lower-
dimensional environment, thereby reducing computation
complexity.

It is worth noting that fewer trainable weights reduce
computational complexity throughout the training process
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and inference. This is crucial for deploying models in
resource-constrained environments, such as edge devices
or mobile applications, where computational efficiency is
a significant consideration. Training a model with fewer
trainable weights can lead to faster iterations, allowing for
faster experimentation and model development. Therefore,
we designed the SMTL with task-specific modifications
(classification tasks) to the output layer, which can effectively
tailor the neural network to the specific requirements of
the problem. For further simplification, we introduced
several thresholds to the SMTL model. For instance,
velocity thresholds are used to group users into various
speed categories (e.g., low, medium, high). The network
can then predict the solution for each speed category.
Meanwhile, blockage thresholds are used to categorize
users into different levels of blockage (e.g., low, medium,
high) equivalent to the activation of network output tasks
[Task1, Task2, Task3, . . . , Taskn], respectively. Thresholds
allow us to reduce the number of distinct outputs based on
different blockage probability levels. The network predicts
the activation of each task according to the threshold level.
Furthermore, we group user directions into ranges (e.g., 0-
45 degrees, 45-90 degrees, 90-135 degrees etc.). To further
reduce the number of trainable parameters, and complexity,
the network is designed as a hierarchical structure where
[groups] predicts the action, thereby activating or deactivating
the specific feature. Moreover, subsequent levels are used to
determine the activation of tasks within each category.

Note: The output might come from two or more output
tasks simultaneously, depending on the current scenario.
To illustrate, for example, in the first scenario, assuming (G3)
confirms that there is no obstruction (G3 = 0), [Task1]
will be initiated to choose the optimal beam pairs through
(the non-blockage codebook). Meanwhile, if (G2) reports
unfavorable weather conditions (G2 = 1), [Task3] is also
activated to adjust the transmission power in accordance with
the recorded conditions

βi,j,e =


G1 = 1, if i−th , T1 is selected
G2 = 1, 0
G3 = 0, if e−th , T3 is selected.

(10)

Here T1, T2, and T3 refer to [Task1], [Task2], and
[Task3], respectively. Furthermore, (G1) represents [group1]
(position/direction) features, (G2) denotes [group2] (veloc-
ity/weather condition) features, and (G3) refers to [group3]
(blockage/object distinguishing) features. And (i, j, e) rep-
resent the activation parameters of [Task1,Task2,Task3],
correspondingly.

In the second scenario, if (G3) indicates the presence of
an obstacle (G3 = 1), the procedure for detecting the type
and size of the obstacle will be initiated (distinguishing
objects). If the detected obstacle falls within the (small or
medium) category, then [Task2] will be activated to select the
most suitable beam pairs through (the blockage codebook).
At the same time, if (G2) reports adverse weather conditions
(G2 = 1), then [Task3] must also be activated to adjust

the transmission power according to the recorded weather
conditions

βi, j, e =


G1 = 1, 0
G2 = 1, if j−th , T3 is selected
G3 = 1, if e−th , T3 is selected.

(11)

Note: The blockage codebook contains a set of predefined
patterns or configurations that describe the possible scenarios
of signal blockage in the communication environment. These
configurations may include information about the size, shape,
location, and material properties of obstacles that can cause
blockage, which will be investigated in future works as
[Task2] one of the promising H-RAN solutions.
In the third scenario, given that (G3) indicates the presence

of an obstacle, an obstacle detection procedure will be
activated (distinguishing objects). If the detected obstacle is
within the (large) categories, then [Taskn] will be activated
to select the most suitable solution from a predefined set
of solutions (e.g., frequency switching, SRU switching,
wide beam transmission, etc.), which will be elaborated
extensively in future work. However, at the same time, if (G2)
identifies adverse weather conditions, then [Task3] will be
triggered to adjust the transmission power based on the
recorded weather conditions

βi, j, e =


G1 = 1, 0
G2 = 1, 0
G3 = 1, if e−th , T3 is selected.

(12)

To be more precise, attention mechanisms allow the
network to focus on specific parts of the input sequence when
making predictions rather than using all the input features at
once. This can help the network focus on relevant information
for different scenarios. Moreover, to prevent overfitting, the
dropout technique [55] is used as a regularization mechanism
in SMTL-based AI/ML D-engine, particularly at the hidden
layers. Dropout is a form of regularization that involves
randomly ‘‘dropping out’’ a fraction of neurons during each
training iteration. This means that the output of those neurons
is set to zero, effectively removing them from the network for
that iteration.

Accordingly, to clarify the proposal more thoroughly,
during the first stage, by deploying various sensors, the
H-RAN becomes adaptive according to user behavior
in real-time, as well as the properties of the surround-
ing environment. Given a set of observed data D :=

{(pi), (di), (vi), (wi), (bi), (oi) : i = 1, . . . ,M}, which
represent real-time environmental properties (e.g., localiza-
tion, direction, velocity, weather conditions, blockage status,
objects distinguished), respectively. Consisting of a set of
input samples X := {xi ∈ Rp

: i = 1, . . . ,M}.
As shown in Fig. 6, the detected and predicted features by

the first stage of the AI/ML D-engine are used as input to
feed the second stage of the AI/ML D-engine. By separating
and merging the input features into three groups before
feeding them into the second stage, feature input arrays can be
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represented as G[1](xi, x̂i)(k) ∈ [p(xi),d(̂xi)]
(k) (position and

direction) observations that feed into the first neural network
‘‘NN-1’’, G[2](yj, ŷj)(k) ∈ [v(yj),w(̂yj)]

(k) (velocity, and
weather conditions) observations that feed into the second
neural network ‘‘NN-2’’, G[3](ze, ẑe)(k) ∈ [b(ze), o(̂ze)]

(k)

(blockage status, and objects distinguishing) observations
that feed into the third neural network ‘‘NN-3’’, which can
be defined as

G[1](xi, x̂i)(k) =


x(k)i (1)
x̂(k)i (2)

...

x(k)i (n)



G[2](yj, ŷj)(k) =


y(k)j (1)

ŷ(k)j (2)
...

y(k)j (n)



G[3](ze, ẑe)(k) =


z(k)e (1)
ẑ(k)e (2)

...

z(k)e (n)

 . (13)

Specifically, (xi, x̂i), (yj, ŷj), and (ze, ẑe) refer to the input
vector features at the given time (k) into ‘‘NN-1’’, ‘‘NN-2’’,
‘‘NN-3’’, and ‘‘NN-n’’, respectively.

In the second stage, an SMTL is used to learn the mapping
between the user’s online environmental sensing information
and an optimal predefined solution, which is classified as a
statistical and probabilistic learning-based scheme. As shown
in Fig. 6, the active environmental properties are fed as
inputs to the feed-forward, fully interconnected SMTL layers.
SMTL predefined solutions are divided into several specific
classification tasks, and each task is equipped with q neurons
at the output layer. Neurons in an FC layer collectively learn
to represent complex features of the input data through the
combination of weighted inputs and activation functions.
Each neuron specializes in detecting specific patterns and
features relevant to the task at hand. For further clarification,
for instance, in [Task1], these neurons correspond to all
possible combinations of the MSRU and NUE beams at
the SRU and UE, respectively. Each group has lth input
layers which are responsible for receiving input features, qh
represent hidden layers with nh neurons at each hidden layer.
The non-linear function applied to the output of each neuron
in a neural network is known as the activation function.
The activation function introduces non-linearity to the model,
allowing it to learn complex patterns and relationships from
the data. In a neural network, each layer consists of activation
functions fi, weightswi, and biases bi. The hyperbolic tangent
[tanh] function [56] is used as a non-linear activation function
in hidden layers, which can be defined as.

tanh ax =
eax − e−ax

eax + e−ax
. (14)

where ax, and −ax represent the value being passed into the
function, which represents the weighted sum of inputs from
the previous layer, with a bias a. The [tanh] function is applied
element-wise to the weighted sum of inputs and biases before
being passed to the next layer. The function squashes its input
values into the (−1,1) range, which mitigates issues like the
vanishing gradient problem. The [tanh] activation function
introduces nonlinearity to the network, allowing it to model
more complex relationships in the data [36]. The output (O[i])
of the ith layer in a neural network with [tanh] activation in
the hidden layers can be expressed as [57]

O[i] = [tanh](
n∑
i=1

ŵixi + bi), i ∈ {1, . . ., n}. (15)

where [tanh] is the activation function, ŵ denotes the weight
matrix, xi is the input features and bi is the bias vector.
In the proposed SMTL-based AI/MLD-engine, mini-batch

gradient descent [58] is applied to split the entire training
dataset into smaller mini-batches. It updates the model
parameters only with a mini-batch data set at each iteration.
This makes it well-suited to large datasets and computational
efficiency, as it allows parallel processing and utilizes matrix
operations. During each training iteration, a random subset of
neurons in the hidden layers is selected to be dropped out [55].
By doing so, those neurons are temporarily removed from
the network (set to zero), and the remaining neurons must
learn to compensate for their absence. On the other hand, the
outer product [59] is used as a binary operation that takes
two vectors as input and produces a matrix as output. Matrix
elements are obtained by multiplying each element of one
vector by every element of the other vector.

aT ⊗ bT = aT b =

 ad1bd1 · · · ad1bdk
...

. . .
...

adkbd1 · · · adkbdk

 . (16)

where two feature vectors a = (a1, a2, . . . , an)T and b =

(b1, b2, . . . , bn)T are the input feature vectors data to the
neural networks model non-linear relationships between two
feature vectors.

In addition, the Softmax activation function [60] is
employed for multi-class classification problems, where
the goal is to assign an input sample to one of several
classes. Each output of the Softmax function represents the
probability of the corresponding class. Note that the number
of neurons in the output layer is set to 2, representing the two
classes (‘‘optimal (1)’’ and ‘‘not optimal (0)’’).
In [Task3] case, assuming F(k)

i is final data fusion,
the Softmax activation function is applied to predict the
optimality of each beam pair as P(k)

o = Softmax(F(k)
i ), where

SoftMax activation function is defined as

Softmax (x)i =
exi∑|P |

j=1 e
xj

, i ∈ P{1, . . ., n}. (17)

where x is codebook elements, and P indicates a list of
beam candidates from a codebook C, in which P-th element
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indicates the probability for them being the optimal beam
pairs

P = {(tn, rm)|tn ∈ Ctx , rn ∈ Crx}. (18)

where Ctx and Crx are the size codebooks at transmitter and
receiver, respectively.

B. TASK-1: NON-BLOCKAGE SCENARIO, OPTIMAL BEAM
PAIR SELECTION
In this subsection, we demonstrate only ‘‘Task1’’ among
the several tasks assigned to the SMTL-based AI/ML-D
engine, while [Task2, Task3, Task4, . . . , Taskn] will be
investigated in future research. In this approach, ‘‘Task1’’
leverages the power of AI/ML D-engines to learn complex
relationships between input data and the optimal beam
pairs from a predefined non-blockage codebook, allowing
the system to adapt to various real-time scenarios in the
environment. Accordingly, in ‘‘Task1’’, only ‘‘NN-1’’ is
active which implies that the input to SMTL comes only
from ‘‘group-1’’ (position and direction) features, whereas
‘‘NN-2’’ (velocity, and weather conditions) features, and
‘‘NN-3’’ (blockage status, and objects distinguishing) fea-
tures are in a dropout state. For further clarification, this
means that the sensor system in the SRU(m) which is located
at a designated position and at a given time kth, observes
that the user UE(n) is present at the location (x,y), facing
the direction (z), and moving at a speed of (0), with suitable
weather, and no obstacle blocking the LoS beam, thus the
object distinguishing algorithm is ineffective.

The input data from ‘‘NN-1’’ is fed through the trained
model using a forward pass. In a neural network, each layer
contributes to specific input processing. The output values
from the neural network represent the model’s predictions
or probabilities for each beam pair in the codebook that
is most appropriate for the given user information. For the
current user scenario, the beam pair with the highest predicted
probability is considered the recommended beam pair

bp = argCM×N

i,j
(oi,j). (19)

The network predicts the top K beams for each direction
range, employing a hierarchical approach where the network
first predicts a coarse category of beams (e.g., sector-level),
and then refines the prediction within that category to select
the top K beams. Indeed, static, and mobile scatterers in the
communication environment may change signal propagation
properties by blocking or reflecting paths [16]. Therefore,
H-RAN leveraging online sensing information becomes a
highly nonlinear classification problem. Probabilistic and
machine learning strategies are common approaches to
extracting knowledge about the communication environment
and beam patterns from training data [61]. These approaches
leverage statistical and computational methods to model
and learn patterns, relationships, and probabilistic behaviors
from complex nonlinear input-output data. Using pre-defined
codebooks simplifies the beamforming process, making it

more practical for implementation in real-time communica-
tion systems.

The baseband beamforming matrix for requesting
and detecting unblocked users is designed as FBB =

[fBB1 , fBB2 , . . . , fBBK ], where fBBk ∈ RNRF×1, and the RF
beamforming matrix FRF can be expressed as FRF = Cζ

for unblocked status.
Accordingly, we consider the Butler matrix-based hybrid

architecture [62] to be used at each SRU, where the total
number of antenna elements is set to M , and each MRF RF
chain is configured to connect to one of the DFT beam ports.

where C refers to the DFT codebook matrixs

C =
1

√
M


1 1 · · · 1

1 ej2π
1
M · · · ej2π

M−1
M

...
...

...

1 ej2π
M−1
M · · · ej2π

(M−1)2
M

 . (20)

where ζ = [ζ b]b∈J ∈ CM×MRF is beam selection metrics.
We used a reinforcement learning framework [63] that

learns a codebook of beam patterns optimized to serve
users in the particular scenario. The proposed framework
autonomously optimizes and allocates codebook beam pat-
terns in response to surrounding environmental properties.
The categorical cross-entropy loss function [64] is employed
in training neural network models. It measures the dissimi-
larity between the true distribution of the target classes and
the predicted probability distribution produced by the neural
network, as follows.

L(L, L̂) = −

NSRU∑
i=1

NUE∑
j=1

Li,j log(̂Li,j). (21)

where L and L̂ represent the beam pair labels, and the neural
network’s output respectively.

The optimum beam label is given by b∗
= (i∗, j∗) =

argmax(i,j) yij ⊂ Ct × Cr The output layers are designed
to have neurons corresponding to classification classes.
On a case-by-case basis, we consider the prediction from
the SMTL framework as well as the channel efficiency to
properly adjust the beam search space. Thus, the control
variable beam search space is not arbitrarily chosen, but
tightly coupled to scenario constraints. Assume that the
matrix labeled RNRF×1

∈ {0, 1}Nt×|B| encodes the vector
with binary representation encoding of B beam pairs, where
the optimum beam pair is equivalent to 1 if the transmitted
symbol is matched to the RF chains ki ∈ KS , and the rest
are 0. Since only one optimal beam is encoded per sample,
thus only one class per sample is encoded.

In each task output layer, the Softmax function is used as
the activation function to predict the probability of each beam
pair being the most optimal, i.e. providing the highest RSS.
The Softmax function takes a vector of raw scores (logits) and
transforms them into a probability distribution. The output of
the last hidden layer, before applying the Softmax function,
is a vector of raw scores or logits. Each element of the
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vector corresponds to a different beam pair, in which the
higher the score, the more likely it is to be the most effective,
while each element represents the predicted probability of the
corresponding beam pair, such that the probabilities sum to 1

fi(x) =
exi
n∑

k=1
exk

. (22)

The output Ok of the entire neural network, considering all
non-linear functions in hidden layers, can be expressed as

Ok
= fL(wL · fL−1(wL−1, . . . , f1(w1 · x

+ b1) + bL−1) + bL). (23)

here x is the input to the neural network, wL refers to the
weight matrix for the output layer, and bL corresponds to the
bias vector for the output layer.

Since each entry in the predefined codebook represents
a specific beamforming direction and configuration. Each
example in the dataset consists of sensing information (input)
and the corresponding favorable beam pair (output). The
neural network architecture is designed for the input layer to
have neurons representing the features of the input sensing
data, and for the output layer to have neurons corresponding
to the number of entries in the codebook

βi,j =

 1, if (i, j) = argmax
M ,N

CM ,N

0, otherwise .
(24)

We intend to select a small set (PSub ⊆ P) of K
beam search candidates. Therefore, we use ((t∗, r∗) ∈

PK ) to identify the highest beam configuration ((t∗, r∗))
to maximize the normalized signal power. As a result,
we consider a hybrid beamforming scheme with fixed-size
codebooks for both transmitter and receiver antenna arrays
as follows {

Atx = {t1, . . . , tN }.

Brx = {r1, . . . , rM }.
(25)

Assume that N ,M are the number of transmitter and
receiver codebook components, respectively. Each codebook
element specifies the beam direction used by transmitter and
receiver antenna arrays for a specific coverage area. As a
result, all potential beam pairs P can be expressed as

P = {(tn, rm)|tn ∈ Atx , rn ∈ Brx}. (26)

With the assumption that |P| = M × N , and based on
the spatial information coordinates (t∗, r∗) ∈ PK extracted
from the fusion of data, the normalized signal power can be
calculated as follows

f(t∗,r∗) = |wHtmHwrn |
2. (27)

where the weights wtn and wrm represent the corresponding
beam weight vectors associated with the beam element
|wtm | ∈ tn and |wrn | ∈ tm, respectively. H ∈ RM×N indicates
the channel matrix concerning the transpose conjugate.

Since optimal pair beam search is restricted to a small set of
beam candidates PK . Hence, maximizing normalized signal
power can be formulated as

PK = argmax
I⊆P,|I |=K

f((t∗, r∗) ∈ I ). (28)

Accordingly, the throughput between a beam pointing
toward optimal beamforming can be calculated as

T ⟨i,j = η log 2
(
1 +

Ptxgi,j(φ)
Bn[u]

)
. (29)

where η refers to an attenuation factor, Ptx is the transmit
power, gi,j(φ) denotes the beamforming gain of the beam
directed towards an azimuth angle, B corresponds to the
bandwidth, and n[u] represents noise vector.

V. COLLABORATIVE-BASED H-RAN
A. COLLABORATIVE-BASED SENSING APPROACH
When distributed sensors independently detect a target or
an event, the system can have increased confidence in the
information’s accuracy. Collaborative signal processing and
fusion approaches are crucial for the integration of distributed
data among network nodes, as well as for the fusion of
multiple modalities of data between sensor nodes, to make
accurate and reliable decisions [40]. Collaborative SRUs
are orchestrated by the associated H-DU during regular
network operations. Accurate target detection and tracking
constitute one of the key components of communication
applications. Moving targets cause data changes in the time
domain, which are detected differently by sensors distributed
throughout the H-RAN network. Therefore, collaboration
techniques are required both within a sensor node and
across nodes to aggregate such various types of data [46].
In the H-RAN vision, collaborating between distributed
SRUs allows combining information from a variety of sources
to compensate for individual SRU limitations. Effectively
integrating information frommultiple sensors enhances target
detection accuracy and reliability. It also contributes to a
more comprehensive understanding of the surrounding envi-
ronment. Collaboration enables the pooling of information
from various SRUs, each with its strengths and weaknesses,
thereby facilitating information cross-verification. Assume
that the local posteriors formed in SRU nodes are the densities
of labeled random finite sets X1, . . . ,Xns where ns denotes
the number of sensors in each SRU, and the labels of the
same objects in each labeled random finite set are the same.
Assume that the FoV of the sth sensor by FoVs ∈ X, and its
detection probability can be formulated by [46]

Pr(X (ℓ)
2 = ∅

∣∣∣X (ℓ)
1 = ∅)

= 1 −

r (ℓ)k|k−1

[
1 − ⟨p(ℓ)k|k−1, pD2⟩(FoV2\FoV1)

]
1 − r (ℓ)k|k−1⟨p

(ℓ)
k|k−1, pD2⟩(FoV2\FoV1)

, (30)

where r (ℓ)k|k−1 denotes the probability of existence at the

time k|k − 1, and
r (ℓ)k|k−1[1−⟨p(ℓ)k|k−1,pD2 ⟩(FoV2\FoV1)]

1−r (ℓ)k|k−1⟨p
(ℓ)
k|k−1,pD2 ⟩(FoV2\FoV1)

refers to the
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probability of the existence of target ℓ at node s = 2. If the
two fields of view are completely separate, then FoV2 ∩

FoV1 = ∅
As a result, in scenarios where certain SRU sensors have a

limited FoV, cooperative sensor fusion enables the integration
of information frommultiple sensors. This results in a broader
understanding of the environment, and a higher confidence
level in detection.

B. COLLABORATIVE-BASED RAN APPROACH
In order to reduce service provision latency and save
backhaul network bandwidth, H-RAN-based edge computing
relocates some computing functionalities away from the
centralized cloud [47], [48]. In this view, we consider col-
laborative service placement through H-RAN-enabled dense
SRU networks, in which a single H-DU optimizes service
placement decisions collaboratively [49] to address various
challenges in SRUs, such as processing heterogeneous data,
spatial demand coupling, and coordination, to name a few.
Collaboration-based H-RANs are characterized by their
ability to provide decentralized services that are compatible
with geographically dispersed SRUs. Consider a dense SRU
network of sth SRUs are connected to an HDU that provides
communication, sensing, IoT, and edge servers. Each H-DU
has a set of subscribed user equipment (UE), which are
authorized access services offered by H-DU. Due to the dense
deployment of SRUs, a UE may be within the coverage of
several other SRUs (though inaccessible) in addition to its
home SRU. Therefore, for uth UE, let us assumeUm ⊆ U to be
the set of reachable communication ranges for SRUs. Thus,
SRUsi,j can potentially cooperate to serve commonUEs.With
this definition, the network can be described as an undirected
graph based on the edge between neighbors SRUsi,j and
neighbors hops. According to the UEs’ predicted/reported
service demand, the H-DU periodically updates their service
placement decisions. The H-DU leverages virtualization
capabilities to construct execution environments, e.g., virtual
machines or containers as part of the service placement
process [12]. Once a service application is selected for
placement at anH-DU, virtualmachines are configured by the
application’s resource requirements (e.g., RAM, CPU, data
storage, I/O, etc.) [50]. However, various services demand
different amounts of computational resources, as determined
by the service provider. Considering the heterogeneity of
data and services and assuming that there are D where
D = {1, 2, . . . ,D}, and S where S = {1, 2, . . . , S}, types
of heterogeneity of data and services, respectively. Without
losing generality, we assume a decision-making problem
based on a collaborative service placement [21] considering
that all SRUs are obedient and fully cooperative. Through
collaboration with other SRUs, a UE can offload computation
tasks to H-DUs other than its home SRU. Therefore, the
placement of all H-DUs should be considered jointly to
optimize computing resources. By choosing the optimal
collaborative service placement, collaboration SRUs aim to
maximize distributed service utility.

C. RESILIENT INFERENCE
An intelligent NG-SRAN must ensure the accuracy of
current information to provide precise information about the
target state at any given time. The SRU receives global
real-time multimodal data from a variety of sensors. SRUs
require inputs from all sensor modalities at any given time
to achieve high accuracy. However, even though using a
collaborative-based sensing approach [40], it may not be
possible to do so at a particular time due to climatic changes,
blockages, or hardware problems that prevent data from a
particular sensor from being available at that moment [46].
For instance, if a neural network is partitioned and allocated
over physical nodes, the failure of physical nodes affects
the neural units placed on those nodes, which results in a
significant performance drop [39]. Therefore, a multimodal
data technical adaptation is developed that compensates for
the lack of data from a given sensor. This is done by
utilizing copies of earlier data from the same sensor. By using
historical information, resilient inference is enabled with
minimal performance degradation. Therefore, a pipeline of
data adaptation modalities is used when a sensory data type
is missing at a particular time. The so-called backtracking
AI/MLD-engine retrieves the last available historical data for
that sensor for the same scene and applies it to the inference
process [51]. Incorporating a diverse set of historical data
during the training phase helps neural networks learn from
a wide range of scenarios. This diversity can enhance the
model’s ability to generalize well to new, unseen data
during inference. Transfer learning involves using pre-trained
models on large datasets for a specific task and fine-tuning
them for a target task. Historical information, in the form
of pre-trained models, can be transferred to another task,
speeding up the training process and potentially improving
performance.

VI. NUMERICAL EVALUATIONS AND SIMULATIONS
In this section, we demonstrate the performance enhance-
ments and features that each proposed technique and
architectural design can offer. Afterward, we evaluated
the proposed solutions with each enhancement, compared
them against existing 5G NR standards, and demonstrated
their superiority. To compare performance, we consider
classification accuracy, throughput ratio, and access time.
In the simulation scenario, the SMTL attempts to find the
optimal beam pair for only the LoS scenario ‘‘Task1’’. The
surrounding environment is accurately observed, and all
environmental events are captured by GPS, MMW radar, and
camera providing three-dimensional vision.

A. DATASET
This section introduces the datasets we used to evaluate
the H-RAN framework. To leverage AI/ML D-sub-engine
vision for the proposed H-DU architecture, it is imperative
to have sufficient and appropriate datasets for data analysis.
In scenario simulations, data is collected from the same scene
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FIGURE 7. Simulation results.

and captured by GPS, MMW radar, camera, and MMW
communication channels.

We consider the outdoor urban environment presented in
the ViWi dataset [66] for simulation evaluation. A simu-
lation scenario with multiple wireless users depicts a busy
downtown street with its various elements, e.g., cars, buses,
trucks, skyscrapers, buildings, lamp posts,. . . etc. In this
scenario, there are two SRUs set at (x,y,z) = (80,14,4.5) and
(x,y,z) = (160,−14,4.5). The SRU is set at 5 meters high
and in the middle of the street. There are three different
orientations of RGB cameras placed at each SRU. Cameras 1,
2, and 3 are installed at SRU 1, and cameras 4, 5, and 6 are
mounted at SRU 2. The fields of view of those cameras are
overlapping. The side cameras (1, 3, 4, and 6) have a field of
view of 75 degrees while the central cameras (2 and 5) have
a wider view of 110 degrees. The distance between the two
SRUs is 80 meters, and they have a shared camera field of
view. More specifically, cameras 3 and 4 view the same street
segment. After the intended study environment has been
generated, visual data from cameras, radars, and wireless data
channel propagation must be collected and analyzed from
the same simulation scenes. The wireless InSite ray-tracing
software [67] is applied to create a wireless raw dataset and
combine the channel quality of different beam pairs.

We consider a downlink orthogonal frequency-division
multiplexing (OFDM) MMW communication system
between an SRU and a UE. The study evaluates 16,16

and 4,4 uniform planar arrays (UPA) at the SRU and UE,
respectively. After constructing the channel response for each
UE location, we calculate the RSS for each beam pair using
the RSS matrix.

Ri,j =

∣∣∣√PSRUvHj Huis+ vHj n[u]
∣∣∣2. (31)

Here u and v denote the precoder and combiner at SRU
and UE, respectively. H ∈ CNUE×NSRU is the channel matrix.
PSRUs, s ∈ C, and n are the transmission power, the
transmitted symbol with unit power, and a complex Gaussian
noise vector, in that order.

The NN structures are designed to have hl = i ∈ {1, . . ., n}
hidden layers with nl = j ∈ {1, . . ., n} neurons at each hidden
layer. Also, to prevent overfitting in NNs, 5% dropout for
all hidden layers is employed. We use Adam optimizer [31]
in the training phase with 15 epochs, while the minibatch
size is progressively increased from 16, 32, 64, 128, to
7190 samples. To reduce the effects of initial weights of NNs
on SRU performance, we averaged results with 7 random
weight initializations for each experiment.

In the beam selection methods, the SRUi sense the
environment with all the beam pairs in the candidate list
|S| = Nb| and selects the one that provides the highest RSS
for that environment

i∗, j∗ = arg max
i,j

(Ri,j). (32)
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The SNR of (i, j)th beam pair can be written as:

SNRi,j =

∥∥∥√
PSRUvHj Huis

∥∥∥2
σ 2
n

. (33)

B. BEAM SWEEPING LATENCY
The conventional IA time is divided into two-time compo-
nents, namely the sweep time and the identification of beam
pairs time [4]. Indeed, the sweep time dominates the overall
IA time, which is relatively time-consuming [17]. Thus, using
a subset of beams for IA/ML engines can significantly speed
up the process and consume less power [1], [6].

The beam-sweeping latency includes the time required
for the gNB to transmit the synchronization signals (SS)
bursts with different beam pairs, the UE to measure the
signal quality for each beam pair, and the UE to report the
measurements back to the gNB. Latency for beam-sweeping
depends on factors such as the number of beam pairs to be
searched, the duration of each SS burst, and the processing
time for measurement and reporting [52]. In the MMW
5G-NR standard-based EBS, during the IA, with the code-
book sizes |C| = M × N , all the MTx directions are swept
with a periodicity of Tper = 20ms. More specifically, the
gNB transmits SS bursts sequentially of four OFDM symbols
in each codebook element tm ∈ CTx with a swept periodicity
of Tper = 20ms, and for an interval of duration, Tssb = 5ms,
which allows for a total of B= 32 SS blocks to be transmitted
simultaneously with a different beam pair to be searched
within a single SS burst [52]. Meanwhile, on the UE side,
the receiver sweeps NRx directions in searching for SS bursts
by receiving different codebook elements rn ∈ CRx for each
possible beam configuration [16].

To explore all beam pair combinations, given the codebook
sizes of M and N, hence beam pair combinations are
represented as |C| = M × N . Assumedly, each SS block
is transmitted simultaneously in two directions using hybrid
beamforming, given the 32 SS blocks within a single SS
burst. As a result, the 5G NR- MMW gNB can allocate
up to 64 synchronization signal SS blocks for each non-
overlapping two-direction beam sweep. Therefore, we can
express the total time of the possible beam pairs as follows

T Cbs(|C|) = Tpe ×

⌊
|M × N | − 1

64

⌋
+ Tssb. (34)

It is worth mentioning that even when using non-
overlapping two-direction hybrid beamforming, when opti-
mal beam pair combinations are not explored during the first
SS burst (|C| > 64), increasing delays will occur given the
transmitted periodicity Tper = 20ms between SS bursts.
Meanwhile, exploring beam pairs smaller than 64 SS blocks
during each SS burst or using non-overlapping one-direction
beamforming will introduce additional overhead. This is
because reducing the number of SS blocks may result in a
less accurate alignment, which could lead to longer alignment
times or the additional transmission of alignment signals [19].
According to the NR standard, the SS burst duration is set to

Tssb = [5]ms. This allows for a total of 32 SS blocks to be
transmitted simultaneously in one direction [65]. Thus, using
hybrid beamforming with 64 non-overlapping beams in two
directions, the expected time for scanning and measuring a
single beam can be written as

Tsingle = 5ms/64 = 7812 ns. (35)

However, H-RAN architecture is designed to reduce the
time of beam search from |T | = M × N to T (|F |) = PK .
As a result, in H-RAN networks, the time needed for scanning
and measuring the predefined |F | beam pairs extracted from
AI/ML D-sub-engine can be written as

T (|F |) = Tper

⌊
|F | − 1

64

⌋
+ Tsingle((|F | − 1) + 1). (36)

C. SIMULATION METHODOLOGY
We compare the performance of the proposed model against
the state-of-the-art standard for MMWcommunication called
5G-NR, which is defined based on a beam-sweeping process
that sequentially explores all possible directions. In H-RAN
simulation a combination of ML, federated learning, and
deep learning has been applied through different H-RAN
functions, e.g., nonlinear classification problems, fusion of
heterogeneous data, computer vision, etc. Federated learning
trains a centralized ML model across multiple centralized
SRUs by sharing the parameters of the learned local model.
This is done while maintaining the raw training data set
where it was created. As the scenario considered in this
study is based on ViWi, the analysis begins by examining
the information provided in the ViWi dataset to determine
the origin of the Cartesian coordinate system. We used the
ViWi trajectories to identify the locations and then plotted
the received signal strength against the UE location of each
trajectory considered in ViWi. At each time instance of a
scene, ViWi provides raw data for every UE. This includes
user location, MMW channel, and link status for each SRU.
For each scene, each camera and radar in the SRUs in the
network collects data coordinates for a given scene, while
considering the areas of overlap between the sensors and
the transceiver’s transmitted power strength. From which
the combined channel quality of different beam pairs is
generated by ray-tracing software. We adopted YOLOv5
algorithms for object detection and recognition of video
image data. The image data algorithm is pre-trained based
on the Coco dataset [45], which contains various types
of objects, i.e., cars, buses, trucks, motorcycles, bicycles,
pedestrians, etc. We train the proposed deep neural network
(DNN) architecture for 20 epochs, where distinct training
dynamics lead to a range of convergence times and more
precise values. The data obtained by GPS and MMW
radar are processed by the algorithm parsing the seven
types of state information of the objects, which include
location information, length, width, longitudinal distance,
transverse distance, longitudinal velocity, transverse velocity,
and possible categories. There are several categories of

76550 VOLUME 12, 2024



R. I. Abd et al.: H-RAN: Multi-Functional Communications and Sensing Networks, Initial Access Implementation

objects that display obvious characteristics, including people,
cars, bicycles, and buses. Data points are formed when
GPS and radar data of the object are combined with the
pixel coordinates of the bounding box. We calculate the
ensemble mean by averaging 1,000 samples from channels
with identical distributions. To assess the performance of the
SMTL-based AI/ML D-engine, we measure the average of
the last 20 iterations out of the total M = 200 iterations. The
training dataset for DNNs is divided into 100 percent training
and 20 percent testing.

D. RESULTS AND DISCUSSIONS
In this section, we provide the results of our methodology
for evaluating the efficiency of the proposed ‘‘Task1’’
approach to multimodal raytracing. We use five evaluation
metrics that capture performance from different perspectives.
These metrics include top-M validation accuracy, beam
selection accuracy, throughput ratio, beam alignment as
a fraction of throughput, and access time. In Fig. 7(a),
we plot the evolution of the accuracy metrics, averaging
over 5 repetitions of the proposed learning procedures.
During convergence time, the H-RAN learning procedures
quickly plateaued at higher accuracy levels as illustrated in
Fig. 7(a). Network accuracy is evaluated using test data,
and our proposed network achieves about 97.2% accuracy,
whereas the beam selection network SMTL demonstrates
about 90.8% efficiency at Epoch 15. We observed that SMTL
becomes more efficient as the number of inputs increases.
Therefore, the optimal number of epochs to train decreases
as the input layer neurons increase. We can observe that
activation functions converge after sufficient data training
epochs, resulting in high accuracy levels. The reason for
this is that the SMTL is trained to predict the optimal
beam direction for a given communication scenario based on
input features such as channel state information (CSI), and
environmental factors.

In the next evaluation figures-of-merit, our model consis-
tently outperforms the 5G-NR-based EBS scheme in terms
of top-M accuracy and throughput ratio metrics, which are
reported in Fig. 7 (b), and (c) for the recommended beam
candidate ∈ [0, 20]. We observe the gap in accuracy between
the two approaches in Fig. 7(b), we can see the stability in
the growth of beam selection accuracy in our approach after
5 beams because the best beam was chosen from among the
5 candidate beams. In contrast, we notice that the accuracy of
EBS increases gradually with the increase of the beams used
until it reaches 20 beams, after which it continues to increase.
Nevertheless, even with 20 beams, EBS is still less accurate
than the proposed approach.

This result can be attributed to the fact that EBS suffers
from accuracy degradation due to several factors, including
low antenna gain, insufficient spatial resolution, and an
abundance of possible beam directions. In contrast, SMTL
can achieve higher accuracy, especially in scenarios with
low antenna gain and challenging propagation conditions.

By learning patterns and correlations frommeasurement data,
SMTL can make more informed decisions.

In Fig. 7(c), we analyze the impact of the sweep beam
candidate’s accuracy on the throughput ratio. We observed
how the triplet throughput ratio and average selected
sweep beam candidate decreased. Intuitively, increasing the
accuracy of the selected sweep beam candidate gives more
weight to the algorithm to be faster and choose the optimal
beam which results in higher QoS. Interestingly, we observe
that for beams = 5, the maximum average selected optimal
beam equals 92.4%. In this scenario, the objective is to
maximize alignment probability.

Our model yields a striking 82.9% throughput ratio,
harnessing a significant portion of the available rate without
any search procedure. The EBS baseline yields only 44.8%
throughput ratios for the 5 beams. At the same time, to ensure
a 96.7% expected throughput ratio, our model needs to
sweep no more than 5 beams, greatly reducing beam search
overhead. As a comparison, the 5G-NR-based EBS scheme
requires sweeping more than 20 beams to reach 80%. When
it comes to system performance, our model outperforms
alternative 5G-NR by providing an average top-1 throughput
ratio, improving upon the two baselines by 37.9%. Moreover,
our proposed model achieves a tighter confidence interval
than the 5G-NR standard for smaller beam candidates.
Indeed, this is very beneficial since it ensures more reliable
performance guarantees for various instances of training and
deployment.

In Fig. 7(d), we compare the above beam selection schemes
and report the fraction of throughput obtained as we select
the top-recommended beam candidate list versus what is
obtained as the EBS sweep progresses. As expected, the
throughput ratio increases significantly by moving from a
lower resolution to a higher resolution. Overall, the delay
caused by sensor data-driven methods and decision-level
fusion is very modest, and, at the same time, utilizing
sensor information yields high throughput beam pairs with
minimal search. For this reason, despite the initial offset
due to sensor data side information processing and the
transmission of the predicted best beam directions, the
proposed method outperforms the EBS method. In this
scenario, our proposed approach has almost one-quarter of
the search time compared to EBS by achieving an implied
throughput ratio of 92.7% at a search time of 1.5 ms, whereas
EBS achieves 22. 1% at the same search time. Ultimately,
the recommended beam candidate’s parameter provides
a trade-off between throughput performance, obtained by
selecting the optimal beam, and latency, as a larger number
of beam candidates increases processing time to search
among the candidate options. Thus, our approach offers a
means for appropriately determining beam candidates, with
the boundary condition representing the selection of the
optimal beam. In general, this approach enables the network
to adjust the beam pair in response to their specific con-
straints on establishing ultra-reliable communication and low
latency.
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Finally, Fig. 7(e) illustrates the evaluation metric with time
delay for the initial access procedure as a function of beam
search. This is referred to as the duration needed to determine
the most effective directions that result in the strongest signal
level during the control plane, e.g., when the UE transitions
from sleep to active mode, which is defined as

Tacc = MTtsdtx. (37)

where M indicates the total number of measured codebooks,
Tts denotes the number of time slots occupied during control
signals exchanged between the SRU and UE, and dtx refers
to the transmitted signal duration reference. Fig. 7(e) plots
the aggregated access times for sector prediction and beam
association against beamforming (combining) directions.
As described in Fig. 7(e), the proposed scheme features a
significant reduction in access times compared to existing
EBS access methods. Overall, the proposed scheme yields
at least a 87.1% reduction in access times by searching
among as few as 5 beams, whereas the EBS method involves
systematically evaluating each possible beam direction
within the scanning space to determine the optimal beam
for transmission. As the scanning space expands and more
candidate beams are considered, the algorithm must perform
additional calculations and measurements for each candidate,
which gradually increases the access time. Overall, the
reduction in access times achieved through efficient beam
selection methods holds substantial promise for enabling
ultra-reliable low-latency communications (URLLC) over the
air interface in H-RAN. By minimizing the time required for
beam selection and configuration, these methods contribute
to reducing overall latency and improving the reliability of
communication links.

E. CONCLUSION AND FURTHER WORKS
There is no doubt that the massive revolution in MMW/THz
systems, sensors, and AI/ML technologies has led to the
emergence of a critical role for these technologies in a wide
range of modern applications. In addition, the convergence
of these technologies opens up opportunities for innova-
tive innovations, applications, and use cases. Integrating a
communications and sensor network into a single network
with mutual assistance between the two functionalities
aims to create a fully perceptible network. Therefore, the
compact network can leverage the synergy between the
two functionalities. Communication systems can provide
connectivity, data transmission, and infrastructure support
for sensing devices while sensing capabilities can enhance
the perception and awareness of the network by collecting
data from the environment. Meanwhile, by harnessing the
power of data-driven intelligence, AI/ML can unlock new
capabilities, and the ability to automatically adjust network
operations in response to changing conditions. Unlike the
traditional MMW RAN for selecting beamforming vectors
from the LoS codebook, which relies on a limited vision and
non-aware system that does not consider continuous changes
in the communications environment such as a blockage.

The proposed ‘‘Task1’’ approach is designed with the
full perception of the surrounding environment. Therefore,
H-RAN continuously adapts to changes in the communi-
cation environment and selects the optimal solutions from
a list of recommended tasks according to a real-time
scenario. In the ‘‘Task1’’ approach, the optimal beamforming
vectors are selected from the LoS codebook according to
the real-time environmental scenario. H-RAN networks are
designed to provide a comprehensive understanding of the
network environment. Furthermore, H-RAN utilizes AI/ML
techniques and collaborative approaches to enable intelligent
decision-making. To do so, SRUs are placed close to UEs,
thus ensuring a fully perceptible network, cooperative-based
overlapping FoVs, improving network capacity, reducing
power consumption, etc. In this study, the proposed ‘‘Task1’’
approach introduced several innovations as a component of
the H-RAN vision, illustrating how H-IA can be imple-
mented. This approach uses the latent embeddings from
each unimodal feature model and observes approximately a
20-25% increase in top-M accuracy, achieves a 90-97%
decrease in beam selection time, and reveals a significant
reduction in overhead compared to the EBS defined by the
5G-NR standard. It has been demonstrated through simula-
tion results that the Task1 framework is effective in dynamic
scenarios and exhibits robustness against feedback delay and
imperfect reciprocity. We intend to address ‘‘Task′′

2 as part of
our future work, where the SMTL model maps between user
information on online sensing and an optimal solution from
recommended solutions (e.g., dedicated blockage codebooks
and adaptive strategies).

REFERENCES
[1] R. I. Abd, D. J. Findley, and K. S. Kim, ‘‘Hydra-RAN perceptual networks

architecture: Dual-functional communications and sensing networks for
6G and beyond,’’ IEEE Access, vol. 12, pp. 2162–2185, 2024.

[2] O-RAN Working Group 1, O-RAN Architecture Description 5.00,
ORAN.WG1.O-RAN-Architecture-Description-v05.00 Technical Specifi-
cation, Jul. 2021. [Online]. Available: https://www.o-ran.org/blog/o-ran-
allianceintroduces-48-new-specifications-released-since-july-2021

[3] O-RAN Working Group 2, O-RAN AI/ML Workflow Description and
Requirements 1.03, O-RAN.WG2.AIML-v01.03 Technical Specification,
Jul. 2021. [Online]. Available: https://www.o-ran.org/blog/o-ran-alliance-
introduces-48-new-specifications-released-since-july-2021

[4] L. Wei, Q. Li, and G. Wu, ‘‘Exhaustive, iterative and hybrid ini-
tial access techniques in mmWave communications,’’ in Proc. IEEE
Wireless Commun. Netw. Conf. (WCNC), Mar. 2017, pp. 1–6, doi:
10.1109/WCNC.2017.7925666.

[5] M. Qurratulain Khan, A. Gaber, P. Schulz, and G. Fettweis, ‘‘Machine
learning for millimeter wave and terahertz beam management: A survey
and open challenges,’’ IEEE Access, vol. 11, pp. 11880–11902, 2023.

[6] F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi,
‘‘Integrated sensing and communications: Toward dual-functional wireless
networks for 6G and beyond,’’ IEEE J. Sel. Areas Commun., vol. 40, no. 6,
pp. 1728–1767, Jun. 2022.

[7] I. Tamim, A. Saci, M. Jammal, and A. Shami, ‘‘Downtime-aware O-RAN
VNF deployment strategy for optimized self-healing in the O-cloud,’’ in
Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2021, pp. 1–6.

[8] W. Saad, M. Bennis, and M. Chen, ‘‘A vision of 6G wireless systems:
Applications, trends, technologies, and open research problems,’’ IEEE
Netw., vol. 34, no. 3, pp. 134–142, May 2020.

[9] L. Bonati, S. D’Oro, M. Polese, S. Basagni, and T. Melodia, ‘‘Intelligence
and learning in O-RAN for data-driven NextG cellular networks,’’ IEEE
Commun. Mag., vol. 59, no. 10, pp. 21–27, Oct. 2021.

76552 VOLUME 12, 2024

http://dx.doi.org/10.1109/WCNC.2017.7925666


R. I. Abd et al.: H-RAN: Multi-Functional Communications and Sensing Networks, Initial Access Implementation

[10] C. Fiandrino, G. Attanasio, M. Fiore, and J. Widmer, ‘‘Toward native
explainable and robust AI in 6G networks: Current state, challenges and
road ahead,’’ Comput. Commun., vol. 193, pp. 47–52, Sep. 2022.

[11] W. Azariah, F. A. Bimo, C.-W. Lin, R.-G. Cheng, N. Nikaein, and
R. Jana, ‘‘A survey on open radio access networks: Challenges, research
directions, and open source approaches,’’ Sensors, vol. 24, no. 3, p. 1038,
Feb. 2024.

[12] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, ‘‘Understand-
ing O-RAN: Architecture, interfaces, algorithms, security, and research
challenges,’’ 2022, arXiv:2202.01032.

[13] U. Challita, H. Ryden, and H. Tullberg, ‘‘When machine learning meets
wireless cellular networks: Deployment, challenges, and applications,’’
IEEE Commun. Mag., vol. 58, no. 6, pp. 12–18, Jun. 2020.

[14] B. Brik, K. Boutiba, and A. Ksentini, ‘‘Deep learning for B5G open radio
access network: Evolution, survey, case studies, and challenges,’’ IEEE
Open J. Commun. Soc., vol. 3, pp. 228–250, 2022.

[15] S. K. Singh, R. Singh, and B. Kumbhani, ‘‘The evolution of radio access
network towards open-RAN: Challenges and opportunities,’’ inProc. IEEE
Wireless Commun. Netw. Conf. Workshops (WCNCW), Apr. 2020, pp. 1–6.

[16] Y. Heng, J. G. Andrews, J. Mo, V. Va, A. Ali, B. L. Ng, and J. C. Zhang,
‘‘Six key challenges for beammanagement in 5.5G and 6G systems,’’ IEEE
Commun. Mag., vol. 59, no. 7, pp. 74–79, Jul. 2021.

[17] A. N. Uwaechia and N. M. Mahyuddin, ‘‘A comprehensive survey on
millimeter wave communications for fifth-generation wireless networks:
Feasibility and challenges,’’ IEEE Access, vol. 8, pp. 62367–62414, 2020.

[18] R. I. Abd and K. S. Kim, ‘‘Continuous steering backups of NLoS-assisted
mmWave networks to avoid blocking,’’ in Proc. 14th Int. Conf. Inf.
Commun. Technol. Converg. (ICTC), Oct. 2023, pp. 11–13.

[19] R. I. Abd and K. S. Kim, ‘‘Protocol solutions for IEEE 802.11bd
by enhancing IEEE 802.11ad to address common technical chal-
lenges associated with mmWave-based V2X,’’ IEEE Access, vol. 10,
pp. 100646–100664, 2022.

[20] A. Fatani, A. Dahou, M. A. A. Al-qaness, S. Lu, and M. A. Abd Elaziz,
‘‘Advanced feature extraction and selection approach using deep learning
and Aquila optimizer for IoT intrusion detection system,’’ Sensors, vol. 22,
no. 1, p. 140, Dec. 2021.

[21] K. Gunasekaran, V. V. Kumar, A. C. Kaladevi, T. R. Mahesh,
C. R. Bhat, and K. Venkatesan, ‘‘Smart decision-making and communi-
cation strategy in industrial Internet of Things,’’ IEEE Access, vol. 11,
pp. 28222–28235, 2023.

[22] B. Salehi, G. Reus-Muns, D. Roy, Z. Wang, T. Jian, J. Dy, S. Ioannidis, and
K. Chowdhury, ‘‘Deep learning on multimodal sensor data at the wireless
edge for vehicular network,’’ IEEE Trans. Veh. Technol., vol. 71, no. 7,
pp. 7639–7655, Jul. 2022.

[23] M. Zecchin, M. B. Mashhadi, M. Jankowski, D. Gündüz, M. Kountouris,
and D. Gesbert, ‘‘LiDAR and position-aided mmWave beam selection
with non-local CNNs and curriculum training,’’ IEEE Trans. Veh. Technol.,
vol. 71, no. 3, pp. 2979–2990, Mar. 2022.

[24] A. Graff, Y. Chen, N. González-Prelcic, and T. Shimizu, ‘‘Deep learning-
based link configuration for radar-aided multiuser mmWave vehicle-to-
infrastructure communication,’’ IEEE Trans. Veh. Technol.

[25] U. Demirhan and A. Alkhateeba, ‘‘Radar aided 6G beam prediction: Deep
learning algorithms and real-world demonstration,’’ in Proc. IEEE Trans.
Wireless Common. (WCNC), Apr. 2022, pp. 10–13.

[26] Y. Chen, A. Graff, N. González-Prelcic, and T. Shimizu, ‘‘Radar aided
mmWave vehicle-to-infrastructure link configuration using deep learn-
ing,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2021,
pp. 1–6.

[27] M. Alrabeiah, A. Hredzak, and A. Alkhateeb, ‘‘Millimeter wave base
stations with cameras: Vision-aided beam and blockage prediction,’’ in
Proc. IEEE 91st Veh. Technol. Conf. (VTC-Spring), May 2020, pp. 1–5.

[28] M. B. Mashhadi, M. Jankowski, T.-Y. Tung, S. Kobus, and D. Gündüz,
‘‘Federated mmWave beam selection utilizing LiDAR data,’’ IEEE
Wireless Commun. Lett., vol. 10, no. 10, pp. 2269–2273, Oct. 2021.

[29] W. Xu, F. Gao, X. Tao, J. Zhang, and A. Alkhateeb, ‘‘Computer vision
aided mmWave beam alignment in V2X communications,’’ IEEE Trans.
Wireless Commun., vol. 22, no. 4, pp. 2699–2714, Apr. 2023.

[30] T. Zhang, J. Liu, and F. Gao, ‘‘Vision aided beam tracking and frequency
handoff for mmWave communications,’’ in Proc. IEEE INFOCOM Conf.
Comput. Commun. Workshops, May 2022, pp. 1–2.

[31] D. Roy, B. Salehi, S. Banou, S. Mohanti, G. Reus-Muns, M. Belgiovine,
P. Ganesh, C. Dick, and K. Chowdhury, ‘‘Going beyond RF: A survey
on how AI-enabled multimodal beamforming will shape the NextG
standard,’’ Comput. Netw., vol. 228, Jun. 2023, Art. no. 109729, doi:
10.1016/j.comnet.2023.109729.

[32] Y. Shi, L. Lian, Y. Shi, Z. Wang, Y. Zhou, L. Fu, L. Bai, J. Zhang, and
W. Zhang, ‘‘Machine learning for large-scale optimization in 6G wireless
networks,’’ IEEE Commun. Surveys Tuts., vol. 25, no. 4, pp. 2088–2132,
Aug. 2023.

[33] C. Fischione, M. Chafii, Y. Deng, and M. Erol-Kantarci, ‘‘Data sets
for machine learning in wireless communications and networks,’’ IEEE
Commun. Mag., vol. 61, no. 9, pp. 80–81, Sep. 2023.

[34] M. Polese, M. Dohler, F. Dressler, M. Erol-Kantarci, R. Jana, R. Knopp,
and T. Melodia, ‘‘Empowering the 6G cellular architecture with open
RAN,’’ IEEE J. Sel. Areas Commun., vol. 42, no. 2, pp. 245–262,
Feb. 2024.

[35] K. Ma, S. Du, H. Zou, W. Tian, Z. Wang, and S. Chen, ‘‘Deep learning
assisted mmWave beam prediction for heterogeneous networks: A dual-
band fusion approach,’’ IEEE Trans. Commun., vol. 71, no. 1, pp. 115–130,
Jan. 2023.

[36] S. Rezaie, E. Carvalho, and C. N. Manchon, ‘‘A Deep learning approach
to location- and orientation-aided 3D beam selection for mmWave
communications,’’ EEE Trans. Wireless Commun., vol. 21, no. 12,
pp. 11110–11124, Dec. 2022.

[37] A. M. Elbir, W. Shi, K. V. Mishra, and S. Chatzinotas, ‘‘Federated multi-
task learning for THZ wideband channel and DOA estimation,’’ in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process. Workshops (ICASSPW),
Jun. 2023, pp. 04–10.

[38] L. Chen, C. Shen, P. Zhou, and J. Xu, ‘‘Collaborative service placement
for edge computing in dense small cell networks,’’ IEEE Trans. Mobile
Comput., vol. 20, no. 2, pp. 377–390, Feb. 2021.

[39] M. K. Somesula, S. K. Mothku, and S. C. Annadanam, ‘‘Cooperative
service placement and request routing in mobile edge networks for latency-
sensitive applications,’’ IEEE Syst. J., vol. 17, no. 3, pp. 4050–4061,
2023.

[40] P. Gao, R. Guo, H. Lu, and H. Zhang, ‘‘Multi-view sensor fusion by
integrating model-based estimation and graph learning for collaborative
object localization,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2021, pp. 9228–9234.

[41] O-RAN Working Group 1, O-RAN Operations and Maintenance Inter-
face 4.0, O-RAN.WG1.O1-Interface.0-v04.00 Technical Specification,
Nov. 2020. [Online]. Available: https://www.o-ran.org/specifications

[42] J. Peng, P. Zhang, L. Zheng, and J. Tan, ‘‘UAV positioning based
on multi-sensor fusion,’’ IEEE Access, vol. 8, pp. 34455–34467,
2020.

[43] Y. Song, Z. Xie, X.Wang, andY. Zou, ‘‘MS-YOLO:Object detection based
on YOLOv5 optimized fusion millimeter-wave radar and machine vision,’’
IEEE Sensors J., vol. 22, no. 15, pp. 15435–15447, Aug. 2022.

[44] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[45] S. Jain, S. Dash, and R. Deorari, ‘‘Object detection using COCO dataset,’’
in Proc. Int. Conf. Cyber Resilience (ICCR), Oct. 2022, pp. 1–4, doi:
10.1109/ICCR56254.2022.9995808.

[46] A. K. Gostar, T. Rathnayake, R. Tennakoon, A. Bab-Hadiashar,
G. Battistelli, L. Chisci, and R. Hoseinnezhad, ‘‘Centralized cooperative
sensor fusion for dynamic sensor network with limited field-of-view via
labeled multi-Bernoulli filter,’’ IEEE Trans. Signal Process., vol. 69,
pp. 878–891, 2021.

[47] M. Raeisi-Varzaneh, O. Dakkak, A. Habbal, and B.-S. Kim, ‘‘Resource
scheduling in edge computing: Architecture, taxonomy, open issues and
future research directions,’’ IEEE Access, vol. 11, pp. 25329–25350, 2023.

[48] H. Xiao, J. Huang, Z. Hu,M. Zheng, and K. Li, ‘‘Collaborative cloud-edge-
end task offloading in MEC-based small cell networks with distributed
wireless backhaul,’’ IEEE Trans. Netw. Service Manag., vol. 20, no. 14,
pp. 4542–4557, Apr. 2023.

[49] S.-H. Park, S. Jeong, J. Na, O. Simeone, and S. Shamai (Shitz),
‘‘Collaborative cloud and edge mobile computing in C-RAN systems with
minimal end-to-end latency,’’ IEEE Trans. Signal Inf. Process. Over Netw.,
vol. 7, pp. 259–274, Apr. 2021.

[50] A. S. Thyagaturu, P. Shantharama, A. Nasrallah, and M. Reisslein,
‘‘Operating systems and hypervisors for network functions: A survey
of enabling technologies and research studies,’’ IEEE Access, vol. 10,
pp. 79825–79873, 2022.

[51] P. Li, E. Koyuncu, and H. Seferoglu, ‘‘Adaptive and resilient model-
distributed inference in edge computing systems,’’ IEEE Open J. Commun.
Soc., vol. 4, pp. 1263–1273, 2023.

VOLUME 12, 2024 76553

http://dx.doi.org/10.1016/j.comnet.2023.109729
http://dx.doi.org/10.1109/ICCR56254.2022.9995808


R. I. Abd et al.: H-RAN: Multi-Functional Communications and Sensing Networks, Initial Access Implementation

[52] D. D. S. Brilhante, J. C. Manjarres, R. Moreira, L. D. O. Veiga,
J. F. de Rezende, F. Müller, A. Klautau, L. L. Mendes, and
F. A. P. de Figueiredo, ‘‘A literature survey on AI-aided beamforming
and beam management for 5G and 6G systems,’’ Sensors, vol. 23, no. 9,
p. 4359, Apr. 2023.

[53] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath,
‘‘Spatially sparse precoding in millimeter wave MIMO systems,’’ IEEE
Trans. Wireless Commun., vol. 13, no. 3, pp. 1499–1513, Mar. 2014.

[54] B. Salehi, J. Gu, D. Roy, and K. Chowdhury, ‘‘FLASH: Federated learning
for automated selection of high-band mmWave sectors,’’ in Proc. IEEE
INFOCOM Conf. Comput. Commun., May 2022, pp. 1719–1728.

[55] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, ‘‘Dropout: A simple way to prevent neural networks from overfitting,’’
J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, 2014.

[56] R. Mahima, M. Maheswari, S. Roshana, E. Priyanka, N. Mohanan,
and N. Nandhini, ‘‘A comparative analysis of the most commonly used
activation functions in deep neural network,’’ in Proc. 4th Int. Conf.
Electron. Sustain. Commun. Syst. (ICESC), Jul. 2023, pp. 06–08.

[57] F. Liu, B. Zhang, G. Chen, G. Gong, H. Lu, and W. Li, ‘‘A novel
configurable high-precision and low-cost circuit design of sigmoid and
tanh activation function,’’ in Proc. IEEE Int. Conf. Integr. Circuits,
Technol. Appl. (ICTA), Zhuhai, China, Nov. 2021, pp. 222–223, doi:
10.1109/icta53157.2021.9661606.

[58] X. Qian andD. Klabjan, ‘‘The impact of themini-batch size on the variance
of gradients in stochastic gradient descent,’’ 2020, arXiv:2004.13146.

[59] E. P. Frady, D. Kleyko, and F. T. Sommer, ‘‘Variable binding for sparse
distributed representations: Theory and applications,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 34, no. 5, pp. 2191–2204, May 2023.

[60] D. Grimm, D. Tollner, D. Kraus, Á. Török, E. Sax, and Z. Szalay,
‘‘A numerical verification method for multi-class feed-forward neural
networks,’’ Exp. Syst. Appl., vol. 247, Aug. 2024, Art. no. 123345, doi:
10.1016/j.eswa.2024.123345.

[61] T. T. Nguyen and K.-K. Nguyen, ‘‘A deep learning framework for beam
selection and power control in massive MIMO–millimeter-wave commu-
nications,’’ IEEE Trans. Mobile Comput., vol. 22, no. 8, pp. 4374–4387,
Aug. 2023.

[62] Y. Han, S. Jin, J. Zhang, J. Zhang, and K.-K. Wong, ‘‘DFT-based hybrid
beamforming multiuser systems: Rate analysis and beam selection,’’ IEEE
J. Sel. Topics Signal Process., vol. 12, no. 3, pp. 514–528, Jun. 2018.

[63] Y. Koda, K. Nakashima, K. Yamamoto, T. Nishio, andM.Morikura, ‘‘Han-
dover management for mmWave networks with proactive performance
prediction using camera images and deep reinforcement learning,’’ IEEE
Trans. Cognit. Commun. Netw., vol. 6, no. 2, pp. 802–816, Jun. 2020.

[64] S. G. Zadeh and M. Schmid, ‘‘Bias in cross-entropy-based training of deep
survival networks,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 9,
pp. 3126–3137, Sep. 2021.

[65] M. Mohsin, J. M. Batalla, E. Pallis, G. Mastorakis, E. K. Markakis, and
C. X. Mavromoustakis, ‘‘On analyzing beamforming implementation in
O-RAN 5G,’’ Electronics, vol. 10, no. 17, p. 2162, Sep. 2021.

[66] M. Alrabeiah, A. Hredzak, Z. Liu, and A. Alkhateeb, ‘‘ViWi: A deep
learning dataset framework for vision-aided wireless communications,’’
in Proc. IEEE 91st Veh. Technol. Conf. (VTC-Spring), May 2020, pp. 1–5.

[67] Remcom. Wireless Insite. Accessed: Feb. 16, 2024. [Online]. Available:
http://www.remcom.com/wireless-insite

RAFID I. ABD (Member, IEEE) received the
B.S. degree in electronics and communications
engineering from the University of Technology,
Baghdad, Iraq, the M.S. degree in communica-
tions and networks, and the Ph.D. degree from
the School of Electrical and Electronic Engi-
neering, Yonsei University, Seoul, South Korea.
He has three patents registered in communica-
tions and networks. His research interests include
wireless communication and signal processing.

He invented the Hydra Radio Access Network (H-RAN) for 6G and beyond.

DANIEL J. FINDLEY (Senior Member, IEEE)
received the Ph.D. degree in civil engineering
from North Carolina State University, Raleigh,
NC, USA. He is currently the Associate Director
of the Institute for Transportation Research and
Education, NC State University. He specializes
in economic impact analysis, multi-modal trans-
portation, human behavior research, transportation
engineering studies, and asset management and
inventory. He served as a Principal Investigator

(PI) or a Co-PI on over 80 funded projects and has conducted research for
sponsors, including NCDOT, FHWA, ACRP, and ITE. He is also a Licensed
Professional Engineer (P.E.) in NC, USA. He is also an Adjunct Assistant
Professor with the Department of Civil, Construction, and Environmental
Engineering, NCStateUniversity. He has studiedmany of themodes of travel
including aviation, bicycle, ferry, highway, pedestrian, port, and railroad.

KWANG SOON KIM (Senior Member, IEEE)
received the B.S. (summa cum laude), M.S.E., and
Ph.D. degrees in electrical engineering fromKorea
Advanced Institute of Science and Technology
(KAIST), Daejeon, South Korea, in February
1994, February 1996, and February 1999, respec-
tively. From March 1999 to March 2000, he was
a Postdoctoral Researcher with the Department of
Electrical and Computer Engineering, University
of California at San Diego, La Jolla, CA, USA.

From April 2000 to February 2004, he was a Senior Member of the Research
Staff with the Mobile Telecommunication Research Laboratory, Electronics
and Telecommunication Research Institute, Daejeon. Since March 2004,
he has been with the Department of Electrical and Electronic Engineering,
Yonsei University, Seoul, South Korea, where he is currently a Professor.
His research interests include signal processing, communication theory,
information theory, stochastic geometry applied to wireless heterogeneous
cellular networks, wireless local area networks, wireless D2D networks,
wireless ad-hoc networks, and new radio access technologies for 5G.
He was a recipient of the Postdoctoral Fellowship from Korea Science and
Engineering Foundation (KOSEF), in 1999. He received the Outstanding
Researcher Award from the Electronics and Telecommunication Research
Institute (ETRI), in 2002, the Jack Neubauer Memorial Award (Best System
Paper Award, IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY) from IEEE
Vehicular Technology Society, in 2008, and the LG R&D Award: Industry-
Academic Cooperation Prize, LG Electronics, in 2013. From 2006 to 2012,
he served as an Editor for the Journal of the Korean Institute of
Communications and Information Sciences (KICS). From 2013 to 2016,
he served as the Editor-in-Chief for the Journal of the Korean Institute
of Communications and Information Sciences. Since 2008, he has been
serving as an Editor of the Journal of Communications and Networks (JCN).
From 2009 to 2014, he served as an Editor for IEEE TRANSACTIONS ON

WIRELESS COMMUNICATIONS.

76554 VOLUME 12, 2024

http://dx.doi.org/10.1109/icta53157.2021.9661606
http://dx.doi.org/10.1016/j.eswa.2024.123345

