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ABSTRACT The development and adoption of Vision Transformers and other deep-learning architectures
for image classification tasks has been rapid. However, the ‘‘black box’’ nature of neural networks
is a barrier to adoption in applications where explainability is essential. While some techniques for
generating explanations have been proposed, primarily for Convolutional Neural Networks, adapting such
techniques to the new paradigm of Vision Transformers is non-trivial. This paper presents T-TAME,
Transformer-compatible Trainable Attention Mechanism for Explanations (https://github.com/IDT-ITI/
T-TAME), a general methodology for explaining deep neural networks used in image classification tasks.
The proposed architecture and training technique can be easily applied to any convolutional or Vision
Transformer-like neural network, using a streamlined training approach. After training, explanation maps
can be computed in a single forward pass; these explanation maps are comparable to or outperform
the outputs of computationally expensive perturbation-based explainability techniques, achieving SOTA
performance.We apply T-TAME to three popular deep learning classifier architectures, VGG-16, ResNet-50,
and ViT-B-16, trained on the ImageNet dataset, and we demonstrate improvements over existing state-of-
the-art explainability methods. A detailed analysis of the results and an ablation study provide insights into
how the T-TAME design choices affect the quality of the generated explanation maps.

INDEX TERMS CNN, vision transformer, deep learning, explainable AI, model interpretability, attention.

I. INTRODUCTION
Vision Transformers (ViTs) [1] have been found to match or
outperform Convolutional Neural Networks (CNNs) in many
important visual tasks such as natural image classification [2],
classification of masses in breast ultrasound [3], skin cancer
classification [4], and face recognition [5]. As a result
of the complex multi-layer nonlinear structure and end-
to-end learning strategy of models, such as CNNs and
ViTs, they typically act as ‘‘black box’’ models that lack
transparency [6]. This fact makes it difficult to convince users
in critical fields, such as healthcare, law, and governance to
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trust and employ such systems [7], thus limiting the adoption
of Artificial Intelligence [6], [8]. Therefore, it is necessary to
develop solutions that address the transparency challenge of
deep neural networks.

Explainable artificial intelligence (XAI) is an active
research area in the field of machine learning. XAI focuses
on developing explainable techniques that help users of AI
systems comprehend, trust, and more efficiently manage
them [9], [10]. For the image classification task, several
explanation approaches have been proposed to tackle the
explainability problem for CNN and ViT models [10].
These methods typically produce an explanation map, also
referred to as a saliency map, highlighting the salient input
features. We must stress that explainability methods should
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FIGURE 1. An explanation produced by T-TAME for the ViT-B-16 backbone
classifier. The input image (left) belongs to the class ‘‘Siamese cat’’ and is
correctly classified by ViT-B-16. The produced explanation (right)
highlights the salient features of the image that explain the decision of
this specific classifier (areas in red color in the explanation map), which
do not necessarily coincide with the image region where the
human-recognizable ‘‘Siamese cat’’ object appears. In this example, the
explanation map reveals that it is primarily the cat’s head that this
classifier relied on to render its decision.

not be confused with approaches targeting weakly supervised
learning tasks such as weakly supervised object localization
or segmentation [11], which also generate superficially
similar heatmaps as an intermediate step. Contrary to the
latter, the goal of explainability approaches is to explain
the classifier’s decision rather than to locate the region
of the target object (for an example, see Fig. 1).
The existing explanation approaches for image classifiers

can be roughly categorized as follows. Gradient-based
methods, such as Grad-CAM and Grad-CAM++, were
pioneering approaches in explaining CNNs [12], [13] and
were also among the first methods applied to ViTs [14].
Since these approaches utilize gradient information, they are
subject to associated limitations such as gradient saturation
and noise issues, resulting in explanations that may include
high-frequency variations [15], [16]. Relevance-based meth-
ods, on the other hand, use a Taylor decomposition of a
relevance function they define to propagate the relevance
of pixel information through the examined network [14],
[17], [18]. These methods do not directly rely on gradient
information and are therefore less prone to the limitations
associated with gradient-based approaches; however, their
difficulty to be adapted to novel classifier architectures
restricts their applicability [19]. Finally, perturbation- [20],
[21] and response-based approaches [22], [23], [24], [25]
observe the output’s sensitivity to a multitude of small
input changes, and combine intermediate network represen-
tations to derive an explanation, respectively. The methods
within these categories operate without using gradients
and thus avoid relevant drawbacks; however, their process
for generating an explanation is computationally very
expensive.

Distinguished from the above works, L-CAM [26] is a
trainable response-based method: it utilizes an appropriate
objective function to guide the training of an attention
mechanism in order to derive explanation maps of high
quality in one forward pass. However, L-CAM uses the
feature maps of only the last convolutional layer of the

frozen CNN model to be explained (hereafter also referred
to as the ‘‘backbone network’’), thus may not be able to
adequately capture the information used within this backbone
for making a classification decision. Additionally, L-CAM
is not applicable to ViTs, because ViT feature maps are not
three-dimensional, unlike CNN feature maps, and because of
the different ways in which ViTs handle input perturbations
(see [27] for a comparison w.r.t. robustness between ViTs and
CNNs).

To this end, we propose T-TAME: Transformer-compatible
Trainable Attention Mechanism for Explanations. T-TAME
is inspired by the learning-based paradigm of L-CAM.
Unlike L-CAM, T-TAME exploits intermediate feature maps
extracted from multiple layers of the backbone network.
These features are then used to train a multi-branch hier-
archical attention architecture for generating class-specific
explanation maps in a single forward pass. Additionally,
T-TAME introduces components that manage the com-
patibility of the trainable attention mechanism with the
backbone network, enabling its use with both CNN and
ViT backbones. We demonstrate that T-TAME generates
higher quality explanation maps over the current SOTA
explainability methods, by performing a rich set of qualitative
and quantitative comparisons. A preliminary version of this
work, still applicable only to CNN backbones, was presented
in [28].

In summary, the contributions of this paper are:
• We present the first, to the best of our knowledge,
trainable post-hoc method for generating explanation
maps for both CNN and Transformer-based image
classification networks, which utilizes an attention
mechanism to process feature maps from multiple
layers.

• We provide a comprehensive evaluation study of the
proposed T-TAME method for three heterogeneous
backbones: the widely used CNN models VGG-16 [29]
and ResNet-50 [30], as well as the breakthrough ViT
model ViT-B-16 [1].

• Based on example explanations produced by T-TAME
and ablation experiments, we gain insights into the
ViT classifier. Specifically, we demonstrate ViT’s global
view of input images, thanks to its multi-head attention
layer, and we confirm its robustness to out-of-sample
distributions of input images.

II. RELATED WORK
We start by briefly discussing the broader domain of XAI.
The ability to provide an explanation for why a specific
decision was made is now seen as a desirable feature of intel-
ligent systems [31]. These explanations serve to help users
understand the AI system’s underlying model, facilitating
its effective use and maintenance. Additionally, they assist
users in identifying and correcting errors in the AI system’s
outputs, thus aiding in debugging. Furthermore, explanations
can be used for educational purposes, helping users to explore
and understand new concepts within a particular domain.
Finally, explanations contribute to users’ trust and cogency
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by offering actionable insights and convincing them that the
system’s decisions can be trusted.

What constitutes a ‘‘good’’ explanation for an AI system
is still an open research question. Three important properties
for explanations have been identified by social science
research on how humans explain their decisions to each
other [32]; here we briefly discuss how the current paradigm
of explanation methods for vision classifiers aligns with these
properties. First, explanations are counterfactual; they justify
a decision in opposition to other choices, i.e., why a backbone
network classified a specific image as a certain class instead
of another possible class. An explanation method can be
counterfactual by providing explanation maps for each class
that is considered by the backbone network, thus, allowing
the user to compare explanation maps for different possible
classification decisions. Second, explanations are selected
in a biased manner, so as to not overwhelm the user with
information. To this end, in the vision classifier domain,
the most common form of explanation is a heatmap (a.k.a.
explanation map). Third, explanations are social, thus they
need to align with the mental model of the user of an AI
system.When a user views an image, typically they pay more
attention to some parts of the image than to others. In a direct
analogy, the user would expect an image classification model
to focusmore or less on specific regions of the input image for
making its classification decision; these are the image regions
that are highlighted by the explanation map.

There is a wide range of explainability methods, which are
often also referred to as feature attribution methods. Based
on the scope of their explanations, i.e., whether they are
used to produce explanations for single predictions or for the
overall model, these methods can be characterized as local
or global [33]. Another important distinction regarding an
explainability method arises from its relationship with the
model it aims to explain, classifying it as either ante-hoc
or post-hoc. The former approaches require architectural
modifications that have to be applied prior to the training
of the classifier. Several intrinsically explainable classi-
fiers that fall in this category have been developed [34].
Contrarily, a method that can be directly applied to an
already-trained classifier is a post-hoc method. Post-hoc
explainability approaches can be applied to existing off-the-
shelf classifiers, thus providing users with the freedom to
choose a top-performing classifier without compromising on
model explainability [35]. These approaches can be further
categorized as model-specific or model-agnostic, depending
on whether they are applicable to only specific models or
any type of model. For a more comprehensive review of the
different taxonomies of explanationmethods and the different
approaches therein, the interested reader is referred to [9],
[10], [36], and [37].

Among the above-described classes of explainabilitymeth-
ods, local post-hoc methods are most widely applicable to the
task of explaining deep learning-based image classification
models. In the following, we survey the state-of-the-art
approaches in this category that are most closely related

to ours. These approaches can be roughly categorized
into gradient-, relevance-, perturbation- and response-based.
Gradient-based methods [12], [13] compute the gradient of
a given input with backpropagation and modify it in various
ways to produce an explanation map. Grad-CAM [12], one
of the first in this category, uses global average pooling in the
gradients of the backbone network’s logits with respect to the
feature maps to compute weights. The explanation maps are
obtained as the weighted combination of feature maps, using
the computed weights. Grad-CAM++ [13] similarly uses
gradients to generate explanationmaps. These methods suffer
from the same issues as the gradients they use: neural network
gradients can be noisy and suffer from saturation problems
for typical activation functions such as ReLU, GELU, and
Sigmoid [15].

Relevance-based methods [14], [17], [18] use a Taylor
approximation of the gradients to propagate the relevance
of pixel information through the examined network. The
propagation function is a modified version of backpropa-
gation, aimed at reducing noise and retaining layer-wise
salient information. Relevance is propagated to the input
image, producing an explanation map. An early work of
this class, Deep Taylor Decomposition (DTD) [17], directly
uses gradients, propagating them throughout the network and
accumulating the contribution to the output prediction from
each layer of the network. Layer-wise Relevance Propagation
(LRP) [18] cemented the use of Taylor approximation to
explain general network architectures. In contrast to methods
like Grad-CAM, this method combines information from
all of the layers in the network. An extension of the LRP
method for Transformer-based architectures, including ViTs,
is presented in [14]. However, applying these methods
to novel architectures and new network layers is not
a straightforward task, requiring the careful fulfillment
of the relevance propagation rules through each network
operation and dealing with practical issues that may arise,
such as numerical instability; thus, their applicability is
limited.

Perturbation-based methods [20], [21] attempt to repeat-
edly alter the input and produce explanations based on the
observed changes in the confidence of the original prediction;
thus, avoid gradient-related problems such as vanishing or
noisy gradients. For instance, RISE [20] utilizes Monte Carlo
sampling to generate random masks, which are then used
to perturb the input image and generate a respective CNN
classification score. Using the computed scores as weights,
the explanation map is derived as the weighted combination
of the generated random masks. Score-CAM [21], on the
other hand, utilizes the feature maps from the final layer of
the network as masks by upsampling them to the size of
the input image, instead of generating random masks. Thus,
RISE and Score-CAM, as most methods in this category,
require many forward passes through the network (in the
order of hundreds or thousands) to generate an explanation,
considerably increasing the inference time and computational
cost.
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Response-based methods [22], [23], [24], [25], [26] use
feature maps or activations of the backbone’s layers in the
inference stage to interpret the decision-making process of
the backbone neural network. One of the first methods in this
category, CAM [38], uses the output of the backbone’s global
average pooling layer as weights, and computes the weighted
average of the features maps at the final convolutional
layer. CAM requires the presence of such a global average
pooling layer in the target model’s architecture, restricting its
applicability. SISE [22], and later Ada-SISE [23], aggregate
feature maps in a cascading manner to produce explanation
maps of any CNN model. Similarly, Poly-CAM [24] uses
feature maps from multiple layers, upscales them to the
largest spatial dimension present in the set, and then combines
them in a cascading manner. Iterated Integrated Attributions
(IIA) [25] is a generalization of Integrated Gradients [39]
that further employs gradients from internal feature maps.
It is also applied to ViT models by using attention matrices
as feature maps; the usage of gradients of the input and
feature maps from the last two layers before the classification
stage is considered. Similarly to perturbation-based methods,
the above methods require either multiple forward passes in
the case of SISE, Ada-SISE, and Poly-CAM, or multiple
backward passes in the case of IIA, to produce an explanation.

Finally, the category of trainable response-based expla-
nation methods is represented by L-CAM [26]. L-CAM
mitigates the limitations of response-based methods by using
a learned attention mechanism to compute class-specific
explanations in one forward pass. However, it can only
harness the salient information of feature maps from a single
layer of a CNN backbone. The proposed T-TAME method
is a trainable response-based method that addresses the
limitations of L-CAM, by using feature maps from multiple
layers and by being applicable to both CNN and Transformer-
based architectures. In contrast to the majority of the
approaches described above, which traverse the network
multiple times to provide an explanation, the proposed
approach is computationally inexpensive at the inference
stage, requiring only a single forward pass.

We should also note that the methods of [40] and [41] take
a somewhat similar approach to ours in that they produce
explanation maps using an attention mechanism and multiple
sets of feature maps. However, these methods are ante-hoc,
jointly training the attention model with the CNN backbone
that learns to perform the desired image classification task.
In contrast, T-TAME does not modify the trained target
(a.k.a. backbone) model, whose weights remain frozen. I.e.,
T-TAME is a post-hoc method, exclusively optimizing the
attention mechanism in an unsupervised learning manner to
generate visual explanations. Thus, no direct comparisons can
be drawn with [40] and [41] as they provide explanations
for a different, concurrently-trained classifier rather than
an already optimized backbone. Finally, as T-TAME is
based on an attention mechanism, special tribute must be
paid to [42] for the first use of hierarchical attention,
inspired by early primate vision, in the field of image
processing.

TABLE 1. Main symbols used in Section III.

III. METHODOLOGY
A. PROBLEM FORMULATION
Let f be a trained backbone network for which we want to
generate explanation maps,

f : Sp (I) → [0, 1]Cls, (1)

where Sp (I) is the space of three-dimensional input images,

Sp (I) = {I | I : 333 → R} ,

333 = {1, . . . ,C} × {1, . . . ,W } × {1, . . . ,H}, (2)

C, W , H ∈ N are the input image tensor dimensions,
i.e., number of channels, width, and height, respectively [20],
[22]; and Cls is the number of classes that f has been trained
to classify. E.g., for RGB images in the ImageNet dataset,
typically H = W = 224 is the image height/width, C = 3 is
the number of channels, Cls = 1000, and the image tensor
I is the mapping from the 3D coordinates to pixel values,
commonly in the range [0, 1].
The input image I is transformed to the output [0, 1]Cls

through various discrete computation steps, called layers.
A neural network consists of numerous layers, depending on
its specific architecture; a layer’s output is referred to as a
‘‘feature map’’. Suppose feature maps are extracted from s
layers of the backbone network f ; this set of feature maps is
represented as

Ls = {Li | i ∈ {1, . . . , s}}. (3)

A featuremapLi of a neural network can take different shapes
depending on the type of the backbone network. For CNNs,
a feature map is typically represented as

Li : {1, . . . ,Ci} × {1, . . . ,Wi} × {1, . . . ,Hi} → R, (4)

where, Ci,Wi,Hi ∈ N are the respective channel, width, and
height dimensions of the ith feature map in the feature map
set. In ViTs [1], the feature map is represented as

Li : {1, . . . ,N + 1} × {1, . . . ,D} → R, (5)
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FIGURE 2. Overview of the T-TAME method, showing both the overall architecture used for training the
explanation-generating attention mechanism and the inference-stage use of the trained attention
mechanism. In this illustration, T-TAME is applied on a ViT backbone.

FIGURE 3. Structure of the core architecture of the proposed T-TAME method: (a) Overall structure (feature map adapter and
attention mechanism), (b) detailed structure of a feature branch of the attention mechanism, (c) detailed structure of the fusion
module of the attention mechanism. Color coding retains the same meaning as in Fig. 2.

where N , D ∈ N are the number of patches and the common
hidden size through all its layers, respectively. The former
(N ) equals HW/P2, where P ∈ N is the width (& height)
of a single square patch of the input image. P, N and D are
architecture-dependent values. For instance, for the ViT-B-16
architecture and input image resolution W = H = 224, P =

16, N = 142 = 196 and D = 768. The extra token in the ViT
feature map (i.e., the one that increases the map’s dimension
from N to N + 1) is called the ‘‘class token’’ and is used by
the classification layer. Thus, in CNNs, feature maps are 3D
tensors, while in ViTs they are 2D tensors.

Assume an attention mechanism defined as

AM : Sp
(
Ls

)
→ Sp (E) , (6)

where

E : {1, . . . ,Cls} × {1, . . . ,We} × {1, . . . ,He} → [0, 1] (7)

are the explanation maps produced by the attention mech-
anism, having spatial dimensions We, He. Sp (Ls) and
Sp (E) denote the space of feature map sets and explanation
maps, respectively. The explanations are class-discriminative,
i.e., each slice of E along its first dimension, En,
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n ∈ {1, . . . ,Cls}, is the explanation map corresponding to
the nth class on which the classifier f has been trained on.

Given the above general formulation, we propose
T-TAME: a trainable attention mechanism architecture, along
with a compatible training method. The proposed attention
mechanism is applicable to a wide range of classifier
backbones, i.e., vastly different CNNs and ViTs. An overview
of the T-TAME method is given in Fig. 2.

B. T-TAME OVERALL ARCHITECTURE
The T-TAME method, as illustrated in Fig. 3(a), is composed
of the following components:

• A feature map adapter
• The feature branches of the Attention Mechanism
• The fusion module of the Attention Mechanism

These components are trained, as illustrated in Fig. 2, using a
suitable loss function, together with a mask selection and an
image masking procedure.

The feature map adapter reshapes the feature map set
output by the backbone network so that it can be input
to the attention mechanism, which consists of the feature
branches and the fusion module. Each feature branch has
a one-to-one mapping with each feature map in the feature
map set and processes them separately. The fusion module
combines the attention maps from each feature branch into
the final class-discriminate explanation maps. Specific masks
are then selected, in an unsupervised manner, and used to
mask the image. The loss function takes as input a subset
of the produced explanation maps, i.e., a number of slices
along the channel dimension, and the logits generated by
passing the masked image through the backbone network.
In the next section, we specify each of these components.

C. T-TAME ARCHITECTURE COMPONENTS
1) ATTENTION MECHANISM
For a feature map set Ls, the attention mechanism consists of
s feature branches and the fusion module. The feature branch
structure consists of a 1 × 1 convolution layer with the same
number of input and output channels, a batch normalization
layer, a skip connection, and a ReLU activation, as illustrated
in Fig. 3(b). Each feature branch

FB : Sp (Li) → Sp (Ai) (8)

takes as input a single CNN-type feature map Li (as defined
in Eq. (4)) and outputs an attention map

Ai : {1, . . . ,Ci} × {1, . . . ,We} × {1, . . . ,He} → R, (9)

whereWe = maxiWi andHe = maxiHi. That is, the attention
map Ai has the same channel dimension as Li, and the same
spatial dimensions as the explanation maps E (Eq. (7)). The
dimensions We, He are equal to the spatial dimensions of
the largest input feature map. This is achieved by applying
bilinear interpolation1 where necessary (Fig. 3(b)), i.e., on

1Bilinear interpolation is chosen because it produces smoother explana-
tion maps than simple nearest-neighbor interpolation, while still being rather
computationally inexpensive.

the feature branches whose input feature map dimensions
are smaller than We and He. The resulting attention maps
As = {Ai | i ∈ {1, . . . , s}} are forwarded into the fusion
module

FS : Sp
(
As

)
→ Sp (E) , (10)

consisting of a concatenation operator, a 1× 1 convolutional
layer, and a sigmoid activation, as illustrated in Fig. 3(c).
Specifically, the attention maps are initially concatenated
into a single attention map (a 3D tensor with

∑s
i=1 Ci

channels, each channel of spatial dimensions We, He), and
then processed (by the convolution and sigmoid layers) to
generate the explanation map.

2) FEATURE MAP ADAPTER
In the context of a CNN backbone network, the feature maps
inherently conform to the required input shape (Ci, Wi, Hi)
(as seen in Fig. 3(b)), thus there is no need to adapt the feature
maps to the attention mechanism. In this case, the feature
map adapter is the identity function a(Li) = Li. When the
backbone network is Transformer-based, as in the case of
ViTs, the feature maps are defined as in Eq. (5). The feature
map adapter first excludes the class token, as it lacks spatial
information, and then reshapes the feature map into a 3D
format that mirrors the structure of feature maps typically
found in a CNN backbone, as defined in Eq. (4), where
Ci = D, Wi = Hi =

√
N . This is essentially the inverse

of the ViT architecture input processing step.2 The reshaping
step is visually presented in Fig 4.

FIGURE 4. Illustration of tensor reshaping in the feature map adapter:
Converting a (4, 2) tensor to a (2, 2, 2) tensor.

3) LOSS FUNCTION, MASK SELECTION, AND MASKING
METHOD
The loss function used for training the proposed attention
mechanism is the weighted sum of two loss functions,

Loss(999, logits, y) = λ1CE(logits, y)

+ λ2TV′(999), (11)

where CE(), TV′() are the cross-entropy and modified total
variation loss, respectively; λ1, λ2 are the corresponding

2In ViT, the feature map produced by the initial convolution layer,
with dimensions

(
D,

√
N ,

√
N

)
is initially reshaped into a 2D format

with dimensions (D, N ). Then, the order of dimensions is permuted,
i.e., the dimensions become (N , D) and the class token is introduced,
resulting in a feature map with dimensions (N + 1, D).
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summation weights; and y is the predicted class of the
backbone network (a.k.a. model truth): y = argmax f (I). 999
is defined as

999 : {En | n ∈ Cls999 ⊂ {1, . . . ,Cls}}, (12)

i.e., 999 is a set containing any number of explanation maps
En. For each input image, in a batched training scenario
with batch size B, we include in 999 the explanation map
corresponding to the predicted class y of the backbone
network, Ey, and additional B − 1 explanation maps for
randomly selected classes. The incorporation of explanation
maps corresponding to other classes besides the predicted
class in the loss function helps the attention mechanism to
learn to generate class-discriminative explanation maps.

The cross-entropy loss uses the logits generated
by the backbone network for the masked input image and the
predicted class to compute a loss value. This term trains the
attention mechanism to focus on salient, class-relevant parts
of the input image. The masking procedure involves taking
the element-wise product (also known as the Hadamard
product), denoted as ⊙, between the raw image and the mask
of the predicted class using,

CNN Masking(Ey, I) =
∣∣Ey ⊙ I

∣∣ , (13)

ViT Masking(Ey, I) = Ey ⊙ |I| , (14)

where | | denotes element-wise standardization (also known
as Z-score normalization) using the dataset mean and
standard deviation [43]. This operation shifts and scales
each element of the input tensor based on the mean and
standard deviation of the dataset. We should note that
masking removes features from the input image and renders
it out-of-distribution [44]. CNNs are more sensitive to
such a transformation in comparison to Transformer-like
architectures, as shown in [27]. To this end, in the case of
CNN, the explanation map is first used as a mask to perturb
the input image and then the standardization is applied
(Eq. (13)). This is the typical order of applying a perturbation
(e.g. masking, augmentation, multiplicative/additive noise) in
an input image, with the aim of causing a minimal shift to
the input data distribution [45]. On the other hand, in the
case of ViT backbones, the image I is first standardized,
and then used in the Hadamard product (Eq. (14)). This
different approach is shown to perform better (see Table 7
in the Experiments section), and is motivated by considering
what happens when standardizing only the input image:
the explanation map, when used as a mask, behaves as a
local perturbation, i.e., certain regions of the input image
remain intact while the global statistics of the image change.
Since ViT-like models [1], [44], [46] focus on certain image
sub-regions and also examine global information, this type of
perturbation is beneficial [27], [47].
Themodified total variation loss, inspired by total variation

denoising [48], is the sum of the squares of the total
variation norm of the explanation maps 999 and the mean
of element-wise exponentiation of the explanation maps.
This term reduces noise and overactivation in the generated

explanation maps. The modified total variation loss is defined
as,

TV′(999) = E(999) + λ3V (999), (15)

with E() defined as

E(999) =
1
S

∑
n, j, k

Eλ4n, j, k , En ∈ 999, (16)

and V () defined as

V (999) =
1
2S

∑
n, j, k

(
|En, j+1, k − En, j, k |2

+ |En, j, k+1 − En, j, k |2
)
, En ∈ 999, (17)

where En, j, k denotes the value of the explanation map En in
indices (j, k) and S = B ·We ·He is the number of such values
included in the summation of Eq. (16). TV′(999) forces the
attention mechanism to output less noisy explanation maps
that emphasize smaller and more focused regions in the input
image instead of arbitrarily large areas. Without this term
in the loss function, the trivial solution for minimizing the
cross-entropy loss would be not masking the input image at
all, with a homogeneous and appropriately scaled explanation
map. The scalars λ3 and λ4 are additional hyperparameters
of the loss function. By modifying the original total variation
loss with the addition of these hyperparameters, we gain an
additional degree of freedom to generate smoother and more
focused explanation maps.

D. TRAINING AND INFERENCE
During the training of T-TAME, batches from the dataset that
was used to originally train the backbone network are used
to generate feature map sets and logits. The feature maps are
then input to the attention mechanism to produce explanation
maps. Using the predicted classes from the backbone’s logits,
specific explanation maps are selected and used to mask
the input images. The batch of masked images is input to
the backbone to produce new logits. The new logits and a
subset of explanation maps corresponding to the predicted
classes, as well as other random classes, are input to the
loss function. Through backpropagation, the weights of the
attention mechanism are optimized to produce more salient
explanation maps.

During inference, only the upper half of the architecture
illustrated in Fig. 3 is used: as typically done for classifying
an input image, the image is input to the backbone classifier
to generate a decision and, as an intermediate result of this
process, a feature map set. Then, the produced feature map
set is input to the trained attention mechanism for generating
explanation maps for all classes of the backbone classifier.

We should clarify here that, at the inference stage, the
sigmoid activation function of Fig. 3(c) is replaced by a
min-max scaling step. This is done to produce a heatmap in
the [0, 1] range, for a fair comparison with all of the examined
explainability methods that typically introduce such a scaling
step, e.g., [12], [13], and [21]. Contrarily, the sigmoid
function illustrated in Fig. 3(c) is used during training,
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because the gradient of the min-max scaling operation is very
noisy, impeding the training of the explanation mechanism.

IV. EXPERIMENTS
A. DATASETS AND BACKBONE NETWORKS
We choose three neural network models that are widely used
for image classification, as the backbones for which we will
generate explanations using T-TAME:VGG-16 [29], ResNet-
50 [30] and ViT-B-16 [1]. This choice is further motivated
by the diversity among these models: there are significant
differences between the two chosen CNN architectures, and
between them and the ViT architecture. All 3 backbones have
been trained on the ImageNet dataset [49]; we obtain the
trained models from the torchvision.models library.
For training and evaluating T-TAME on each of these

backbones, we use the ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) 2012 dataset [49] (i.e., the same
dataset that the backbones have been trained on). This dataset
contains 1000 classes, 1.3 million, and 50k images for train-
ing and evaluation, respectively. Out of the 50k evaluation
images, we use a set of 2000 randomly selected images as the
validation set and a different, disjoint set of 2000 randomly
selected images for testing the explainability results (the
same as in [26], [28] to allow for a fair comparison). The
validation set is utilized for optimizing the T-TAME training
hyperparameters, including the hyperparameters of the loss
function: λ1, λ2, λ3, and λ4, as well as the number of training
epochs and learning rate. Testing on 2000 images is chosen
not only for consistency with [26] and [28] but additionally
because executing the perturbation-based approaches that
we use in the experimental comparisons is computationally
expensive [20], [21] (up to almost four orders of magnitude
more expensive than T-TAME and gradient-based methods).

B. EVALUATION MEASURES
For quantitative evaluation and comparisons, we employ two
widely used evaluationmeasures, Increase in Confidence (IC)
and Average Drop (AD) [13]. Additionally, we employ the
promising Noisy Imputation method from the Remove and
Debias (ROAD) evaluation framework recently introduced
in [50]. For completeness, we briefly describe these two
evaluation approaches in the following.

1) IC AND AD
These two measures are defined as follows:

AD(v) =

ϒ∑
υ=1

max{0, ψυ − ψ
φv
υ }

ϒψυ
· 100, (18)

IC(v) =

ϒ∑
υ=1

int
(
ψ
φv
υ > ψυ

)
ϒ

· 100, (19)

where ϒ represents the number of test images; yυ =

argmax f (Iυ ) is the model-truth label for the υth test image
Iυ ; and ψυ = max f (Iυ ) is the classifier’s output score
(confidence) for the model-truth class. ψφvυ is the classifier’s
output score for the model-truth class when input to the

classifier is a modified image, i.e. one that is masked
according to the explanation map for the same class, Eyυ
(generated by the explainability method under evaluation).
That is,

ψφvυ = eyυ · f
(
Iυ ⊙ φv

(
Eyυ

))
, (20)

eyυ = (0, . . . , 1 at position yυ , . . . , 0), (21)

where φv() represents a threshold function to select the top
v% higher-valued pixels of the explanation map Eyυ , and
int() returns 1 when the input condition is satisfied and
0 otherwise.

Intuitively, AD measures how much, on average, the pro-
duced explanationmaps, when used tomask the input images,
reduce the confidence of the model. The implicit assumption
is that by masking the input image using the explanation, con-
fusing and irrelevant background information is removed, and
thus, the average drop in confidence should be minimized.
In contrast, IC measures how often explanation maps, when
applied in the same manner, increase the model’s confidence.
By eliminating confounding background information, the
classification confidence likelywill increase, hence IC should
be maximized. A naive all-ones mask would result in a
0% AD, the optimal result, and 0% IC, the worst result.
Therefore, for a more comprehensive evaluation, we use
the combination of these measures. Furthermore, since the
explanation maps produced by each method vary in their
intensity of activation, we also apply a threshold v% to
the explanation maps, as discussed above, to assess how
effectively the pixels are ordered based on importance.
Using a smaller threshold (e.g. v = 15%) creates a more
challenging evaluation setup since a smaller percentage of
the image pixels is retained. This way, we can compare
methods more fairly, since methods that produce highly
activated explanation maps could initially generate good
results without thresholding, but when a threshold is applied
they may struggle, revealing a subpar ordering of pixel
importance in the explanation map. This evaluation protocol
has been adopted in most previous works, including [13],
[20], [21], [25], [26], [51], and [14].

2) ROAD
The Remove and Debias evaluation framework [50] aims to
improve the process of assessing the quality of explanation
maps of different explainability techniques with pixel pertur-
bations. The authors of [50] first prove, using an information
theory analysis, that simpler methods of removing areas of
an image using a binary mask leak information about the
shape of the mask. The shape of the mask could reveal class
information. Thus, the ROAD framework aims to remove
salient information rather than simply removing salient
pixels. An example of the effect of different imputation
methods is shown in Fig. 5. In this example, we observe that
by imputing the images in a straightforward way (Fig. 5(c)),
i.e., replacing the removed pixels with the mean of the
original image, the region of the modification of the original
image is evident. This can leak information about the class
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contained in the image. Resolving the discrepancy between
the removal of pixels and the removal of the information
contained in the removed pixels is the aim of the noisy
imputation method of ROAD. In Fig. 5(d), where the noisy
imputation method is employed, we observe that it is now
much harder to detect which pixels were removed, reducing
the leakage of class information contained in the binarymask.

Two evaluation measures are defined in ROAD, namely,
MoRF (Most Relevant First) and LeRF (Least Relevant
First). In the former/latter, a binary mask generated from the
explanation map is used that highlights the v% most/least
important regions in the image. This binary mask is then
utilized to impute the input image, and the confidence in the
target class is calculated. The ROAD score is then computed
using,

MoRF(v) =

ϒ∑
υ=1

ψ
θ̂v
υ

ϒ
· 100, (22)

LeRF(v) =

ϒ∑
υ=1

ψ
θ̌v
υ

ϒ
· 100, (23)

whereψ θ̂vυ = eyυ ·f (θ̂v(Iυ ,Eyυ ))),ψ
θ̌v
υ = eyυ ·f (θ̌v(Iυ ,Eyυ ))),

eyυ is defined in Eq. (21), and θ̂v(), θ̌v() represent the ROAD
imputation operation applied to v% of the most or least
important pixels of the input image, respectively. In the
case of MoRF, a sharp decline in model confidence should
be observed, as the removal of important class information
should rapidly deteriorate the model’s performance. In the
case of LeRF, removing irrelevant information should
minimally affect the confidence of the model. We compute
the ROAD measures only when comparing with other
methods (i.e., in SectionIV-D), as ROAD is significantlymore
computationally expensive than computing the AD and IC
measures. This new evaluation protocol has been adopted in
the very recent works [52], [53].

C. EXPERIMENTAL SETUP
Feature maps from three layers are extracted from each
backbone to which T-TAME is applied (i.e., s = 3).
The VGG-16 backbone model consists of five blocks of
convolutions separated by 2 × 2 max-pooling operations,
as shown in Fig. 6. We choose one layer from each of the
last three blocks, namely the feature maps output by the
max-pooling layers of each block. Alternatively, we also
experiment with the use of feature maps output by the last
convolution layer of each block. The results of this alternate
choice of feature maps are discussed in Section IV-E1.
ResNet-50 consists of five stages, as depicted in Fig. 7. For
this backbone, we utilize the feature maps from its final three
stages. Finally, for the ViT-B-16 backbone, which consists of
eleven encoder blocks, we use the feature maps of the last
three encoder blocks, as shown in Fig. 8.
T-TAME is trained using the loss function defined in

Eq. (11) with the SGD (Stochastic Gradient Descent)
algorithm. The OneCycleLR policy [54] was utilized to vary
the learning rate during the training procedure. The largest
batch size that can fit in the employed GPU’s memory is used,

as recommended in [55]. The rest of the hyperparameters
were identified using the validation dataset and the IC(15%)
and AD(15%) measures. IC and AD were preferred over
ROAD because they are simpler to interpret and much less
computationally expensive; and, we opted for IC and AD at
the v = 15% threshold because they are the most challenging
ones to improve upon and provide more focused explanation
maps. To this end, the optimal hyperparameters of the loss
function (Eq. (11), Eq. (16), Eq. (15)) were empirically
identified as: λ1 = 1.5, λ2 = 2, λ3 = 0.005, λ4 =

0.3. We observed surprising robustness across the different
architectures using the above set of hyperparameters. Thus,
the hyperparameter values do not vary between backbones.
The maximum learning rate in the OneCycleLR policy was
optimized using a grid search. Finally, the number of epochs
was identified by varying it from one to eight and selecting
the optimal one.

During training, the same image preprocessing employed
in the original backbone network [1], [29], [30] is used,
i.e., the smallest spatial dimension of each image is resized to
256 pixels, the image is then random-cropped to dimensions
W = H = 224, and standardized using the channel-wise
statistics calculated on the ImageNet dataset (mean =

[0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225]). During
the testing phase, the image is again resized so that the
smallest spatial dimension becomes 256 pixels, however,
center-cropping is used instead of random-cropping, again
as in [1], [29], and [30]. Subsequently, the appropriate
masking procedure is selected, depending on the type
of backbone network, as discussed in Section III-C3.
This protocol is used unaltered for every considered
explainability method, to ensure a fair comparison. Feature
maps are extracted from the backbone networks using
the torchvision.models.feature_extraction
library.

D. QUANTITATIVE ANALYSIS
The following state-of-the-art methods are quantitatively
compared with the proposed T-TAME, on all three consid-
ered backbones, using the evaluation measures described
in Section IV-B: Grad-CAM [12], Grad-CAM++ [13],
Score-CAM [21], Ablation-CAM [51], RISE [20] and
Iterated Integrated Attributions (IIA) [25]. Additionally,
we compare with L-CAM-Img [26] and Transformer
Layer-wise Relevance Propagation (LRP) [14], only on
CNN and Transformer backbones, respectively (because
L-CAM-Img and Transformer LRP are only applicable
to these specific backbones). These methods are selected
because they are among the top-performing methods
in the visual XAI domain and their source code is
publicly available. For Grad-CAM [12], Grad-CAM++

[13], Score-CAM [21], Ablation-CAM [51], we use the
implementations of the pytorch_gradcam library [56].
For RISE [20] and Iterated Integrated Attributions (IIA)
[25] we use the original implementations available at
https://github.com/eclique/RISE and https://github.com/iia-
iccv23/iia, respectively. For L-CAM-Img [26], which is only
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FIGURE 5. In this synthetic example, a typical imputation approach is compared to the noisy imputation method of the ROAD framework. In the naive
case, information about the mask’s shape is clearly leaked. Fig 5(d) shows how ROAD removes pixels in a more nuanced way to avoid revealing the shape
of the binary mask.

TABLE 2. Comparison of T-TAME with other methods using the AD and IC measures (CNN backbones).

TABLE 3. Comparison of T-TAME with other methods using the AD and IC measures (ViT backbone).

applicable to CNN backbones, we use the original imple-
mentation, available at https://github.com/bmezaris/L-CAM.
Finally, for the Transformer Layer-wise Relevance Propa-
gation (LRP) method [14], which is only applicable to ViT
backbones, we use the original implementation, available at
https://github.com/hila-chefer/Transformer-Explainability.

The results in terms of the AD(v) and IC(v) measures with
v = 15%, 50%, 100% for CNN and ViT models are shown
in Tables 2 and 3. The respective results for the MoRF(v)
and LeRF(v) measures are shown in Figs. 9 to 14, where v
varies from 10% to 90%. In order to acquire a single value
for each ROADmeasure, model, and examined explainability
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TABLE 4. Comparison of T-TAME with other methods using the ROAD measures (CNN backbones).

FIGURE 6. The layers from which feature maps are extracted when applying T-TAME to a VGG-16 backbone. We also
indicate in this diagram the dimensions of the extracted feature maps. We experiment with two separate sets of layers in
the ablation study (Table 6), where we denote by ‘‘Max-pooling Layers’’ the last three max-pooling layers, and by
‘‘Convolutional Layers’’ the three layers before the last three max-pooling layers. We use the same layer naming as the
torchvision.models.feature_extraction library.

FIGURE 7. The layers from which feature maps are extracted when applying T-TAME to a ResNet-50
backbone. We also indicate in this diagram the dimensions of the extracted feature maps. The outputs of
the final three residual blocks are used. We use the same layer naming as the
torchvision.models.feature_extraction library.

FIGURE 8. The layers from which feature maps are extracted when applying T-TAME to a ViT-B-16
backbone. We also indicate in this diagram the dimensions of the extracted feature maps. The outputs of
the final three encoder blocks are used. We use the same layer naming as the
torchvision.models.feature_extraction library.

method, we also compute the average confidence score across
all percentages v described above; these results are presented
in Tables 4 and 5.

In all tables, for each comparison (i.e., each row), the best
and second-best results are shown in bold and underline.
From the obtained results, we observe the following:
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TABLE 5. Comparison of T-TAME with other methods using the ROAD measures (ViT backbone).

TABLE 6. Ablation study: different architectural choices of the attention mechanism of T-TAME.

FIGURE 9. Comparison of methods using the MoRF measure of ROAD on
the VGG-16 backbone.

(i) For the CNN backbones, T-TAME generally provides
the best performance. Specifically, in the case of the
VGG-16 backbone, for the AD and IC measures,

FIGURE 10. Comparison of methods using the LeRF measure of ROAD on
the VGG-16 backbone.

T-TAME provides the best results for the more chal-
lenging v = 50% and v = 15% thresholds and is only
outperformed in the less-challenging v = 100% setup
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TABLE 7. Ablation study: comparison of mismatched backbone-masking
procedure combination.

FIGURE 11. Comparison of methods using the MoRF measure of ROAD on
the ResNet-50 backbone.

by the perturbation-based method RISE, which requires
4000 forward passes to generate a single explanation
(thus, being 4000 timesmore computationally expensive
than T-TAME at inference time). In the case of the
ResNet-50 backbone, for the AD and IC measures,
T-TAME is overall the top-performing method, while
being second-best in one instance. In that instance, it is
outperformed by the perturbation-based method Score-
CAM, which however requires 2048 forward passes
(instead of one, for T-TAME) to generate a single
explanation.
From the averaged ROAD measures of Table 4, in the
case of the VGG-16 backbone, we observe that T-TAME

FIGURE 12. Comparison of methods using the LeRF measure on the
ResNet-50 backbone.

FIGURE 13. Comparison of methods using the MoRF measure of ROAD on
the ViT-B-16 backbone.

achieves the best results w.r.t. the MoRF measure.
According to the LeRF measure, it is outperformed only
by RISE, as in the case of the AD and IC metrics.
In the case of the ResNet-50 backbone, from Table 4
and Fig. 11 we observe that w.r.t. MoRF, the explanation
maps of RISE produce the lowest (i.e., best) average
confidence but are overtaken by T-TAME in the higher
removal percentages (50% or more, in Fig. 11). These
results suggest that T-TAME correctly identifies the
important regions, but the exact pixel-wise importance
ordering is noisy. Additionally, w.r.t. LeRF for this
backbone, RISE has the highest average confidence.
To explain the LeRF results of T-TAME in the case
of ResNet-50, we should recall that LeRF is computed
by removing the less important features of the input
image, and takes into account only the ordering of pixels
according to the explanation map. As can be seen in
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FIGURE 14. Comparison of methods using the LeRF measure of ROAD on
the ViT-B-16 backbone.

Fig. 15, because of the low-resolution feature maps that
are due to the specifics of the ResNet-50 architecture,
the produced explanations are overly smooth. While
they highlight the important regions of the input image,
the ordering of less important pixels is noisy. Since for
the computation of the ROAD measures the ordering
of pixel importance is the only consideration for their
computation, this quality is detrimental. Still, the ability
of T-TAME to generate explanation maps in a single
forward pass is a significant advantage for practical
applications.

(ii) For the ViT-B-16 backbone, T-TAME is the top-
performing method across the board. It performs best
for all thresholds of the AD and IC measures. It is
the second-best method only in the case of the LeRF
measure, being outperformed by RISE, which, in this
case, requires 8000 forward passes to generate a
single explanation. Moreover, T-TAME outperforms the
Transformer-specific LRP-based method. In the case of
MoRF, as observed in Fig. 13, T-TAME exhibits the
overall best performance for all percentages except for
the initial v = 10% removal percentage. Particularly for
v = 30% to v = 70%, the difference between T-TAME
and the second-best method, Transformer LRP, is large.
This suggests that, except for the very fine-grained
ordering examined in the case of v = 10%, T-TAME
correctly identifies the most important pixels for the
ViT-B-16 backbone. In the case of LeRF, RISE is
initially the top-performingmethod, being outperformed
by T-TAME in the higher removal percentages. This
again suggests a more globally correct ordering of
importance, with less finely-grained orderings in the
lower percentages. Considering that T-TAME requires
only one forward pass to compute an explanation, it is
significant that it can compete with and in most cases
outperform perturbation-based approaches.

E. ABLATION STUDIES
In this section, we perform several ablation studies to
assess the effects of different architectural choices of the
T-TAME attention mechanism and to observe the effect of the
different masking procedures when a CNN (Eq. (13)) or ViT
backbone (Eq. (14)) is used. We measure the performance
utilizing only the AD(v) and IC(v) measures, to allow a more
straightforward interpretation of the results, and additionally,
because the ROADmeasures are much more computationally
expensive.

1) DIFFERENT ARCHITECTURAL CHOICES OF THE
ATTENTION MECHANISM
Results of this set of ablation experiments are reported
in Table 6, where we indicate with bold/underline the
best/second best results according to each measure for each
model and layer selection. For the VGG-16 model, inspired
by similar works in the literature suggesting that the last
layers of the network provide more salient features [40],
we report two sets of experiments, one that uses features
maps extracted from the three last max-pooling layers and
one where feature maps are extracted from the layers directly
before the last three max-pooling layers (Fig. 6). There is
a difference in the spatial dimensions of the explanation
maps generated using the former and the latter layers for
feature extraction, i.e., 28 × 28 versus 56 × 56, since the
dimension of the explanation maps obtained by T-TAME is
dictated by that of the employed feature maps (as explained in
Section III-C1). For the ResNet-50 model, we extract feature
maps from the outputs of the final three stages, resulting
in an explanation map of 28 × 28 pixels. In the case of
the ViT-B-16 model, feature maps are extracted from the
outputs of the final three encoder blocks, resulting in an
explanation map of 14 × 14 pixels. For each backbone and
set of considered feature maps, we examine the following
variants of the proposed architecture:
No skip connection: It has been shown that the inclusion of

a skip connection promotes a smoother loss landscape [57]
and preserves gradients that might otherwise be lost or
diluted by passing through multiple layers, thus improving
the training of very deep neural networks. Even for shallower
neural networks, such as the proposed attention mechanism,
we can benefit from using a skip connection. We see that by
omitting the skip connection shown in Fig. 3(a), we get worse
results in ResNet-50 for the more challenging v = 50% and
v = 15% measures. Similarly, for the VGG-16 backbone,
we report worse performance for the harder v = 50% and
v = 15% measures. In the case of ViT-B-16, the proposed
architecture that includes this skip connection prevails in the
more challenging v = 15% metric.
No skip + No batch norm: Batch normalization is used

in neural networks for speeding up training and combating
internal covariate shift [58]. Compared to the proposed
architecture of Fig. 3(a), we see that, in the case of VGG-
16, this variant generally performs better in the v = 100%
measures, but this does not hold for the other measures.
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Sigmoid in feature branch: In this variant, we replace
the ReLU function of Fig. 3(a) with the sigmoid function,
which squeezes the input from (−∞,∞) to the output (0, 1).
It is well known that the sigmoid function in deeper neural
networks causes the vanishing gradient problem, making it
more difficult to train the early layers of the neural network.
We see again that the proposed architecture of Fig. 3(a)
prevails for the more challenging v = 15% measures.
Two layers and One layer: In this case, the proposed

attention mechanism architecture is employed with feature
maps from fewer than three layers. The results when using
just one layer, i.e., omitting the two earlier layers of the
backbone (Fig. 6), are very similar to the L-CAM-Img
method (as shown in Table 2), which also uses just one
feature map. In the case of CNN backbones, all measures
are improved when utilizing a second feature map instead
of just one, i.e., excluding only the third (earliest) layer in
Figs. 6, 7, 8. When shifting from using feature maps from
two to three layers, the results are somewhat mixed; these
mixed results could be attributed to the extra noise of feature
maps taken earlier in the backbone’s pipeline. However,
considering these results across all backbones supports the
choice of utilizing three feature maps in T-TAME.
Overall remarks on the attention mechanism: We note

that by omitting both the skip connection and the batch
normalization in the feature branch architecture, we obtain
generally better results in the case of the VGG-16 model, but
this is not the case for the same architecture applied to the
ResNet-50 model. In addition, all the examined architecture
variations struggle under the more challenging v = 15%
measures, being in most cases outperformed by the proposed
T-TAME architecture; the latter is shown to generalize the
best across different backbone models.

2) MISMATCHED BACKBONE-MASKING PROCEDURE
COMBINATION
As discussed in Section III-C3, CNN backbones are generally
sensitive to out-of-distribution samples. Thus, in T-TAME,
we introduced different procedures for masking the input
with the explanation maps when working with Convolutional
(Eq. (13)) or Transformer-like (Eq. (14)) backbones. In this
ablation experiment, we assess the effect of switching
these procedures, i.e., conversely applying our CNN-specific
masking procedure on the ViT backbone and our ViT-specific
masking procedure on the CNN backbones. We can see
in Table 7 that for the ViT-B-16 backbone, using our
ViT-specific masking procedure is beneficial, especially
when looking at the challenging v = 15% measures. For
ResNet-50, the performance differences caused by switching
the masking procedure are much greater, demonstrating
the sensitivity of the skip connections and of the overall
ResNet architecture to out-of-distribution inputs. Similarly,
in the case of the VGG-16 backbone: the degradation of
performance when masking inputs using the ViT-specific
procedure is clear, although less pronounced than what it
was for ResNet-50. This can be attributed to the fact that
the VGG-16 architecture has no skip connections: in [59] it

has been shown that limiting the number of skip connections
improves robustness. Summarily, this ablation experiment
demonstrates the importance of handling the perturbation of
inputs in the case of CNN and ViT backbones differently,
in agreement with what we proposed in Section III-C3.
Additionally, an interesting observation is that ViT is less
sensitive to the choice of masking procedure than the two
examinedCNNs; this is consistent with the findings of [27] on
the robustness of the ViT architecture to out-of-distribution
samples.

F. QUALITATIVE ANALYSIS
An extensive qualitative analysis is performed using images
from the evaluation partition of the ILSVRC 2012 dataset.
Specifically, we present visualization examples across dif-
ferent backbones for the T-TAME method (Fig. 15); and,
focusing on the ViT backbone, for T-TAME and all other
compared methods of Table 3 (Fig. 16). Additionally,
we conduct model randomization sanity checks (following
the protocol of [15]) on the T-TAME method (Fig. 17).
Finally, in Subsection IV-F4 we provide examples where
the T-TAME-generated explanations can help us to gain
specific insights about the backbone model and the dataset
(Figs.18 and 19).

1) QUALITATIVE COMPARISON OF T-TAME EXPLANATIONS
ACROSS DIFFERENT BACKBONES
The qualitative differences between explanations produced
using T-TAME for the VGG-16, ResNet-50, and ViT-B-
16 backbones are examined in Fig. 15. We observe that
explanations produced for the VGG-16 and ResNet-50
models are generally more focused on specific regions
compared to the ViT-B-16 backbone, and explanations
produced for the three different backbone types primarily
attend to different areas of the image. This can be explained
by the fact that T-TAME is essentially trained by perturbing
the original input image. ViTs are more robust to occlusions
and perturbations [44]. By leveraging disjoint and spatially
separate regions, ViTs retain high accuracy even when using
masked inputs (see also Section III-C3). This result suggests
that VGG-16, ResNet-50, and ViT-B-16 classify images in
fundamentally different ways, focusing on different features
of an input image to make their predictions. The more
global way in which ViT-B-16 (and Transformers, in general)
interprets input images could be one of the reasons that
such Transformer-based architectures perform better on the
ILSVRC 2012 dataset.

2) EXPLANATION MAPS FOR THE VISION TRANSFORMER
In Fig. 16, explanation maps for the ViT-B-16 backbone
produced using different explanation methods are depicted.
We observe that the proposed T-TAME (last row) generates
the most activated explanation maps, followed by Ablation-
CAM (row six) and Score-CAM (row four). Most other
methods activate only on a small, and usually a different,
part of the object in the image. For instance, observing the
explanation maps in the second column of Fig. 16 concerning

76894 VOLUME 12, 2024



M. V. Ntrougkas et al.: T-TAME: Trainable Attention Mechanism for Explaining Convolutional Networks and ViTs

FIGURE 15. T-TAME applied to VGG-16, ResNet-50 and ViT-B-16 backbones. We report the ground truth classes for each input image (top) and the
predicted classes for each backbone (above the corresponding explanation map). A general observation is that the explanation maps produced using
the ViT-B-16 backbone attribute significance to larger image regions in comparison to the CNN backbones, highlighting the global view of the input
thanks to the Transformer’s Multi-head Attention layer.

the Brabancon griffon, we see that all methods besides
T-TAME focus on the body, on the neck and back part of the
head, or the mouth and nose.

Contrarily to the other methods, the explanation maps of
T-TAME tend to highlight the overall region of the object
corresponding to the model-truth label, and at the same time
provide the required granularity in the activation values so
that the parts of the object that explain mostly the decision
of the classifier are activated at a higher degree, as shown by
the very good results with the AD, IC and ROAD measures
(reported in Tables 3 and 5). This shows the effectiveness of T-
TAME in revealing the long-term relations between patches
captured by the ViT-B-16 multi-head attention layer and its
ability to identify the salient image regions. Additionally,
this demonstrates the importance of evaluating the various
explainability methods using the AD and IC measures
at multiple v thresholds (Table 6), and particularly the
significance of the v = 15% over the v = 100% and v = 50%
threshold measures in judging the quality of the generated
explanations.

3) SANITY CHECKS OF T-TAME
Sanity checks for explanation maps [15] aim to ensure
that explainability methods produce explanations that are
dependent on the specific mechanism by which the backbone
network processes its inputs to reach a classification decision.

By randomizing the backbone network, or the dataset
image-label pairs, we expect to see drastic changes in the pro-
duced explanation maps. If these changes are not observed,
the method of explanation map generation does not explain
the specific backbone’s decision-making mechanism. It may
instead simply detect image edges, or simulate other basic
image filtering methods to generate superficially-convincing
explanation maps. The methods used for the comparison
studies (Tables 2 and 3) have been observed in [14], [15],
[20], [21], [25], and [51] to pass the sanity checks, so we will
focus on T-TAME. We conduct two types of sanity checks on
T-TAME.

In the first case, depicted in Fig. 17(a), we gradually
randomize the layers of the ViT-B-16 backbone network
from the output layer to the input layer. We examine the
effects that layer randomization has on the explanations
produced for a specific image. We witness significant and
abrupt differentiation between the produced explanations and
the original explanation. Specifically, after randomizing the
logit-producing layer, and the fifth encoder layer, we notice a
major shift in the highlighted salient regions. After having
randomized the entire backbone, the produced explanation
bears very little resemblance to the initial explanation. This is
the expected and desired result since a randomized backbone
produces random results, thus no reasonable explanations for
its decisions can be produced.
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FIGURE 16. Qualitative comparison between T-TAME and the other explainability methods of Table 3 for the ViT-B-16 backbone. We observe that
T-TAME produces more activated explanation maps, demonstrating the global context used by the ViT-B-16 architecture.
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FIGURE 17. Qualitative sanity check of the proposed T-TAME method. In (a) we randomize the weights of the backbone network (ViT-B-16) in a cascading
manner. In (b) we gradually randomize the attention mechanism of T-TAME. We can observe a drastic drop in the quality of the produced explanation
when randomizing the backbone, starting with the logit-producing layer and finishing with the initial patch-processing convolutional layer. When
randomizing the attention mechanism, the result is also a dramatic change in the produced explanation map.

FIGURE 18. Counterfactual explanations for two input images. In each case, we display six class-specific explanations for VGG-16, ResNet-50, and
ViT-B-16. The first row of explanations for each image corresponds to the image’s ground-truth class, whereas the second row to the other classes: for the
image on the left that is correctly classified by all three backbones, these are the second-best predictions of each backbone, while for the image on the
right that is misclassified by all three backbones, these are the erroneously-predicted class of each backbone.

In the second case, depicted in Fig. 17(b), we randomize
the trained attention mechanism of the T-TAME method in
a cascading manner (that is, this sanity check is specific to
T-TAME). After randomizing the fusion module, we observe
a considerable change in the produced explanation. The
produced explanation map further resembles a random
heatmap, as feature branches are consecutively randomized.
This is again the desirable result of this sanity check,
as it demonstrates that the training step of the T-TAME
attention mechanism results in weights that are necessary for
producing meaningful explanation maps.

4) EXAMPLE INSIGHTS ON IMAGENET CLASSIFIERS
In Fig. 18, we provide class-specific explanation maps
referring to the ground truth class but also to an erroneous
class, for the three examined backbones, to examine how
T-TAME can assist in model interpretability. Interpretability
refers to the rationale employed by a model to generate
its decisions. It is different from explainability because the
focus is on the model instead of a specific classification
decision. The first image (left side example) is correctly
classified by all of the examined backbones. The explanations
for the second-highest predicted class, by each backbone,
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FIGURE 19. Explanations for four input images. In each case, we display six class-specific explanations, i.e., of the true (ground truth) (top) and an
erroneous (bottom) class prediction of the input image, for VGG-16, ResNet-50, and ViT-B-16. In (a), example images with multiple classes, along with
generated explanations for each respective class are depicted. In (b), two cases of misclassification are provided: dataset misclassification (left-side
example) and model misclassification (right-side example).

are also depicted. The second image (on the right) is
incorrectly classified by all of the examined backbones.
The explanations for the class predicted by each model,
along with the explanations for the ground truth class, are
shown. By comparing the explanation maps for adversarial
classes, we can probe at the underlying decision strategy and
possibly gain new insights for the classifier. For example,
for the first image, which depicts a ‘‘spoonbill’’, in the
case of the CNN backbones, the second-highest predicted
class is the class ‘‘flamingo’’. These two animals share
many visual characteristics, such as body shape and color.
In the case of the ViT backbone, the second-highest predicted
class is ‘‘banana’’, a seemingly unrelated class to the input
image. Both CNNs seem to generate their decision from
generic visual characteristics such as color, shape, and
background. The Transformer-based architecture seems to
employ a different strategy: the image has been classified
as a spoonbill with high confidence, and no other class
is considered possible, so the decision ‘‘banana’’ has near
zero confidence. The second image (right side example)
is incorrectly classified by all of the examined backbones;
the top-predicted class is different for each backbone. The
ground truth class’s explanation map is also depicted. The
initially predicted classes are all visually similar dog breeds
to the ground truth class, but even for the ViT backbone the
confidence in its prediction is not high: the model recognizes
that classification is unclear in this instance, instead of always
outputting a single prediction of high confidence.

The examples of Fig. 19 (a) demonstrate the potential
of the explanation maps to be used for explaining multiple
different classes contained in a single image, i.e., the
‘‘Ibizan Podenco’’ and ‘‘collie’’ image, and the ‘‘window
screen’’ and ‘‘flowerpot’’ image. All models can clearly
distinguish between the various classes contained in the
images. Interestingly, the ViT backbone highlights both dogs
in the first example, varying only in the intensity of the

explanation map, instead of considering the second dog a
negative presence in the image, as do the CNN backbones.
This corroborates with our findings that ViT models interpret
the input image more globally and relationally (it may be
more likely for multiple animals to exist, rather than a single
animal, in an image of the ImageNet dataset).

Finally, in Fig. 19 (b) we provide two cases of images
that have been misclassified, i.e., the predicted class is not
in agreement with the ground truth label of the dataset, and
we use the explanations to understand what went wrong. The
first image of Fig. 19 (b) belongs according to its ground
truth label to the ‘‘dingo’’ class (273) but is misclassified
as ‘‘timber wolf’’ by all three backbones. Visual inspection
reveals that the image evidently belongs to the ‘‘timber
wolf’’ class, hence this is a case of dataset mislabeling; the
backbone classifiers correctly focused on meaningful parts
of the image to make their decisions. The second image
depicts a lighthouse. VGG-16 misclassified this image as
a ‘‘sundial’’. Again, using the explanations generated by
T-TAME, we can understand which features led the model to
produce a wrong decision. For instance, in this case, we see
that for both CNN models, the ‘‘sundial’’ explanations focus
on the lighthouse roof, which might resemble a sundial,
explaining the erroneous classification decision of VGG-
16. ViT-B-16 correctly classifies this image. The ViT-B-16
explanation does focusmore on the roof as well, but it is much
less concentrated on a specific region, and in this lighthouse
example also focuses on the perimeter fence of the building,
again showing that this classifier utilizes information from
multiple parts of the image.

V. CONCLUSION
We proposed T-TAME, a novel method for generating visual
explanations for deep-learning-based image classifiers. This
is accomplished by training a hierarchical attention mecha-
nism to make use of feature maps that are extracted from
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multiple layers of the backbone classifier. These feature
maps are appropriately transformed according to the type
of the backbone network, making T-TAME compatible with
both CNN and Transformer-based classifier architectures.
Experimental results verified that T-TAME clearly out-
performs gradient-based and non-trainable relevance-based
explainability methods, and outperforms or is on par with
perturbation-based methods while, in contrast to them,
it requires only a single forward pass to generate expla-
nations. Possible future directions include the application
of T-TAME to medical image classification problems; and,
the investigation of how we could mitigate the effects of
masking with low-resolution feature maps in backbones such
as ResNet-50, where the output of the backbone’s last stages
is inevitably of low spatial resolution.
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