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ABSTRACT Predictive Maintenance (PdM) plays a key role in production management by extending the
lifespan of components and reducing maintenance costs. In the manufacture of semiconductors, the scarcity
of data related to haze defects makes it difficult to draw correlations between environmental factors and
haze formation. The uncertainty associated with a reliance on indirect evidence (i.e., cumulative time in
the environment) has seldom been explored in the literature. Therefore, we developed a PdM framework
based on fuzzy few-shot learning to deal with photomask haze in the semiconductor industry. The robustness
of the model was evaluated in a three-month pilot study conducted in a wafer foundry. This paper also
provides cost-benefit analysis of model implementation. The results demonstrate that the proposed haze
photomask detection model outperforms existing models in terms of hit rates and false alarm rates. It also
proved effective in lowering labor costs and power consumption, as evidenced by the fact that the number
of haze candidates was well below the daily inspection cap, which allowed the decommissioning of one
photomask inspection device, reducing the photomask inspection volume by 21%, which is equivalent to an
annual labor cost reduction of USD 18,780. These results should help to promote the adoption of predictive
maintenance applications, even in situations with small sample sizes.

INDEX TERMS Fuzzy few-shot learning, photomask haze, predictive maintenance, imbalanced data, cost-
benefit analysis.

I. INTRODUCTION
A. BACKGROUND
In semiconductor manufacturing, the maintenance of produc-
tion components is crucial to product quality and production
yield [1]. The manual inspection of hardware can have
a profound negative impact on production capacity and
associated costs (reaching 15% - 70% of total production
expenses) [2]. The advent of smart factories has led to
the widespread adoption of Predictive Maintenance (PdM),
which uses statistical analysis and machine learning based
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on historical data to determine the optimal timing of main-
tenance interventions [3].

PdMs use a record of historical usage in conjunction with
the current operations to predict the health status and thereby
improve component reliability and usability. PdM is gen-
erally implemented in three stages: component-related data
collection, data processing and analysis, and PdM decision-
making [4]. Generally, PdM models employ two approaches
to decision-making: Remaining Useful Life (RUL) prediction
and component status classification. RULprediction typically
employs Time-To-Failure (TTF) as a quantitative predic-
tion target, whereas component status classification involves
the categorization of components as normal versus suscep-
tible [3]. Common quantitative prediction methods include
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statistical approaches [5], [6], time series methods [7],
machine learning techniques [8], [9], [10], deep learning
methods [11], [12], as well as Continuous Semi-Markov
Decision Process (CSMDP) combined with Reinforcement
Learning (RL) [13]. Recent prediction methods consider
long-range dependencies and heavy tail characteristics in the
assessment of RUL [14]. The methods for classification tasks
include Hierarchical Clustering (HC) [15], Support Vector
Machine (SVM) [16], [17], Decision Tree (DT) [18], and
Random Forest (RF) [19]. In the field of deep learning, meth-
ods such as Convolutional Neural Network (CNN) combined
with LSTMhave been employed [20]. All thesemethods have
been validated for their effectiveness in building PdMmodels
for RUL prediction or fault classification.

Most PdM models generally require a large amount of
failure data for training aimed at estimating the RUL or
predicting impending anomalies [21], [22]. Data collec-
tion is hindered by a severe imbalance between normal
data (abundant) and abnormal data (scarce), which can
render conventional machine learning or deep learning meth-
ods ineffective [23]. Several researchers have proposed the
pre-training of deep learning models or the use of transfer
learning to reduce data size requirements [24]; however,
engineers have found that the inference process lacks inter-
pretability. This can make it difficult to reverse-engineer the
relationships between critical influencing factors and pre-
diction results, thereby hindering the definition of standards
for the maintenance of components. Data augmentation is
another approach to increasing sample size; however, the
representativeness of newly generated virtual samples is often
questionable. Note also that the heterogeneity of components
due to material variations, vendor differences, and disparities
in usage can make it difficult to accurately quantify an RUL
for each component [25]. Finally, it is exceedingly difficult
to obtain data directly related to the lifespans of compo-
nents [26]. The results obtained using indirect data introduce
a degree of fuzziness and uncertainty. Despite these issues,
there has been very little research on the establishment of
data-driven PdM models under data constraints.

Machine learning and deep learning methods both require
large amounts of data for model training and the avoidance
of overfitting, and even statistical methods require at least
30 abnormal samples to establish statistical significance.
A lack of data suitable data and uncertainties associated
with data collected via indirect methods can lead to subop-
timal prediction and classification outcomes with potentially
grievous effects on the lifespan of components. Although
there have been studies in recent years investigating few-shot
learning for data imbalance [27], [28], [29], there is limited
research on building few-shot learning models using indirect
variables to address the scarcity of key direct variables affect-
ing component abnormalities. Most previous research on
photomask haze have concentrated on physical and chemical
phenomena. Few studies have adopted a data-driven approach
to the exploration of PdM.

In the current study, we sought to fill this gap by devel-
oping a PdM framework based on Fuzzy Few-Shot Learning
(FFSL) to alleviate the problem of data imbalance by training
the PdM model using only abnormal data. We addressed
the problems of components heterogeneity and fuzziness in
indirect data by implementing attribute classification and
fuzzy similarity, respectively. The framework is implemented
in two stages: detection and self-monitoring. In the detection
stage, Fuzzy Similarity (FS) is used to determine whether the
features of a given normal component are similar to those of
abnormal components in a form of one-class classification.
In the event that the model incorrectly identifies a component
as abnormal when it is actually normal, then that component
enters a self-monitoring stage in which a Self-inspection
Index (SI) is used to determine whether the inspection criteria
have been met.

The proposed model was validated in a three-month pilot
run involving the detection of photomask haze in a semicon-
ductor wafer foundry. The study had three main objectives.
First, we sought to establish a framework and operational
process for FFSL-based PdM. Second, we compared model
performance metrics with those of commonmachine learning
models, including hit rate, false alarm rate, and prediction
loading rate (indicating the number of photomasks that need
to be inspected per unit of manpower for use in assessing the
impact of the model on inspection workload). Third, we eval-
uated the cost savings attributable to the implementation of
FFSL-based PdM model in the factory.

This study makes the following contributions. First, this
is the first study to develop a PdM model that addresses the
challenges of limited sample size, data heterogeneity, and
fuzziness. We also derived crystallization dynamic features
associated with haze formation to be used in the PdM model.
Note that this innovation is applicable to the establishment of
PdMs for a wide range of consumables or components with
limited data pertaining to abnormal operations. Second, the
model was implemented as a pilot run in a wafer foundry,
during which data was collected on 50,000 photomasks over
a period of 3 months. Note that this was the first study on
photomasks to cover PdM research, and first PdM study to
be verified through big data analysis. Third, we developed a
practical metric by which to measure the labor costs saved
by the PdM. The proposed prediction loading rate makes it
far easier to assess the cost-benefit of model implementation,
which has been largely disregarded in the literature.

B. CASE DESCRIPTION OF PHOTOMASK HASE DETECTION
The process of manufacturing semiconductors is complex,
typically involving 100∼200 processing steps of high pre-
cision [30]. In photolithography, Ultra-Violet (UV) light is
used to transfer patterns from photomasks towafers; however,
the on-going miniaturization of electronic components has
reduced linewidths (from 350∼500 nm to 100∼250 nm)
and exposure wavelengths (from 436 nm to 193 nm),
thereby increasing the likelihood of transferring defects in
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the photomask layer to the wafer during the photolithography
process.

Photomask types can be categorized as Binary Intensity
Masks (BIM) or Phase Shift Masks (PSM). Under exposure
to a light beam, BIMs tend to generate diffraction patterns
and image blurring. This issue can be resolved by creating
a PSM, which involves applying a phase-shifting layer atop
the BIM with the aim of inverting the phase of the light beam
to improve image resolution. PSMs are widely utilized in
Deep Ultra-Violet (DUV) and Extreme Ultra-Violet (EUV)
lithography; however, PSMs are more susceptible to haze
formation than are BIMs [31].

Haze occurring between the photomask surface and the
pellicle is the most common form of photomask defect. From
a chemical perspective, haze is mainly ammonium sulfate
((NH4)2SO4) [32]. The mechanism underlying haze forma-
tion involves the adsorption of sulfur ions (S2−) from the air
onto the photomask surface, which then oxidizes to formSO2.
The exposure stage of photolithography involves the use of
light beams (wavelength = 193) carrying energy sufficient to
cause the photochemical decomposition of oxygen molecules
into oxygen atoms. The SO2 then combines with oxygen
atoms as SO3, which forms into sulfuric acid in the presence
of H2O in the air. The presence of any NH3 in the air during
this stage can lead to the formation of ammonium sulfate
crystals, resulting in haze formation [33].

The factors that contribute to haze formation can be cate-
gorized as photomask attributes, cleaning processes, environ-
mental factors, and exposure energy-induced effects [34]. The
risk of ammonium sulfate adsorption (haze formation) is pos-
itively correlated with the presence of photomask impurities
(S2− and NH3) and light energy, such that shorter wave-
lengths (193 nm) are more likely than long wavelengths
(248 nm) to induce haze formation [31]. Haze formation can
also be attributed to cleaning methods and environmental
conditions [35]. Haze does not form when the concentration
of sulfur ions is less than 5 ppb, even under an accumulated
exposure energy of 30 kJ/cm2 [36]. Even in the presence of
sulfur ions on the photomask surface, haze does not form
under low NH3 concentrations when using exposure energy
of 10 kJ/cm2 [37]. In other words, haze formation requires
that both sulfur ions and NH3 exceed given concentrations.
The photomask storage environment is the primary source of
sulfur ions and NH3 on photomasks [38], [39]. Researchers
have demonstrated that the lifespan of a photomask can
be extended simply by improving the storage environment
or reducing the time that photomasks remain in potentially
contaminated environments. However, due to the varying
environmental exposure paths or footprints of photomasks
driven by their production requirements, this time variable
introduces uncertainty and fuzziness into the haze [40], [41].
The risk of haze formation is proportional to the number of
exposures and cumulative exposure energy [31]. The thresh-
old for cumulative exposure energy (at 193 nm) depends
on the density of ammonium sulfate seeds. Haze formation

occurs when the seed density exceeds a given threshold,
such that the exposure energy is sufficient to induce seed
agglomeration [36]. The timely cleaning of photomasks
can eliminate haze and allow the continued use of pho-
tomasks [37]. However, the large number of photomasks that
pass through the production line each day canmake it difficult
to differentiate haze-contaminated photomasks. Engineers
require methods to facilitate the detection of haze and thereby
reduce the time required for manual inspections.

In this case, the existing methods use SVM to select
the photomasks that need to be inspected. However, this
assembly line had only 5 personnel using only 5 pho-
tomask inspection devices to inspect 500∼600 photomasks
each day, thereby limiting the daily inspection capacity to
75 photomasks. Under these constraints, it was inevitable
that many haze-contaminated photomasks would go unde-
tected. In developing the proposed PdM model, our aim was
to ensure that photomasks would be sent for cleaning in a
timely manner and reduce costs due to unnecessary manual
inspection.

The remainder of this paper is organized as follows.
Section II presents an overview of the FFSL methodology,
including its capabilities and applications. Section III out-
lines the data sources and processing. Section IV presents
our research results. Section V summarizes the findings and
provides conclusions and recommendations for future work.

II. PROPOSED METHODOLOGY
Figure 1 illustrates the proposed PdM framework based on
FFSL, which is implemented as follows: (1) Identify key fac-
tors influencing haze formation via cause-and-effect analysis,
including categorical and numerical factors. (2) Categorize
photomasks according to attributes (e.g., vendor), which
could affect component lifespans. (3) Extract critical features
of photomask haze with equations pertaining to crystalline
dynamics. (4) Utilize fuzzy similarity in the detection stage
to compare the similarity between the tested photomasks and
those contaminated with haze. If the similarity threshold is
exceeded, then an inspection is initiated. If the inspection
returns normal results, then proceed to the self-monitoring
stage. (5) In the self-monitoring stage, a self-inspection index
determines whether the photomask meets the inspection cri-
teria. The abbreviations used in the proposed PdM model
and their corresponding explanations are provided in Table 1.
Detailed explanations of each step are provided below.

A. CAUSE AND EFFECT ANALYSIS
Cause and effect analysis was performed using a fishbone
diagram to identify the factors with a meaningful effect on the
target. Figure 2 presents the factors with an influence on haze
formation, based on previous research and expert knowledge.
Photomask lifetime can be affected by categorical variables,
such as photomask attributes (e.g., vendor manufacturing
quality, photomask types, and pellicle types) and the clean-
ing process (e.g., cleaning method and contamination in
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FIGURE 1. Fuzzy few-shot learning framework for PdM dealing with photomask haze.

TABLE 1. Explanation of abbreviation used in the proposed PdM.

the cleaning environment). During the movement of pho-
tomasks from storage rooms to production lines, their RUL
is gradually shortened by exposure to energy-induced factors
(e.g., exposure energy and cumulative exposure count) and
environmental factors (e.g., S2− and NH3 concentrations).
Note that the adsorption of these impurities is proportional
to the time spent in the contaminated environment. This
means that the cumulative time that photomasks remain in
contaminated environments is an indirect factor that should
be considered in quantifying the retention of S2− and NH3 on
photomasks.

FIGURE 2. Cause-and-effect analysis pertaining to the formation
photomask haze.

B. ATTRIBUTE CLASSIFICATION
The useful lifespan of a photomask depends on cleaning pro-
cesses and photomask attributes. Categorical factors include
pellicle types, photomask types, vendor quality, cleaning
method, and cleaning environment. Considering that cleaning
is performed by the same photomask vendor, we consoli-
dated cleaning method and cleaning environment under the
category ‘vendor’. This categorization refers to variations in
photomask lifespan attributable to the manufacturing quality,
cleaning method, and cleaning environment associated with
a given vendor.

C. FEATURE EXTRACTION OF PHOTOMASKS HAZE
This study employed the principles of crystalline dynamics
proposed by Avrami in 1939 [42], [43], [44] to calculate haze
features. As shown in Figure 3, theAvrami equation is derived
through a Poisson distribution [45], [46], which suggests a
positive sigmoidal relationship between the extent of crystal
growth and time.

The relationship between crystal growth (Y ) and time (t)
can be written as follows:

Y = 1 − exp(−kta) (1)

When the process of crystallization on the photomask is
in the initial nucleation stage, the transformation fraction is
close to 0% (indicating minimal nucleation). With time, the
process advances into the nucleation growth stage, during
which transformation fraction increases rapidly (indicating
rapid crystal growth). When nucleation undergoes a gradual
slowdown, the transformation fraction reaches or exceeds
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FIGURE 3. Stages of crystal growth as a function of time.

50% (indicating significant nucleation) [46]. Note that the
occurrence of haze nucleation cannot be defined by the trans-
formation fraction for other ratios, thus precluding the use of
sensitivity analysis.

The Avrami constant is associated with nucleation type
and the nucleation mechanism associated with a given mate-
rial [47]. Nucleation type can be categorized as homogeneous
(crystallization based on the properties of the solution) and
heterogeneous (crystallization that requires the assistance
of small external particles as seeds). Note that nucleation
can also be one-dimensional (rod), two-dimensional (disk),
or three-dimensional (sphere). Haze formation is associated
with heterogeneous nucleation involving plate-like crys-
talline structures based on an Avrami constant of 2 [47]. The
rate constant (k) for the crystallization of plate-like crystals
in the process of heterogeneous nucleation can be expressed
as follows. Note that to overcome the difficulty of obtaining
data pertaining to the rate of microscopic crystallization,
we simulated this data based on a photomask haze database
(k = 0.03).

k = πυ2dN0 (2)

Single exposure energy, cumulative exposure count, and
cumulative time in an impure environment play key roles in
the formation of haze on photomasks; therefore, we incor-
porated these factors into Eq. (1) to be reformulated as
Eq. (3). The transformation fraction (Yi) of haze is positively
correlated with crystalline dynamics features (Fi), which can
be calculated via multiplication using single exposure energy,
the cumulative exposure number, and the cumulative time
of environmental impurities using Eq. (4). These crystalline
dynamics features indicate that haze formation can occur
when a photomask is exposed to impurities for a set duration
and continuously exposed to a set level of exposure energy.

Yi = 1 − exp(−0.03F2
i ) (3)

Fi = Ei × CACC
i × T ACCi (4)

As shown in Eq. (5), there are five different levels of
cumulative time of environmental impurities (TACCi ). These
impurity environments (CDA, NCDA, SINV, INV, and FAB)

TABLE 2. Impurity environments and risk of haze formation.

are detailed in Table 2. By substituting these variables into
Eq. (4), it is possible to derive the corresponding crystalline
dynamics features (Fei ) can be derived for each environment,
as shown in Eq. (6). This means that Eq. (3) can be used
to obtain five transformation fractions, as shown in Eq. (7).
This means that the proportion of each factor changes with
the Avrami equation. When photomask haze is detected, this
set of transformation fractions can then be used to perform
reverse inference indicating the transformation fraction and
factors that are responsible. This could be highly beneficial
for engineers seeking to interpret available data in tracing root
causes.

T ACCi = {TACC,CDA
i ,T ACC,NCDA

i ,T ACC,SINV
i ,

T ACC,INV
i ,T ACC,FAB

i } (5)

Fei = Ei × CACC
i × T ACC,e

i ,

e = CDA,NCDA, SINV , INV ,FAB (6)

Y ∗
i = {YCDAi ,YNCDAi ,Y SINVi ,Y INVi ,Y FABi } (7)

D. FUZZY SIMILARITY
Consider two photomasks that spend the same cumulative
time in an impure environment but are transported along
different paths. The two samples are likely to differ in terms of
impurity adsorption, thereby introducing inherent fuzziness
and uncertainty into the correlation between time spent in
an impure environment and haze formation. Under these
conditions, the transformation fractions calculated using
the crystalline dynamics features will also tend to exhibit
fuzziness.

In the current study, we employed Fuzzy Similarity (FS)
[48], [49], [50] to derive a more complete assessment of
haze-affected photomasks based on the five transformation
fractions. The formula presented in Eq. (8) can be used to
calculate the fuzzy similarity between the transformation
fraction set of the tested photomask and the transformation
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fraction set of a known haze-affected photomask. Here, the
values range from 0 to 1 with a higher value indicating a
higher risk of haze formation. Fuzzy similarity of > 0.5 indi-
cates that the photomask is probably in the middle to late
stages of nucleation and should be inspected due to an ele-
vated risk of developing haze.

FS = 1 −

∑n
i=1

∣∣Hmed
− Y ∗

i

∣∣∑n
i=1

(
Hmed + Y ∗

i

) , FS ∈ [0, 1] (8)

It is important to consider that extreme outliers can be
found in the transformation fraction sets of all haze pho-
tomasks. For example, it is plausible that haze could occur on
a photomask even in situations where all five transformation
fractions are very small. To mitigate the influence of outliers
on haze features, we employ the median instead of the mean,
as follows:

Hmed
= Med

(
H∗
j

)
, j = 1, 2, . . . ,m (9)

E. SELF-INSPECTION INDEX
In some cases, photomasks identified as hazy based on
fuzzy similarity are not actually hazy. Nonetheless, these
photomasks should be continuously monitored using the
Self-inspection Index (SI), because they face an elevated
risk of developing haze as the exposure count increases.
The self-inspection index is calculated as the change in
the cumulative exposure count divided by the count win-
dow, which indicates the risk based on the cumulative time
spent in the contaminated environment. Based on engineering
experience, when the total cumulative time in an impure
environment (

∑n
i T

ACC
i ) exceeds 2,000 hours, it is consid-

ered high risk. Thus, a tighter count window is usually set
(600 counts). If the total cumulative time is less than 2,000
hours, it is considered medium risk, and a looser count
window is set (1,000 counts). As shown in Eq. (10), a self-
inspection index exceeding 1 indicates that the photomask
should be inspected.

SI =
1CACC

i

z
,

{
z = 1,000, if

∑n
i T

ACC
i > 2,000

z = 600, if
∑n

i T
ACC
i < 2,000

}
(10)

Another scenario is when photomasks are determined as
normal based on fuzzy similarity but have haze. In this case,
the occurrence is extremely rare. Detecting these cases with
PdM involves significant labor costs. Therefore, it is more
feasible to detect haze-contaminated photomasks retrospec-
tively through abnormal semi-finished products.

F. PERFORMANCE INDICATORS AND PROCESS
VALIDATION
In this paper, the hit rate, false alarm rate, and prediction
loading rate are calculated using a confusion matrix. Hit rate
(also known as recall) measures the proportion of photomasks
correctly predicted by the model as hazy divided by the total
number of haze-contaminated photomasks (see Eq. (11) and

TABLE 3. Impurity environments and risk of haze formation.

Table 3), wherein a higher index indicates more accurate haze
detection. The false alarm rate indicates the proportion of
normal photomasks falsely predicted by the model as haze,
as shown in Eq. (12). Prediction loading rate measures the
proportion of photomasks predicted by the model as haze
divided by the daily inspection ceiling constraints imposed
by the available human resources, wherein a higher index
indicates a heavier workload, as shown in Eq. (13). In this
case, the daily inspection limit (M) was set at 75 photomasks
for a workforce of 5 individuals.

Hitrate = Recall = A/(A+ B) (11)

False alarm rate = 1 − Precision = C/(A+ C)

(12)

Prediction loading rate = (A+ C) /M (13)

As shown in Figure 4, the validation process involved a
training phase followed by a trial run. In the training phase,
we first categorized the vendors of hazy photomasks and
then computed the feature set for the haze transformation
fraction. The feature set serves as a parameter set for the
calculation of fuzzy similarity (FS) in the trial run phase.
FS is computed by calculating the transformation fraction
of the photomask being inspected with the feature set of the
haze transformation fraction. If FS is less than 0.5, then the
photomask is categorized as good, indicating that the model
considers the photomask normal. If FS is greater than 0.5,
then the photomask is categorized as bad, indicating that the
model considers the photomask at risk of developing haze,
such that an intervention will be required by the engineering
department. A photomask confirmed as haze-affected is sent
for cleaning and the data in the haze features database is
updated. In cases where a photomask suspected of being
bad is found to be normal, the photomask is shifted to the
self-monitoring stage, as shown in Figure 5. Note that the
prediction loading rate is used only in the trial run phase.

III. DATA SOURCE AND PREPARING
Photomask data were collected from a foundry in Taiwan
producing 12-inch wafers [51]. The data included mon-
itoring variables, such as indirect environmental factors,
exposure energy-induced factors, photomask attributes, and
cleaning processes, (see Table 4). The indirect environmental
factors included cumulative storage time in the five environ-
ments. Exposure energy-induced factors included exposure
energy and cumulative exposure count. Photomask attributes
included photomask types, pellicle types, and vendors. Due
to a lack of data related to cleaning, we used the details
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FIGURE 4. Decision flowchart of PdM for photomask haze.

FIGURE 5. Two-stage flowchart of PdM during trial run daily.

pertaining to the cleaning methods and clean environment
provided by the respective vendors.

As shown in Table 5, the sample comprised a total of
54,146 photomask samples (both the training and trial run

phases), which included only 52 instances of haze (a severe
imbalance in the data). A total of 731 photomasks were
included in the training phase (28 instances of haze). A total
of 53,415 photomasks were included in the trial run phase
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FIGURE 6. Confusion matrix and performance in the training.

TABLE 4. Summary of raw data variables.

(25 instances of haze). In the model comparison, SVM and
DT both used standardized raw data as independent variables
for haze prediction. Additionally, during training, both SVM

TABLE 5. Summary of sample sizes used in training and the trial run.

and DT adjust for imbalanced data by using the inverse of
the sample proportions as weights to correct for unbalanced
classes, thereby preventing the model from merely correctly
distinguishing normal photomasks.

IV. RESULTS
The results obtained using training data are shown in Figure 6.
The hit rates were as follows: FFSL (0.89), SVM (0.86), and
DT (0.82), indicating that the proposed model exhibits higher
accuracy in discriminating haze photomasks. The false alarm
rates were as follows: FFSL (0.68), SVM (0.80), and DT
(0.81), indicating that the proposed model has a lower rate
of misclassifying normal photomasks as haze photomasks,
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FIGURE 7. Confusion matrix and performance of vendors from FFSL.

FIGURE 8. Confusion matrix and performance in the trial run.

thus demonstrating higher accuracy in discriminating normal
photomasks. All of the scores were above 0.5; however, the

use of non-linear transformations (e.g., photomask attribute
classification and feature extraction) in a multivariate feature
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FIGURE 9. Daily prediction loading rate and quantity of photomasks
requiring inspection.

space enhanced the ability of the proposed model to discrimi-
nate between normal and haze photomasks, thereby reducing
the number of false alarms (n = 53). The proposed model
significantly outperformed SVM (n = 94) and DT (n = 101).
As shown in Figure 7, further analysis of the differences

among vendors revealed a hit rate between 0.86 and 1.0.
Note that Vendor5 presented the highest number of hazy
photomasks (haze = 12) and the lowest hit rate (0.86), mak-
ing it the most representative. The false alarm rates ranged
from 0.56 to 0.83. Vendor5 was the only vendor with a
statistically significant large sample (predicted haze = 39 >

30), so its corresponding false alarm rate (0.69) is the most
representative.

The trial run results in Figure 8 revealed that the hit rate
of FFSL (0.83) was higher than that of SVM (0.75) and DT
(0.75), indicating stable discriminative capability for hazy
photomasks. Between the training and trial run phases, the hit
rate decreased by only 0.06. All of the false alarm rates were
close to 1: FFSL (0.9963), SVM (0.9973) and DT (0.9974).
Due to a notable imbalanced data, the number of normal
photomasks misclassified as haze far exceeded the num-
ber of photomasks correctly identified as haze (i.e., FFSL:
5,335 > 20), thereby rendering this indicator ineffective.
Thus, we employed the prediction loading rate to measure
the number of normal photomasks classified by the model
as haze. As shown in Figure 9, the average daily prediction
loading rate for FFSL was 0.79, which means that the FFSL
model needs to inspect only 60 photomasks, based on inspec-
tion upper limit (UL) of 75 photomasks daily. This represents
a 21% reduction in the costs for inspection. Note that in this

TABLE 6. Summary of model performance in the trial run.

batch of 60 inspections, the hit rate was 86%. By contrast, the
average prediction loading rate for SVM and DT was higher
than 1, which exceeded the daily inspection capacity. Taken
together, FFSL clearly outperformed the other methods in
terms of hit rate and prediction loading rate in the trial run
(see Table 6).

Cost-benefit analysis revealed a daily labor cost savings
of 21%. This is equivalent to reducing the workforce by
one, which corresponds to labor cost savings of roughly
USD 18,780 annually, based on an average monthly salary
of USD 1,565 for full-time workers in Taiwan in 2022 [52].
Decreasing the photomask inspection volume would also
allow the deactivation of one photomask inspection device,
which would further reduce costs related to equipment oper-
ation and electricity consumption.

V. CONCLUSION
The deployment of PdM is often hobbled by data heterogene-
ity, a reliance on indirect data, and/or a paucity of abnormal
data, resulting in suboptimal performance in distinguishing
anomalies or estimating the remaining useful life. Research
on the implementation of PdMs under these constraints has
been limited, as has research on the use of these methods for
the prediction of photomask haze. The PdM framework pre-
sented in the current study employs cause-and-effect analysis
to elucidate relationships, attribute classification and feature
extraction for the processing of categorical and numerical
variables, and fuzzy similarity and self-monitoring indicators
to differentiate haze from normal photomasks. In a three-
month validation run in a wafer foundry, the proposed FFSL
framework was evaluated in terms of performance, robust-
ness, and cost-benefit performance.

The proposed model outperformed SVM and DT in terms
of accuracy in correctly identifying haze photomasks, while
significantly reducing the number of false alarms. The ability
to discriminate between haze and normal photomasks can be
attributed to the nonlinear transformation of critical features
via attribute classification and feature extraction. The pro-
posed model also reduces the number of manual inspections
to below daily inspection caps. Note that when using SVM or
DT, the number of required inspections exceeded the capacity
of the existing manpower. Cost-benefit analysis revealed that
this model could reduce the inspection overhead by 21%,
which is equivalent to a USD 18,780 reduction in labor costs
annually. It would also allow the decommissioning of one
photomask inspection device.
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The proposed PdM framework and verification process
could be used internally, i.e., for process management within
the factory as well as the continual collection of abnormal
data to mitigate the data imbalance. The framework could
also be used externally; i.e., to assess the performance of
vendors in terms of product quality based on metrics, such
as the average useful life. As the abnormal data accumulates,
when the abnormal data for each vendor reaches a statistically
significant sample, it can be used to evaluate differences
in vendor manufacturing quality, broadening the application
of PdM and aligning it with practical factory management.
In terms of model limitations, if there are too many categories
of components, it may result in insufficient samples for each
category, which could lead to inadequate representation of
abnormal features and ultimately degrade the performance of
haze photomask detection.
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